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Nonlinear scattering by non-Hermitian multilayers with saturation effects

We theoretically investigate the optical properties of a one-dimensional non-Hermitian dispersive layered system with saturable gain and loss. We solve the nonhomogeneous Helmholtz equation perturbatively by applying the modified transfer matrix method and we obtain closed-form expressions for the reflection or transmission coefficients for TM incident waves. The nonreciprocity of the scattering process can be directly inferred from the analysis of the obtained expressions. It is shown that by tuning the parameters of the layers we can effectively control the impact of nonlinearity on the scattering characteristics of the non-Hermitian layered structure. In particular, we investigate the asymmetric and nonreciprocal characteristics of the reflectance and transmittance of multilayered parity-time (PT)-symmetric slab. We demonstrate that incident electromagnetic wave may effectively tunnel through the PT-symmetric multilayered structures with zero reflection. The effect of nonlinearity to the scattering matrix eigenvalues is systematically examined.

I. INTRODUCTION

The remarkable properties of the recently discovered parity-time (PT)-symmetric photonic structures have attracted a lot of attention. The resulted intense research activity as well as the plethora of novel applications have led to a new direction in optics, that of non-Hermtian photonics. Interest in these non-Hermitian composite materials stems from the fact that they can exhibit entirely real spectra, as long as they respect the conditions of PT symmetry [1].

Non-Hermitian Hamiltonians and in particular those that are PT symmetric initially appeared in the context of quantum mechanics and mathematical physics [1][2][START_REF] Mostafazadeh | Conceptual aspects of PT-symmetry and pseudo-Hermiticity: A status report[END_REF]. The introduction of the concept of PT symmetry in the optical realm relied on the fact that the imaginary part of a non-Hermitian Hamiltonian corresponds physically to a complex refractive index (gain or loss) profile in optics. Therefore, the mathematical symmetry condition n(r) = n * (-r), can be actually realized in structures with spatially balanced gain and loss. Moreover, beyond a certain threshold, the so-called PTsymmetry-breaking threshold, the eigenvalue spectrum can abruptly change from real to complex. The PT-broken phase is characterized by pairs of complex conjugate eigenvalues [2]. Recent studies have demonstrated that PT-symmetric materials can exhibit unique properties and functionalities, such as band merging, anisotropic transmission resonances, unidirectional invisibility, asymmetric lasing, coherent perfect absorption, nonreciprocal light propagation, double refraction, enhanced sensitivity around higher order exceptional points, constant-intensity waves, and non-Hermitian invisibility [START_REF] Lin | Unidirectional Invisibility Induced by PT-Symmetric Periodic Structures[END_REF][START_REF] Sun | Experimental Demonstration of a Coherent Perfect Absorber with PT Phase Transition[END_REF][START_REF] Makris | Beam Dynamics in PT Symmetric Optical Lattices[END_REF][START_REF] Ruter | Observation of parity-time symmetry in optics[END_REF][START_REF] Ramezani | PT-Symmetric Talbot Effects[END_REF][START_REF] Sounas | Unidirectional Cloaking Based on Metasurfaces with Balanced Loss and Gain[END_REF][START_REF] Phang | Parity-time symmetric coupled microresonators with a dispersive gain/loss[END_REF][START_REF] Ren | Unidirectional light emission in PT-symmetric microring lasers[END_REF][START_REF] Ramezani | Unidirectional nonlinear PT-symmetric optical structures[END_REF][START_REF] Aleahmad | Integrated multi-port circulators for unidirectional optical information transport[END_REF][START_REF] Hodaei | Enhanced sensitivity at higher-order exceptional points[END_REF][START_REF] Makris | Wave propagation through disordered media without backscattering and intensity variations[END_REF][START_REF] Rivet | Constant-pressure sound waves in non-Hermitian disordered media[END_REF][START_REF] Brandstötter | Scatteringfree pulse propagation through invisible non-Hermitian media[END_REF][START_REF] Makris | Scattering-free channels of invisibility across non-Hermitian media[END_REF][START_REF] Komis | Equal-intensity waves in non-Hermitian media[END_REF]. The research in PT-symmetric photonics was primarily focused on linear phenomena, whereas the nonlinear effects have attracted less attention. At present, one-, two-, and three-dimensional solitons have been studied in several types of PT-symmetric optical systems [START_REF] Musslimani | Optical Solitons in PT Periodic Potentials[END_REF][START_REF] Yu | Stable dark solitons in PT-symmetric dual-core waveguides[END_REF][START_REF] Driben | Stability of solitons in paritytime-symmetric couplers[END_REF][START_REF] He | Lattice solitons in PT-symmetric mixed linear-nonlinear optical lattices[END_REF][START_REF] Khare | Solitons in PT-symmetric potential with competing nonlinearity[END_REF][START_REF] Suchkov | Solitons in a chain of parity-time-invariant dimmers[END_REF][START_REF] Miri | Bragg solitons in nonlinear PT-symmetric periodic potentials[END_REF][START_REF] Li | Solitons in PT -symmetric nonlinear dissipative gratings[END_REF][START_REF] Wimmer | Observation of optical solitons in PT symmetric lattices[END_REF][START_REF] Ya | Three-dimensional topological solitons in PT-symmetric optical lattices[END_REF][START_REF] Qin | Controllable PT phase transition and asymmetric soliton scattering in atomic gases with linear and nonlinear potentials[END_REF][START_REF] Muniz | 2D Solitons in PT-Symmetric Photonic Lattices[END_REF]. It was demonstrated that a saturable nonlinear medium can effectively control the propagation of spatial solitons. In particular, stable on-site and unstable off-site lattice solitons exist in PT-symmetric periodic systems with logarithmically saturable nonlinearity [START_REF] Zhan | Solitons in PT-symmetric periodic systems with the logarithmicallysaturable nonlinearity[END_REF]. Moreover, recent works were devoted to various extraordinary lasing and nonlinear effects in resonant structures [START_REF] Lazarides | Gain-Driven Discrete Breathers in PT-Symmetric Nonlinear Metamaterials[END_REF][START_REF] Miroshnichenko | Nonlinearly PT-symmetric systems: Spontaneous symmetry breaking and transmission resonances[END_REF][START_REF] Hodaei | Parity-time-symmetric microring lasers[END_REF][START_REF] Hassan | Nonlinear reversal of the PT-symmetric phase transition in a system of coupled semiconductor microring resonators[END_REF][START_REF] Hodaei | Single mode lasing in transversely multi-moded PT-symmetric microring resonators[END_REF]. It was also demonstrated that the PT transition can be induced or suppressed by introducing nonlinearity [START_REF] Ya | Nonlinearly Induced PT Transition in Photonic Systems[END_REF].

