Vincent Moreau

Lê Thành

Tito Nguy

Syntactically and semantically regular languages of λ-terms coincide through logical relations

Keywords: 2012 ACM Subject Classification Theory of computation → Denotational semantics; Theory of computation → Regular languages regular languages, simple types, denotational semantics, logical relations

A fundamental theme in automata theory is regular languages of words and trees, and their many equivalent definitions. Salvati has proposed a generalization to regular languages of simply typed λ-terms, defined using denotational semantics in finite sets.

We provide here some evidence for its robustness. First, we give an equivalent syntactic characterization that naturally extends the seminal work of Hillebrand and Kanellakis connecting regular languages of words and syntactic λ-definability. Second, we show that any finitary extensional model of the simply typed λ-calculus, when used in Salvati's definition, recognizes exactly the same class of languages of λ-terms as the category of finite sets does.

The proofs of these two results rely on logical relations and can be seen as instances of a more general construction of a categorical nature, inspired by previous categorical accounts of logical relations using the gluing construction.

Introduction

Much work has been devoted to the study of regular languages of words and trees -also called recognizable -and their equivalent characterizations, typically in terms of automata, algebra, and logic. The remarkable robustness of this notion of regularity has led to attempts to extend it to several other structures, such as infinite words/trees or graphs of bounded treewidth -many examples can be found, for instance, in [4]. This paper focuses on a less studied extension: recognizable languages of simply typed λ-terms, introduced by Salvati [START_REF] Salvati | Recognizability in the simply typed lambda-calculus[END_REF]. They are a conservative generalization [27, §3]: 1 using the Church encoding, finite words and trees can be represented in the simply typed λ-calculus, and recognizability for Church encodings coincides with the usual notion of regularity. Furthermore, as Salvati explains in his habilitation thesis [START_REF] Salvati | Lambda-calculus and formal language theory[END_REF], regular languages of λ-terms can be used to shed light on several classical topics concerning the simply typed λ-calculus, such as higher-order matching [27, §6.2] and higher-order grammars [START_REF] Kobele | The IO and OI hierarchies revisited[END_REF].

However, not many characterizations of the class of recognizable languages of simply typed λ-terms are known, and it would be desirable to have more evidence that it is robust. Moreover, if we know that this class of languages is a truly canonical object, then so is its Stone dual, namely the recently introduced space of profinite λ-terms [34]. Currently, there exist two definitions of recognizable languages of λ-terms, both provided in [START_REF] Salvati | Recognizability in the simply typed lambda-calculus[END_REF]:

The first one [27, Definition 1] uses denotational semantics into the finite standard models of the simply typed λ-calculus. This may be understood as generalizing to higher orders the computational aspects of deterministic finite automata. In the same vein, the concrete construction of profinite λ-terms in [34] depends on specific properties of the category FinSet of finite sets and functions between them.

The second one, grounded in intersection types [27, §4], turns out to admit an equivalent presentation in terms of a denotational semantics in finite domains [START_REF] Salvati | Lambda-calculus and formal language theory[END_REF]Theorem 25]. Indeed, the connection between intersection types and semantics is standard, see e.g. [START_REF] Ronchi | Intersection Types and Denotational Semantics: An Extended Abstract[END_REF].

Both definitions can be seen as an instance of the following pattern: the interpretation of a simply typed λ-term in some denotational model with a finitary flavor should suffice to know whether the term belongs to our language of interest. This is closely analogous to the algebraic definition of regular word languages. Indeed, viewing the set Σ * of words over a finite alphabet Σ as the free monoid generated by Σ, a language L ⊆ Σ * is regular if and only if, for some homomorphism φ : Σ * → M to a finite monoid M , the "interpretation" φ(w) determines 2 whether w ∈ L for each w ∈ Σ * . Asking for φ to be a homomorphism parallels the compositionality property of denotational semantics.

We may therefore ask: What kind of semantics yield the same notion of recognizable language? More precisely, with a definition of C-recognizable language for any cartesian closed category (CCC) C, i.e. any categorical model of the simply typed λ-calculus with products, the question becomes: when do recognizability by C and by FinSet coincide? Alternatively, is there any characterization of regular languages of λ-terms that does not involve denotational semantics? For the latter, we propose a positive answer inspired by the following result of Hillebrand and Kanellakis [14, Theorem 3.4]: a language of words is regular if and only if it can be decided by a simply typed λ-term operating on Church-encoded words. By replacing the type of Church encodings with any simple type A, we get a natural notion of syntactically regular language of λ-terms, defined by means purely internal to the simply typed λ-calculus.

Contributions and proof methods. The main results of this paper are as follows: Theorem 3.2 any non-degenerate cartesian closed category can recognize at least every language which is syntactically regular. Theorem 5.9 every language recognized by a locally finite and well-pointed CCC -in other words, a finitary extensional model of the simply typed λ-calculus -is recognized by FinSet. This was first stated by Salvati without proof in [28, Lemma 20]. Theorem 6.5 every language recognized by FinSet is syntactically regular.

2 More formally, L = φ -1 (P) for some P ⊆ M .

These three theorems, taken together, show that all non-degenerate, well-pointed and locally finite CCCs yield the same notion of regular language of λ-terms, which is the same as the syntactic one.

To achieve this goal, we introduce a construction on CCCs, which we call squeezing, and combine it with the standard categorical account of logical relations based on sconing. Indeed, Salvati claims in [START_REF] Salvati | Lambda-calculus and formal language theory[END_REF] that Theorem 5.9 can be established via logical relations, and it turns out that this falls out directly from our squeezing construction; but its versatility also allows us to apply it to prove the more diffcult Theorem 6.5 on syntactic recognizability.

Related work.

Morally, the study of regular languages of λ-terms amounts to understanding what information can be extracted by evaluating simply typed λ-terms in finitary models. A seminal result in this spirit is Statman's finite completeness theorem [START_REF] Statman | Completeness, invariance and lambda-definability[END_REF], which can be rephrased as the regularity of all singleton languages of λ-terms -a perspective that has led to a simplified proof [START_REF] Srivathsan | An alternate proof of Statman's finite completeness theorem[END_REF]. The idea of using another CCC than FinSet, easier to use to show Statman's theorem, has been exploited in [START_REF] Kobele | The IO and OI hierarchies revisited[END_REF]. This shows the advantage to use an appropriate CCC to recognize a given language, a possibility which is extended to a vast class of CCCs in this paper (see Proposition 7.3 for an example of application).

Finitary semantics are powerful tools, in particular, for understanding the computational power of the simply typed λ-calculus. For instance, in [14], Hillebrand and Kanellakis use the finite set semantics to prove their aforementioned theorem on regular word languages; as for finite Scott domains presented as intersection types, they have been applied by Terui [33] to study the complexity of normalizing simply typed λ-terms.

As can be seen inter alia from rather surprising results of Statman [31] and Plotkin [START_REF] Plotkin | Recursion does not always help[END_REF], finitary models are also useful to tame the infinitary aspects of an extension of the simply typed λ-calculus with a fixed-point operator, called the λY -calculus. Furthermore, the well-studied higher-order model checking problem is about testing regular properties on infinite trees that can be Church-encoded in the λY -calculus; it sits at the interface between automata and programming languages, with applications to the formal verification of functional programs (see e.g. [START_REF] Kobayashi | 10 years of the higher-order model checking project (extended abstract)[END_REF]). Decidability of higher-order model checking, first established by Ong through game semantics [START_REF] Ong | On model-checking trees generated by higher-order recursion schemes[END_REF], now admits proofs based on intersection types [15,[START_REF] Ong | Higher-order model checking: An overview[END_REF] and on finitary semantics [35,10]. Drawing on this line of work, higher-order parity automata [START_REF] Melliès | Higher-order parity automata[END_REF] generalize to λY -terms the recognizable languages of simply typed λ-terms.

The theme of syntactic recognizability à la Hillebrand and Kanellakis, for its part, has been recently revived in Nguy ễn and Pradic's implicit3 automata theory. They use substructural λ-calculi and Church encodings to characterize star-free languages [START_REF] Thành | Implicit automata in typed λ-calculi I: aperiodicity in a non-commutative logic[END_REF] and classes of string-to-string functions computed by transducers [START_REF] Thành | Implicit automata in linear logic and categorical transducer theory[END_REF].

