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Abstract

When dealing with machine learning, engineers tend to focus on improving
certain aspects of performance of their system, such as efficiency, possibly dis-
missing other important criteria, like fairness. This mindset can have dreadful
consequences for companies as well as for end users and may yield discrimina-
tion, for instance when resulting in automated facial recognition systems that
work better for white men than for women of color (Buolamwini & Gebru,
2018). Researchers have long reduced fairness to a data issue: if the learning
data is unbalanced, the system is quite likely to be biased. But this belief
overlooks other parameters or coding choices that are also likely to affect fair-
ness. Which coding choices really affect fairness and what are the trade-offs
with efficiency? In this paper, focusing on facial recognition, various choices
are considered regarding data sampling, normalization and augmentation, neu-
ral network depth, loss function margin, learning rate, and the authentication
threshold. All of these choices have been tested on different metrics for ef-
ficiency and fairness. The results show that all of them have an impact on
fairness at various scales. The best choice for fairness is not always the best for
efficiency and trade-offs are sometimes necessary. Ethical discussions should
therefore come with the design of machine learning systems, making such con-
flicts explicit and guiding the decisions at coding and software maintenance
times.

∗When this work begun, the author was affiliated to ISAE-SUPAERO, Toulouse, France and
CNPEN
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1 Introduction

With the growing popularity of machine learning systems, it is essential to recog-
nise their role in the transformation of societies and to encourage researchers and
industrial stakeholders on the one hand, and decision-makers and public authorities
on the other, to take into account the ethical stakes of these technologies.

Numerous recommendations have been issued over the last five years, listing
values, principles and criteria1 to be considered during the development and, more
generally, the life cycle of a machine learning system. In all these texts, fairness
appears to be a crucial principle. Jobin et al. (2019), studied 84 of them in 2019
and fairness appears to be the second most cited principle after transparency (in 68
texts out of 84). Since then, more initiatives have emerged2. For instance, UNESCO
(2021) cites ”fairness and non-discrimination” as a key principle to safeguard social
justice, while the OECD (2019) underlines the need for ”human-centred values and
fairness”.

At the European level, the High Level Expert Group on Artificial Intelligence,
lists four ”ethical principles”, including fairness that is broken down into a set of
commitments: a ”fair” system should ”ensur[e] equal and just distribution of both
benefits and costs, [...][ensure] that individuals and groups are free from unfair bias,
discrimination and stigmatisation. [...] Equal opportunity [...] should also be fos-
tered [...][and] practitioners should respect the principle of proportionality. [Fairness
also] entails the ability to contest [...] decisions made by AI systems.” (HLEG, 2019)

Nevertheless, the recommendations, although paving the way for standardized
methods to design algorithms complying with certain values, do not explain how
to actually implement these criteria in real-life contexts: what should researchers
and engineers do to design “fair” machine-learning based systems? How can the
”fairness” of a machine-learning based system be assessed or even proved? What
are the concrete criteria?

Machine learning researchers usually think that ”ML systems are biased when
data is biased”3. This sentence is representative of a mindset in the machine learning
community, sometimes expressed as ”garbage in, garbage out”. As such, it should
be easy to mitigate biases by cleaning the data, rebalancing it or even collecting
more of it. This led Google in 2019 to target specifically black people faces to
feed their facial recognition network, hoping the biases will simply fade away as a
result (Wong, 2019). Scholars have then warned about this phenomenon of ”ex-

1To differentiate ethical values from principles, UNESCO (2021) gives the following definition:
”Values play a powerful role as motivating ideals in shaping policy measures and legal norms. While
the set of values outlined below thus inspires desirable behaviour and represents the foundations of
principles, the principles unpack the values underlying them more concretely so that the values can
be more easily made operational in policy statements and actions.”

2See the ”National AI policies & strategies” database created by the OECD and the European
Commission: https://oecd.ai/en/dashboards/overview

3Yann LeCun on Twitter in June 2020: https://twitter.com/ylecun/status/

1274782757907030016
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ploiting marginalized groups in the blind pursuit of increasing representation” (Raji
et al., 2020).

At the same time, research has been flourishing to allow for the constant im-
provement of systems’ efficiency. In this work, we have chosen to use the term
efficiency rather than the term performance usually used in the literature, because
we believe that performance should be an umbrella term to refer to various desirable
criteria, such as efficiency, fairness, or explainability. Efficiency then denotes ”a sit-
uation in which a system [...] works well and quickly”4. This definition of efficiency
encompasses several notions, notably speed and prediction exactness5. The effi-
ciency criterion is often the only one that system designers and developers consider,
sometimes not even being aware that another approach is even possible. Indeed,
when designing an algorithm, one has to make technical choices as all the desirable
criteria, cannot be met at the same time. This leads to trade-offs between values,
for instance between efficiency and fairness (Corbett-Davies et al., 2017; Zliobaite,
2015): there is ”no free lunch theorem” (Wolpert & Macready, 1997). The designer
and the developer make these choices according to their own values and habits,
which are not neutral and can have a great impact on the individuals that will in-
teract with the resulting system. This implies that algorithm designers and code
developers must be held accountable for their design choices (Dignum et al., 2018).
We ought to state that a new approach to algorithms and program developments is
possible, one that does not rely only on building the most accurate and performative
system, but promotes other values, like fairness.

This work focuses on how to design a facial authentication system taking into
account both efficiency and fairness when coding, highlighting where trade-offs are
necessary. While many definitions of fairness exist (see Section 2.3), it is defined
in this work as having the same chances of being recognised by the system, in
similar conditions, whoever you are. This implies checking whether people from
different subgroups of population (like men or women or groups based on skin color
for instance) have the same rate of false positive and false negatives, same accuracy
or even if the system has correctly learned on the specific subgroup. We consider
the different choices in the design process and how they affect the overall fairness
of the system. After detailing in Section 2 the issue of fairness in facial recognition
systems and how to define and measure it, we describe the investigated parameters
choices as well as the investigated face authentication system in Section 3. Finally,
in Section 4, we discuss the overall results. Most importantly, in Section 5, we
consider the lessons learned. We notably argue that ”performance” should not be a
synonym for efficiency but rather a vector of multiple and equally important criteria,
including fairness.

4https://dictionary.cambridge.org/us/dictionary/english/efficiency
5”Exactness” should not be confused with ”accuracy” which is one of the metrics used for

prediction exactness. The accuracy metric is defined in equation 8. For a complete view of our
nomenclature, including ”performance”, ”efficiency”, ”prediction exactness” and ”accuracy”, see
figure 6.
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2 Fairness and facial recognition

2.1 Facial authentication systems

2.1.1 How authentication works

Digital facial authentication is defined as the comparison of recorded biometric
data with those presented by a person. It is a ”one-to-one matching” system: a
human face must be recognized as that of a given portrait. Its output is binary: if
the output is ”yes”, the system validates the authentication, otherwise, it refuses it.
The most common examples are face recognition systems to unlock a smartphone,
enter a public or private place or crossing the border between two countries. In
the research community, it can also be called ”biometric verification” or ”identity
match”.

A related but different process is identification consisting in a ”one-to-many”
facial recognition process where, for example, a person whose face appear on a
photograph must be recognized in a crowd. In this work, we focus on authentication
only but identification is also an important process raising complex ethical issues.