To date, several studies regarding optical realizations of PT-symmetric media have considered stacked layers and films [START_REF] Mostafazadeh | Spectral Singularities of Complex Scattering Potentials and Infinite Reflectionand Transmission Coefficients at Real Energies[END_REF][START_REF] Ge | Conservation relations and anisotropic transmission resonances in one-dimensional PTsymmetric photonic heterostructures[END_REF][START_REF] Kulishov | Resonant cavities based on Parity-Time-symmetric diffractive gratings[END_REF][START_REF] Savoia | Tunneling of obliquely incident waves through PT -symmetric epsilon-near-zero bilayers[END_REF][START_REF] Alaeian | Non-Hermitian nanophotonic, and plasmonic waveguides[END_REF][START_REF] Alaeian | Parity-time-symmetric plasmonic metamaterials[END_REF][START_REF] Zhu | Anisotropic reflection oscillation in periodic multilayer structures of parity-time symmetry[END_REF][START_REF] Gear | Parity-time symmetry from stacking purely dielectric and magnetic slabs[END_REF][START_REF] Wang | Nonreciprocal μ-near-zero mode in PT-symmetric magnetic domains[END_REF][START_REF] Shramkova | Scattering properties of PT-symmetric layered periodic structures[END_REF][START_REF] Shramkova | Propagation of electromagnetic waves in PT-symmetric hyperbolic structures[END_REF][START_REF] Guo | Obliqueincidence-induced phase transition in parity-time symmetric optical bilayers[END_REF][START_REF] Konotop | Light propagation through a PT-symmetric photonic-crystal[END_REF][START_REF] Sarısaman | Unidirectional reflectionlessness and invisibility in the TE and TM modes of a PT-symmetric slab system[END_REF][START_REF] Novitsky | Transmission enhancement in loss-gain multilayers by resonant suppression of reflection[END_REF][START_REF] Sarisman | PT-symmetric coherent perfect absorber with graphene[END_REF][START_REF] Novitsky | Nonlocal homogenization of PT-symmetric multilayered structures[END_REF][START_REF] Komissarova | PTsymmetric periodic structures with the modulation of the Kerr nonlinearity[END_REF]. Such artificial structures can be precisely manufactured by modern microfabrication and nanofabrication techniques. The planar structures of the layers with the balanced gain and loss are of particular interest because they are analytically tractable and provide us a direct way to understand the main features of the PT symmetric scattering problems. To describe realistically such a system, we must take into account the nonlinear physical mechanisms of passive or active media. The effects associated with the nonlinear saturation of the gain or loss in PT-symmetric stacks of the layers have been investigated in several works [START_REF] Liu | Regularization of the spectral singularity in PT-symmetric systems by all-order nonlinearities: Nonreciprocity and optical isolation[END_REF][START_REF] Phang | Ultrafast optical switching using parity-time symmetric Bragg gratings[END_REF][START_REF] Phang | Impact of dispersive and saturable gain/loss on bistability of nonlinear parity-time Bragg gratings[END_REF][START_REF] Barton | Broadband and wide-angle nonreciprocity with a non-Hermitian metamaterial[END_REF][START_REF] Witoński | Effect of nonlinear loss and gain in multilayer PT-symmetric bragg grating[END_REF][START_REF] Novitsky | PT symmetry breaking in multilayers with resonant loss and gain locks light propagation direction[END_REF]. As it was demonstrated in Ref. [START_REF] Liu | Regularization of the spectral singularity in PT-symmetric systems by all-order nonlinearities: Nonreciprocity and optical isolation[END_REF] for the case of a waveguide with equal segments of gain and loss, different nonlinear mechanisms affect the spectral singularities and lead to finite scattering amplitudes. By applying a variation of the finite difference method in order to numerically integrate the Helmholtz equation with saturable nonlinearity, the absence of spectral singularity due to the saturation mechanism was investigated. The impact of the different degrees of gain or loss saturation in nonlinear dispersive PT Bragg grating was also considered in [START_REF] Phang | Impact of dispersive and saturable gain/loss on bistability of nonlinear parity-time Bragg gratings[END_REF]. Using a time-stepping numerical technique based on the transmission line modeling method, the bistable operation of a grating for high gain or loss saturation intensity was also demonstrated. For low intensities, saturation inhibits the PT characteristics of the grating. On the other hand, high saturation levels provide an interplay of nonlinear and PT phenomena reducing the intensity at which bistability occurs. As it was demonstrated numerically in [START_REF] Barton | Broadband and wide-angle nonreciprocity with a non-Hermitian metamaterial[END_REF], the combination of nonlinear non-Hermitian layered metamaterial with a PT symmetric distribution of loss and gain provides broadband and wide-angle nonreciprocity. Both the strong nonreciprocal response of the structure and the bistability effect depend on the gain and loss saturation value as well as on the input intensity magnitude and the angle of incidence [START_REF] Barton | Broadband and wide-angle nonreciprocity with a non-Hermitian metamaterial[END_REF][START_REF] Witoński | Effect of nonlinear loss and gain in multilayer PT-symmetric bragg grating[END_REF]. Moreover, gain and loss saturation effects can alter the transition from the broken symmetry phase to the PT-symmetric one. In order to take into account the longitudinal distribution of loss and gain inside the unit cell of a nonlinear saturable multilayer PT-symmetric Bragg grating structure [START_REF] Witoński | Effect of nonlinear loss and gain in multilayer PT-symmetric bragg grating[END_REF], the transfer matrix method was applied. In particular, such method was based on dividing each layer of primitive cells into narrow stripes, and assuming that the gain or loss, in each stripe, is constant. The peculiarities of PT-symmetry breaking in the case of light propagation through a multilayered PT-symmetric structure in the time domain was also investigated in [START_REF] Novitsky | PT symmetry breaking in multilayers with resonant loss and gain locks light propagation direction[END_REF]. It was observed that the saturation effects can lead to the unique phase transition in the parameter space and nonreciprocal transmission of the propagating pulses.