Plan of the paper. We start by recalling in Section 2 the semantics of the simply typed λ-calculus, the notion of language recognized by a CCC as defined in [START_REF] Salvati | Recognizability in the simply typed lambda-calculus[END_REF] for finite sets, and by introducing the notion of syntactically regular language, generalizing recognition as defined in [14]. In Theorem 3.2 of Section 3, we show that every non-degenerate CCC recognizes all syntactically regular languages. In Section 4, we recall the definition of logical relations and introduce the squeezing construction Sqz(-) which will be a crucial tool for the two next sections. In Section 5, we recall the definition of locally finite and well-pointed CCCs, and show in Theorem 5.9 that CCCs enjoying both conditions do not recognize more languages than finite sets do. In Theorem 6.5 of Section 6, we show that languages recognized by finite sets are syntactically regular. We finish this paper by giving some consequences of the equivalence established by these three theorems in Section 7.

2

Languages of λ-terms

Syntax and semantics

We first specify the syntax we are working with. The grammars of types and preterms are

A, B ::= o | A ⇒ B | A × B | 1 and t, u ::= x | λ(x : A). t | t u | ⟨t, u⟩ | t i for i = 1, 2
and we consider the usual typing rules and βη-conversion rules, see e.g. [2, §4.1]. We extend the notation of t i , for the projection to the i th coordinate, to the case where t is of type

A 1 × •
o c := c A ⇒ B c := A c ⇒ B c A × B c := A c × B c 1 c := 1
Using the CCC structure of C, one can define a family of set-theoretic functions

-c : Λ(A) -→ C(1, A c)
for every simple type A called semantic brackets, sending closed λ-terms to points of the objects A c . These assignments can be described in another way. Let Lam be the category whose objects are simple types and whose set of morphisms from A to B is Λ(A ⇒ B), with the expected composition. This category is the free CCC on one object, i.e., for every CCC C and object c of C, there exists a unique CCC functorc : Lam → C such that o c = c. This can be represented by the commutativity of the following diagram:

Lam 1 C c o -c (1)
In this paper, the CCCs come with specified terminal object, cartesian products, and exponentials, and CCC functors are required to respect these structures strictly, on the nose. In that way, the unicity in the universal property of Lam depicted in Equation (1) holds up to equality, and not merely isomorphism.

We write FinSet for the cartesian closed category of finite sets. The semantics of the simply typed λ-calculus in this CCC corresponds to its naive set-theoretic interpretation. For ease of notation, we identify the finite set Q with the set of functions FinSet(1, Q).

Recognizable languages of λ-terms, semantically

We now define the notion of C-recognizable language of λ-terms, for any CCC C. The case C = FinSet corresponds to the notion of regular language of simply typed λ-terms introduced in [27, Definition 1].

▶ Definition 2.1. Let C be a CCC and c be an object of C. For every simple type A and subset F ⊆ C(1, A c), the language L F of λ-terms of type A is defined as

L F := {t ∈ Λ(A) | t c ∈ F } .
We define the set Rec c (A) of languages of λ-terms of type A recognized by c as

Rec c (A) := {L F : F ⊆ C(1, A c)} .
Finally, a language L of λ-terms of type A is C-recognizable if there exists an object c of C such that L belongs to the set Rec c (A).

▶ Example 2.2. For any natural number n, we define the associated simple type

Church n := (o ⇒ o) n ⇒ o ⇒ o .
There is a bijection between the sets Λ(Church n) and {1, . . . , n} * , the set of finite words over an alphabet with n letters, called the Church encoding. For example, the word 12212 over the two letter-alphabet {1, 2} is encoded as the λ-term λ(a

: (o ⇒ o) 2). λ(e : o). a 2 (a 1 (a 2 (a 2 (a 1 e)))) ∈ Λ(Church 2) .
Under this bijection, a language of λ-terms of type Church n is FinSet-recognizable, in the sense of Definition 2.1, if and only if the language of words associated by the Church encoding is a regular language of finite words, see [34, Proposition 7.1].

▶ Example 2.3. We give a detailed example using the Church encoding. We show that the language L of λ-terms of type Church 2 which are encodings of words in {1, 2} * that contain an even number of 1s and an odd number of 2s, is FinSet-recognizable.

Let Q be the finite set {q ⊤ , q ⊥ } and F be the subset of Church 2 Q defined as

F := {f ∈ (Q ⇒ Q) × (Q ⇒ Q) ⇒ Q ⇒ Q | f (not, Id Q)(q ⊤) = f (Id Q , not)(q ⊥) = q ⊤ }
where not : Q → Q is the function defined as not(q ⊤) = q ⊥ and not(q ⊥) = q ⊤ . The language L is equal to L F which belongs to Rec Q (Church 2), so L is FinSet-recognizable.

The idea is that, given the semantic interpretation f ∈ Church 2 Q of the encoding of a word w ∈ {1, 2} * , the states f (not, Id Q)(q ⊤) and f (Id Q , not)(q ⊥) are the states reached respectively, after reading w, in the two following deterministic finite automata:

q ⊤ start q ⊥ 1 1 2 2 q ⊤ q ⊥ start 2 2 1 1
The language L is the intersection of the two languages recognized by these automata.

▶ Example 2.4. We consider the simple type

UntypedTerms := ((o ⇒ o) ⇒ o) ⇒ (o ⇒ o ⇒ o) ⇒ o .
There is a canonical bijection -which is classical, see e.g. [3] for an in-depth treatmentbetween Λ(UntypedTerms) and the set of closed untyped λ-terms modulo α-renaming, i.e.

syntax trees with binders, without β-conversion.

Here are examples of encodings of the latter into the former (for the general definition, see Appendix A):

λx. x x ⇝ λ(ℓ : (o ⇒ o) ⇒ o). λ(a : o ⇒ o ⇒ o). ℓ (λ(x : o). a x x) (λx. x x) (λx. x x) ⇝ λ(ℓ : (o ⇒ o) ⇒ o). λ(a : o ⇒ o ⇒ o). a (ℓ (λ(x : o). a x x)) (ℓ (λ(x : o). a x x)) λf. (λx. x x) (λx. f (x x)) ⇝ λ(ℓ : (o ⇒ o) ⇒ o). λ(a : o ⇒ o ⇒ o). ℓ (λ(f : o). a (ℓ (λ(x : o). a x x)) (ℓ (λ(x : o). a f (a x x))))
This can be seen as an extension of Church encodings to higher-order abstract syntax: indeed, the variable ℓ plays the role of a constructor and introduces a bound variable.

A closed untyped term is affine if and only if every bound variable occurs at most once. We now give the outline of the proof, detailed in Appendix A, that the encodings in Λ(UntypedTerms) of closed untyped affine terms form a FinSet-recognizable language.

Let Q be the finite set {0, 1, ∞} × {⊤, ⊥}, where {0, 1, ∞} is seen as the additive monoid N truncated to 2 = 3 = • • • = ∞. We consider the two set-theoretic functions

f app : Q → (Q ⇒ Q) and f abs : (Q ⇒ Q) → Q defined as f app (k, b)(k ′ , b ′) := (k + k ′ , b ∧ b ′) and f abs (g) := (g 1 (0, ⊤), g 2 (0, ⊤) ∧ (g 1 (1, ⊤) ≤ 1))
where g 1 : Q → {0, 1, ∞} and g 2 : Q → {⊤, ⊥} are the compositions of g : Q → Q with the two projections. We verify that, for any closed untyped term t, we have

t Q (f abs)(f app) = (0, b)
where b is ⊤ if and only if t is affine.

Therefore, if F is the subset of UntypedTerms Q defined as

F := {s ∈ ((Q ⇒ Q) ⇒ Q) ⇒ (Q ⇒ Q ⇒ Q) ⇒ Q | s(f abs)(f app) = (0, ⊤)}
then the FinSet-recognizable language L F of terms of type UntypedTerms is the language of affine terms.