For authentication, the decision is based on a scoring function (or similarity
measure) s assessing the closeness between two face embeddings6 zi and zj . A
decision threshold τ is chosen to classify the pair as genuine (same identity) if
s(zi, zj) < τ or impostor (distinct identities) if s(zi, zj) ≥ τ7.

FMR and FNMR in the case of facial authentication correspond to respectively
the False Positive and False Negative Rate used for binary classification tasks:

FMR =
#{(zi, zj) ∈ I|s(zi, zj) < τ}

#{(zi, zj) ∈ I}

FNMR =
#{(zi, zj) ∈ G|s(zi, zj) ≥ τ}

#{(zi, zj) ∈ G}

(1)

where G is the set of genuine pairs and I the set of impostor pairs in a given test
set. It should be noted that these rates are called respectively False Acceptance
Rate (FAR) and False Rejection Rate (FRR) in some studies.

The choice of the threshold τ is crucial because it strongly affects the accuracy
and error rates of the system. Indeed, a high threshold would increase the number
of matches, but generate more false matches. On the contrary, a too low threshold
would prevent some people to be correctly identified. The value of the threshold
should thus depend on the use case. As such, some industrial stakeholders choose
to let their clients decide on the threshold according to their needs. It is the case for

6In a neural network for automated facial recognition, the image of the face is represented at
the input by a tensor with the values of each pixel. As the image passes through the network,
mathematical processes change its shape. At the output, the image is represented by a vector of
dimension n, modelling the image in a n-dimensional space. This vector is called the face embedding.

7Note that here, the higher the scoring function s, the less similar the images. This is not always
the case in the literature.
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instance of facial recognition systems used by police departments that can usually
choose this parameter in a range of figures recommended by the provider. While
looking for different suspects in a criminal investigation, a high threshold would
permit not to miss anyone, but if the system is used to send someone to prison
for instance, a lower threshold might help avoid sentencing an innocent person.
Without any specific instructions, developers usually try to choose a compromise
between FMR and FNMR.

2.1.2 How to train a neural network for facial authentication

Nearly all facial recognition systems use deep neural networks. State-of-the-art
networks for image data are called convolutional neural networks (CNNs)8. For
facial recognition systems, CNNs are used jointly with specific training methods.
The two main families of models are siamese networks and triplet loss (Wang &
Deng, 2021). Nevertheless, this field of research is constantly evolving and architec-
tures are regularly developed and deserve to be tested. Yet, the triplet loss method
remains a quite recent approach and is commonly studied in the literature.

To train a triplet loss model (Schroff et al., 2015), triplets of face images are
formed with an anchor image (A), a positive image (P) of the same person, and a
negative image (N) of a different person. The loss of the triplet, through the network
(f), with an α margin, is given by the function:

L : (A,P,N) → L(A,P,N) = max(d(f(A)− f(P ))− d(f(A)− f(N)) + α, 0) (2)

with (A,P ) ∈ G and (A,N) ∈ I, and d the distance between two embeddings.
It should be noted that d is a norm function9 that can be similar or differ-

ent from the s scoring function. Many formula of losses exist and are constantly
tested (Wang & Deng, 2021). Among others, the euclidean-distance-based loss, the
angular/cosine-margin-based loss or the softmax loss are the most common.

After the loss is computed, the network weights are updated for the distance
between A and P to be smaller than the distance between A and N. Thus, the
neural network learns to distinguish different clusters representing individuals in
a n-dimensional space - with n the output dimension of the network and also the
dimension of the embedding vectors.

8A CNN is a deep neural network especially used when the input is an image. It is made of
an alternation of convolutional and pooling layers. For more information on how CNNs work,
see the Stanford course CS231n convolutional neural networks for visual recognition at https:

//cs231n.github.io/convolutional-networks/
9For the mathematical definition of a norm, see https://en-academic.com/dic.nsf/enwiki/

496296
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2.2 The need for fairness

Automated facial recognition has been strongly criticized for reinforcing overall
racial discrimination in a society contaminated by racism and racial prejudice (Bac-
chini & Lorusso, 2019).

In computer vision, and especially in face recognition, fairness plays an impor-
tant role as the data used by the algorithm is strongly dependent on protected
attributes10 such as gender or skin color. The first outrage in this field dates back
to a video that went viral on the internet, where a black man was not recognized by
a face detection camera (CNN, 2009). Since then, many researchers have found that
facial recognition algorithms had disparities in prediction exactness when consider-
ing different demographics (Phillips et al., 2011; O’Toole et al., 2012; Klare et al.,
2012; Cook et al., 2019; Howard et al., 2019; Krishnapriya et al., 2020; Cavazos et al.,
2020). This phenomenon, sometimes called ”the other race effect” (Phillips et al.,
2011), was found in different types of algorithms, from older generation systems to
new convolutional neural networks systems. Despite these warnings, biased systems
were still developed, until MIT researcher Joy Buolamwini and MSR researcher
Timnit Gebru, discovered that face analysis systems from big tech companies were
misclassifying dark-skinned women much more often than their light-skinned male
counterparts (Buolamwini & Gebru, 2018). This was then confirmed by the NIST11

that conducted a study to quantify the exactness of face recognition algorithms for
demographic groups defined by sex, age, and race or country of birth and found
significant discrepancies (Grother et al., 2019).

Other companies have experienced similar fairness issues in computer vision
applications. For instance, when two people of different skin colors were present in
the same picture, the Twitter cropping algorithm would keep the white person more
often12 (Yee et al., 2021). Instagram filters that were supposed to embellish faces
were also criticized for whitening the skin of their users (Jerkins, 2015). Google
had to apologize for their photo service that was classifying photos of black people
with the label ”gorillas” (Simonite, 2018). More recently, Robert Williams, an Afro-
American man was arrested at his house by the police after being recognized by a
surveillance camera equipped with a face recognition software. Not only the man
on the footage was seemingly not him, but he still had to struggle to prove it (Hill,
2020b). Despite being the most controversial mistake of that kind, it is far from
being the only one (Anderson, 2020; Hill, 2020a).

These issues led many big tech companies such as IBM, Amazon and Microsoft

10Protected attributes are features that should not be used by the model for decisions. They are
often features protected by law, such as skin color, gender, sexual orientation, religion, disability,
and so on.

11The National Institute of Standards and Technology is a US organization, in charge of mea-
surements across different technologies. See their website: https://www.nist.gov/

12This problem was first discovered by a Twitter user: https://twitter.com/bascule/status/
1308147385202167808 and then investigated further in a research paper (Yee et al., 2021).
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to announce they were renouncing, for some time, to facial recognition software13 in
particular when used for facial identification. Some other companies, like IDEMIA
in France, proudly advertise on their fairness test results (IDEMIA, 2021). Nonethe-
less, fairness should not be reduced to a false positive and false negative table, nor
can biases be reduced to a data issue.

Some have argued that it is a historical issue, deep-rooted in society and linked to
diversity issues (Leslie, 2020). Fairness issues in facial recognition can be compared
with the one of the Shirley card for color films in the 40s that famously advantaged
white people on photographs. The problem was not fixed until the 70s, when adver-
tisers realized the rendering was horrendous for chocolate and wood, reflecting the
priorities of the time (Roth, 2009; Caswell, 2015).