The aim of this paper is to explore which specific unique properties the non-Hermiticity imposes on the transmission and reflection characteristics of one-dimensional layered PT structures, when dispersion and saturation nonlinear effects are taken into account. The problem statement and the solution of the corresponding boundary value problem are outlined in Sec. II. We examine a nonlinear model describing the field evolution in a layered PT-symmetric system. The closed form solutions for the nonlinear scattering coefficients have been obtained based on the approximation of weak nonlinearity. A generic approach, based on the modified transfer matrix method and perturbation theory [START_REF] Shramkova | Loss-compensated active nonlinear layered structures with gain saturation[END_REF], has been applied to determine the electromagnetic field distribution. The results of our analytical approach for non-Hermitian structures with saturable gain or loss are illustrated in Sec. III. We systematically examine and compare the differences on the optical response between the linear and nonlinear bilayers. We determine the parameters for which perfect transmission in PT-symmetric systems is possible. The eigenvalues of the scattering matrix of the nonlinear non-Hermitian dispersive layered system with saturable gain or loss are also examined in Sec. IV. The main findings are summarized in the conclusion section.

II. PROBLEM STATEMENT AND METHODOLOGY

Let us consider a plane wave that is incident at angle on a structure of thickness 2d surrounded by a homogeneous medium with dielectric permittivity ε r at z -d and z d. We consider a system composed of two slabs of identical thickness d as schematically shown in Fig. 1. Here the z axis is perpendicular to the boundaries of the layers. The layers are assumed to be of infinite extent in the x and y directions. We assume that the dielectric permittivities of the layers correspond to nonlinear gain and loss regions where saturation effects are taken into account.