To the best of our knowledge, this regularity result is original. It also strongly suggests that the notion of FinSet-recognizable language, when applied to the type UntypedTerms of syntax trees with binders, differs from the recognizability of these syntax trees by the nominal tree automata of [13, §3.1]. Indeed, nominal automata cannot recognize the language of data words whose letters are all different [5, Proof of Lemma 5.4]. ▶ Remark 2.5. Let C and D be CCCs and G : C → D be a CCC functor. By the universal property of Lam, see Equation (1), for every object c of C, the following diagram commutes:

Lam 1 C D o c G -c -G(c)
In particular, this means that for every simple type A, the objects A G(c) and G(A c) are equal, and that for every simply typed λ-terms t and t ′ of type A,

if t c = t ′ c then t G(c) = t ′ G(c) .
This means that interpreting the simply typed λ-calculus at the object c will always be at least as fine as interpreting it at G(c). In particular, this entails that Rec

G(c) (A) ⊆ Rec c (A).
If G is moreover faithful, we then have that Rec G(c) (A) = Rec c (A) for any object c of C. Therefore, all languages which are C-recognizable are D-recognizable.

Recognizable languages of λ-terms, syntactically

A syntactic approach to recognition is described in [14]. This syntactic approach uses the type substitution, also called cast, whose definition we now recall.

▶ Definition 2.6. If A and B are simple types, we define a simple type A[B]

= A{o := B} by replacing every occurence of o in A by B. We extend this to λ-terms by induction:

x[B] := x (λ(x : A). t)[B] := λ(x : A[B]). t[B] (t u)[B] := t[B] u[B] ⟨t, u⟩[B] := ⟨t[B], u[B]⟩ t i [B] := (t[B]) i ▷ Claim 2.7.
For every simple types A and B and t ∈ Λ(A), we have

t[B] ∈ Λ(A[B]).
▶ Remark 2.8. A more categorical way to understand casting is to see it as the unique CCC functor (-)[B] : Lam → Lam such that the following diagram commutes:

Lam 1 Lam B o (-)[B]
As such, it is the semantic bracket functor -B : Lam → Lam.

Finally, we recall the encoding of Booleans into the simply typed λ-calculus.

▶ Definition 2.9. Let Bool be the simple type o 2 ⇒ o. Its two inhabitants are the λ-terms

true := λ(x : o 2). x 1 and false := λ(x : o 2). x 2 .
The following definition naturally generalizes the one given in [14] for A = Church n .

▶ Definition 2.10. For any simple type A, a language L ⊆ Λ(A) is syntactically regular if there exists a simple type B and a λ-term r of type

A[B] ⇒ Bool such that L = {t ∈ Λ(A) | r t[B] = βη true} .
▶ Theorem 2.11 (Hillebrand & Kanellakis, [14, Theorem 3.4]). A language of λ-terms of type Church n is syntactically regular if and only if the associated language of finite words by the Church encoding is regular in the usual sense.

▶ Example 2.12. The Church encodings of words in {1, 2} * with an even number of 1s and an odd number of 2s is syntactically regular. Indeed, we consider the following λ-terms

and := λ(p : Bool × Bool). λ(x : o × o). p 1 ⟨p 2 x, x 2 ⟩ id := λ(b : Bool). b not := λ(b : Bool). λ(x : o × o). b ⟨x 2 , x 1 ⟩
and choose, as in Definition 2.10, the type B to be Bool and the simply typed λ-term r to be λ(w : Church 2 [Bool]). and ⟨w not id true, w id not false⟩ :

Church 2 [Bool] ⇒ Bool .
Just as in Example 2.3, this term can be seen as running two DFAs, both having two states, over the encoding of an input word.

When restricted to types Church n for any natural number n, the notion of FinSetrecognizable and syntactically regular languages coincide, as they both boil down to the usual notion of regular language of finite words, as seen in Example 2.2 and Theorem 2.11 respectively. One of the contributions of the present paper is to show that these two notions coincide at every simple type.

Syntactic recognition implies semantic recognition

In this section, we state Theorem 3.2 and prove it by extending the semantic evaluation argument, described by Hillebrand and Kanellakis in their proof of Theorem 2.11 for the case of languages of words, to the more general case of languages of any type.

▶ Definition 3.1. A CCC C is said to be non-degenerate if there exist two objects c ′ , c of C such that there exist two distinct morphisms f, g : c ′ → c.

▶ Theorem 3.2.
If C is a non-degenerate CCC, then any language of λ-terms which is syntactically regular is C-recognizable.

Proof. We observe first that the non-degeneracy assumption means that the two projections π 1 , π 2 : c × c → c are not equal, since they yield different results when pre-composed with the morphism c ′ → c × c obtained by pairing f and g.

Let A be a simple type and L be a language of λ-terms of type A which is syntactically regular. There exists a simple type B together with a λ-term r ∈ Λ

(A[B] ⇒ Bool) such that L = {t ∈ Λ(A) | r t[B] = βη true} .
In order to show that L belongs to Rec B c (A), we work with the interpretation of the simply typed λ-calculus at the object B c of C. By the universal property of the CCC Lam, the following diagram commutes Lam

1 Lam C B -B c o (-)[B] -c .
More concretely, this states that, for every simply typed λ-term t, the two morphisms t[B] c and t B c are equal. By viewing r as a morphism from A [B] to Bool in the category Lam, the compositionality of the semantic interpretation gives us that

r t[B] c = r c • t[B] c = r c • t B c .
By non-degeneracy, the semantic interpretation

-c : Λ(Bool) → C(1, Bool c) is injective: indeed, true c = π 1 ̸ = π 2 = false c . Therefore, we get the following equivalences t ∈ L ⇐⇒ r t[B] = βη true ⇐⇒ r t[B] c = true c ⇐⇒ t B c ∈ F where F is the subset of C(1, A B c) defined as {q ∈ C(1, A B c) | r c • q = true c }.
This shows that L belongs to Rec B c (A), hence that it is a C-recognizable language. ◀

Logical relations and the squeezing construction

Sconing in a nutshell

In this paragraph, we recall the construction of a CCC of logical relations from one CCC to another. We first recall the construction of logical predicates, also called sconing, which will be general enough to give logical relations as a special case. This method is well-known, see for instance [START_REF] Mitchell | Notes on sconing and relators[END_REF] for an introductory account.

▶ Definition 4.1. Let C be a CCC. The category of logical predicates over C, that we denote by P(C), is defined as follows: its objects are the pairs (c, S) of an object c of C together with a subset S ⊆ C(1, c), its morphisms from (c, S) to (c ′ , S ′) are the morphisms

f : c → c ′ of C such that f • (-) restricts to a set-theoretic function S → S ′ .
▷ Claim 4.2. This category P(C) is a CCC, with exponentiation given by

(c, S) ⇒ (c ′ , S ′) = (c ⇒ c ′ , {f ∈ C(1, c ⇒ c ′) | ∀s ∈ S, ev c,c ′ •⟨f, s⟩ ∈ S ′ })
The forgetful functor (c, S) → c is a CCC functor.

Proof

P(C 1 × C 2) → C 1 × C 2 .
▶ Remark 4.4. We have defined the CCC of logical relations in terms of the logical predicate construction P(-) of Definition 4.1. More concretely, this construction gives a category that can be described in the following way: its objects are triples (c 1 , c 2 , ⊩) where c i is an object of

C i for i = 1, 2 and ⊩ is a subset of C 1 (1, c 1) × C 2 (1, c 2)
, and is thus a relation between the points of c 1 and of c 2 , its morphisms from (c

1 , c 2 , ⊩) to (c ′ 1 , c ′ 2 , ⊩ ′) are pairs (f 1 , f 2) ∈ C 1 (c 1 , c ′ 1) × C 2 (c 2 , c ′ 2) such that for every pair (x 1 , x 2) ∈ C 1 (1, c 1) × C 2 (1, c 2), if x 1 ⊩ x 2 , then f 1 • x 1 ⊩ ′ f 2 • x 2 .
For the proof that this category is a CCC, see [START_REF] Mitchell | Notes on sconing and relators[END_REF]Proposition 4.3]. ▶ Remark 4.5. The CCC of logical relations from C 1 to C 2 comes with two projections to C 1 and to C 2 which are CCC functors. By Remark 2.5, we get that for any relation (c 1 , c 2 , ⊩),

A (c1,c2,⊩) = (A c1 , A c2 , ⊩ A) for some ⊩ A ⊆ C 1 (1, A c1) × C 2 (1, A c2).
The interpretation of a λ-term t ∈ Λ(A) at an object (c 1 , c 2 , ⊩) is a morphism of the form

(t c1 , t c2) : 1 -→ A (c1,c2,⊩) which means that (t c1 , t c2) ∈⊩ A .
This is the fundamental lemma of logical relations, see e.g. [2, Lemma 4.5.3].