2.3 Defining fairness

To design a facial authentication system taking fairness into account, one need
to overcome a definition problem: what is a ”fair” system? To begin with, each
scientific discipline has its own way of defining fairness and one can look at it from a
philosophical, legal or mathematical perspective and get diverse definitions (Mulli-
gan et al., 2019). The common meaning of fairness is ”the quality of treating people
equally or in a way that is right or reasonable”14. From a legal standpoint, fair-
ness is strongly linked to non-discrimination, a principle enshrined in several texts
on human rights. Even within one discipline, several visions of what fairness is
can coexist. In machine learning, fairness can be considered as equal treatment for
different demographic groups (group fairness) or equal treatment for similar indi-
viduals (individual fairness) (Narayanan, 2019). Moreover, there are several ways of
considering that an algorithm meets group fairness. The first one is not training the
system on the variables that lead to discrimination (like gender or skin color), but
even then, discrimination can persist due to correlated variables (Corbett-Davies
& Goel, 2018). The second, and undoubtedly the most common one, is to achieve
the same prediction exactness on each subgroups, which ensures that the results
and risks of errors are independent of the given subgroups (Corbett-Davies & Goel,
2018).

A counterfactual definition of fairness could also be considered, where the results
should not change if the same individual is taken but with one attribute change,
like their gender or skin color (Kusner et al., 2017). Such a definition can be easily
applied on tabular data but it is much more difficult in the case of facial recognition.
One way would be to use Generative Adversarial Networks (GANs). GANs are
used to create synthetic data from scratch but they can also be used to transfer
characteristics from one image to another, for instance capturing the stripes in an

13”In his letter Monday to members of Congress, CEO Arvind Krishna cited the potential for
police to use the technology to violate ”basic human rights and freedoms” in its decision to end all
research, development and production” (Denham, 2020).

14https://dictionary.cambridge.org/dictionary/english/fairness
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image of a zebra and pasting them on an image of a horse (Zhu et al., 2017). For
facial recognition, it can be used to change the apparent gender or skin color of a
person (Dash et al., 2022). Yet, GANs are still very complex to process and even
more challenging to evaluate.

2.4 Measuring fairness

Several metrics have been developed to try and measure fairness across groups:
some authors have identified more than twenty of them (Verma & Rubin, 2018;
Narayanan, 2019). They have a broad range of application and are used in vari-
ous statistical studies, far beyond facial recognition. They broadly fall into three
major categories: Independence, Separation, and Sufficiency (Barocas et al., 2021).
Independence requires the acceptance rate to be the same in all groups, separation
requires that all groups experience the same false negative rate and the same false
positive rate, and sufficiency requires a parity of positive/negative predictive values
across all groups.

One of the most famous group fairness metric is called statistical parity, de-
mographic parity, or disparate impact (Barocas et al., 2021; Narayanan, 2019). A
perfectly fair system under this metric should satisfy the following conditions on
probabilities:

P (Y = 1|Di) = P (Y = 1|Dj),∀i ̸= j (3)

with Y the output of the system and D the demographic group. In the case of
authentication, Y = 1 would mean that the authentication is successful.

A model is considered to be biased if significant differences can be observed for
different demographic groups of individuals (Drozdowski et al., 2020). This results
in a strong gap in the measures between two groups that pushes the probabilities
further apart. The extent of a bias is then defined as:

|P (Y = 1|Di)− P (Y = 1|Dj)|, ∀i ̸= j (4)

These metrics, although widely used, do not account for the contextual dimen-
sion of fairness (Selbst et al., 2019; Wachter et al., 2021a; Cheng et al., 2021) and
are not always sufficient to guarantee non-discrimination before the law (Wachter
et al., 2021b). Additionally, different definitions of fairness may not be satisfied
simultaneously as they are mutually incompatible (Kleinberg et al., 2016; Friedler
et al., 2016; Zhao & Gordon, 2019). In the end, developers have to choose one met-
ric, or a set of metrics, adapted to their use case. Anahideh, Nezami, and Asudeh
(2021) even proposes to help selecting the appropriate fairness notion by detect-
ing correlations between different fairness metrics to reduce the size of this set of
metrics. But selecting the right set is a highly sensitive issue, because a wrongly
chosen metric could prevent biases detection and lead to rationalization (Aivodji
et al., 2019; Weinberg, 2022).
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Moreover, when the machine learning community talks about ”fairness metrics”,
they mean it in the restricted sense of a bias measure. A bias is often used to refer
to demographic disparities in algorithmic systems, as it is the case in this paper.
Note that a statistical bias in the larger sense is a systematic error, meaning that an
estimator is biased if its expected or average value differs from the true value that
it aims to estimate (Barocas et al., 2021).

Even if these general fairness metrics can still be used on biometrics applications
such as automated facial recognition, their independence from the context makes
them less relevant, especially because they are not designed to deal with ”multiple
failures”, where different users are affected in different ways (Howard et al., 2022).
They often deal with the impact of False Match Rate (FMR) and False Non-Match
Rate (FNMR) separately (Pereira & Marcel, 2022), hence the trade-off between the
two is not taken into account. The biometrics community has then proposed new
metrics, specifically adapted to authentication.

Most methods to measure fairness in biometrics fall into two categories: dif-
ferential performance, considering the difference in distributions between specific
demographic groups, or differential outcome, considering the difference in FMR or
FNMR (Howard et al., 2019). Differential outcome can be seen as of way of achieving
statistical parity15 between groups.

The first metric developed specifically for biometrics is the Fairness Discrepancy
Rate (FDR), that calculates the maximum difference in FMR and FNMR between
two demographic groups (Pereira & Marcel, 2022). This measure can be integrated
to see if FDR is stable across all thresholds. The Area Under FDR can be used as
a new metric, closer to 1 when the system is considered more ”fair”. The second
metric, the Inequity Rate (IR) (Grother, 2021) uses the ratio between maximum
and minimum FMR and FNMR. Finally the Gini Aggregation Rate for Biometric
Equitability (GARBE) (Howard et al., 2022) uses the Gini coefficient16 instead of
the max difference. Variants of these metrics exist, where the ratio is normalized by
the mean, or relative to a nominal error rate (Duewer, 2022). Weights can also be
applied to the different demographic groups (Duewer, 2022).

But these metrics, despite being better suited for facial recognition, require
several non-trivial properties of the data (Howard et al., 2022). To reach their
higher potential, several algorithms with the same threshold should be compared on
different demographic groups. Only the NIST has the capacities to gather so much
data.

Other methods consist in the statistical study of error rates through a bootstrapped-
based hypothesis test (Schuckers et al., 2022), ROC curve17 analysis (Gong et al.,

15See Section 2.4
16The Gini coefficient is a measure of statistical dispersion often used as a measure of inequality

in economics or decision theory.
17The Receiver Operating Characteristic (ROC) curve is used to illustrate the predictive capacity

of a binary classifier by plotting the true positive rate against the false positive rate at various
threshold settings.
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2020), or the separation difficulty of different demographic groups (Kotwal & Marcel,
2022).

