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Restricted Boltzmann machines (RBMs) are among the simplest unsupervised models imple-
menting data/representation duality. The learning curves of RBMs trained on structured data are
nevertheless difficult to characterize analytically, in part due to the presence of a partition function
that depends on the trainable parameters. In this work, we present the exact solution of RBMs
trained on structured data in the undersampled regime. The solution involves gradual symme-
try breaking among the hidden units for decreasing regularization strength, as they specialize to
finer-level details of the data. Hidden units form extensive blocks with identical weight parameters.
Trained RBMs with different block sizes are separated by large barriers in the posterior distribution
of the weights, which makes the optimal block size inaccessible during training with local gradient
descent.

I. INTRODUCTION

Over the past decades, concepts and techniques from
the statistical physics of disordered systems have proven
extraordinarily successful in tackling complex problems
outside the traditional realm of physics [1]. One strik-
ing illustration is provided by applications to machine
learning. In supervised learning problems such as classi-
fication, the generalization properties of machine learn-
ing models could be precisely characterized depending
on the network architecture, the optimization algorithm,
and the data structure, see [2] for an early review. Sta-
tistical mechanics could also be applied to simple un-
supervised learning setups, such as principal component
analysis and its extensions [3].

Despite these successes, more sophisticated unsuper-
vised architectures, aiming at modeling the distribution
of data, have remained largely out of reach with statis-
tical physics tools. Among them, probabilistic graphi-
cal models, which capture the pattern of dependencies
between variables in high-dimensional data, are particu-
larly hard to analyze. Informally speaking, the origin of
the difficulties is the need to deal with the normalization
of the model distribution; this partition function is com-
putationally intractable and depends on a large number
of model parameters, such as the interactions between
variables to be optimized over learning.

In the present paper, we address this problem for
a special case of graphical models, the so-called re-
stricted Boltzmann machines (RBMs). RBMs are de-
fined on a bipartite interaction graph, with one layer
carrying data and the other extracting latent factors,
and are one of the simplest architecture implementing
the data/representation duality. Despite the simplicity
of the architecture, RBM are competitive with deeper
networks in many applications of interest, in particular
in computational biology [4, 5].
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We present an analytical derivation with the replica
method of the learning curves of RBM in the case where
the amount of data is much smaller than the size of the
model. This undersampled regime is relevant in many
contexts [6]. We explicit the meaning of the order pa-
rameters appearing in the replica analysis, and introduce
a replica symmetry broken solution of the implicit equa-
tions they fulfill. The breaking of symmetry is then re-
lated to the nature of the representations of the data,
in terms of multiple blocks of hidden units in the RBM.
We show that, as the values of the RBM hyperparame-
ters (aspect ratio, strength of regularization) are varied,
a cascade of phase transitions arises, corresponding to
different levels of coarse-graining of the data.

We now outline the content of the paper. Section II
introduces RBMs in general. Section III gives the replica
solution to the problem of an RBM with a visible layer
of width N , a hidden layer of width M , learning from
a dataset of size K, in the regime where N,M → ∞
at fixed ratio α, with K arbitrary though finite. Sec-
tion IV provides an interpretation of the replica solu-
tion through an independent albeit equivalent calcula-
tion. Section V then gives the analytical form of the
weights learned by the RBM after training and describes
the nature of the cascade of phase transitions as the regu-
larization varies. Lastly, section VI defines a hierarchical
structured dataset model, that we use as training data
for the RBMs in numerical experiments.

Technical details are provided in the Appendices. Ap-
pendices A through E cover the replica calculation, to-
gether with the replica-symmetric ansatz and replica-
symmetry-breaking ansatz for finite datasets, generic and
hierarchically structured, alongside the derivation of the
equivalence with the alternative calculation. Appendix
H shows that these weights are actually a stable maxi-
mum of the posterior distribution of the weights, while
Appendix I confirms that the global maxima weights are
low-rank. Finally, Appendix J gives a linear program-
ming formulation of the low-regularization phase used to
bootstrap the numerical solutions of Eqs. (11)–(17).
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FIG. 1. Restricted Boltzmann machines (RBM). The RBM
is defined by a set of N visible units (bottom, in black),
and a set of M hidden units (top, in blue), connected by
a set of weights W = (wiµ), where i ∈ {1, . . . , N} and
µ ∈ {1, . . . ,M}. The units interact according to the energy
function (1), which only allows interactions between pairs of
visible and hidden units.

II. RESTRICTED BOLTZMANN MACHINES

A Restricted Boltzmann machines (RBM) is a simple
two-layer network, composed of a layer of N visible units
and a layer of M hidden units. See Figure 1. We will
consider spin-valued units in both cases, and define the
energy function as:

E(v,h) = −
N∑
i=1

M∑
µ=1

wiµvihµ (1)

where v = (v1, . . . , vN ) ∈ {±1}N denotes a configuration
of the visible layer, h = (h1, . . . , hM ) ∈ {±1}M a config-
uration of the hidden layer, and wiµ are the weights. The
weights are the only parameters we consider in this work
and must be trained on data. For simplicity, we will not
consider biasing potentials on the units.

In turn, the RBM defines a probability distribution
over configurations according to a Boltzmann law,

P (v,h) =
1

Z
exp(−E(v,h)) (2)

where

Z = tr
v∈{±1}N

tr
h∈{±1}M

exp(−E(v,h)) (3)

is the partition function.
The RBM is trained by maximizing the likelihood of

observed data. The data are usually modeled as partic-
ular configurations of the visible layer. The hidden units
are treated as latent variables, and must be marginal-
ized out to define the marginal distribution of the visible
variables,

PV (v) = tr
h∈{±1}M

P (v,h) (4)

also called the likelihood.
A generic training dataset consists of K spin N -

dimensional configurations,

D = {ξ1, . . . , ξK} ⊂ {±1}N (5)

We then define a regularized log-likelihood, scaled by
1/K for convenience:

L(W) =
1

K

K∑
k=1

lnPV (ξ
k)− Nγ

2

∑
iµ

w2
iµ (6)

that we view as a function of the RBM weight matrix,
W = (wiµ) ∈ RN×M . A regularization term (with γ ≥ 0)
is usually introduced to avoid overfitting. In a Bayesian
setting, this term can also be interpreted as arising from
a prior distribution over the weights. Lastly, the trained
weights of the RBM are defined by maximizing L(W),

W∗ = argmax
W

L(W) (7)

Although finding the global maxima of L(W) might be
desirable, we will be satisfied with local maxima. See Ap-
pendix I for some properties of global maxima. Although
the value of L(W) is invariant under permutations of hid-
den units, the optimal W∗ usually breaks this symmetry
and a number of hidden units with specialized roles ap-
pear.
In what follows, we shall be concerned with an un-

dersampled regime, where the width of the visible and
hidden layers of the RBM, N,M grow without bound at
a fixed aspect ratio α =M/N , while the number of data
points K remains finite.

III. REPLICA FORMALISM

Finding the maximum a posteriori (MAP) weights
from (7) is a non-trivial task. In order to make progress,
we will employ the replica trick from disordered systems
[1].The first step consists of writing the Bayesian evi-
dence of the data as a family of integrals parametrized
by a non-negative parameter β,

Y(β)(D) =

∫
[PV (D|W)]

β
P0(W)dW, (8)

where PV (D|W) is the likelihood (6) (note that we now
make explicit the dependence on the weights W), while
P0(W) is a prior over the weights, that we take to be of
the Gaussian form:

P0(W) =
∏
iµ

√
NKβγ

2π
exp

(
−NKβγ

2
w2

iµ

)
(9)

Note that for β = 1, this choice is consistent with the
L2 regularization introduced in Eq. (6). On the other
hand, for large β, the integration in Eq. (8) concentrates
around values of the weights W that maximize the log-
posterior, i.e., the solutions of (7). We can interpret β as
an inverse temperature, controlling how much Y(β)(D) is
constrained to focus on the W∗ point.
The main difficulty of the integration in (8) arises from

the partition function, Z(W), that appears as a denom-
inator of the likelihood in the integrand. To handle this
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difficult term, we can employ the replica trick [1]. If we
consider n identical copies of the system, we can write:

Y(β)
n (D) =

∫
dWP0(W) tr

{Hk
µ}

exp

∑
k

∑
iµ

wiµξ
k
i H

k
µ

β

[Z(W)]nβ , (10)

The configuration spin variables Hk
µ appearing here, cor-

respond to the hidden representations sampled condi-
tioned on the datum ξk. Then, as we take the limit
n → −K, we recover the original expression for the evi-
dence (8). Following the replica formalism, we treat n, β
as integers, and then only take their corresponding limits
as the last step of the calculation.