Since the layers are assumed isotropic in the x-y plane, the TE and TM polarized waves with the fields independent of the y coordinate can be analyzed separately. Only TM waves are considered here. The TM wave fields obey the following system of nonlinear equations inside each layer:

- ∂ 2 E z j ∂x∂z + ∂ 2 E x j ∂z 2 = -k 2 0 ⎛ ⎝ ε 0 j + ϕ j δ j -i 1 + δ 2 j + | E j /E s j | 2 ⎞ ⎠ E x j , ∂ 2 E z j ∂x 2 - ∂ 2 E x j ∂z∂x = -k 2 0 ⎛ ⎝ ε 0 j + ϕ j δ j -i 1 + δ 2 j + | E j /E s j | 2 ⎞ ⎠ E z j , (1) 
where j = 1, 2 denotes the respective constituent layer; c is the speed of light; ε 0 j is the background permittivity of the medium;

δ j = ω 2 -ω 2 0 j ωγ j
and ω 0 j is the emission frequency, γ j is the gain or absorption linewidth; ϕ j = α j ω 0 j ω , α j is the dimensionless gain or absorption coefficient, k 0 = ω c . We use positive parameters α 1 and γ 1 when referring to the amplifying medium with Imε 1 (ω) < 0. To satisfy Kramers-Kronig relations, in the case of absorbing media with Imε 2 (ω) > 0 we take α 2 < 0 and γ 2 > 0, which ensures the causality of dielectric permittivity [START_REF] Zyablovsky | PT-symmetry in optics[END_REF].

Let us assume that the intensity of propagating waves is much less than the saturation intensity |E s j | 2 , so the last nonlinear terms in Eq. (1) corresponding to susceptibility of two-level atoms can be expanded into a Taylor series in | E | 2 . As a result, the nonlinear susceptibility can be expressed as [START_REF] Marini | Amplification of surface plasmon polaritons in the presence of nonlinearity and spectral signatures of threshold crossover[END_REF] 

χ j ≈ ϕ j δ j -i 1 + δ 2 j + ϕ j i -δ j 1 + δ 2 j 2 E j E s j 2 . ( 2 
)
According to this assumption, the system of nonlinear Eq. (1) can be reduced to the following nonhomogeneous Helmholtz equation, whereas all the nonlinear terms are collected in the right hand side:

∂ 2 ∂z 2 + ∂ 2 ∂x 2 + ω 2 c 2 ε j E x j = -k 2 0 ξ j (|E x j | 2 + |E z j | 2 )E x j , ( 3 
)
where

ε j = ε 0 j + ϕ j δ j -i 1+δ 2 j , ξ j = ϕ j i-δ j (1+δ 2 j ) 2 .
Let us solve Eq. ( 3) perturbatively under the assumption that the nonlinear terms are small. As the result, the solution of Eq. ( 3) is composed of the particular and general solutions, which can be represented in the form

E x j (ω, x, z) = A + j e ik z j z + A - j (ω)e -ik z j z + D + 1 j e ik (1) z j z + D - 1 j e -ik (1) z j z + D + 2 j e ik (2) z j z + D - 2 j e -ik (2) z j z + D + 3 j e ik (3) z j z + D - 3 j e -ik (3) z j z e -iωt+ik x x , ( 4 
)
where

k z j = k z j + ik z j = k 2 0 ε j -k 2 x , k (1) z j = k z j + i3k z j , k (2) z j = 3k z j + ik z j , k (3) z j = k z j -ik z j , k x = k 0 √ ε a sin .
The first two terms in Eq. ( 4) correspond to the solution of the homogeneous wave equation ( 3) and the last six terms represent the solution of the nonhomogeneous equation. Coefficients D ± 1 j,2 j,3 j are the amplitudes of the waves generated inside the layer and these coefficients are expressed in terms of the field magnitudes A ± j as

D + 1 j = σ 1 A + j 2 A + j k (1) z j 2 -(k z j ) 2 , D - 1 j = σ 1 A - j 2 A - j k (1) z j 2 -(k z j ) 2 D + 2 j = σ 2 A + j 2 A - * j k (2) z j 2 -(k z j ) 2 , D - 2 j = σ 2 A - j 2 A + * j k (2) z j 2 -(k z j ) 2 , D + 3 j = σ 3 A - j 2 A + j k (3) z j 2 -(k z j ) 2 , D - 3 j = σ 3 A + j 2 A - j k (3) z j 2 -(k z j ) 2 , σ 1,2 = k 2 0 ξ j 1 ± k 2 x |k z j | 2 , σ 3 = σ 1 + σ 2 = 2k 2 0 ξ j . (5) 
The coefficients A ± j are given in the Appendix. In order to examine the gain and loss saturation effects in the system, let us consider the problem of TM waves' scattering by the bilayer. The transfer matrix method will be applied to interrelate the fields at the layer interfaces. Then the field continuity conditions for the first layer require

E x1 (ω, x, -d ) H y1 (ω, x, -d ) = m 1 E x1 (ω, x, 0) H y1 (ω, x, 0) + m 1 τ (1) κ (1) . ( 6 
)
Similar conditions applied to the second layer yield

E x2 (ω, x, -d ) H y2 (ω, x, -d ) = M E x2 (ω, x, d ) H y2 (ω, x, d ) + m 1 τ (1) κ (1) + M τ (2) κ (2) . ( 7 
)
Here m j is the transfer matrix of layers. The expressions for these matrices are defined in the Appendix. By enforcing the boundary conditions, the fields at the bilayer outer interfaces can be presented in the form