2.5 Mitigating biases and coding fairness

As seen in Section 2.3, when the machine learning community talks about en-
suring fairness in their systems, they usually think about reducing biases. There
are various forms of biases (Suresh & Guttag, 2021; Mehrabi et al., 2021; Danks
& London, 2017) and they can of course emerge in the data through generation,
sampling or measurement, but they can also be embedded in the model and its
implementation and appear during the learning process, the evaluation or the de-
ployment (Suresh & Guttag, 2021). Bias reduction has been central to the research
initiatives about fairness in machine learning.

Once a bias is noticed in a system, mitigation techniques to correct it can be
implemented. There are often classified into three categories (Friedler et al., 2019).
Pre-processing methods consist in fixing the imbalances before training the model
(e.g. reweighting the data), in-processing ones fix them during training (e.g. adver-
sarial debiasing) and post-processing methods fix them after training by changing
the outputs (e.g. the equalized odds algorithm). But these categories can be even
more refined (Caton & Haas, 2020). Benchmarks of the said techniques have been
realized by other researchers to help a developer choose the most appropriate one
for their use case (Friedler et al., 2019).

Yet, model-related biases are often concealed and are dismissed by considering
that the quality of the system is strictly restricted to the quality of the data used
for it. Because of this belief that unbalanced data alone is responsible for biases,
the research community in facial recognition has focused on creating demographi-
cally balanced datasets (Hupont & Fernández, 2019; Buolamwini & Gebru, 2018).
However, they are rarely used by software companies in practice, but can be useful
for academic research. Which dataset to choose is a critical question that should be
justified by a thorough evaluation benchmark (Raji & Fried, 2021).

Moreover, facial recognition differs from general machine learning as it is a spatial
problem: for the system to work correctly on each subgroup of the population, they
should be evenly distributed in the latent space18. Researchers are now working on
more advanced methods to reach higher scores on the NIST benchmark (Despiegel,
2021) as the improvements due to working only on data have reached a plateau.
Recent techniques notably focus on using different loss functions to separate clus-
ters of demographic groups (Conti et al., 2022). Efforts to mitigate biases have
also focused on training different systems for each demographics, adapting training
parameters (Wang et al., 2022) or changing the network completely for different
groups (Vera-Rodriguez et al., 2019).

18The latent space, or embedding space, is a representation of data in which similar data points
are close together.

10



The question of whether biases are mainly due to data or if other technical
parameters also play a role has not been yet concretely answered by researchers.
For facial recognition applications, some works have recently started to tackle the
issue: Michalsky (2019) studies the evolution of fairness metrics when changing
the test/train split and Atzori et al. (2022) does the same for the authentication
threshold. The impact of the architecture of neural networks is also questioned:
Krishnan et al. (2020) focuses on the discrepancies in prediction exactness of gender
classification systems while Sukthanker et al. (2022) compares rank disparity for
different well-known architectures of neural networks.

Sukthanker et al. (2022) may be the closest to our work in that it also reviews the
impact of various hyperparameters: the architecture head type, the optimizer type
and the learning rate. Out of this list, only the architecture and learning rate are
also addressed in our work. But Sukthanker et al. (2022) does not investigate slight
changes in the architecture but rather compares very different networks. Similarly,
its study on the learning rate does not include modifications of the scheduler.

In the end, these studies usually investigate the impact of a single parameter, not
giving a whole overview of the quantitative impact of design and parameters choices.
Furthermore, they only consider the impact on fairness metrics, rarely addressing
the trade-offs with efficiency. This work aims to contribute to filling this gap, by
answering the question of what exactly impacts fairness in the code.

3 Investigated face authentication system and parame-
ters

3.1 General approach

Let us consider a machine learning model for facial authentication. The code
used for this system is available19 and a full report20 can be found in the same
repository.

We consider the choices that a developer makes when coding such a system,
evaluate their impacts on the global fairness of the model and highlight the trade-offs
with efficiency. To do so, a model called BaseModel is built with the parameters that
yield the best efficiency21, as it is usually the case in machine learning development.
Then, some of the technical choices that have been made during the development
of the model are investigated further. Starting from BaseModel, alternative models
with some changes are considered. Fairness is then measured on each of these
models as well as alternative efficiency measures. We conclude by giving leads on
which choice is the best for fairness and for efficiency.

19https://github.com/mgornet/CNPEN
20In French
21efficiency metrics are described in Section 3.4
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Figure 1: Logistic regression classifier and its intercept

3.2 The system

The system is a CNN, trained by triplet loss for facial authentication (Schroff
et al., 2015)22. The detailed architecture of the network is given in Appendix A.

For the triplet loss function, an euclidean-distance-based is used, mainly because
of its simplicity. The loss formula of equation 2 becomes:

L : (A,P,N) → L(A,P,N) = max(∥f(A)− f(P )∥2 − ∥f(A)− f(N)∥2 + α, 0) (5)

with the same notations as in Section 2.1.2 where distance d corresponds to the
squared euclidean norm: d = ∥.∥2.

To score the similarity between two face embeddings when the authentication is
realized23, the squared euclidean norm is also used: s = d = ∥.∥2.

To determine the authentication threshold, a logistic regression method is trained
to find the optimal cut-off value automatically24. The intercept is taken as the
threshold for the system (see figure 1).

The database used for this work is called Labelled Faces in theWild (LFW) (Huang
et al., 2007). It contains images of famous people, taken in an everyday environment
and not having specially posed for the occasion. The database and corresponding
paper can be found on the authors’ website25. The database is known to be un-
balanced26 but we have kept it in particular to see whether relevant choices of

22See Section 2.1.2 to learn how this type of model is generally trained.
23See Section 2.1.1
24A logistic regression method is a classifier, looking for correlations between variables y and

X, with y the dependent variable (here it is binary and corresponds to the match or non-match
classification), and X the independent variables, which in our case boils down to a single variable:
the opposite of the distance between two images. The binary variable y is then transformed into a
probability. Finally, logistic regression looks for the maximum likelihood, i.e. finds the minimum
point of difference between what the classifier predicts and the reality. This search for the minimum
is carried out by gradient descent. The intercept corresponds to the maximum likelihood.

25http://vis-www.cs.umass.edu/lfw/
26The LWF dataset is estimated to be 77.5% male and 83.5% white (Han & Jain, 2014)
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parameters could mitigate this issue.
To measure fairness, as laid out in Section 2.4, data needs to be separated in

different groups of people, based on protected attributes. For these attributes, the
labels provided with the dataset are kept. These labels were computed automati-
cally as described in the authors’ paper (Kumar et al., 2009). The results are thus
approximated. For instance, a visual check shows that some labels do not always
correspond to the image: for instance many male-presenting individuals remain in
the non-male category, possibly affecting the prediction exactness of the training
phase.

The choice of which demographic groups to compare is dependent on which labels
are provided. In LFW, they include, for ethnicities27: ”white”, ”black”, ”asian”,
”indian”, ”none”. We have kept the first two categories to refer to white and dark
skins. LFW also includes for gender: ”male” and ”non-male”28.

Three sets of analyses are carried out as followed: (i) gender: male vs female; (ii)
skin color: white vs non-white vs black; (iii) intersectional: white male vs non-white
female vs black female.