To carry on with the replica calculation, it is neces-
sary to introduce an ansatz for the form of the order pa-
rameters. In many systems, this has a replica symmetry
breaking form, where the initially identical replicas in-
troduced in (10) have non-equivalent overlaps with each
other [7]. Since we expect that the trained RBM will de-
velop energy minima tracking the data points, we propose
a scheme where the nβ replicas split into a number Ω of
subsets containing nβ/Ω replicas each, such that repli-
cas within the same subset are symmetric. After some
calculations (see Appendix A for details), the following
overlap order parameters are found:

Qω
k =

1

N

∑
i

ξki ⟨vi⟩ω (11)

qωω′ =
1

N

∑
i

⟨vi⟩ω⟨vi⟩ω
′

(12)

Pω
k =

1

M

∑
µ

⟨hµ⟩ω⟨Hk
µ⟩ (13)

pωω′ =
1

M

∑
µ

⟨hµ⟩ω⟨hµ⟩ω
′

(14)

Here, ω = 1, . . . ,Ω indexes the group of replicas, while
⟨vi⟩ω and ⟨hµ⟩ω are the average spontaneous activities
of the RBM units within a replica subset. The order pa-
rameters then have the following interpretations: Qω

k , P
ω
k

measure the overlap between the RBM spontaneous ac-
tivity and the data, while qωω′ , pωω′ measure the overlap
of the spontaneous activities of different replica subsets.

The overlaps (11)–(14) are found to satisfy the follow-

ing set of self-consistent equations:

⟨vi⟩ω = tanh

(
α

Kγ

∑
k

Pω
k ξ

k
i − α

Ωγ

∑
ω′

pωω′⟨vi⟩ω
′

)
(15)

⟨hµ⟩ω = tanh

(
1

Kγ

∑
k

ηkQ
ω
k − 1

Ωγ

∑
ω′

qωω′⟨hµ⟩ω
′

)
(16)

⟨Hk⟩µ = tanh

(
1

Kγ

∑
l

xkl⟨H l
µ⟩ −

1

Ωγ

∑
ω

Qω
k ⟨hµ⟩ω

)
(17)

where

xkl =
1

N

∑
i

ξki ξ
l
i (18)

is the overlap matrix of the data points.
This set of equations admits several solutions, that cor-

respond to multiple values of the weights that give local
maxima of the posterior (7). We can recover the weights
corresponding to a particular solution via (see Appendix
A):

Nγw⋆
iµ =

1

K

∑
kµ

ξki ⟨Hk⟩µ − 1

Ω

∑
µω

⟨vi⟩ω⟨hµ⟩ω. (19)

In the following sections we present an alternative ap-
proach that allows us to justify the replica-symmetric
ansatz we have used to derive these equations, and the
nature of the alternative solutions.

IV. INTERPRETATION OF THE REPLICA
SOLUTION

To enligthen the results of the replica calculation of
the previous section, we follow here an alternative mean-
field approach. First we establish that the weights (7)
must be of low-rank. In the undersampled regime, there
typically are extensive numbers of sites i ∈ {1, . . . , N} in
the data that are indiscernible. The optimal weights (7)
do not break the indiscernibility among visible sites. In
other words, if ξki = ξkj for all k, then wiµ = wjµ (for all
µ). The weights attached to a given hidden unit can then
be given as functions of the set of values that a spin takes
across the data points, wiµ = wµ(ξ

1
i , . . . , ξ

K
i ). Moreover,

wµ(σ) = −wµ(−σ). Note that these properties hold even
for finite N,M . They depend crucially on the convexity
of the L2-regularization used in (6), and might not hold
for other types of regularization. See Appendix I for a
derivation. As a consequence, the trained weights of the
RBM are of finite rank (at most 2K−1).
In practice, the actual rank of W is typically ≤ K. In

fact, we show in Appendix H that the trained weights can
be given as linear combinations of the data, and provide
stable local maxima of the regularized likelihood.



4

Since the rank of the weight matrix remains finite as
N,M → ∞, the partition function (3) is dominated by
a finite number of saddle-points, each of which is char-
acterized by a set of average spontaneous activities of
the visible and hidden units. These spontaneous activi-
ties can be found by solving the following self-consistent
mean-field equations:

⟨vi⟩ω = tanh

(∑
µ

wiµ⟨hµ⟩ω
)

⟨hµ⟩ω = tanh

(∑
i

wiµ⟨vi⟩ω
) (20)

Equations (20) can be solved by fixed-point iteration
(usually it helps to include an inertial term). The in-
dex ω ∈ {1, . . . ,Ω} then traverses the different solutions
found. Since the RBM is trained to fit the data, we can
initialize ⟨vi⟩ω to one of the data points in turn. At most
Ω ≤ K distinct saddle-points are found in this manner.

Differentiaton of (6) then results in a set of stationarity
conditions for the trained weights:

Nγwiµ =
1

K

∑
k

ξki tanh

∑
j

wjµξ
k
j


− 1

Ω

∑
ω

⟨vi⟩ω⟨hµ⟩ω (21)

that must hold for all i ∈ {1, . . . , N} and all µ ∈
{1, . . . ,M}. See Appendix F for detailed calculations.
The trained weights are such that Eqs. (21) and (20)
are both simultaneously satisfied. These equations are
equivalent to Eqs. (19), (15)–(17) (see Appendix C).

This derivation confirms that the replica-symmetric
subsets ansatz introduced earlier correspond to saddle-
points in the free energy of the trained RBM.

V. PHASE DIAGRAM OF THE TRAINED RBM

We now study how the trained weights evolve as the
regularization strength γ is varied. Several phase tran-
sitions are found to occur at certain critical values of γ,
where wiµ changes rank. These transitions are to be in-
terpreted as clustering events, where similar data points
become merged. The precise location and structure of
the transitions depend on details of the data. In this
section, some general remarks are stated, valid for any
dataset. Then in Section VI we consider a specific data
model in more detail.

Over-regularized regime

At sufficiently large values of γ, the trained weights
vanish. This over-regularized regime occurs for Kγ ≥

λmax, where λmax is the largest eigenvalue of the overlap
matrix of the data, Eq. (18). This condition can be
derived through a small weight expansion of L(W) from
Eq. (6), and considering the stability of the zero weights
to second-order.

Paramagnetic phase

As γ decreases below λmax, the weights become non-
zero but initially remain small. The saddle-point equa-
tions (20) admit non-zero solutions only if the matrix∑

µ

wiµwjµ (22)

has at least one eigenvalue > 1. This condition can be
derived by considering an expansion of Eqs. (20) in the
small unit activities. Otherwise, the RBM is found in a
paramagnetic phase (⟨vi⟩ = 0, ⟨hµ⟩ = 0), and Eq. (21)
simplifies to:

Nγwiµ =
1

K

∑
k

ξki tanh

(∑
i

wjµξ
k
j

)
(23)

Eq. (23) decouples for different µ, and therefore all hid-
den units adopt identical weights after training, wiµ =
wi. In other terms, the symmetry of hidden units re-
mains unbroken in the paramagnetic phase [8]. When wi

is still near-zero, it will be proportional to the top eigen-
vector of the overlap matrix Eq. (18), but as it grows the
non-linearity of Eq. (23) will usually cause wi to deviate
from this direction.
Eq. (23) can be solved for wi by fixed-point iteration.

We can then check a posteriori whether Eq. (22) devel-
ops an eigenvalue > 1, at which point the spontaneous
activity of the RBM must be considered [9].

Weakly regularized regime

At the opposite extreme of sufficiently small γ, the
left-hand side term in Eq. (21) becomes negligible. The
saddle-points of Eqs. (20) tend to approximate the data
points, ⟨vi⟩k ≈ ξki (with Ω = K). As the weights become
large, the tanh approaches a sign function, and we obtain
the self-consistent equations:

ξ̂kµ = sign

(∑
i

wiµξ
k
i

)
, ξki = sign

(∑
µ

wiµξ̂
k
µ

)
(24)

where ξ̂kµ = sign(⟨hµ⟩k). Eqs. (24) resemble the Bidi-
rectional Associative Memory (BAM) model, introduced
by Kosko in 1988 [10, 11], and subsequently studied by
other authors (also by statistical physics methods) [12–
17]. The weights wiµ can be interpreted as storing a
mapping between pairs of visible and hidden patterns,

ξk ↔ ξ̂k. Whereas in the original BAM [10, 11], the



5

patterns themselves are used to define the matrix wiµ

through a Hebbian-like rule, here wiµ is trained by max-
imum likelihood according to Eq. (7).