▶ Remark 4.6. At this stage, the categories C 1 and C 2 play a symmetric role. However, this will not always be the case in the rest of the paper, and we therefore say CCC of logical relations from C 1 to C 2 to emphasize the order.

The squeezing construction

We describe here a construction, which we call squeezing, which produces a CCC Sqz(C) from a CCC C equipped with an additional structure that we call a squeezing structure.

Intuitively, the objects of Sqz(C) are objects of C coming with bounds induced by the structure, inspired by the squeeze theorem of calculus. This construction can be seen as the proof-irrelevant counterpart to the twisted gluing construction described in [1, Definition 5].

The notion of squeezing structure that is used is related to the hypotheses of [8, Lemma 6]; this pattern also occurs in the older proof theory tradition, see for instance [9, §8.A].

Throughout this paragraph, we fix any CCC C. We recall that a wide subcategory is a subcategory containing all objects, and can hence be seen as a predicate on morphisms, closed under finite compositions.

- → c ′ r , v ⇒ u : c ′ r ⇒ c l l -→ c r ⇒ c ′ l and u ⇒ v : c ′ l ⇒ c r r -→ c l ⇒ c ′ r .
for every object c of C, two objects L c and R c of C such that there exists morphisms:

L 1 l -→ 1 L c×c ′ l -→ L c × L c ′ L c⇒c ′ l -→ R c ⇒ L c ′ 1 r -→ R 1 R c × R c ′ r -→ R c×c ′ L c ⇒ R c ′ r -→ R c⇒c ′ . (2
)
▶ Remark 4.8. As we work in a proof-irrelevant setting, we are merely interested in the existence of these morphisms. Nonetheless, knowing that they belong to C left or C right gets us back some precious information, as we will see in Lemma 4.11 and Section 6.

Partial surjections

Logical relations which are partial surjections, i.e. both functional and surjective relations, can be a useful tool to obtain partial equivalence relations and to prove semantic results, see [6, §3], [7, §1.4.2] and [34, Theorem A]. We now show that the squeezing construction can be applied to get partial surjections for free.

▶ Lemma 4.11. Let C 1 and C 2 be two CCCs and R be the CCC of logical relations from C 1 to C 2 , whose objects are triples containing relations. Suppose that we are given a squeezing structure on R such that the relations in the objects L c are surjective, the relations in the objects R c are functional, the morphisms

(u 1 , u 2) in R left are such that C 2 (1, u 2) is a surjective function, the morphisms (v 1 , v 2) in R right are such that C 2 (1, v 2) is an injective function, where, for u ∈ C(a, b), the function C(1, u) : C(1, a) → C(1, b) is the composition u • (-).
Then, the relation of any object belonging to Sqz(R) is a partial surjection.

The proof is in Appendix C. We end this section by giving a definition which will appear in squeezing structures in Proposition 6.4 and in the proof of Proposition 5.8. ▶ Definition 4.12. Let R be the CCC of logical relations from C 1 to C 2 . We say that a morphism

(f 1 , f 2) : (c 1 , c 2 , ⊩) → (c ′ 1 , c ′ 2 , ⊩ ′
) is a target-identity if c 2 and c ′ 2 are the same object and if f 2 is the identity morphism. ▶ Remark 4.13. We remark that the target-identities form a wide subcategory and are stable under products and exponentiation.

5

From well-pointed locally finite CCCs to finite sets

We now recall the definition of the class of CCCs C for which we will show that C-recognizable languages coincide with our other definitions of regular languages of λ-terms. Recall that in a CCC C, a point of an object c is a morphism 1 → c from the terminal object to c.

▶ Definition 5.1. A CCC is said to be: well-pointed if every morphism is determined by its action on points of its domain;

locally finite if all its hom-sets are finite sets.

We start by introducing the following constructions, which will help us to use partial surjections.

▶ Definition 5.2. Let C be a category with a terminal object. We define the following full subcategories of C: C ≥1 containing the objects c that have at least one point; we call these objects inhabited, C ≤1 containing the objects c that have at most one point, C =1 containing the objects c that have exactly one point.

When instantiated to the CCC Lam of simple types and λ-terms, the notion of inhabited object coincides with the usual notion of inhabited simple type.

▶ Proposition 5.3. If C is a CCC, then the category C ≥1 is a sub-CCC of C.

The proof is in Appendix B.

▶ Proposition 5.4. If E is a well-pointed CCC, then the category E ≤1 is a sub-CCC of E. Moreover, the category E =1 is equivalent to the terminal category.

The proof is in Appendix B. We now prove the interesting fact that inhabited objects characterize the recognized languages of λ-terms in a well-pointed CCC.

▶ Proposition 5.5. If E is a well-pointed CCC, then a language of λ-terms is E-recognizable if and only if it is E ≥1 -recognizable.

Proof. Let E be a well-pointed CCC. By Proposition 5.3, E ≥1 is a sub-CCC of E so any language which is E ≥1 -recognizable is E-recognizable, as explained in Remark 2.5.

We now show that the only language recognized by E ≤1 is the empty and full languages. Let A be a simple type and c be an object of E ≤1 . As E is well-pointed and by Proposition 5.4, we know that A c belongs to E ≤1 , which means that C(1, A c) is empty or a singleton, so Rec c (A) contains at most the empty and full languages, which are the same when A is not inhabited.

The empty and full languages are recognized by any CCC, so in particular by E ≥1 . Therefore, all E-recognizable languages are E ≥1 -recognizable. ◀ ▶ Example 5.6. The category FinSet ≥1 is the CCC of non-empty finite sets.

An implicative semilattice is a meet-semilattice such that each meet operation has an upper adjoint. Implicative semilattices are CCCs, however, they are degenerate and so never distinguish different λ-terms of the same type. Another way to understand this fact is to remark that their full subcategory of inhabited objects is the terminal category.

Next, we introduce the basic partial relations at which we will interpret the λ-calculus.

▶ Definition 5.7. Let E be a well-pointed locally finite CCC and R be the CCC of logical relations from FinSet to E. For any object e of E, we consider the triple

T e := (E(1, e), e, ∼ e)
where ∼ e is the identity relation of E(1, e).

which extends to a functor T : E → R.

We now prove a converse to Lemma 4.11 in the present case.

▶ Proposition 5.8. Let E be a well-pointed locally finite CCC whose objects are all inhabited and R be the CCC of logical relations from FinSet to E. Then, the full subcategory of partial surjections is a sub-CCC of R.

We provide two proofs of this proposition. The first one constructs the CCC by hand, see Appendix B. The other one uses the squeezing technique, see Appendix D.

▶ Theorem 5.9 (claimed in [START_REF] Salvati | Lambda-calculus and formal language theory[END_REF]Lemma 20]). For every well-pointed locally finite CCC E, any E-recognizable language is FinSet-recognizable.

Proof. Let A be a simple type and L be a language of λ-terms of type A which is Erecognizable. By Proposition 5.5, it is E ≥1 -recognizable. Let e be an object of E ≥1 such that L ∈ Rec e (A). We consider the object T e = (E(1, e), e, ∼ e) from Definition 5.7, whose relation is a partial surjection. The object A Te is of the form (A E(1,e) ,A e ,∼ A e), where the relation ∼ A e is a partial surjection, as explained in Remark 2.5. Let F be a subset of E(1, A e) such that L is L F . We consider the subset F ′ of A E(1,e) defined as the inverse image

F ′ := {q ∈ A E(1,e) | ∃q ′ ∈ F s.t. q ∼ A
e q ′ } By the fundamental lemma of logical relations, for λ-term t of type A, we have

t E(1,e) ∼ A e t e .
which proves that L F ⊆ L F ′ . Moreover, as ∼ A e is a functional relation, we get the converse inclusion. This proves that L is FinSet-recognizable. ◀

From finite sets to λ-terms

In this section, we apply the squeezing construction of Definition 4.9 on a CCC of logical relations to show that every FinSet-recognizable language is syntactically regular, through an encoding of finite sets into the simply typed λ-calculus. To achieve that, we need to change slightly of setting, by moving from finite sets to finite ordinals. This will make it possible to define the functor Fin(-) without ambiguity. Therefore, we consider the category FinOrd whose objects are natural numbers and whose morphisms are the set-theoretic maps between the associated finite cardinals ⟨n⟩ := {1, . . . , n}. The inclusion of FinOrd in FinSet is a fully faithful functor that is essentially surjective, henceforth we get an equivalence between FinOrd and FinSet using the axiom of choice. In particular, FinOrd is a CCC that recognizes the same languages as FinSet.