E x1 (ω, x, -d ) H y1 (ω, x, -d ) = M E x1 (ω, x, d ) H y1 (ω, x, d ) + m 1 (d ) τ (1) κ (1) + M τ (2) κ (2) . ( 8 
)
Here M = m 1 (d ) m 2 (d ) is the transfer matrix of the whole system. τ ( j) and κ ( j) are expressed in terms of coefficients D ± 1 j,2 j,3 j :

τ ( j) = D + 1 j ρ + 1 j k (1) z j + D - 1 j ρ - 1 j k (1) z j + D + 2 j ρ + 1 j k (2) z j + D - 2 j ρ - 1 j k (2) z j + D + 3 j ρ + 1 j k (3) z j + D - 3 j ρ - 1 j k (3) z j , κ ( j) = k 2 z j + k 2 x k 0 k z j D + 1 j ρ + 2 j k (1) z j + D - 1 j ρ - 2 j k (1) z j + D + 2 j ρ + 2 j k (2) z j + D - 2 j ρ - 2 j k (2) z j + D + 3 j ρ + 2 j k (3) z j + D - 3 j ρ - 2 j k (3) z j
, where

ρ ± 1 j (υ ) = cos k z j d -e ±iυd ± i υ k z j sin k z j d, ρ ± 2 j (υ ) = υ k 2 z j + k 2 x k 0 k 2 z j i k z j υ sin k z j d ± (cos k z j d -e ±iυd ) . ( 9 
)
The reflection and transmission coefficients are readily obtained by satisfying the continuity conditions for the tangential field components at the stack interfaces. Finally, we obtain these reflection and transmission coefficients of the TM outgoing waves (from the nonlinear stack into the surrounding homogeneous medium):

R (L) nl = R (L) + φ 1 , T (L) nl = T -φ 2 , R (R) nl = R (R) -φ 2 , T (R) nl = T + φ 1 , ( 10 
)
where

φ 1 = k za k 0 ε a M 21 + M 22 λ 1 - k za k 0 ε a M 11 + M 12 λ 2 , φ 2 = λ 1 + λ 2 k za k 0 ε a , λ r = m 1 r1 τ (1) + (M ) r1 τ (2) + m 1 r2 κ (1) + (M ) r2 κ (2) (M ) 11 + (M ) 22 + k 0 ε a k za (M ) 12 + k za k 0 ε a (M ) 21
.

k za = k 2 0 ε a -k 2
x is the longitudinal wave number of the wave in the homogeneous medium, R (L,R) are linear stack reflection coefficients for wave incident from the left and right, and T is the transmission coefficient (it is the same for left and right incidence).

Let us note that the assumption that nonlinearity is weak imposes a restriction on the values of gain coefficient. In order to solve Eq. ( 3) perturbatively we assume that α 2 < α th , where α th is the gain threshold for the linear structure. If we neglect the effect of nonlinearity, the analysis of conservation relation ||T | 2 -1| = |R (L) R (R) | for a system with asymmetric response (see [START_REF] Ge | Conservation relations and anisotropic transmission resonances in one-dimensional PTsymmetric photonic heterostructures[END_REF]) can help us to determine the gain threshold α th corresponding to the lossless propagation of electromagnetic waves through the system.

Several important properties of the TM waves scattered by the nonlinear layer can be inferred from Eq. [START_REF] Phang | Parity-time symmetric coupled microresonators with a dispersive gain/loss[END_REF]. At first, it is necessary to note that R (L,R) nl and T (L,R) nl remain finite despite the coefficients D ± 1 j,2 j,3 j defined in Eq. ( 5) have poles at k (1,2,3) z j = k z j . These singularities are inherent to the particular solution of nonhomogeneous equation (3) for the fields inside the layers. The examination of Eqs. ( 5) and [START_REF] Phang | Parity-time symmetric coupled microresonators with a dispersive gain/loss[END_REF] shows that D ± 1 j,2 j,3 j contains the pole at k z j = 0 and/or k z j = 0. The fields of the electromagnetic waves outgoing from the periodic structure consisting of N unit cells, where the unit cell is the PT-symmetric bilayer, into the surrounding homogeneous medium can be also obtained by enforcing the boundary conditions of the field continuity at the stack interfaces [START_REF] Shramkova | Loss-compensated active nonlinear layered structures with gain saturation[END_REF].

The nonreciprocity of the scattering process can be directly induced from Eq. [START_REF] Phang | Parity-time symmetric coupled microresonators with a dispersive gain/loss[END_REF] where the transmission coefficients for the nonlinear stack become dependent on the direction of the wave's incidence. The properties and main characteristics of the scattering processes are presented in more detail in the next section.