Equations (24) can also be written as inequalities:∑
i

wiµξ
k
i ξ̂

k
µ ≥ 0,

∑
µ

wiµξ
k
i ξ̂

k
µ ≥ 0 (25)

Given {ξ̂kµ}, the inequalities (25) define a convex region in
weight space (the intersection of (N +M)K half-spaces).

Regions corresponding to different assignments of {ξ̂kµ}
have disjoint interiors (neighboring regions meet only in
the hyperplane that separates them). Not all assignments

of {ξ̂kµ} are feasible, since the bidirectional linear separa-
bility conditions (25) might not be satisfiable.

As γ → 0, there is one dominant stationary weight
within a feasible region, given asymptotically by:

wiµ ∝
∑
k

ξki ξ̂
k
µ (26)

with a norm diverging like 1/γ as γ → 0. Eq. (26) re-
covers Kosko’s original Hebbian-like learning rule of the
BAM. We also recover the alternative “weighted learn-
ing rules” of [18], a generalization of Kosko’s original
prescription [19], as subdominant modes that decay in
comparison to Eq. (26) as γ → 0. See Appendix G for
more details.

In this regime the weights are of rank K. We can call
this regime the BAM phase due to its similarities with
Kosko’s model [10, 11]. Note that solutions in this phase
can be labeled by the feasible assignment of the signs

{ξ̂kµ}.

The intermediate γ regime

An application of the implicit function theorem [20] to
Eq. (7) shows that the weights are continuously differ-
entiable functions of γ (except at the origin). See Ap-
pendix G. There are a number of different parametric
curves wiµ(γ), describing the different solutions of Eq.
(7). These curves intersect only at the origin [21] (for
Kγ ≥ λmax, as noted before), where they are all tangent
to the top eigenvector of xkl (as pointed out below Eq.
(23)). As γ → 0 the curves separate and diverge to in-
finity, and are eventually described by the BAM regime
of the previous paragraphs. Each curve can be identified

by the signs {ξ̂kµ} in the feasible region (c.f. Eq. (25)) it
eventually enters.

As γ decreases from λmax/K to 0, the weights inter-
polate between the paramagnetic solution of Eq. (23),
and eventually become parallel to one of the BAM direc-
tions Eqs. (26). A cascade of phase transitions occurs
during this interpolation, since the weights must increase
their rank from 1 in the paramagnetic phase to K when
the asymptotic BAM phase is reached. These transitions

are associated with spontaneous breaking of the permu-
tation symmetry of hidden units and clusterings of the
most similar data points.
In both the paramagnetic phase and the BAM phase,

the trained weights are formed as linear combinations of
the data points. This suggests that the entire solution
curve (for all γ) lies in the span of the data. We confirm
in Appendix H that this is the case.

Replica symmetry breaking

RSB, which is a breaking of the permutation symme-
try of replica, turns out to be associated to a breaking
of the permutation symmetry of the hidden units, a spe-
cialization phenomenon. Set of replica preserving such
a permutation symmetry represent RBMs falling in the
same free energy minimum, with different sets of replica
falling in different free energy minima, all of which must
be accounted for in the moment-matching condition (21).
Only the paramagnetic phase and the rank-1 phase are
replica symmetric. As the rank of the weight matrix
increases, and the number Ω of saddle-points in (20) in-
creases beyond 1, a Ω-RSB ansatz needs to be performed
to obtain consistent equations. Details about this calcu-
lation are provided in Appendix A.

VI. HIERARCHICALLY STRUCTURED DATA

The actual solution of (7) is crucially dependent on the
structure of the data.
As an example, we considered a hierarchical dataset,

where the data points are arranged in nested clusters. See
Figure 2. We start from an ancestral sequence ∈ {±1}N ,
which, for simplicity, can be taken as (+1, . . . ,+1). We
generateK1 children sequences by flipping the sites of the
ancestral sequence independently, with a probability p1.
In turn, the sites of each of these sequences are flipped
independently with probability p2, so that from each of
the K1 previous sequences, K2 descendant sequences are
generated. This process can be continued indefinitely, up
to L hierarchical levels. The resulting tree (resembling a
phylogenetic tree) has K = K1 × · · · ×KL leaves, which
constitute our training data (5). The entire procedure
is fully specified by: i) the ancestral sequence that we
take to be (+1, . . . ,+1), ii) the numbers of descendants
per level K1, . . . ,KL, and iii) the mutation probabilities
p1, . . . , pL.
If two data points k, l meet at level ℓ of the tree, their

overlap is given by:

xkl =

L∏
j=ℓ+1

(1− 2pj)
2 = xℓ (27)

which depends only on ℓ. An example is shown in Figure
2 for two levels, with K1 = 2, K2 = 3, and p1 = 0.2,
p2 = 0.1.
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FIG. 2. Hierarchical data model. A) Data generation pro-
cess across a phylogenetic tree. Root node corresponds to an
ancestral spin sequence. Descendant nodes have a probabil-
ity p1 of introducing a “mutation” (i.e., a spin flip) per site.
In turn, descendants of these nodes introduce mutations with
another probability p2. The nodes at the lowest level (the
leafs, shown in red) are the final data points. B) Heatmap of
the resulting overlap matrix, as defined in (27), for K1 = 2,
K2 = 3, p1 = 0.2, p2 = 0.1.

Numerical solution of the equations

To solve the equations numerically, we start from the
BAM phase. We first find a feasible assignment of the

signs {ξ̂kµ}, by a combination of exhaustive search and
linear programming. See Appendix J for details. Then γ
is increased slowly, and equations (20) and (21) are solved
by iteration (with an inertial term). For each new value
of γ, the previously found solution is used to hotstart the
new fixed-point iteration.

Simulation results

We first checked that the steps described above to solve
equations (7) yields results that are consistent with stan-
dard methods of training RBMs. To do this, we gener-
ated data according to the hierarchical model described
in Section VI, considering an example tree with two lev-
els, K1 = 2, K2 = 3, and with p1 = 0.2, p2 = 0.1. We
then trained an RBM using Persistent Contrastive diver-
gence [23]; see [24, 25] for implementation details. Here
α = 0.9 (N = 1000, M = 9000), and γ = 0.01. The
resulting weight matrix from PCD has 5 non-zero singu-
lar values. Note that although for the hierarchical data
we would expect degenerate eigenvalues for large N , at
finite N finite sampling effects result in level splitting.

After training the RBM, we clustered the hidden unit
weights using K-means [22], with different number of
clusters. Panel A of Figure 3 shows the variance ex-
plained as a function of the number of clusters, and
demonstrates that in this five hidden unit cluster are suf-
ficient to fit the RBM weights, with all units within a
block having approximately identical weights. We then
solved equations (20) and (21) under the ansatz there
are 5 kinds of hidden units, and initializing close to the
k-means centers of the trained RBM weights. We then

compare in Panel B of Figure 3 the theoretical predic-
tion obtained, with the actual RBM weights from PCD.
The agreement is excellent, which confirms the theoret-
ical analysis of the previous section. Finally, Panel C
shows a heatmap of the weights of the hidden units pro-
jected onto the data space, after suitable reordering of
the hidden unit indices (using the K-mean clustering as-
signments). The panel clearly demonstrates the block
structure of the trained weights.
We then inspected the behavior of the solution as

γ changes. Figure 4A plots the overlaps between the
saddle-points (20) of spontanous activity of the RBM
and the data points, for a specific realization of the hi-
erarchical data. Because of the hierarchical symmetries,
the overlap matrix is defined by three free parameters,
m0,m1,m2, corresponding to the possible distances along
the tree. In this example, two phase transitions occur,
at the values of γ where these three parameters split. As
γ → 0, the weight matrix of the trained RBM approaches
the BAM regime. We compare in Panels 4B-D the theo-
retical weights (26) to the actual weights observed after
training the RBM for different values of γ. It is seen that
as γ decreases, the agreement improves, suggesting that
the solution (26) is approached eventually.