The encoding of finite sets and its squeezing structure

We take R to be the CCC of logical relations from Lam to FinOrd. We recall that the objects of R are therefore triples R = (B, n, ⊩) where B is a simple type, n is a natural number and ⊩ is a subset of the product Λ(B) × ⟨n⟩. A morphism of R is a pair of morphisms of Lam and FinOrd which respect the relations.

▶ Definition 6.1. We define the functor Fin(-) : FinOrd → Lam as Fin(n) := o n ⇒ o and, for every f : n → n ′ , the λ-term Fin(f) :

Fin(n) → Fin(n ′) is λ(p : Fin(n)). λ(x : o n ′). p ⟨x f (1) , . . . , x f (n) ⟩ .
▶ Remark 6.2. As FinOrd is equivalent to the free cocartesian category and Lam op is cocartesian, we get a functor n → o n . The composition of the two functors

FinOrd

Lam op Lam

n →o n (-)⇒o
is precisely the functor Fin(-).

Our goal is now to exhibit a squeezing structure on R in order to show Theorem 6.5. We consider the target-identities for the two wide subcategories of the structure. We now define the following family of objects.

▶ Definition 6.3. For any natural number n, we define the object Bij n as

Bij n := (Fin(n), n, ⊩ n)
where ⊩ n is the bijection between the sets Λ(Fin(n)) and ⟨n⟩ defined as

⊩ n := {(π i , i) : 1 ≤ i ≤ n} with π i the λ-term λ(x : o n). x i .
This assignment extends to a functor Bij (-) : FinOrd → R.

▶ Proposition 6.4.

There is a squeezing structure on the CCC R such that: the left and right morphisms are the target-identities of R, for any object c = (B, n, ⊩) of R, the objects L c and R c are both equal to Bij n .

The proof is in Appendix D. Proposition 6.4 shows that we have a sub-CCC Sqz(C) of the CCC of logical relations from Lam to FinOrd, whose objects are tuples (B, n, ⊩) such that there exists λ-terms u : Fin(n) → B and v : B → Fin(n) lifting to the two following target-identities:

(Fin(n), n, ⊩ n) (B, n, ⊩) (u,Idn) and (B, n, ⊩) (Fin(n), n, ⊩ n) (v,Idn)
.

Encoding recognizability by finite sets

We have shown in Proposition 6.4 that we have a squeezing structure on the CCC of logical relations R from Lam to FinOrd. We now show how to use this structure, culminating in the link established in Theorem 6.5 between FinOrd-recognizable and syntactically regular languages.

▶ Theorem 6.5. If a language is FinSet-recognizable, then it is syntactically regular.

This fact boils down to stability by union or intersection. It is proved in [27, Theorem 8] using intersection types and in [34, Proposition 2.5] using logical relations. We provide another proof, showing that it is a direct consequence of our results.

Proof. Using any of the three conditions of Definition 7.1, it is clear that regular languages are closed under complement.

The product CCC FinSet × FinSet is non-degenerate, well-pointed and locally finite. It comes with two projections which are both CCC functors FinSet × FinSet → FinSet. Let Q and Q ′ be two finite sets; we consider the object (c, c ′) of FinSet × FinSet. As explained in Remark 2.5, for any simple type A, we get that Rec

Q (A) ⊆ Rec (Q,Q ′) (A) and Rec Q ′ (A) ⊆ Rec (Q,Q ′) (A).
Moreover, Rec (Q,Q ′) (A) is a Boolean algebra. This shows that the intersection of a language in Rec Q (A) with another in Rec Q ′ (A) can be taken in Rec (Q,Q ′) (A), so it is still a regular language. Therefore, Reg(A) is a Boolean algebra.

◀

We now point out two other consequences of the equivalence in Definition 7.1.

As stated in the introduction, Statman's finite completeness theorem tells us that singleton languages of λ-terms, taken modulo βη-conversion, are regular languages. It has multiple proofs, see [32] for proof directly in the finite standard model, [START_REF] Salvati | Recognizability in the simply typed lambda-calculus[END_REF] using intersection types, [START_REF] Kobele | The IO and OI hierarchies revisited[END_REF] in the model of complete lattices and [START_REF] Srivathsan | An alternate proof of Statman's finite completeness theorem[END_REF] using Böhm trees. These results are usually proved in one CCC. Using Theorem 3.2, Theorem 5.9 and Theorem 6.5, we get that the singleton languages are recognized by any non-degenerate, well-pointed and locally finite CCC and are also syntactically regular. Some CCCs satisfying these three conditions are the coKleisli categories of a model of linear logic, see [START_REF] Melliès | Categorical Semantics of Linear Logic[END_REF]. In [START_REF] Melliès | Higher-order parity automata[END_REF], a notion of higher-order automaton is presented, which recognizes a language of λ-terms of a given simple type. The run-trees for these non-deterministic automata are defined using an intersection type system, which is an equivalent way of presenting the semantic interpretationof the simply typed λ-calculus in the coKleisli category ScottL ! of the Scott model of linear logic. Using the equivalence proved in the present article, a language is recognized by a higher-order automaton, i.e. ScottL ! -recognizable, if and only if it satisfies one of the conditions of Definition 7.1.

Conclusion and future perspectives

In this article, we have shown that every non-degenerate, well-pointed and locally finite CCCs recognizes exactly Salvati's regular languages of λ-terms [START_REF] Salvati | Recognizability in the simply typed lambda-calculus[END_REF], and that those also coincide with syntactically regular languages. This is evidence for the robustness of this notion, and therefore of the dual notion of profinite λ-term introduced in [34]. Among the aforementioned conditions, non-degeneracy is needed to recognize non-trivial languages, and local finiteness is clearly crucial: in the case of finite words and trees, regularity is closely related to recognition by finitary structures. What about well-pointedness? In other words, one question that remains open is the following: is there a locally finite CCC that recognizes languages of λ-terms that are not regular, i.e. not recognizable by FinSet? For example, sequential algorithms famously form a locally finite CCC which is not well-pointed, cf. [2, Chapter 14]; we would like to understand its recognition power.

As explained in Example 2.2, the regular languages of λ-terms of type Church n for some natural number n are exactly the usual regular languages of the finite words associated by the Church encoding. It is possible to encode words in other calculi, like the non-commutative affine λ-calculus in which case a syntactic approach analogous to Definition 2.10 yields the

A The regular language of affine untyped terms

The goal of this appendix is to provide a detailed explaination of Example 2.4. We first introduce a grammar for the simply typed λ-terms of type UntypedTerms through the following notion of scoped term.

▶ Definition A.1. We consider untyped terms with de Bruijn indices, given by the grammar

u, v ::= var i for i ∈ N * | abs(u) | app(u, v)
where we write abs(-) for the abstraction to distinguish it from the simply typed λ-abstraction.

For any natural number n and untyped term u, we define the judgment n ⊢ u by induction with the rules

1 ≤ i ≤ n n ⊢ var i n + 1 ⊢ u n ⊢ abs(u) n ⊢ u n ⊢ v n ⊢ app(u, v) .
The judgment n ⊢ u has at most one derivation. We call a scoped term any pair of n and u such that n ⊢ u is derivable.

In the rest of the appendix, we will simply say that n ⊢ u is a scoped term whenever this judgment is derivable. We now give the encoding of scoped terms into the simply typed λ-calculus.