Here the non-white group includes the three other categories so called in the
dataset: black, asian, indian. These categories are not separated in order to get
enough data for statistical analysis.

3.3 Investigated parameters

The parameters choices that we have investigated are the following ones:

1. Data processing

(a) Data sampling

(b) Data normalization

(c) Data augmentation

2. Neural network

(a) Depth of the network

3. Training

(a) Margin for the loss function

27Note that some countries prohibit ethnicity statistics. In France, Decision Nr. 2007-557 DC
of 15 November 2007 of the Constitutional Council prohibits the implementation of processing
operations necessary for the conduct of studies on the measurement of diversity. These processes
are deemed contrary to the first article of the French Constitution that states the ”equality before
the law of all citizens without distinction of origin, race or religion”.

28In this work, ”non male” is considered as an equivalent to female. Even if that is not necessary
true, the label was intended this way: male if the variable ”male” is equal to one, female if it is
equal to zero.
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(b) Base learning rate and scheduler

4. Evaluation

(a) Distance threshold

3.3.1 Data sampling

For the sampling of BaseModel, epochs are constructed so that every identity29

is represented only once. Because the database is unbalanced, this is a way of forcing
even under-represented identities to show up at least once during the training. An
alternative method is to use random sampling, that is to say, to pick two images
of the same identity at random a certain number of times. But as there are more
white men in the database, random sampling will most likely pick them more often
than not. This alternative is explored further in RandomSampling.

3.3.2 Data normalization

Regarding normalization, the model would train more easily if the value of the
pixel were in [0,255]30: we have kept these values for BaseModel. Yet, a common
practice is to normalize the data in [0,1]: this possibility is explored in Normalized.

3.3.3 Data augmentation

Various data augmentations are also tested. BaseModel consists of an 50%
chance random horizontal flip, an up to 20% zoom with an up to 0.5% deformation
at a probability of 90%, an up to 10% random color jitters with a probability of
70% and an up to 5 degrees random rotation.

For the derivative models, one is computed with no augmentation at all: NoAugment.
Other derivative models consist in different transformations: HighJitter has double
the color jitters percentage and rate of occurrence of BaseModel, HighDeformation
doubles the deformation, HighRotation doubles the rotation and HighZoom has a
zoom of 10 to 30%.

Intuitively, data augmentation should have an impact on fairness as strong data
augmentation could destroy some identities, making the faces unrecognizable. For
instance, darkening a picture could worsen the image quality of a black person, while
a higher brightness could have the same effect for white person.

29An identity is understood here as a representation of a specific person. Each person is repre-
sented in the database by one or several facial images. At each epoch, one of these images is drawn
randomly for each person.

30The numerical representation of an image is usually a tensor of size l*h*c, with l and h being
the dimensions of the image in pixels and c the number of channels. In LFW database, the number
of channels is 3 for the red, green and blue channels, and the images where preprocessed to get
a 60*60 size. Each pixel in this tensor is an integer representing the intensity of the color at the
specific location. Initially in the database, these values span from 0 to 255 but other databases
normalize them to [0,1] or [-1,1] depending on the intended use.
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3.3.4 Depth of the network

An analysis of choices that are not directly linked to the data but rather to the
model itself are also included. Instead of comparing various well-known architec-
tures, a simple CNN is used. Derivative models are computed with different sizes
for the hidden layers, to measure the impact of the depth of the network. In the
end, when the input goes through all of the layers, the length of the base channel
is multiplied by 16, meaning that for a base channel of 32, as in BaseModel, the
embedding will have a length of 512. This architecture provides a sufficient depth to
fully learn on the data without being too complex and time consuming during train-
ing. Two alternative models have been computed for base channels of 16 (Depth16)
and 64 (Depth64).

3.3.5 Margin for the loss function

Fairness constraints are not added to the training, but instead, common training
parameters are studied. The first parameter is the margin for the loss function. For
BaseModel, the 0.2 value given by the initial paper (Schroff et al., 2015) is kept. The
fairness of the model is then studied for derivative models with a lower or higher
margin: 0.1 in Margin01, 0.5 in Margin05 and 1. in Margin1.

3.3.6 Learning rate and scheduler

The second training parameter investigated is the learning rate and its step
scheduler. BaseModel network trains with a base learning rate of 0.0005 until epoch
200 and then each 100 epochs, this base value is divided by two.

BaseModel is compared with Lr10-3 trained with a base learning rate of 0.001,
Lr10-4 trained with a base of 0.0001, Scheduler300 that keeps the base rate but
starts to divide by two at the 300th epoch and Scheduler100 that starts to divide
at the 100th.

3.3.7 Distance threshold

Finally, the choice of the distance threshold, which determines who gets rejected
or accepted, is investigated. The accuracy as a function of the threshold can be
computed and it can be verified that the logistic regression finds the threshold cor-
responding to the maximum of accuracy. In Figure 2, a maximum of accuracy of
86% is reached for a threshold of 0.81: it is the value used for BaseModel. But if we
only want to maintain a certain level of accuracy, like 95% of the maximum value,
very different thresholds can be used. An accuracy of 82%, i.e. 95% of the maximum
accuracy, is reached for a threshold of 0.48 or a threshold of 1.15. These two alterna-
tives are tested in two models respectively called LowThreshold and HighThreshold.
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Figure 2: Model accuracy as a function of the distance threshold

Investigated
choice

List of models

Data sampling BaseModel; RandomSampling
Data normaliza-
tion

BaseModel; Normalized

Data augmenta-
tion

BaseModel; NoAugment; HighJitter; HighDeformation;
HighRotation; HighZoom

Depth of the
network

BaseModel; Depth16; Depth64

Margin BaseModel; Margin01; Margin05; Margin1
Learning rate BaseModel; Lr10-3; Lr10-4; Scheduler300; Scheduler100
Threshold BaseModel; LowThreshold; HighThreshold

Figure 3: Table of the different models ordered by investigated choices

All derivative models and their respective coding choices are summarized in
Table 3.

3.4 Metrics

To quantify the impact of the choices, measures of efficiency and fairness need
to be defined.

3.4.1 Choosing BaseModel parameters and comparing models on effi-
ciency

The model selection is based on the final validation loss. The best model ac-
cording to this criterion is the one that, at the end of the training phase, gets the
lowest validation function value. In industrial settings, other metrics can be used
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for this measure of efficiency such as accuracy or the time taken by the model to
train. What metric to use is in the end a policy choice made by the developer or
the company itself. Appendix C shows the evolution of the validation loss during
training for BaseModel and for derivative models.

Once the BaseModel parameters are selected on this validation loss metrics, all
the different models are also tested on various efficiency metrics: accuracy, FMR,
FNMR, and a new coined metric, the Triplet Learned Rate (TLR). These results are
shown in Appendix B. Note that this is a study on the overall dataset, the results
on different subgroups are considered as part of the fairness study.