VII. DISCUSSION

In this work, we have studied the exact solution of
the weights of a regularized RBM, trained by maxi-
mum likelihood on a set consisting of a finite number of
data points. We first solved the problem by the replica
method, introducing a particular replica-symmetry bro-
ken ansatz, where replicas are grouped into subsets that
track different data points. Next, we presented an al-
ternative solution, where we track how the weights in-
terpolate between a paramagnetic and a weakly regular-
ized regime as the regularization varies. In fact, both
approaches lead to equivalent solutions, confirming our
replica ansatz. The symmetric replica subsets are found
to arise from the free-energy wells carved by the data
points.
Although we have not been able to prove rigorously

that the solutions studied here are the only possible solu-
tions, they appear to be the most commonly found when
numerically training the RBM by standard methods (CD,
PCD). One explanation is that training of the RBM usu-
ally begins with small weights, where the weights are
initially attracted to the top eigenvector of the data (like
in (22)), and after that are likely to follow a path toward
some of the solutions studied here. In addition, failing to
produce saddle-points near the data (which is the main
assumption we have made here) would necessarily lead
to a lower likelihood.
Our calculation can be extended in several directions.

It will be interesting to consider the consequences of bi-
ases in the units, or more generic potentials (e.g., ReLU
[26], dReLU [4]). Importantly, the number of data K has
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FIG. 3. Comparison of theory vs. PCD training of RBMs. A)We clusterize the weights attached to different hidden units using
K-means [22], for different number of clusters, and compute the variance explained by the clustering. In this example, there
are five blocks of identical units. B) Solving the mean-field equations in the manner described in the text, yields predictions
consistent with the weights found by training the RBM with standard methods (Persistent Contrastive Divergence [23]). C)
Projection of the trained RBM weights onto the vector space of the data points. Rows correspond to the data points, and
columns to the hidden units (after reordering).
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FIG. 4. Clustering phase transitions and asymptotic BAM regime. A) Overlaps between the spontaneous RBM activity
saddle-points (solutions of (20)) and the data points, as a function of γ for the Hierarchical data model. Parameters of the
simulations: K1 = 2,K2 = 3, p1 = 0.25, p2 = 0.2, N = 100000, α = 0.8. For hierarchical data the matrix of overlaps also has
a hierarchical structure, with only three free parameters m0 (overlap of a saddle-point and its closest data point), and m1,m2

(overlaps of a saddle-point and second and third nearest data points). There are two phase transitions indicated by the values
of γ where the three overlaps split. B-D) As γ → 0, the weights approach the asymptotic form (26).

been kept finite here, while moving to the regime of K
comparable to N , M , seems to pose more fundamental
difficulties. The replica method is likely to help, but as we
have shown here even in the simple finite K case, replica
symmetry breaking occurs at multiple levels, suggesting
a full-RSB phase as K → ∞. We leave this question to

future work.
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Appendix A: Replica calculation

We are interested in the maximum a posteriori (MAP) weights, i.e. the weights W⋆ maximizing the posterior

P (W|D) =
1

Y(D)
P (D|W)P0(W). (A1)

In the above,

PV (D|W) =

K∏
k=1

1

Z(W)
tr

{Hk
µ}

exp

(
N∑
i=1

M∑
µ=1

wiµξ
k
i H

k
µ

)
(A2)

is the likelihood. The prior

P0(W) =
∏
iµ

√
NKβγ

2π
exp

(
−NKβγ

2
w2

iµ

)
(A3)

assumes that the weights are i.i.d. Gaussian variables of mean 0 and variance 1/NKβγ, with β a non-negative
parameter. The normalization

Y(D) =

∫
PV (D|W)P0(W)dW (A4)

is the evidence. We consider the integral

Y(β)(D) =

∫
[PV (D|W)]

β
P0(W)dW, (A5)

since for β → ∞ it concentrates around the MAP weights,

1

β
lnY(β)(D) ∼ lnPV (D|W⋆)− NKγ

2

∑
iµ

(w⋆
iµ)

2, (A6)

where we neglected irrelevant additive constant terms. This is true when the β → ∞ limit is taken at N finite. In
the replica calculation below we take N → ∞ first, and thus assume that the two limits commute. We can write

Y(β)(D) = lim
n→−K

Y(β)
n (D) (A7)

where

Y(β)
n (D) =

∫  tr
{Hk

µ}
exp

∑
k

∑
iµ

wiµξ
k
i H

k
µ

β

[Z(W)]nβP0(W)dW, (A8)

and assume that β, n are positive integers. This is the replica trick, leading to the replicated evidence,

Y(β)
n (D) =

∫
tr

{Hkκ
µ }

exp

 K∑
k=1

β∑
κ=1

∑
iµ

wiµξ
k
i H

kκ
µ

 tr
{vaκ

i },{haκ
µ }

exp

 n∑
a=1

β∑
κ=1

∑
iµ

wiµv
aκ
i haκµ

 dW, (A9)

where we have introduced nβ equilibrium configurations of the RBM spontaneous visible and hidden activities, vaκi
and haκµ , a = 1, . . . , n, κ = 1, . . . , β, along with Kβ equilibrium configurations of the RBM hidden representations of

the data, Hkκ, k = 1, . . . ,K, κ = 1, . . . , β. In both cases these configurations, so-called replica, are assumed to be
sampled independently from the model at fixed weights W. Performing the Gaussian integrals introduces two-body
couplings between replica,

Y(β)
n (D) = tr

{Hkτ
µ },{vaτ

i },{haτ
µ }

exp

[
1

NKβγ

∑
iµ

( ∑
(kκ)<(lλ)

ξki ξ
l
iH

kκ
µ H lλ

µ +
∑
aκλ,k

vaκi ξki h
aκ
µ Hkλ

µ +
∑

(aκ)<(bλ)

vaκi vbλi haκµ hbλµ +
β

2
(K + n)

)]
,

(A10)
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where (kκ) < (lλ) and (aκ) < (bλ) are lexicographic orders,

∑
(kκ)<(lλ)

V kκ
i V lλ

i Hkκ
µ H lλ

µ =
1

2

(∑
kκlλ

V kκ
i V lλ

i Hkκ
µ H lλ

µ −Kβ

)
,

∑
(aκ)<(bλ)

vaκi vbλi haκµ hbλµ =
1

2

(∑
aκbλ

vaκi vbλi haκµ hbλµ − nβ

)
.

We identify the order parameters

Qaκ
k =

1

N

∑
i

vaκi ξki , qaκbλ =
1

N

∑
i

vaκi vbλi (A11)

P aκ
kλ =

1

M

∑
µ

haκµ Hkλ
µ , paκbλ =

1

M

∑
µ

haκµ hbλµ , (A12)

ykκlλ =
1

M

∑
µ

Hkκ
µ H lλ

µ . (A13)

which are overlap tensors. Denoting xkl =
1
N

∑
i ξ

k
i ξ

l
i the overlap matrix of the data we have, up to irrelevant constant

factors,

Y(β)
n (D) =

∫
Nv(Qv)Nh(Qh)dQvdQh exp

[
M

Kβγ

( ∑
(kκ)<(lλ)

xkly
kκ
lλ +

∑
aκλ,k

Qaκ
k P aκ

kλ +
∑

(aκ)<(bλ)

qaκbλ p
aκ
bλ

)]
, (A14)

where Qv = {Qaκ
k , qaκbλ } and Qh = {ykκlλ , P aκ

kλ , p
aκ
bλ} including off-diagonal entries only once, and

Nv(Qv) = tr
{vaκ

i }

∏
aκ,k

δ

(
Qaκ

k − 1

N

∑
i

vaκi ξki

) ∏
(aκ)<(bλ)

δ

(
qaκbλ − 1

N

∑
i

vaκi vbλi

) , (A15)

Nh(Qh) = tr
{Hk

µ},{haκ
µ }

 ∏
(kκ)<(lλ)

δ

(
ykκlλ − 1

M

∑
µ

Hkκ
µ H lλ

µ

) ∏
aκλ,k

δ

(
P aκ
kλ − 1

M

∑
µ

haκµ Hkλ
µ

)
×

 ∏
(aκ)<(bλ)

δ

(
paκbλ − 1

M

∑
µ

haκµ hbλµ

) ,
(A16)

are entropic factors. Following standard field-theoretic manipulations,

Nv(Qv) =

∫
eNSv(Qv,Q̂v)dQ̂, (A17)

Nh(Qh) =

∫
eMSh(Qh,Q̂h)dQ̂h, (A18)

where we introduced the entropies

Sv(Qv, Q̂v) = −
∑
aκ,k

Qaκ
k Q̂aκ

k −
∑

(aκ)<(bλ)

qaκbλ q̂
aκ
bλ +

1

N

∑
i

ln zvi , (A19)