▶ Definition A.2. Let us consider a fixed sequence of simply typed variables x

k : o for k ∈ N. We define the context Γ n as ℓ : (o ⇒ o) ⇒ o, a : o ⇒ o ⇒ o, x 1 : o, . . . , x n : o.
For any natural number n and untyped term u, we consider the encoding n ⊢ u of a scoped term defined by induction as In particular, the encoding induces a bijection between the set Λ(UntypedTerms) and the set of closed untyped terms, i.e. the u such that 0 ⊢ u is a scoped term.

n ⊢ var i := x n+1-i n ⊢ abs(u) := ℓ (λ(x n+1 : o). n + 1 ⊢ u) n ⊢ app(u, v) := a (n ⊢ u) (n ⊢ v) which is such that Γ n ⊢ n ⊢ u : o.
▶ Definition A.4. For any scoped term n ⊢ u and 1 ≤ i ≤ n, we define the natural number occ i (n ⊢ u), the number of occurences of the i th variable, by induction as:

occ i (n ⊢ var j) := 1 if i = j otherwise 0 occ i (n ⊢ abs(u)) := occ i+1 (n + 1 ⊢ u) occ i (n ⊢ app(u, v)) := occ i (n ⊢ u) + occ i (n ⊢ v) .
When the scoped term n ⊢ u is clear from context, we will simply write occ i . ▶ Definition A.5. For any finite set Q and functions f abs :

(Q ⇒ Q) → Q and f app : Q → Q ⇒ Q, we interpret any scoped term n ⊢ u as its semantics n ⊢ u ⇝ n ⊢ u : Q n -→ Q
which is the set-theoretic function defined, for q 1 , . . . , q n ∈ Q, by induction as: n ⊢ var i [q 1 , . . . , q n] := q i n ⊢ abs(u) [q 1 , . . . , q n] := f abs (q → n + 1 ⊢ u [q, q 1 , . . . , q n])

n ⊢ app(u, v) [q 1 , . . . , q n] := f app (n ⊢ u [q 1 , . . . , q n])(n ⊢ v [q 1 , . . . , q n]) .
We write the arguments of the function n ⊢ u between square brackets [and].

▶ Remark A.6. The semantics of Definition A.5 factor through the encoding of Definition A.2 in the simply typed λ-calculus and its semantic interpretation as for all q 1 , . . . , q n ∈ Q, n ⊢ u (q 1 , . . . , q n) = n ⊢ u Q (f abs)(f app)(q n , . . . , q 1) .

We now instantiate Definition A.5 with the following values of Q, f abs and f app :

Q is the set {0, 1, ∞} × {⊥, ⊤}, with its product monoid structure. For any q ∈ Q, we write q 1 ∈ {0, 1, ∞} and q 2 ∈ {⊥, ⊤} for its two components.

f abs is the function (Q ⇒ Q) → Q defined as g -→ (g(0, ⊤) 1 , g(0, ⊤) 2 ∧ (g(1, ⊤) 1 ̸ = ∞)) f app is the curried monoid product of Q, i.e. the function Q → (Q ⇒ Q) defined as (n, b) -→ (n ′ , b ′) → (n + n ′ , b ∧ b ′) .
▶ Proposition A.7 (Left part of the tuple). For any scoped term n ⊢ u and any elements k 1 , . . . k n of {0, 1, ∞}, we have

n ⊢ u [(k 1 , ⊤) , . . . , (k n , ⊤)] 1 = occ 1 • k 1 + • • • + occ n • k n
where the product • : N × {0, 1, ∞} → {0, 1, ∞} comes from the monoid structure of {0, 1, ∞}.

Proof. We verify this by induction on the scoped term n ⊢ u.

n ⊢ var i [(k 1 , ⊤) , . . . , (k n , ⊤)] 1 := k i = occ 1 • k 1 + • • • + occ n • k n n ⊢ abs(u) [(k 1 , ⊤) , . . . , (k n , ⊤)] 1 := f abs ((k, b) → n + 1 ⊢ u [(k, b) , (k 1 , ⊤) , . . . , (k n , ⊤)]) 1 = n + 1 ⊢ u [(0, ⊤) , (k 1 , ⊤) , . . . , (k n , ⊤)] 1 = occ 1 • k 1 + • • • + occ n • k n n ⊢ app(u, v) [(k 1 , ⊤) , . . . , (k n , ⊤)] 1 := f app (n ⊢ u [(k 1 , ⊤) , . . . , (k n , ⊤)])(n ⊢ v [(k 1 , ⊤) , . . . , (k n , ⊤)]) 1 = n ⊢ u [(k 1 , ⊤) , . . . , (k n , ⊤)] 1 + n ⊢ v [(k 1 , ⊤) , . . . , (k n , ⊤)] 1 = occ 1 • k 1 + • • • + occ n • k n
In the abs case, the last equality is obtained by remarking that occ 1 (n + 1 ⊢ u) is multiplied by 0 and that occ i+1 (n + 1 ⊢ u) = occ i (n ⊢ abs(u)) for i ≥ 1. ◀

We introduce the following definition.

▶ Definition A.8. We define the property of a scoped term to be affine in its bound variables by induction as follows: n ⊢ var i is always affine in its bound variables, n ⊢ abs(u) is affine in its bound variables if and only if

occ 1 (n + 1 ⊢ u) ≤ 1 and n + 1 ⊢ u is affine in its bound variables n ⊢ app(u, v) is

affine in its bound variables if and only if

n ⊢ u and n ⊢ v are both affine in their bound variables.

A λ-term t ∈ Λ(UntypedTerms) will said to be affine when the closed untyped term 0 ⊢ u bijectively associated to t by Claim A.3 is affine in its bound variables.

▶ Proposition A.9 (Right part of the tuple). For any scoped term n ⊢ u, we have

n ⊢ u [(0, ⊤) , . . . , (0, ⊤)] 2 = b
where b is ⊤ if and only if the scoped term n ⊢ u is affine in its bound variables.

Proof. We prove this by induction on the scoped term n ⊢ u.

For any 1 ≤ i ≤ n, n ⊢ var i is always affine in its bound variables, and we always have

n ⊢ var i [(0, ⊤) , . . . , (0, ⊤)] 2 = ⊤ .
For any scoped term n + 1 ⊢ u, we have

n ⊢ abs(u) [(0, ⊤) , . . . , (0, ⊤)] 2 := f abs ((k, b) → n + 1 ⊢ u [(k, b) , (0, ⊤) , . . . , (0, ⊤)]) 2 = n + 1 ⊢ u [(0, ⊤) , (0, ⊤) , . . . , (0, ⊤)] 2 ∧ n + 1 ⊢ u [(1, ⊤) , (0, ⊤) , . . . , (0, ⊤)] 1 ̸ = ∞ = n + 1 ⊢ u [(0, ⊤) , (0, ⊤) , . . . , (0, ⊤)] 2 ∧ occ 1 (n + 1 ⊢ u) ≤ 1 .
where the last step comes from Proposition A.7. By the induction hypothesis on the scoped term n + 1 ⊢ u, we get that n ⊢ abs(u) is affine in its bound variables if and only if n ⊢ abs(u) [(0, ⊤) , . . . , (0, ⊤)] 2 is ⊤.

For any scoped terms n ⊢ u and n ⊢ v, we have

n ⊢ app(u, v) [(0, ⊤) , . . . , (0, ⊤)] 2 := f app (n ⊢ u [(0, ⊤) , . . . , (0, ⊤)])(n ⊢ v [(0, ⊤) , . . . , (0, ⊤)]) 2 = n ⊢ u [(0, ⊤) , . . . , (0, ⊤)] 2 ∧ n ⊢ v [(0, ⊤) , . . . , (0, ⊤)] 2
which shows, by the induction hypotheses on n ⊢ u and n ⊢ v, that n ⊢ app(u, v) is affine in its bound variables if and only if n ⊢ app(u, v) [(0, ⊤) , . . . , (0, ⊤)] 2 is ⊤. ◀ ▶ Theorem A.10. The language of closed affine untyped terms is regular in FinSet.

Proof. We consider the language

L := {t ∈ Λ(UntypedTerms) | t is affine} .
By definition, t ∈ Λ(UntypedTerms) is affine if and only if 0 ⊢ u is affine in its bound variables, where 0 ⊢ u is the unique scoped term such that t = 0 ⊢ u, given by Claim A.3. Moreover, by Proposition A.9, we have that 0 ⊢ u is affine in its bound variables if and only if

0 ⊢ u 2 = ⊤ and, by Remark A.6, 0 ⊢ u 2 = t Q (f abs)(f app). Therefore, if we define the subset F of UntypedTerms Q as F := {s ∈ UntypedTerms Q | s(f abs)(f app) 2 = ⊤}
we get that L = L F and therefore that L is FinSet-recognizable. ◀

B Sub-CCC proofs

Proof of Theorem 4.10

By definition of a squeezing structure, we have the following facts:

The terminal object 1 of C is an object of Sqz(C).