III. MAIN RESULTS AND DISCUSSION

To elucidate the features of nonreciprocal scattering by nonlinear non-Hermitian system with gain saturation, the detailed parametric study of the analytical solutions for the reflection and transmission coefficients that were obtained in the preceding section II are systematically examined in this section. The reflectance and transmittance for both left and right incident TM waves at two different angles of incidence are displayed in Fig. 2; for non-Hermitian bilayer we considered the parameters ε 01 = ε 02 = 1.8, ω 01 = ω 02 = ω 0 = 1 PHz, γ 1 = γ 2 = 0.066 PHz, α 1 = |α 2 | = 0.1, and d = 0.5 μm. Figures 2(a) and 2(c) show that at normal angle of incidence, the influence of nonlinearity leads to considerable differences between the scattering characteristics of linear and nonlinear systems for a frequency range close to the emission frequency ω 0 . This is attributed to the profound effect of the spectral properties of susceptibility χ j on wave reflection and refraction into the linear and nonlinear systems. The real and imaginary parts of ε j and ξ j for the gain and absorbing media are displayed in Fig. 3. We can observe the increase of |Im(ε j )| and |Im(ξ j )| as ω → ω 0 . This results in the asymmetric response of the linear system (R (L) = R (R) ) and the FIG. 3. Real (solid lines) and imaginary (dashed lines) parts of ε j and ξ j for active (black lines) and passive (red lines) layers near the resonant frequency ω 0 . Parameters of the materials of the layers are specified above. nonreciprocal response of the nonlinear medium (R (L) nl = R (R) nl and T (L) nl = T (R) nl ). Let us note that at ω = ω 0 we obtain the PT-symmetric optical system for which the distributed loss and gain are in perfect balance and the following relation holds:

Reε 1 (ω) = Reε 2 (ω), Imε 1 (ω) = -Imε 2 (ω). ( 11 
)
To gain insight on the effect of the incidence angle on the intensities of scattered waves, the reflectance and transmittance have been calculated for different values of the incidence angles [Figs. 2(b) and 2(d)]. We conclude that by increasing the angle of incidence or by increasing the optical thickness of the layer, we can control the intensity of refracted waves and the impact of nonlinearity on the scattering characteristics of the structure. As a result, we observed the considerable attenuation and amplification of transmitted waves due to the nonlinear process in the system. At the same time, the influence of nonlinearity can be considered negligible at ω = ω 0 [Fig. 2(b)].

The

|R (L,R) nl | 2 and |T (L,R) nl | 2 calculated
for different values of the gain or absorption coefficients α 1 = |α 2 | = α 0 and thickness d of the layers are displayed in Fig. 4 for the bilayer with balanced distributed loss and gain (the default parameters as in Figs. 2 and3). Both the magnitude and nonreciprocity of reflectance in the linear and nonlinear cases and transmittance in the case of gain and loss saturation effects increase with α 0 [Figs. 4(a) and4(c)]. The scattering characteristics of electromagnetic waves by such non-Hermitian stack significantly varies with the thickness of the layers. This suggests that the total size of the bilayer can provide independent control of the dispersion and electromagnetic wave reflectance or transmittance in the case of the linear problem. As a result, the variations of the layer thickness qualitatively alter the As demonstrated in previous works [START_REF] Savoia | Tunneling of obliquely incident waves through PT -symmetric epsilon-near-zero bilayers[END_REF][START_REF] Shramkova | Scattering properties of PT-symmetric layered periodic structures[END_REF], the incident electromagnetic wave may effectively tunnel through the linear PT-symmetric structure with zero reflection. The tunneling phenomena in PT-symmetric stacks are mediated by the excitation of a surface wave at the interface separating the gain and loss regions. To illustrate the effect of the parameters of incident electromagnetic wave on the possibility of achieving such tunneling phenomenon, we plot in Fig. 5 the transmittance through the linear PT-symmetric bilayer as a function of ω and . By analyzing the boundaries of the black-shaded regions we can determine the parameters of the layers and of an incident wave which can tunnel through the stacks with total thicknesses d = 0.5 μm and d = 1 μm.

To demonstrate the effect of gain and loss saturation on the perfect transmission phenomenon, we plot in Fig. 6 the transmittances (|T (L,R) nl | 2 ) for left and right incidence waves through PT-symmetric bilayer. Figure 7 illustrates |T (L,R) nl | 2 through the periodic stack composed of ten bilayers (N = 10). We note that for the PT-symmetric system with saturable gain and loss the perfect transmission conditions for incidence from left and right are actually different. Moreover, we observe that the possibility to get the tunneling phenomenon rises with the increase of the stack's overall thickness (thickness of the layers or number of the periods).

IV. EIGENVALUES OF SCATTERING MATRIX

As demonstrated in the literature, PT-symmetric structures can undergo spontaneous symmetry-breaking transitions in the eigenvalues and eigenvectors of its S matrix when an abrupt phase transition to a complex eigenspectrum takes place [START_REF] Makris | Beam Dynamics in PT Symmetric Optical Lattices[END_REF][START_REF] Ge | Conservation relations and anisotropic transmission resonances in one-dimensional PTsymmetric photonic heterostructures[END_REF]. Therefore, it is interesting to investigate the 

T (ω) T (ω) R (R) (ω)
) [START_REF] Ge | Conservation relations and anisotropic transmission resonances in one-dimensional PTsymmetric photonic heterostructures[END_REF].