Sh(Qh, Q̂h) = −
∑

(kκ)<(lλ)

ykκlλ ŷ
kκ
lλ −

∑
aκλ,k

P aκ
kλ P̂

aκ
kλ −

∑
(aκ)<(bλ)

paκbλ p̂
aκ
bλ + ln zh, (A20)

with

zvi = tr
{vaκ}

exp

∑
aκ,k

Q̂aκ
k ξki v

aκ +
∑

(aκ)<(bλ)

q̂aκbλ v
aκvbλ

 , (A21)
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zh = tr
{Hkκ},{haκ}

exp

( ∑
(kκ)<(lλ)

ŷkκlλ H
kκH lλ +

∑
aκλ,k

P̂ aκ
kλ h

aκHkλ +
∑

(aκ)<(bλ)

p̂aκbλh
aκhbλ

)
. (A22)

Note that zvi depends on i through the data points. For large N , we get the saddle-point equations extremizing Sv,

Sh in Q̂v, Q̂h,

Qaκ
k =

1

N

∑
i

ξki ⟨vaκ⟩i, qaκbλ =
1

N

∑
i

⟨vaκvbλ⟩i, (A23)

P aκ
kλ = ⟨haκHkλ⟩, paκbλ = ⟨haκhbλ⟩, (A24)

(A25)

ykκlλ = ⟨HkκH lλ⟩. (A26)

where ⟨ · ⟩i and ⟨ · ⟩ denote an average under the density defined by the partition function zvi and zh respectively.
Ignoring irrelevant constants, we can write

Y(β)
n (D) =

∫
exp(NΦ(Qv,Qh, Q̂v, Q̂h))dQvdQhdQ̂vdQ̂h (A27)

where

Φ =
α

Kβγ

 ∑
(kκ)<(lλ)

xkly
kκ
lλ +

∑
aκλ,k

Qaκ
k P aκ

kλ +
∑

(aκ)<(bλ)

qaκbλ p
aκ
bλ

+ Sv(Qv, Q̂v) + αSh(Qh, Q̂h). (A28)

For large N , we get saddle-point equations extremizing Φ in Qv,Qh,

Q̂aκ
k =

α

Kβγ

∑
λ

P aκ
kλ , q̂aκbλ =

α

Kβγ
paκbλ , (A29)

P̂ aκ
kλ =

1

Kβγ
Qaκ

k , p̂aκbλ =
1

Kβγ
qaκbλ , (A30)

ŷkκlλ =
1

Kβγ
xkl. (A31)

Looking at zh and the saddle-point equations for ŷkκlλ , we see that, by symmetry, the moments ⟨HkκH lλ⟩ for (kκ) < (lλ)
cannot depend on κ, λ, hence ykκlλ = ykl. Similarly ⟨haκHkλ⟩ for all aκλ, k, must be independent of λ, hence P aκ

kλ = P aκ
k .

Eliminating Q̂v, Q̂h, in favor of Qv, Qh, we find that, at a saddle-point,

Φ = − α

Kγ

∑
aκ,k

Qaκ
k P aκ

k +
1

β

∑
(aκ)<(bλ)

qaκbλ p
aκ
bλ

+ ln zvi + α ln zh, (A32)

with

zvi = tr
{vaκ}

exp

 α

Kγ

∑
aκ,k

P aκ
k ξki v

aκ +
1

β

∑
(aκ)<(bλ)

paκbλv
aκvbλ

 , (A33)

zh = tr
{Hkκ},{haκ}

exp

[
1

Kβγ

( ∑
(kκ)<(lλ)

xklH
kκH lλ +

∑
aκλ,k

Qaκ
k haκHkλ +

∑
(aκ)<(bλ)

qaκbλh
aκhbλ

)]
. (A34)

Appendix B: Replica-symmetry-breaking ansatz

We now make an RSB ansatz, assuming replica symmetry only within a finite number Ω of sets of nβ/Ω replica
each, with broken replica symmetry across these sets. For (aκ) = 1, . . . , nβ, and (aκ) < (bλ),

Qaκ
k = Qω

k P aκ
k = Pω

k , (aκ) ∈ ω, (B1)

qaκbλ = qωω′ paκbλ = pωω′ (aκ) ∈ ω, (bλ) ∈ ω′, (B2)
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where ω = 1, . . . ,Ω and ω < ω′. We get

zvi = tr
{vaκ}

exp

[
α

Kγ

(∑
ω,k

Pω
k ξ

k
i

∑
(aκ)∈ω

vaκ +
1

2β

∑
ω<ω′

pωω′

∑
(aκ)∈ω

vaκ
∑

(bλ)∈ω′

vbλ − n

2

)]
(B3)

zh = tr
{Hkκ},{haκ}

exp

[
1

Kβγ

(
1

2

∑
kκlλ

xklH
kκH lλ +

∑
ω

∑
kλ

Qω
kH

kλ
∑

(aκ)∈ω

haκ +
1

2

∑
ω<ω′

qωω′

∑
(aκ)∈ω

haκ
∑

(bλ)∈ω′

hbλ − β

2
(K + n)

)]
(B4)

Making a few Hubbard-Stratonovich transforms to decouple the unary (multivariate Gaussian identity) and binary
quadratic forms ([12, 13, 27]),

zvi = tr
{vaκ}

∫
exp

{
α

γ

[∑
ω

(
1

K

∑
k

Pω
k ξ

k
i − ζω

) ∑
(aκ)∈ω

vaκ − Kβ

2

∑
ω<ω′

(p−1)ωχζ
v
ωζ

v
χ

]}
dζ (B5)

zh = tr
{Hkτ},{haτ}

∫
exp

{
1

γ

[
β
∑
k

χkηk − Kβ

2

∑
kl

(x−1)klςkςl −
Kβ

2γ

∑
ω<ω′

(q−1)ωω′ϑωϑω′ +
∑
kτ

(ςk − χk)H
kκ

+

(
1

K

∑
kω

ηkQ
ω
k −

∑
ω

ϑω

) ∑
(aκ)∈ω

haκ

]}
dςdχdηdϑ

(B6)

Computing the traces and taking the n→ −K limit,

zvi =

∫
exp

{
β

[
− K

Ω

∑
ω

ln cosh

(
α

γ

(
1

K

∑
k

Pω
k ξ

k
i − ζω

))
− Kα

2γ

∑
ω<ω′

(p−1)ωω′ζωζω′

]}
dζ (B7)

zh =

∫
exp

{
β

[
1

γ

∑
k

χkηk +
∑
k

ln cosh

(
1

γ

(
ςk − χk

))
− K

2γ

(∑
kl

(x−1)klςkςl +
∑
ω<ω′

(q−1)ωω′ϑωϑχ

)

−K
Ω

∑
ω

ln cosh

(
1

γ

(
1

K

∑
k

ηkQ
ω
k − ϑω

))]}
dϑdςdχdη

(B8)

For large β, we get the following saddle-point equations extremizing zvi and zh in ζ and ϑ, ς, χ, η respectively,

ζω′ =
1

Ω

∑
ω

pωω′ tanh

(
α

γ

(
1

K

∑
k

Pω
k ξ

k
i − ζω

))
(B9)

ϑω′ =
1

Ω

∑
ω

qωω′ tanh

(
1

γ

(
1

K

∑
k

ηkQ
ω
k − ϑω

))
(B10)

ηk = tanh

(
1

γ
(ςk − χk)

)
(B11)

χk =
1

Ω

∑
ω

Qω
k tanh

(
1

γ

(
1

K

∑
l

ηlQ
ω
l − ϑω

))
(B12)

ςl =
1

K

∑
k

xkl tanh

(
1

γ
(ςk − χk)

)
(B13)
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Substituting the averages of vωi , h
ω, and Hω

k over the density defined by zvi and zh respectively,

⟨vω⟩i = tanh

(
α

γ

(
1

K

∑
k

Pω
k ξ

k
i − ζω

))
, (B14)

⟨hω⟩ = tanh

(
1

γ

(
1

K

∑
k

ηkQ
ω
k − ϑω

))
, (B15)

⟨Hk⟩ = tanh

(
1

γ
(ςk − χk)

)
, (B16)

gives

⟨vω⟩i = tanh

(
α

γ

(
1

K

∑
k

Pω
k ξ

k
i − 1

Ω

∑
ω′

pωω′⟨vω
′
⟩i

))
(B17)

⟨hω⟩µ = tanh

(
1

γ

(
1

K

∑
k

ηkQ
ω
k − 1

Ω

∑
ω′

qωω′⟨hω
′
⟩µ

))
(B18)