If c and c ′ belong to Sqz(C), then c × c ′ still does. Indeed, we have the following morphisms:

L c×c ′ l -→ L c × L c ′ l -→ c × c ′ and c × c ′ r -→ R c × R c ′ r -→ R c×c ′ .
If c and c ′ belong to Sqz(C), then c ⇒ c ′ still does. Indeed, we have the following morphisms:

L c⇒c ′ l -→ R c ⇒ L c ′ l -→ c ⇒ c ′ and c ⇒ c ′ r -→ L c ⇒ R c ′ r -→ R c⇒c ′ .
By Claim B.1, we get that Sqz(C) is a sub-CCC of C.

By Claim B.1, this proves that E ≤1 is a sub-CCC of E.

Let e and e ′ be two objects of E =1 . As the object e ⇒ e ′ belongs to both E ≥1 and E ≤1 , there exists a unique morphism from e to e ′ . This shows that E =1 is equivalent to the terminal category.

C Partial surjections

Proof of Lemma 4.11

Let c = (c 1 , c 2 , ⊩) be an object of Sqz(R). There exist morphisms

(u 1 , u 2) : L c l -→ c and (v 1 , v 2) : c r -→ R c .
We show that the relation ⊩ is functional and surjective. Let x 1 ∈ C 1 (1, c 1) and x 2 , x ′ 2 ∈ C 2 (1, c 2) such that x 1 ⊩ x 2 and x 1 ⊩ x ′ 2 . As (v 1 , v 2) is a morphism, we get

v 1 • x 1 ⊩ v 2 • x 2 and v 1 • x 1 ⊩ v 2 • x ′ 2 .
As the relation of R c is functional, we get that v 2 • x 2 = v 2 • x ′ 2 . By injectivity of C 2 (1, v 2), we get that x 2 = x ′ 2 , so the relation ⊩ is functional. Let x 2 ∈ C 2 (1, c 2). We write (c L,1 , c L,2 ⊩ L) for the object L c . By surjectivity of C 2 (1, v 2), there exists x L,2 ∈ C 2 (1, c L,2) such that x 2 = v 2 • x L,2 . By surjectivity of the relation ⊩ L , there exists x L,1 such that x L,1 ⊩ L x L,2 . As (u 1 , u 2) is a morphism, we have u 1 • x L,1 ⊩ x 2 , so the relation ⊩ is surjective. This shows that all objects in Sqz(R) are partial surjections.

D Squeezing structures

Second proof of Proposition 5.8

There exists a squeezing structure such that for any object R = (Q, e, ⊩) of R, the objects L R and R R are both equal to T e ; the two wide subcategories R left and R right are both taken to be the wide subcategory of target-identities. The fact that the point functor T is product-preserving gives us all the target-identities of the squeezing structure, except for the case of the morphism (E(1, e), e, ∼ e) ⇒ (E(1, e ′), e ′ , ∼ e ′) -→ (E(1, e ⇒ e ′), e ⇒ e ′ , ∼ e⇒e ′) .

For this morphism, we will crucially use the fact that we relate FinSet and E, which is well-pointed. We have a set-theoretic function i : E(1, e ⇒ e ′) -→ E(1, e) ⇒ E(1, e ′) which is injective as E is well-pointed and lifts to a target-identity. As the object e ⇒ e ′ of E is inhabited, the set E(1, e ⇒ e ′) is non-empty and the set-theoretic function i admits a retraction r : E(1, e) ⇒ E(1, e ′) -→ E(1, e ⇒ e ′) which lifts to a target-identity T e ⇒ T e ′ → T e⇒e ′ . By Lemma 4.11, we know that the objects of Sqz(R) are partial surjections. Conversely, suppose that R = (Q, e, ⊩) is such that ⊩ is a partial surjection. We the two following target-identities:

The fact that the relation ⊩ is surjective yields a set-theoretic function E(1, e) → Q which lifts to a target-identity T e → R. As the relation ⊩ is functional and E(1, e) is non-empty as e is inhabited, there exists a set-theoretic function Q → E(1, e) extending ⊩, and any such set-theoretic function lifts to a target-identity R → T e . This shows that the objects of Sqz(R) are exactly the partial surjections, which then form a sub-CCC of R by Theorem 4.10.

Proof of Proposition 6.4

It is clear that target-identities are composable and stable under finite products and exponentials, which is what is asked given that left and right morphisms are the same in the present case.

We are left with the task to show the existence of the morphisms as described in Equation (2) in our particular setting. As there exists at most one target-identity whose Lam component is a given λ-term, we give these λ-terms.

Case Bij 1 → 1: The unique morphism Bij 1 → 1 is a target-identity.

Case 1 → Bij 1 : The λ-term λ(y : 1). λ(x : o). x lifts to a target-identity 1 -→ (Fin(1), 1, ⊩ 1) .

Case Bij n×n ′ → Bij n × Bij n ′ : the fact that Bij (-) is a functor gives us directly such a morphism which can be verified to be a target-identity.

Case Bij n × Bij n ′ → Bij

▶

 Definition 4.7. A squeezing structure on C is the data of two wide subcategories C left and C right of C with associated notations l are stable under finite cartesian products and such that for all u : c l l -→ c ′ l and v : c r r

▶

 Definition 4.9. For a squeezing structure on C, the category Sqz(C) is the full subcategory of C whose objects are the objects c of C for which there exist both a left morphism L c l -→ c and a right morphism c r -→ R c . Notice that we write Sqz(C) even though this construction depends both on the CCC C and on a squeezing structure on C. ▶ Theorem 4.10. For a squeezing structure on C, the category Sqz(C) is a sub-CCC of C. The proof is in Appendix B.

 Using normalization for the simply typed λ-calculus, we can claim the following fact. ▷ Claim A.3. For every natural number n, the encoding of scoped terms n ⊢ u into the open λ-terms n ⊢ u of type o in context Γ n , taken modulo βη-conversion, is bijective.

 n×n ′ : The morphism is given by the λ-termλ(p : Fin(n) × Fin(n ′)). λ(x : o n×n ′). p 1 ⟨ Fin(1 × Id) p 2 x, . . . , Fin(n × Id) p 2 x⟩where i × Id is the function n ′ → n × n ′ sending j on (i, j), from which we get the λterm Fin(i × Id) of simple type Fin(n ′) ⇒ Fin(n × n ′). This λ-term lifts to a target-identityBij n × Bij n ′ -→ Bij n×n ′ . Case Bij n⇒n ′ → Bij n ⇒ Bij n ′ : We have the target-identity Bij n⇒n ′ × Bij n -→ Bij (n⇒n ′)×nwhich, when composed with the morphism Bij ev n,n ′ which has the evaluation morphism ev n,n ′ as target-component, yields a morphismBij n⇒n ′ × Bij n -→ Bij n ′ which, after curryfication, gets us a target-identity Bij n⇒n ′ → Bij n ⇒ Bij n ′ . Case Bij n ⇒ Bij n ′ → Bij n⇒n ′ : Notice that the equality n ⇒ n ′ = n ′ × • • • × n ′ n times shows that the λ-term of type Fin(n) ⇒ Fin(n ′) → (Fin(n ′)) n λ(F : Fin(n) ⇒ Fin(n ′)). ⟨F π 1 , . . . , F π n ⟩ lifts to a target-identity Bij n ⇒ Bij n ′ → Bij n ′ n. By postcomposing this target-identity with an iteration of the target-identities Bij m × Bij m ′ → Bij m×m ′ , we obtain the targetidentityBij n ⇒ Bij n ′ -→ Bij n⇒n ′ .