The eigenvalues of the S matrix for the linear non-Hermitian system are given by

λ 1,2 = R (L) + R (R) ± (R (L) -R (R) ) 2 + 4T 2 2 . ( 12 
)
Note that eigenvalues of the S matrix in the PT-symmetric phase are unimodular and they must have reciprocal moduli or the condition |λ 1 λ 2 | = 1 should be satisfied (λ 1,2 are the eigenvalues of the S matrix of a PT-symmetric structure). As a result, we get that for symmetric phases |λ 1 | = |λ 2 | = 1. In the PT-symmetry breaking points or exceptional points both eigenvalues meet and bifurcate, and the broken phases correspond to

|λ 1 | = 1/|λ 2 | > 1.
In the case of nonlinear non-Hermitian system with gain and loss saturation effects one finds that the eigenvalues are defined by To gain insight on the effect of the nonlinearity on the symmetry-breaking transition, the eigenvalues λ nl 1,2 have been computed for variable parameters of the system (Fig. 8) for the parameters that support a linear PT-symmetric structure. The analysis of the eigenvalue spectrum dependence on the parameter α 0 demonstrates that the PT symmetry of the corresponding nonlinear system is broken and the condition |λ As demonstrated before for the linear case [START_REF] Ge | Conservation relations and anisotropic transmission resonances in one-dimensional PTsymmetric photonic heterostructures[END_REF][START_REF] Shramkova | Scattering properties of PT-symmetric layered periodic structures[END_REF], an alternative definition of the scattering matrix can be used for the determination of unidirectional invisibility points and takes the form

λ nl 1,2 = R (L) nl + R (R) nl ± R (L) nl -R (R) nl 2 + 4T (L) nl T (R) nl 2 . ( 13 
S c = ( T (ω) R (R) (ω) R (L) (ω) T (ω)
). The eigenvalues of the S c matrix and the S matrix do not coincide, but they have the same general properties. The eigenvalues of the S c matrix are either both unimodular or of reciprocal magnitude and in the case of nonlinear non-Hermitian system they can be represented as

λ nl c1,c2 = T (L) nl + T (R) nl ± T (L) nl -T (R) nl 2 + 4R (L) nl R (R) nl 2 . ( 14 
)
The numerical examination of the eigenvalues λ nl c1,c2 spectrum dependencies is presented in Fig. 9. The parameters of the nonlinear systems are the same as in Fig. 8 for the eigenvalues λ nl 1,2 simulation. Comparison of the results presented in Figs. 8 and9 shows that with an increase of the thickness of the layers additional singular points of the eigenvalues λ nl c1,c2 arise. Several singularity points coincide with the points corresponding to the so-called PT-symmetric phase of the S matrix. Ambiguity of the definition of the scattering matrix was discussed in recent work [START_REF] Novitsky | Unambiguous scattering matrix for non-Hermitian systems[END_REF] demonstrating that the exceptional points obtained using the S matrix can predict the lasing like regime. It was proven that only the S c matrix must be used for the correct prediction of the exceptional points and PT-symmetry breaking.

V. CONCLUSIONS

We have theoretically investigated the effect of loss and gain saturation on the transmission or reflection of a PTsymmetric bilayer and multilayer under obliquely incident, TM-polarized plane-wave illumination. Based on a perturbative transfer matrix method, we obtained closed form solutions for the transmission and reflection coefficients of the one-dimensional non-Hermitian dispersive layered system with saturable gain or loss under the presence of weak nonlinearity. The effects of the structure parameters and of the incidence angle on the scattering characteristics of a non-Hermitian layered structure been examined in detail. The presence of nonlinearity leads to considerable differences between the scattering characteristics of the corresponding linear and nonlinear systems. We have showed that for appropriate combinations of the incoming wave frequencies, incidence angles, and layers' constitutive parameters, an oblique plane wave may perfectly propagate through the PT-symmetric stack with gain and loss saturation. We have demonstrated that the eigenvalues of the scattering matrix are strongly influenced by the constitutive and geometrical parameters of the layers and the incoming wave's angles of incidence. Dielectric crystalline and glass materials can be used to realize loss or gain media in actual experimental setups.