⟨Hk⟩µ = tanh

(
1

γ

(
1

K

∑
l

xkl⟨Hl⟩µ − 1

Ω

∑
ω

Qω
k ⟨hω⟩µ

))
(B19)

where to account for possibly multiple solutions to the self-consistent equations of the hidden activities, we added a
mute index µ to the law defined by zh. This is an abbreviation for a similar calculation, where we add to the prior
a linear source field, βε

∑
iµ σiτµwiµ, for σ, τ , living on the hypercube in dimensions N , M , respectively, and ε an

O(1) non-negative real number that we send to zero at the end. The system (15), (16), (17) closes onto the order
parameters via

Qω
k =

1

N

∑
i

ξki ⟨vω⟩i, qωω′ =
1

N

∑
i

⟨vω⟩i⟨vω
′
⟩i, (B20)

Pω
k =

1

M

∑
µ

⟨hω⟩µ⟨Hk⟩µ, pωω′ =
1

M

∑
µ

⟨hω⟩µ⟨hω
′
⟩µ. (B21)

Appendix C: Consistency of the RSB equations

Eqs. (15), (16), (17) were derived using the powerful albeit non-rigorous replica method. They also turn out to be
equivalent to Eqs. (20), (21), from the main text (F). Substituting Eqs. (11)–(14) into (15) and (16),

⟨vω⟩i = tanh

(
1

Nγ

∑
µ

(
1

K

∑
k

ξki ⟨Hk⟩µ − 1

Ω

∑
ω′

⟨vω
′
⟩i⟨hω

′
⟩µ

)
⟨hω⟩µ

)
, (C1)

⟨hω⟩µ = tanh

(
1

Nγ

∑
i

(
1

K

∑
k

ξki ⟨Hk⟩µ − 1

Ω

∑
ω′

⟨vω
′
⟩i⟨hω

′
⟩µ

)
⟨vω⟩i

)
, (C2)

as well as the definition of xkl and Eqs. (11)–(14) for Qω
k into eq. (17),

⟨Hk⟩µ = tanh

(
1

Nγ

∑
i

ξki

(
1

K

∑
l

ξli⟨H l
µ⟩ −

1

Ω

∑
ω

⟨vω⟩i⟨hω⟩µ

))
(C3)

we identify the RHS of eq. (21), remembering that

⟨Hk⟩µ = tanh

(∑
i

wiµξ
k
i

)
, (C4)

thus giving eqs. (20), (21).
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Appendix D: Replica-symmetric ansatz

Under the replica-symmetric (RS) ansatz

Qaκ
k = Qk, P aκ

k = Pk, qaκbλ = q, paκbλ = p, (D1)

for all a, κ, k and (aκ) < (bλ) we find, following similar steps as in Appendix B,

⟨v⟩i = tanh

(
α

γ

(
1

K

∑
k

PkV
k
i − p⟨v⟩i

))
, (D2)

⟨h⟩µ = tanh

(
1

γ

(
1

K

∑
k

Qk⟨Hk⟩µ − q⟨h⟩µ

))
, (D3)

⟨Hk⟩µ = tanh

(
1

γ

(
1

K

∑
l

xkl⟨H l
µ⟩ −Qk⟨h⟩µ

))
, (D4)

Qk =
1

N

∑
i

V k
i ⟨v⟩i, q =

1

N

∑
i

⟨v⟩2i , (D5)

Pk =
1

M

∑
µ

⟨h⟩µ⟨Hk⟩µ, p =
1

M

∑
µ

⟨h⟩2µ. (D6)

We see that the RS ansatz can only hope at best to describe the paramagnetic and the rank-1 phases.

Appendix E: RSB-ℓ ansatz for hierarchically structured data

We now propose an RSB-ℓ ansatz, ℓ = 1, . . . , L, for hierarchically structured data (VI) corresponding to a tree of
depth L. We parametrize the data index k in terms of the data tree coordinates k = (k0, k1, . . . , kL), kℓ = 1, . . . , Cℓ,
where kL is the leaf index, CL = K, and in what follows we drop the trivial root index k0 = C0 = 1. Likewise, we
parametrize the RSB index ω in terms of a replica tree coordinate ω = (ω1, . . . , ωL). With these notations, we assume

Qω1,...ωL

k1,...,kL
=


Q0 if k1 = ω1, . . . , kL = ωL,

Q1 if k1 = ω1, . . . , kL ̸= ωL,

. . .

QL if k1 ̸= ω1, . . . , kL ̸= ωL.

Pω1,...ωL

k1,...,kL
=


P0 if k1 = ω1, . . . , kL = ωL,

P1 if k1 = ω1, . . . , kL ̸= ωL,

. . .

PL if k1 ̸= ω1, . . . , kL ̸= ωL.

(E1)

qω1,...ωL

ω′
1,...ω

′
L
=


q0 if ω1 = ω′

1, . . . , ωL = ω′
L,

q1 if ω1 = ω1, . . . , ωL ̸= ω′
L,

. . .

qL if ω1 ̸= ω′
1, . . . , ωL ̸= ω′

L.

pω1,...ωL

ω′
1,...ω

′
L
=


p0 if ω1 = ω′

1, . . . , ωL = ω′
L,

p1 if ω1 = ω1, . . . , ωL ̸= ω′
L,

. . .

pL if ω1 ̸= ω′
1, . . . , ωL ̸= ω′

L.

(E2)

In terms of the parameters Qℓ, qℓ, Pℓ, pℓ, the self-consistent equations for the local magnetizations are

⟨vω1...ωL⟩i = tanh

[
α

γ

(
P0

K
ξω1...ωL
i − p0

Ω
⟨vω1...ωL⟩i +

P1

K

∑
kL( ̸=ωL)

ξω1...kL
i − p1

Ω

∑
ω′

L( ̸=ωL)

⟨vω1...ω
′
L⟩i

+
P (2)

K

∑
kL (̸=ωL)kL−1( ̸=ωL−1)

ξ
ω1...kL−1kL

i − p2
Ω

∑
ω′

L (̸=ωL)ω′
L−1 (̸=ωL−1)

⟨vω1...ω
′
L−1ω

′
L⟩i + . . .

+
PL

K

∑
kL (̸=ωL)kL−1 (̸=ωL−1)...k1 (̸=ω1)

ξ
k1...kL−1kL

i − pL
Ω

∑
ω′

L (̸=ωL)ω′
L−1 (̸=ωL−1)...ω′

1( ̸=ω1)

⟨vω
′
1...ω

′
L−1ω

′
L⟩i

)]
,

(E3)
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⟨hω1...ωL⟩µ = tanh

[
α

γ

(
Q0

K
⟨Hω1...ωL⟩µ − q0

Ω
⟨hω1...ωL⟩µ +

Q1

K

∑
kL( ̸=ωL)

⟨Hω1...kL⟩µ − q1
Ω

∑
ω′

L (̸=ωL)

⟨hω1...ω
′
L⟩µ

+
Q2

K

∑
kL (̸=ωL)kL−1 (̸=ωL−1)

⟨Hω1...kL−1kL⟩µ − q2
Ω

∑
ω′

L (̸=ωL)ω′
L−1( ̸=ωL−1)

⟨hω1...ω
′
L−1ω

′
L⟩µ + . . .

+
QL

K

∑
kL( ̸=ωL)kL−1 (̸=ωL−1)...k1( ̸=ω1)

⟨Hk1...kL−1kL⟩µ − qL
Ω

∑
ω′

L (̸=ωL)ω′
L−1( ̸=ωL−1)...ω′

1 (̸=ω1)

⟨hω
′
1...ω

′
L−1ω

′
L⟩µ

)]
,

(E4)

⟨Hk1...kL⟩µ = tanh

[
1

γ

(
1

K
⟨Hk1...kL⟩µ − Q0

Ω
⟨hk1...kL⟩µ +

x1
K

∑
lL( ̸=kL)

⟨Hk1...lL⟩µ − Q1

Ω

∑
ωL( ̸=kL)

⟨hk1...ωL⟩µ

+
x2
K

∑
lL (̸=kL)lL−1 (̸=kL−1)

⟨Hk1...lL−1lL⟩µ − Q2

Ω

∑
ωL (̸=kL)ωL−1 (̸=kL−1)

⟨hk1...ωL−1ωL⟩µ

)]
+ . . .

+
xL
K

∑
lL (̸=kL)lL−1 (̸=kL−1)...l1 (̸=k1)

⟨H l1...lL−1lL⟩µ − QL

Ω

∑
ωL (̸=kL)ωL−1( ̸=kL−1)...ω1 (̸=k1)

⟨hω1...ωL−1ωL⟩µ

)]
.