To define the accuracy, FMR and FNMR, we first define the True Matches (TM),
True Non Matches (TNM), False Matches (FM) and False Non Matches (FNM) as
followed:

TM = #{(zi, zj) ∈ G|s(zi, zj) < τ}
TNM = #{(zi, zj) ∈ I|s(zi, zj) ≥ τ}
FM = #{(zi, zj) ∈ I|s(zi, zj) < τ}

FNM = #{(zi, zj) ∈ G|s(zi, zj) ≥ τ}

(6)

with the same notations as Section 2.4. These metrics correspond respectively to
the True Positives, True Negatives, False Positives and False Negatives in binary
classification tasks. The FMR and FNMR of equation 1 can then be redefined as:

FMR =
FM

FM + TNM

FNMR =
FNM

FNM + TM

(7)

Moreover, the accuracy is defined as:

accuracy =
TM + TNM

TM + TNM + FM + FNM
(8)

Note that other metrics that measure prediction exactness could be investigated,
like the precision, recall or f1-score31 but the information they contain is redundant
with the accuracy, FMR and FNM.

Finally, we define the TLR, a new metric specific to the use case of this work.
The TLR counts the ratio of triplets for which the distance between the anchor
and positive images is shorter than the distance between the anchor and negative
images. This allows to approximate how well the system has learned:

TLR =
#{(A,P,N)|s(A,P ) < s(A,N)}

#{(A,P,N)}
(9)

31precision = TM
TM+FM

, recall = TM
TM+FNM

, f1− score = 2∗precision∗recall
precision+recall
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3.4.2 Comparing models on fairness

To measure fairness, the chosen definition is similar to that of group fairness and
equalized odds in statistics, also called ”differential outcome” in biometrics32, i.e.
to have the same probability of being accepted or rejected whatever the group of
the person is. As proxies for this probability, several metrics are used and should
yield the same results for any group if fairness is respected.

We use for these metrics the same as the ones used to assess efficiency: accuracy,
FMR, FNMR and TLR. Yet, this time, they are considered on subgroups of the
dataset.

Fairness is respected when the metrics are equal for any group:

accuracyDi = accuracyDj ,∀i ̸= j

FMRDi = FMRDj ,∀i ̸= j

FNMRDi = FNMRDj ,∀i ̸= j

TLRDi = TLRDj ,∀i ̸= j

(10)

Yet, this condition is almost impossible to reach. Instead of defining an arbitrary
ϵ that would act as a maximum difference between groups, a 90% confidence interval
for each metrics is computed thanks to a bootstrap33 on the test set.

A high prediction exactness within a group is then characterized by a confidence
interval that will be small and close to 1 for accuracy and TLR, and close to 0 for
FMR and FNMR. A high fairness will be characterized by small confidence intervals
that overlap between groups or for which mean values are close. The discrepancy
between two groups is considered significant, and thus there is a bias in the model,
if the confidence intervals do not overlap.

4 Results

4.1 Analysis of BaseModel

4.1.1 Efficiency

BaseModel’s overall efficiency can be found in Appendix B. It was inherently
built to yield the best possible results in terms of validation loss. Other metrics of
efficiency can be verified such as accuracy, error rates, TLR or the time the model
has taken to train. The mean accuracy is high enough to say that the system works
well; without being at the state-of-the-art, it is sufficient for the statistical analy-
sis. Moreover, FMR and FNMR are quite balanced (0.157 and 0.100 respectively).

32See Section 2.4
33Bootstrapping is a common method in machine learning and statistics which consists in using

a collection of random samples from a population to infer results on this population.
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TLR = 0.93 signifies that for 93% of the triplets in the test data, the distance be-
tween the anchor and positive is indeed lower than the distance between the anchor
and negative; therefore the training went well and the system is able to generalize.

4.1.2 Fairness

Regarding fairness, as expected, the system displays some biases. But accuracy
is not as expected: for instance, the mean accuracy is significantly better for females
than for males, and it is slightly better for white people than for non-white or black
people. This result is even more exacerbated for the intersectional study.

This is mostly due to the fact that accuracy is a poorly chosen metric for this
problem and that FMR and FNMR metrics need to be investigated. For exam-
ple, for women or black people, FMR is extremely high but this is offset by a very
low FNMR, which results in a high accuracy overall. This high FNMR for minor-
ity groups34 is perhaps the most problematic bias in the system. The rest of our
parameters analysis will thus focus on this metric.

As for TLR, it is significantly better for the male, white and white male groups
with respect to the female, non-white and non-white female groups, showing that
the learning process is, as expected, more efficient for over-represented groups in the
database.

Moreover, some subgroups are too small to compute statistical results. This is
the case for the FNMR of black females. Similarly, the confidence interval for the
TLR is often quite large for black people and for black female as the bootstrap
captures too little data.

4.2 Impact of parameters choices on fairness and efficiency

The complete quantified results for each parameter choice can be found in Ap-
pendix B for efficiency and Appendix C for fairness. Additionally, Figure 4 displays
the FNMR confidence intervals of different groups for BaseModel and one alternative
model for each parameter choice. Figure 5 displays the mean differences between
majority groups, respectively Male, White and White Male, and minority groups,
respectively Female, Non-White and Non-White Female, for these models.

4.2.1 Data sampling

The gender analysis reveals that interval gaps between minority and majority
groups stay significant for both BaseModel and RandomSampling: biases are present
for the same metrics. On the other hand, RandomSampling introduces a bias on

34Here we use the term ”minority” as there is less data for those groups. Another definition
can be that minority groups are the ones that usually experience discrimination. Here those two
definitions coincide for the following groups: ”female” (as opposed to ”male”), ”non-white” and
”black” (as opposed to ”white”), ”non-white female” and ”black female” (as opposed to ”white
male”).
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accuracy in the skin color analysis but to the benefit of minority groups: accuracy
is significantly better for non-white than for white people. Yet, because accuracy is
a poorly chosen metric, this bias is not of great importance if it is not followed by
changes in the FMR or FNMR metrics. The intersectional study reveals that the
bias on FNMR was corrected with RandomSampling. Looking at Figure 5, even if
the biases were not corrected in the gender study and in the skin color study, the
intervals between means of majority and minority groups are reduced, showing that
the system is less biased.

In terms of efficiency, RandomSampling has a significantly higher accuracy and
TLR for the male and white groups, as well as a lower FMR. For the white male
group, only FMR is improved. But this gain in efficiency is not restricted to majority
groups. For the female group, all four metrics seems to be slightly better than
for BaseModel. This phenomenon is also present in the skin color analysis where
RandomSampling yields better results in accuracy and FMR than BaseModel for the
non-white group. For the intersectional study, the accuracy, FMR and FNMR are
better for the non-white female group.

A non-random sampling was chosen during model selection35 for its lower vali-
dation loss, but in terms of prediction exactness metrics, RandomSampling seems to
surpass BaseModel. This might be due to the fact that random sampling allows for
more variate pictures to show. On the contrary, BaseModel, by forcing the sampling
of all identities, yields at every epoch the same picture for some identities that are un-
derrepresented in the dataset, causing overfitting. Yet, RandomSampling has a much
higher training time, which could also undermine being chosen in an industrial set-
ting. If, according to the efficiency metrics, both BaseModel and RandomSampling

could be elected best efficient model, the best model for fairness is undoubtedly
RandomSampling, suppressing a key bias and improving the average efficiency of
minority groups.

4.2.2 Data normalization

Normalization does not seem to have a huge impact on fairness as there is neither
biases created nor avoided with Normalized. Figure 5 shows that the gap between
means is even greater for Normalized.