APPENDIX

To obtain the amplitude coefficient D ± 1 j,2 j,3 j of a generated wave, it is necessary first to determine the field amplitudes A ± j inside each layer. Under the approximation of weak nonlinearity, this problem is reduced to evaluating Fresnel reflection and refraction coefficients for a linear layer. The reflection R(ω) and transmission T(ω) coefficients are obtained by imposing the continuity conditions for the tangential field components of electromagnetic wave at the layer interfaces and can be represented in the form The amplitude coefficients A ± j inside the layer are, for an incoming wave from the left side,

A + 1 A - 1 = 1 2 q 1 1 + R(ω) k 2 za +k 2 x k 0 k za (1 -R(ω)) , A + 2 A - 2 = 1 2 q 2 • m 1 1 + R(ω) k 2 za +k 2 x k 0 k za (1 -R(ω))
, and from the right side

A + 1 A - 1 = 1 2 q 1 T (ω) - k 2 za +k 2 x k 0 k za T (ω) , A + 2 A - 2 = 1 2 q 2 • m 1 T (ω) - k 2 za +k 2
x k 0 k za T (ω)

Here

q j = ⎛ ⎝ 1 k 0 k z j k 2 z j +k 2 x 1 - k 0 k z j k 2 z j +k 2 x ⎞ ⎠ .
The transfer matrix M of the finite linear bilayer can be expressed in terms of the transfer matrices m j of the layers, where [ 

FIG. 1 .

 1 FIG. 1. Schematic depiction of the nonlinear bilayer system.

FIG. 2 .

 2 FIG. 2. Transmittance (a), (b) and reflectance (c), (d) of a TM wave incident at = 0 • (a), (c) and = 45 • (b), (d) for linear (dashed curves) and nonlinear (solid curves) bilayers. Solid lines correspond to the stack nonlinear reflectance and transmittance (|R (L) nl | 2 and |T (L) nl | 2 : solid black lines; |R (R) nl | 2 and |T (R) nl | 2 : solid blue lines), dashed and dash-dot lines are for the stack linear reflectance and transmittance (|R (L) | 2 and |T | 2 : dashed red lines; |R (R) | 2 : dash-dot brown line).

FIG. 4 .

 4 FIG. 4. Transmittance (a), (b) and reflectance (c), (d) of a TM wave incident at = 0 • for linear (dashed curves) and nonlinear (solid curves) systems at ω = ω 0 ; (a), (c) d = 0.5 μm; (b), (d) α 1 = |α 2 | = 0.1. Solid lines correspond to the stack nonlinear reflectance and transmittance (|R (L) nl | 2 and |T (L) nl | 2 : solid black lines; |R (R) nl | 2 and |T (R) nl | 2 : solid blue lines), dashed and dash-dot lines are for the stack linear reflectance and transmittance (|R (L) | 2 and |T | 2 : dashed red lines; |R (R) | 2 : dash-dot brown line).

FIG. 5 .

 5 FIG. 5. Transmittance of a TM wave for a linear PT-symmetric systems at ω = ω 0 , α 1 = |α 2 | = 0.1, (a) d = 0.5 μm; (b) d = 1 μm. The black-shaded regions indicate the parameter configurations (ω, ) for which |T | 2 > 1; the white regions are for |T | 2 < 1.

FIG. 6 .

 6 FIG. 6. Transmittance |T (L) nl | 2 (a), (c) and |T (R) nl | 2 (b), (d) of a TM wave for a nonlinear PT-symmetric systems at ω = ω 0 , α 1 = |α 2 | = 0.1, (a), (b) d = 0.5 μm; (c), (d) d = 1 μm. The black-shaded regions indicate the parameters configurations (ω, ) for which |T (L,R) nl | 2 > 1, the white regions are for |T (L,R) nl | 2 < 1.

)FIG. 7 .

 7 FIG. 7. Transmittance |T (L) nl | 2 (a) and |T (R) nl | 2 (b) of a TM wave for a periodic nonlinear PT-symmetric system at ω = ω 0 , α 1 = |α 2 | = 0.1, d = 0.5 μm, N = 10. The black-shaded regions indicate the parameters configurations (ω, ) for which |T (L,R) nl | 2 > 1; the white regions are for |T (L,R) nl | 2 < 1.

  1 λ 2 | = 1 is not satisfied. Nevertheless, by changing the thickness of the layers [Fig. 8(b)] and the angle of incidence [Fig. 8(c)] we can get a set of points corresponding to the unimodular values of the S matrix. In Fig. 8 all such points are indicated by vertical dashed lines.

FIG. 9 .

 9 FIG. 9. Eigenvalues of the S c matrix for the nonlinear system with gain and loss saturation effects at ω = ω 0 = 1 PHz; (a) = 0 • , d = 0.5 μm; (b) = 0 • , α 0 = 0.01; (c) d = 2.5 μm, α 0 = 0.01. Solid red lines correspond to the eigenvalues λ c1 , blue dashed lines are for λ c2 .

R

  (L) (ω) = M 11 + ε a k za k 0 M 12 -k 0 ε a k za M 21 -M 22 M 11 + ε a k za k 0 M 12 + k 0 ε a k za M 21 + M 22 , R (R) (ω) = -M 11 + ε a k za k 0 M 12 -k 0 ε a k za M 21 + M 22 M 11 + ε a k za k 0 M 12 + k 0 ε a k za M 21 + M 22 , T (ω) = 2 M 11 + ε a k za k 0 M 12 + k 0 ε a k za M 21 + M 22

.
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