(E5)

Appendix F: Derivation of the stationarity conditions in the undersampled regime

As shown in Appendix I, the trained weights in the undersampled regime, will be at most of rank ≤ 2K with K
finite, but in practice their rank is always found to be ≤ K. Let us then go ahead and assume that the RBM weights
are rank K, given as

wiµ =
1

N

∑
k

ξki c
k
µ (F1)

for some coefficients ckµ. The input on hidden unit µ from a data point ξk equals Ikµ =
∑

i wiµξ
k
i =

∑
l c

l
µx

lk. In

particular ⟨hµ|ξk⟩ = tanh(Ikµ) = tanh
(∑

l c
l
µx

lk
)
. The RBM energy writes:

−E(v,h) =M
∑
k

mknk (F2)

where

mk(v) =
1

N

∑
i

ξki vi, nk(h) =
1

M

∑
µ

ckµhµ, (F3)

while the effective energy is, up to irrelevant factors,

−Eeff(v) =
∑
µ

ln cosh

(∑
k

mkc
k
µ

)
. (F4)

Using the Hubbard-Stratonovich transform,

P (v,h) ∝
∫

exp

(
−M

∑
kl

mknl + α
∑
ki

nkξ
k
i vi +

∑
kµ

mkc
k
µhµ

)
dmdn. (F5)

For large N one has Z ∼ e−NF (m,n) with the free energy

F (m,n) = α
∑
k

mknk − 1

N

∑
i

ln cosh

(
α
∑
k

nkv
k
i

)
− 1

N

∑
µ

ln cosh

(∑
k

mkh
k
µ

)
(F6)
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Here m = (m1, . . . ,mK), n = (n1, . . . , nK) are minima of F (m,n), solving the saddle-point equations

mk =
1

N

∑
i

ξki ⟨vi⟩, nk =
1

M

∑
µ

ckµ⟨hµ⟩, (F7)

with

⟨vi⟩ = tanh

(
α
∑
k

nkξ
k
i

)
, ⟨hµ⟩ = tanh

(∑
k

mkc
k
µ

)
(F8)

The minima of F can be found by initializing at a Mattis state, mk = xkl for some l, and iterating the above equations
until convergence. The resulting saddle-point is the local minima where the RBM average activities ⟨vi⟩ are closest to
the data point ξki . Initializing at different rows of xkl may sometimes lead to the same saddle-point, due to merging.
Thus at most K saddle-points are found in this way, that we denote by mω

k , n
ω
k , with ω = 1, . . . ,Ω ≤ K. Each

saddle-point defines a thermodynamic state, with averages denoted ⟨vi⟩ω, . . . and so on. Substituting,

⟨vi⟩ = tanh

 α

M

∑
kµ

ξki c
k
µ⟨hµ⟩

 , (F9)

⟨hµ⟩ = tanh

(
1

N

∑
ki

ξki c
k
µ⟨vi⟩

)
. (F10)

The RBM trained by maximum likelihood, satisfies the moment-matching conditions:

⟨vihµ⟩D − ⟨vihµ⟩ −Nγwiµ = 0. (F11)

Substituting the ansatz,

1

K

∑
k

ξki tanh

(∑
l

xklc
l
µ

)
− 1

Ω

∑
ω

⟨vi⟩ω⟨hµ⟩ω − γ
∑
k

ξki c
k
µ = 0. (F12)

Appendix G: The weights as implicit functions of γ

We invoke the implicit function theorem [20], to the weights in Equation (7) with respect to γ, obtaining:∑
jν

∂2L
∂wiµ∂wjν

dwjν

dγ
= Nwiµ (G1)

Since the weights are a local maximum of the likelihood, the Hessian ∂2L/(∂wiµ∂wjν) is negative definite. Thus
dwjν/dγ can be found by inversion of (G1). Note that it vanishes only at the origin.
We can then integrate (G1) to obtain parametric curves wiµ(γ) [21] that trace the different solutions of (7). For

Kγ ≥ λmax, these curves intersect at the origin, which is the only fixed point of the flow (G1).
As γ approaches zero, the curves diverge to infinity, in a manner described by the BAM phase discussed in the text.

In this regime, the Hessian simplifies to

∂2L
∂wiµ∂wjν

= − 1

K

∑
k

Ak
iµA

k
jν −Nγδijδµν (G2)

where Ak
iµ = ξki ξ̂

k
µ − 1

K

∑
l ξ

l
i ξ̂

l
µ, in the same notation of Section V in the main text. The asymptotic behavior of

wiµ(γ) for γ → 0 is then ruled by the eigen-modes of (G2).
The term

∑
k A

k
iµA

k
jν is a rank K positive semi-definite matrix in weight space. It has the same eigenvalues as

∑
iµ

Ak
iµA

l
iµ =

∑
iµ

(
ξki ξ̂

k
µ − 1

K

∑
t

ξti ξ̂
t
µ

)(
ξli ξ̂

l
µ − 1

K

∑
t

ξti ξ̂
t
µ

)
(G3)

=MN

(
xklykl −

1

K

∑
t

(xktykt + xltylt) +
1

K2

∑
st

xstyst

)
(G4)
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where xkl =
1
N

∑
i ξ

k
i ξ

l
i and ykl =

1
M

∑
µ ξ̂

k
µξ̂

l
µ. If r̂k is an eigenvector of

∑
iµA

k
iµA

l
iµ, then ŵiµ =

∑
k A

k
iµr̂k is an

eigenvector of
∑

k A
k
iµA

k
jν , with the same eigenvalue. This shows that the asymptotic weights, are of the form:

wiµ ∝
∑
k

r̂k

(
ξki ξ̂

k
µ − 1

K

∑
l

ξli ξ̂
l
µ

)
=
∑
k

wkξ
k
i ξ̂

k
µ (G5)

where wk = r̂k − 1
K

∑
l r̂l. As mentioned in the main-text, this form corresponds to the “weighted learning rule” of

BAM [18].
Now, the matrix

∑
iµA

k
iµA

l
iµ is a projection of xklykl to the hyperplane orthogonal to the all ones vector, 1 =

(1, . . . , 1), which implies that it develops a zero eigenvalue, associated to the eigenvector 1. This happens to be
its smallest eigenvalue, and will therefore eventually dominate the dynamics of (G1). Indeed, other modes would
converge towards a finite value for the weights, whereas this mode is the one that leads to weights that diverge like
1/γ as γ → 0. Therefore, (G5) simplifies to:

wiµ ∝
∑
k

ξki ξ̂
k
µ (G6)

the original learning rule proposed by Kosko [10].

Appendix H: Stability analysis

The Hessian of the log-likelihood writes:

∂2L
∂wiµ∂wjν

=
1

K

∑
k

ξki ξ
k
j (1− ⟨hµ|vk⟩2)δµν − ⟨vivjhµhν⟩+ ⟨vihµ⟩⟨vjhν⟩ −Nγδijδµν (H1)

where ⟨hµ|v⟩ = tanh (
∑

i wiµvi).

We can consider a general perturbation w̃iµ = wiµ + ϵiµ to the weights, where ϵiµ = ϵ
∥
iµ + ϵ⊥iµ may have both

parallel ϵ
∥
iµ and perpendicular ϵ⊥iµ components to the data. We will assume that the unperturbed weights wiµ are fully

contained in the span of the data, and that they are stationary,

⟨vihµ⟩d − ⟨vihµ⟩ −Nγwiµ = 0 (H2)

We will also assume that wiµ are locally stable within the space of the data. That is, L(W + ϵ∥) ≤ L(W) to

second-order, for any small perturbation ϵ∥ contained in the data span. After some algebra,

L(W) ≈ L(W + ϵ∥)− 1

2

∑
ij

∑
µν

(ϵ
∥
iµϵ

⊥
jν + ϵ⊥iµϵ

∥
jν + ϵ⊥iµϵ

⊥
jν)⟨vivjhµhν⟩ −

Nγ

2

∑
iµ

(ϵ⊥iµ)
2

(H3)

In the thermodynamic limit of the undersampled regime we have considered in this paper, we have ⟨vihµ⟩ =
1
Ω

∑
ω⟨vi⟩ω⟨hµ⟩ω, where ω ∈ {1, . . . ,Ω} are the distinct saddle-points of the free energy (or states). If we assume that

the sets of vectors {⟨vi⟩ω} and {⟨hµ⟩ω} are both linearly independent, then each ⟨v⟩ω must be in the span of the data
(because the colspan of ⟨vihµ⟩ is in the span of the data). But in the thermodynamic limit, we also have:

⟨vivjhµhν⟩ =
1

Ω

∑
ω

⟨vi⟩ω⟨vj⟩ω⟨hµ⟩ω⟨hν⟩ω (H4)

If each of the ⟨vi⟩ω is also in the span of the data, the above simplifies to:

L ≈ L(W + ϵ∥)− Nγ

2

∑
iµ

(ϵ⊥iµ)
2 ≤ L(W) (H5)

which confirms the stability of the data parallel solution.
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Appendix I: The global maxima weights are low-rank

The data defines a grouping of sites i = 1, . . . , N , into classes I, such that ξki = ξkI for all k, has the same value for
all i ∈ I. There are 2K possible values that the K-tuple (ξ1I , . . . , ξ

K
I ) can take, and therefore there are 2K possible

groups I. Let −I denote the opposite class of I, that is ξk−I = −ξkI takes the negative values of the sites in I.
Let V denote the space of vectors w = (wi) satisfying wi = wI for all i ∈ I, and wi = −wI whenever i ∈ −I. In

other words, wi respects the same hyperoctahedral symmetries regarding the sites i as the data. It is easy to see that
V is a vector space and that it contains the data points, ξk ∈ V.

Decompose the weights as wiµ = w
∥
iµ + w⊥

iµ, where w
∥
µ ∈ V, while w⊥

µ ⊥ V is orthogonal to all vectors in V. Note
that this decomposition is unique. We analyze how the three terms in the log-likelihood depend on the parallel and
orthogonal components of the weights.

The first term of the log-likelihood depends only on the parallel component,

1

K

∑
k

ln tr
h
exp

∑
iµ

wiµξ
k
i hµ

 =
1

K

∑
k

ln tr
h
exp

∑
iµ

w
∥
iµξ

k
i hµ

 (I1)

because the dot product with the data annihilates any transverse components,
∑

i wiµξ
k
i =

∑
i w

∥
iµξ

k
i .

For the regularization we have that

∥W∥2 = ∥W∥∥2 + ∥W⊥∥2 ≥ ∥W∥∥2 (I2)

by properties of the L2-norm (Pythagoras theorem). The regularization pushes towards decreasing any transverse
norm ∥W⊥∥2.

The log-partition function lnZ(W) is a convex function of W. This is a consequence of the fact that lnZ(W) is
of the Log-Sum-Exp class [28].

It is also invariant under the action of the hyperoctahedral group [29]. More explicitly, let g be a member of the
hyperoctahedral group. This means that g is specified by some permutation π1, . . . , πN of of the coordinate axes
1, . . . , N , and by N signs which correspond to reflections, σ1, . . . , σN = ±1. Let g(W) be the weight matrix after the
action of g,

g(W)iµ = σπi
wπiµ

Then:

Z(g(W)) = tr
v,h

exp

(∑
µ

v⊤g(wµ)hµ

)
= tr

v,h
exp

(∑
µ

w⊤
µ g

−1(v)hµ

)
= Z(W) (I3)

where g−1 denotes the inverse of g in the hyperoctahedral group. Since summing over the g−1(v) amounts to a
reordering of the vertices of the hypercube, the sum has the same value (a sum is invariant to the order of the terms
added), and therefore Z(Wg) = Z(W).
Among all g in the hyperoctahedral group, there are some that leave the data points invariant, that is, g(vk) = vk

for all k = 1, . . . ,K. The set of such g forms a subgroup, that we denote by GD. Its members, g ∈ GD, satisfy:

g(ξk) = (σπ1
ξkπ1

, . . . , σπN
ξkπN

) = (ξk1 , . . . , ξ
k
N )

That is, the data vectors ξk are eigenvectors of the matrix associated to the transformation g and with eigenvalue
one. The following N ×K equations must then hold,

σπiξ
k
πi

= ξki (I4)

for all i = 1, . . . , N and all k = 1, . . . ,K.
If σπi

= 1, this means that ξ1πi
= ξ1i , . . . , ξ

K
πi

= ξKi . Thus if i ∈ I then πi ∈ I must be in the same class. If σπi
= −1,

then ξ1πi
= −ξ1i , . . . , ξKπi

= −ξKi , which means that if i ∈ I then πi ∈ −I must belong to the opposite class.
In any case, if i ∈ I, then πi ∈ I or πi ∈ −I. In the first case σπi

= +1 and in the second case σπi
= −1. If we

consider the restriction of π to sites belonging to two opposite classes I or −I, we have that π is allowed to permute
these sites freely. That is, we can consider any permutation of the sites in I ∪ −I.
We can also view this algebraically, multiplying the equation σπi

ξkπi
= ξki by ξkπi

, gives

σπi
= ξki ξ

k
πi
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which says the same thing: σπi
= 1 or σπi

= −1 according to whether πi sends i to I or −I, where i ∈ I. The
permutation π is only constrained to satisfy that ξki ξ

k
πi

has the same value for all k.
Now consider an arbitrary vector w = (w1, . . . , wN ). We construct w̃ by considering all possible actions of GD on

w, and averaging:

w̃ =
1

|GD|
∑
g∈GD

g(w)

This vector is invariant to the action of any g ∈ GD:

g(w̃) =
1

|GD|
∑

g′∈GD

(g ◦ g′)(w) =
1

|GD|
∑

g′∈GD

g(w) = w̃

because summing over g ◦ g′ instead of g′ amounts to just a re-ordering of the terms in the sum. It follows that, for
all g ∈ GD, we must satisfy the equations

σπiw̃πi = w̃i

for all i = 1, . . . , N . Suppose i ∈ I. Then πi ∈ I or πi ∈ −I, according to whether σπi = 1 or σπi = −1, respectively.
Therefore, we must have w̃j = w̃i for all j ∈ I, while w̃j = −w̃i for all j ∈ −I. In other words, w̃ ∈ V.
Now we can come back to our decomposition of the weights, wiµ = w

∥
iµ + w⊥

iµ, with w
∥
µ ∈ V and w⊥

µ ⊥ V. Clearly,

1

|GD|
∑
g∈GD

g(W) = W∥

Next, by the convexity of lnZ(W),

lnZ(W∥) = lnZ

 1

|GD|
∑
g∈GD

g(W)

 ≤ 1

|GD|
∑
g∈GD

lnZ(g(W)) (I5)

But we have seen above that Z(g(W)) = Z(W) is invariant, for any g in the hyperoctahedral group. Therefore, we
have that:

lnZ(W∥) ≤ lnZ(W)

Finally, combining all three terms in the log-likelihood, we have that:

L(W) = L(W∥ +W⊥) ≤ L(W∥) (I6)

We conclude that the log-likelihood is maximized by weights that lie inside V. Note that this derivation remains valid
for other regularizations in addition to L2, as long as the regularization is convex and invariant under the action of
the hyperoctahedral group.

Appendix J: Linear programming formulation of BAM phase for small K

With the weights given by Eq. (26), the inequalities (25) write:

ξ̂kµ
∑
l

xklξ̂
l
µ ≥ 0, ξki

∑
l

yklξ
l
i ≥ 0 (J1)

The first inequality involves single hidden units, and defines a set of admissible vectors ξµ = (ξ̂1µ, . . . , ξ̂
K
µ ) ∈ {±1}K ,

that do not change orthant when matrix x is applied. The second inequality involves only ykl, not individual units.
Now if we consider only admissible vectors, we can count how many copies of each such vector are present, say Mψµ,

where ψµ ≥ 0 and
∑

µ ψµ = 1. Then we can write ykl =
∑

µ ψµξ̂
k
µξ̂

l
µ. Crucially, the first inequality is already satisfied

(independently of ψµ) because we are considering now only admissible vectors. The second inequality writes:∑
l

yklξ
k
i ξ

l
i =

∑
lµ

ψµξ̂
k
µξ̂

l
µξ

k
i ξ

l
i ≥ 0 (J2)
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and must be satisfied for all k, i. Together with ψµ ≥ 0,
∑

µ ψµ = 1, we find that ψµ is confined to a convex polytope.

Lastly, under Eq. (26), the log-likelihood simplifies to:

L(W) ∼ WM

K

(
2− KWγ

2

)∑
kl

xklykl (J3)

where W denotes the (large) norm of the weights (i.e., the missing proportionality constant in Eq. (26)). Maximizing
(J3) with respect to the ψµ, under constraints (J2), is a linear program (LP), and can be easily solved for small K
[30].
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