 As the λ-abstractions are annotated, a closed λ-term has at most one type derivation. For any simple type A, we write Λ(A) for the set of closed simply typed λ-terms of type A, taken modulo βη-conversion.We recall the semantics of the simply typed λ-calculus into cartesian closed categories, abbreviated as CCC, see [2, Chapter 4] for more details. For any CCC C, object c of C and simple type A, we define an object A c of C by induction on A as follows:

• • × A n and i is between 1 and n.

 . See[20, p. 5], where the notation C is used for the category P(C).

◁ ▶ Definition 4.3. Let C 1 and C 2 be two CCCs. The CCC of logical relations from C 1 to C 2 is the CCC P(C 1 × C 2), which admits a CCC functor

31

 Richard Statman. On the λY calculus. Annals of Pure and Applied Logic, 130(1-3):325-337, 2004. doi:10.1016/j.apal.2004.04.004. 32 Richard Statman and Gilles Dowek. On Statman's finite completeness theorem, 1992. arXiv: 2309.03602. 33 Kazushige Terui. Semantic Evaluation, Intersection Types and Complexity of Simply Typed Lambda Calculus. In 23rd International Conference on Rewriting Techniques and Applications (RTA'12), pages 323-338, 2012. doi:10.4230/LIPIcs.RTA.2012.323. 34 Sam van Gool, Paul-André Melliès, and Vincent Moreau. Profinite lambda-terms and parametricity. Electronic Notes in Theoretical Informatics and Computer Science, Volume 3 -Proceedings of MFPS XXXIX, November 2023. doi:10.46298/entics.12280. 35 Igor Walukiewicz. Automata theory and higher-order model-checking. ACM SIGLOG News, 3(4):13-31, 2016. doi:10.1145/3026744.3026745.

Alternatively, see [34, Proposition 7.1] for the case of words.

The name is a nod to implicit computational complexity, a field concerned with alternative definitions of complexity classes that avoid low-level machine models and explicit resource bounds. As an example, in addition to their result on regular word languages in the simply typed λ-calculus, Hillebrand and Kanellakis's paper [14] also contains characterizations of the k-EXPTIME and k-EXPSPACE hierarchies based on λ-terms, that are again proved by evaluation in finite sets.

This finishes the proof that there is a squeezing structure as described in the statement of the proposition.

Lê Thành Dũng (Tito) Nguy ễn: Supported by the LABEX MILYON (ANR-10-LABX-0070) of Université de Lyon, within the program "Investissements d'Avenir" (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR).

Acknowledgements

We would like to thank Amina Doumane, Sam van Gool, Paul-André Melliès and Sylvain Salvati for in-depth discussions that significantly helped us refine our ideas.

Proof. Let A be a simple type and L ⊆ Λ(A) be any FinSet-recognizable language. There exists a finite set Q and a subset F ⊆ ⟨ A n ⟩ such that

We take n to be the cardinality of Q and note χ : A n → 2 the characteristic function associated to the subset F . By applying the functor Bij (-) , we get a morphism of relations Bij χ := (Fin(χ) , χ) :

Fin(A n), A n , ⊩ A n -→ (Fin(2), 2, ⊩ 2) .

The interpretation A Bijn is of the form (A[Fin(n)], A n , ⊩ A n) as explained in Remark 2.5. As it is an object of Sqz(R), it has a target-identity into Bij A n . By composing this morphism with Bij χ , we obtain a morphism (r , χ)

By the fundamental lemma of logical relations, we get that, for every λ-term t of type A,

which states that r t[Fin(n)] = βη true if and only if χ(t n) is 1. This proves that r recognizes the language L F given by F ⊆ ⟨ A n ⟩, and so that L is syntactically regular. ◀

Regular languages

In this section, we want to point out a few consequences of the equivalence previously proved through Theorem 3.2, Theorem 5.9 and Theorem 6.5. Using these theorems, the following definition of regular languages is well-defined.

▶ Definition 7.1. Let A be a simple type. A regular language of λ-terms of type A is a subset L ⊆ Λ(A) such that one of the following equivalent propositions holds: L is syntactically regular; L is C-recognizable, for some non-degenerate, well-pointed and locally finite CCC C; L is FinSet-recognizable. We denote by Reg(A) the set of regular languages of λ-terms of type A. ▶ Remark 7.2. Note that FinSet recognizes all the regular languages of λ-terms. In that sense, it plays the same role as the monoid

with the composition of functions which recognizes all the regular languages of finite words as all finite monoids can be embedded into M . Such a monoid cannot be finite; however, M is a locally finite monoid, i.e. all its finitely generated submonoids are finite (this is a standard notion, see e.g. [11, §V.5]).

In the case of finite words, recognizability by finite monoids and locally finite monoids are equivalent when the alphabet is finite. In the case of λ-terms however, finite CCCs are all degenerate whereas the locally finite case yields regular languages of λ-terms, with some additional conditions.

▶ Proposition 7.3. The set Reg(A) of regular languages of λ-terms of some simple type A is a Boolean algebra.

star-free languages, see [START_REF] Thành | Implicit automata in typed λ-calculi I: aperiodicity in a non-commutative logic[END_REF]. Moreover, gluing techniques have been studied for other calculi, see [12] for the linear case. One can therefore wonder whether it is possible to develop a semantic approach à la Salvati, analogous to Definition 2.1, for other calculi.

Proof of Proposition 5.3

The following facts hold about the category C ≥1 of inhabited objects:

The terminal object 1 of C is in C ≥1 . If c and c ′ belong to C ≥1 , which means that there exists f ∈ C(1, c) and

If c is any object of C (so, it may in particular be an object of C ≥1) and c ′ is an object of C ≥1 , which means that there exists a morphism f ′ ∈ C(1, c ′), then the curryfication of the composition f •! c , where ! c ∈ C(c, 1), shows that c ⇒ c ′ belongs to C ≥1 . Notice that the argument actually shows that C ≥1 is an exponential ideal. By Claim B.1, this proves that C ≥1 is a sub-CCC of C.

First proof of Proposition 5.8

Let R be the CCC of logical relations from FinSet to E. We show that the full subcategory R p.s. of objects (Q, e, ⊩) such that the relation ⊩ is a partial surjection is a sub-CCC of R. We have the following facts:

The terminal object of R belongs to R p.s. . Let (Q, e, ⊩) and (Q ′ , e ′ , ⊩ ′) be objects of R p.s. , and ⊩ × be the relation of their product. Let ⟨q,

) such that ⟨q, q ′ ⟩ ⊩ × ⟨x i , x ′ i ⟩ for i = 1, 2. This means that q ⊩ x i and q ′ ⊩ ′ x ′ i for i = 1, 2. By functionality of ⊩ and ⊩ ′ , we get that

By surjectivity of ⊩ and ⊩ ′ , there exists q ∈ Q and q ′ ∈ Q ′ such that q ⊩ x and q ⊩ x ′ . Therefore, ⟨q, q ′ ⟩ ⊩ × ⟨x, x ′ ⟩, so ⊩ × is surjective. Let (Q, e, ⊩) and (Q ′ , e ′ , ⊩ ′) be objects of R p.s. , and ⊩ ⇒ be the relation of their arrow.

Let f ∈ Q ⇒ Q ′ and g i ∈ E(1, e ⇒ e ′) such that f ⊩ ⇒ g 1 and f ⊩ ⇒ g 2 . Let x be any element of E(1, e). By surjectivity of ⊩, there exists a q ∈ Q such that q ⊩ x, so f (q) ⊩ ′ g i • x for i = 1, 2. By functionality of ⊩ ′ , we get g 1 • x = g 2 • x. As this equality holds for all x ∈ E(1, e) and E is well-pointed, we get that g 1 = g 2 , which proves that ⊩ ⇒ is functional. Let g ∈ E(1, e ⇒ e ′). By surjectivity of R ′ , we can choose a function ρ :

where R, as a functional relation, can seen as a partial function Q ⇀ E(1, X). Then f ′ is also a partial function; since its codomain Q ′ is non-empty (indeed, E(1, X ′) ̸ = ∅ by assumption and ρ(E(1, X ′)) ⊆ Q ′) it can be extended to a total function f : Q → Q ′ . This construction ensures that (f, g) ∈ R ⇒ R ′ , so we have shown that R ⇒ R ′ is surjective. By Claim B.1, we get that R p.s. is a sub-CCC of R.

Proof of Proposition 5.4

We remark that the following facts hold about E ≤1 :

The