Moreover, the efficiency measures are worse for Normalized, especially for ma-
jority groups. For minority groups, the drop in efficiency is not as significant as
confidence intervals overlap, as seen on Figure 4 for instance, but metrics are still
slighly worse.

It is not far fetched to say that BaseModel is the best regarding efficiency. Re-
garding fairness, the two models are not that different, but at least regarding FNMR,
BaseModel seems less biased.

35See Section 3.3 to understand BaseModel sampling
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4.2.3 Data augmentation

For the most part, the models tested here display the same biases as BaseModel,
with a few notable exceptions: HighDeformation removes the bias on accuracy for
the gender study, HighZoom creates a bias in accuracy for the skin color one, and
NoAugment removes the bias on TLR for the intersectionary study. Consequently,
the latter is the most valuable change as it affects another metric than accuracy.
Yet, Figure 5 reveals that the gaps in FNMR are larger for NoAugment than for
BaseModel.

NoAugment has lower efficiency for the three analyses. And once again, the
minority groups are somewhat affected by this decrease in efficiency, particularly
they have a lower accuracy and higher FNMR, but the most affected are the majority
groups that suffer from retrogression on every metrics.

If BaseModel is, here, the best for efficiency, each derivative seems to behave
differently. NoAugment gets rid of one bias but at the cost of a greater gap in
FNMR. One could then considered that BaseModel remains the better choice in
this case.

4.2.4 Depth of the network

If Depth16 and BaseModel behave similarly, there is a drop in efficiency for
Depth64. It does not have a concrete impact on biases, except for creating a small
one on accuracy for the skin color analysis. Yet, as for data normalization and
augmentation, it seems to decrease efficiency for the white group, reducing the gap
with the non-white group. But for FNMR in the intersectional study, Depth64

actually reduces the gap between groups, as seen on Figure 5.
There is no direct answer for which model is the fairer. If a fair model is defined

as having the best results possible for minority groups, BaseModel is better. But
if a fair model is the one displaying the smaller gap between groups, as we have
previously stated36, then Depth64 is fairer. Both decisions are legitimate and cause
a dilemma. BaseModel improves the efficiency of everyone overall, even minority
groups which will then experience less wrong algorithmic decisions this way but
to the expense of majority groups experiencing them even less. Depth64 reduces
the gap so that everyone would experience wrong algorithmic decisions but to the
expense of these wrong decisions being even more frequent.

4.2.5 Loss function margin

Regarding the margin choice, the most significant bias suppression is in the
intersectional study on FNMR for Margin1 and Margin05. Margin05 decreases
the efficiency on majority groups for all studies: this does not result in other bias
suppression but helps bridging the gap slightly. For the skin color and intersectional

36See Section 3.4
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studies, the FNMR gap is actually reduced by choosing Margin05 as displayed on
Figure 5.

The best model for efficiency is again BaseModel. But as for the choice of depth,
a derivative model for the choice of margin, such as Margin05, helps reduce the
gaps between groups and can be considered a fairer model. It is in this case closely
followed by Margin1, a more balanced choice if a trade-off were to be made.

4.2.6 Learning rate

A surprising result is that derivative models like Lr10-3, Scheduler100 and
Scheduler300 seem to suppress biases on accuracy for the gender analysis but
Lr10-3, Scheduler100 also create biases on the skin color analysis. The intersec-
tional analysis is more balanced, with some models like Lr10-3 and Scheduler100

suppressing biases, and the other models behaving just as BaseModel. No other
metric than accuracy is affected by these biases changes, making it hard to decide
which one could be the best model. It can be noted that the other efficiency metrics
of some derivative models are often worse than for BaseModel, notably for Lr10-3.
Drops in efficiency can be observed for both majority and minority groups. In the
case of Lr10-3, the gap in FNMR is larger, as seen on Figure 5.

It can be observed that each derivative model deteriorates a efficiency metric
other than accuracy for a minority group in at least one of the studies. It can
be argued that the fairest model is in this case the most efficient, that is to say,
BaseModel.

4.2.7 Authentication threshold

As mentioned in Section 3.3, the choice of threshold, even before realizing a
group study, is already a fairness choice as it directly impacts FMR and FNMR.
Choosing to improve one metric over the other is a decision that should be taken
only after cautious considerations.

This property of the threshold influences the error rates across groups as ex-
pected. But these changes are not homogeneous between groups. If for most groups,
a high threshold means a higher FMR and lower FNMR, the non-white group does
not have a significant improvement of FNMR. Similarly, if a low threshold usually
means a lower FMR and higher FNMR, FMR is not significantly improved for the
female group. We can also note that both error rates are slightly deteriorated for
the black group when we increase or decrease this threshold. This can be an issue
if we consider a system for police forces used to search for possible suspects in a
database. If it is shown that minorities are showing up more often, then a solution
could be to reduce the threshold. Yet, this would likely reduce majority groups
FMR and not minorities FMR. On the contrary, if a facial authentication system
for border crossing was criticized for regularly rejecting people from minority groups
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and customs authorities decided to raise the threshold, it could still result in wrong
rejections for those people while improving the majority error rate.

For this parameter, an adequate answer on the fairest choice is not possible as
it is strongly linked with the context of deployment. In our specific case, we do not
have this context so we can only reason on the empiric results. In BaseModel, the
system has a higher FNMR than FMR for minority groups. Even if, as we have
seen, increasing the threshold will not totally solve this issue for minority groups,
it can still help balancing the results. The results on Figure 5 show that choosing
HighThreshold will not particularly reduce FNMR gaps between groups but it will
drop the mean FNMR for all groups.

4.3 Results summary

We have chosen to analyse four metrics, accuracy, FMR, FNMR and TLR, but
with a focus on FNMR, which can have great impact on individuals. The results
displayed in Figure 4 show that FNMR is clearly higher for minority groups, with a
greater uncertainty as the 90% interval is larger. Some models, like HighThreshold
or RandomSampling yield lower FNMR but to the cost of a higher FMR.

This work shows that under specific conditions, the coding choices that are made
can impact fairness and that data is not solely responsible for the presence of biases
in a model. Indeed, different models have been computed that only differ by one
parameter’s value. These models all yield different results in terms of fairness and
efficiency. For some models, the best model for efficiency is also the best for fairness.
But many times, there is a trade-off with efficiency, or a different interpretation
of the fairest choice to made, depending on your definition of fairness. Even if
system developers decide to make their system the fairest possible, there is not
always a straight answer. The decision to make depends strongly on the context of
deployment and on the values of the developer.

The results of this work need to be recomputed for each system and one cannot
conclude the superiority of some parameter value over another in a general case.
Indeed, neural networks are inherently stochastic, which prevents the generalization
of the results besides the exact experimental conditions. This work can thus be
reproduced if trained on the same network, same seed and same processor37. To
ensure the reproducibility of our work, we provide access to our algorithm for train-
ing and testing facial authentication systems, as well as to the different models that
have been studied in this project38.

Our contribution is to provide a new way of considering the design of machine
learning systems, questioning each and every decisions and showing how this mindset

37The Pytorch documentation reads: ”Completely reproducible results are not guaranteed across
PyTorch releases, individual commits, or different platforms. Furthermore, results may not be re-
producible between CPU and GPU executions, even when using identical seeds.” (https://pytorch.
org/docs/stable/notes/randomness.html)

38https://github.com/mgornet/CNPEN
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Figure 4: FNMR confidence intervals of the different models for different subgroups
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Figure 5: Discrepancy between means in FNMR for each study
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can be applied on a use case. Developers need to experiment by themselves the
effects of design choices on the fairness of their own systems.

The facial authentication system BaseModel is itself a combination of several
design preferences: it is a CNN, trained with triplet loss, more specifically, with an
euclidean-distance-based loss, using the unbalanced LFW dataset and its attributes.
These design preferences have not been investigated further and this work rather
focuses on seven of more technical choices, ranging from data processing to training
parameters and network architecture. Some other technical choices are discussed
in our report39: the loss function, regularization, optimizer, dropout, earlystopping
or the negative sampling. These choices as well as the design preferences could be
investigated in future work.

Another extension of this work could focus on multiple choice analysis. Indeed,
we have stated for instance that RandomSampling and Depth64 were both better for
fairness than BaseModel, but what about a model with both random sampling and
the architecture of Depth64? One could perform a set of tests, in the manner of a
grid search40. But of course, as every model needs to be trained for each combination
of choices, the cost in time and computational energy of comparing all of them is
extremely high.

To counterbalance the performative approach, this work focuses on the value of
fairness, but the impact of technical choices on other values like explainability or
human autonomy could also be investigated in future work.

5 Lessons learned

5.1 Most design choices are not neutral

The main take away of this work might be to reaffirm that design choices are
not neutral and thus, that developers are accountable for each of their decisions.
There is a will to improve fairness in the development phase, yet often datascien-
tists still see it as an additional constraint, the main objective remaining efficiency.
Moreover, they are not always aware of the impact of the design choices they make,
openly advertising for fairness and ethics but blaming the lack of precise regula-
tion. However, this mindset is not sufficient to hold a proper ethical reasoning and
each stakeholders needs to take accountability for their contribution to the system’s
behavior.

5.2 There is no perfectly fair system

If it was already known that fairness mathematical criteria cannot be met all at
once (Kleinberg et al., 2016; Friedler et al., 2016; Zhao & Gordon, 2019), this work

39https://github.com/mgornet/CNPEN/tree/main/tech\%20report
40A grid search is a technique used for optimizing the parameters of a machine learning model

by looking at all the combinations possible.
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additionally shows that different systems can be considered more fair, depending on
what ”fair” means. Different stakeholders might not agree then on which system to
choose.

Some hard choices might include dilemma as whether to decrease the efficiency
of majority groups to bridge the gap with minority groups when improving efficiency
on the latter is too difficult or impossible. Of course a perfect solution would be to
improve the efficiency of the system on minority groups to be as high as for majority
groups, and this should be the main goal of algorithmic fairness research. Yet, we
should be aware that this result is hard to achieve and that in the mean time, one
must choose between several, less perfect solutions.

5.3 Fairness as a dimension of performance

There is no single measure of efficiency, just as there is no single measure of fair-
ness. Some models studied in this work, such as RandomSampling, are not the best
ranking while evaluated on the specific metric of validation loss. Yet, it surpasses
BaseModel when it comes to mean accuracy or error rates.

This phenomenon also exists for fairness as some models can be considered fairer
according to one definition but not to all. For instance, Depth64 is fairer than
BaseModel if fairness is regarded as a discrepancy between groups as it is often
the case. Yet, if fairness is regarded as the reduction of harmful outcomes, then
the fairest model may be the one that performs best for minority groups, indepen-
dently of majority groups and discrepancies between group, leading to preferring
BaseModel.

A possible solution is to consider fairness and efficiency not as antagonistic cri-
teria, but as parts of the same vector of performance that would include various
desirable criteria. Each of these criteria could then be broken down into several
metrics to measure it. For instance, efficiency can include measures of prediction
exactness such as mean accuracy or error rates, measures of how well the model
has learned, like validation loss or TLR, measures of speed such as effective train-
ing time or computational complexity. Fairness includes measures of group fairness
and individual fairness. A more complete vector could also include measures for
every ”ethical principle” that can be found in international texts, with measures of
explainability, transparency, human autonomy, respect for the environment, and so
on. Figure 6 summarizes our view of what a performance vector should be.

5.4 The need to address trade-offs

As this work shows, trade-offs are an important part of designing a system. Yet,
international recommendations about ”the ethics of AI” hardly mention that all
the proposed criteria cannot be met at the same time and that trade-offs are often
necessary.
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Figure 6: Performance vector

There is a need for more work focusing on choices and trade-offs, as well as ethi-
cal thoughts involving all the stakeholders. These initiatives should be set before the
design of machine leaning systems, making the conflicts explicit and guiding the de-
cisions concerning the code implementation as well as the main decision to deploy or
not such digital processes. Engineering ethics issues should be addressed at all stages
of machine learning systems design and implementation. Identifying, analysing and
managing trade-offs are important tasks when designing and implementing digital
systems. This should be made fully explicit and methodological processes as well
as digital tools to facilitate these fundamental tasks are yet missing and should be
considered in the near future.
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Appendix A Model architecture

Figure 7: Architecture of the neural network. Conv(a, b, c, d, e) denotes a convolu-
tional layer with number of input channels a, number of output channels b, kernel
size c x c, stride size d and padding e. MaxPool(a, b) and AvgPool(a, b) denote
a max pooling layer and average pooling layer respectively with kernel size a and
stride b. FC(a, b) denotes a fully connected layer with number of in features a,
number of out features b. bc denotes the base channel parameter, which is set at
32 for BaseModel and 16 and 64 for Depth16 and Depth64 respectively.
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Appendix B Efficiency results

B.1 Validation loss

Figure 9 shows the evolution of the validation loss during training for the different
models used in this work and compiled in Table 3.

After 600 epochs, the validation loss is the lowest for the BaseModel, showing
why it was elected to serve as a basis for the comparison with other models.

The only doubt could be for RandomSampling as figure 9 shows that its vali-
dation loss function decreases much quicker in the early epochs. Yet, it plateaus
immediately. Observations on the training loss show that the model seems to overfit
quite a lot, yet the validation loss is similar after 600 epochs.

Note that for the choice of margin, this measure could not be taken as the scales
of the functions are very different. Yet, it can be observed that the ratio between
the starting and ending values is higher, which means that the model has learned
more for a margin of 0.2. In the original paper, the choice of a 0.2 margin is not
explained (Schroff et al., 2015).

B.2 Other efficiency measures
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Model Final Valida-
tion Loss

Time
to
train

AccuracyFMR FNMR TLR

BaseModel 0.03001 69 min 0.869 0.157 0.100 0.935
RandomSampling 0.03122 345 min 0.879 0.140 0.099 0.951
Normalized 0.06323 81 min 0.830 0.204 0.128 0.907
NoAugment 0.07485 74 min 0.831 0.193 0.142 0.907
HighJitter 0.04562 84 min 0.839 0.190 0.126 0.920
HighDeformation0.04464 89 min 0.847 0.176 0.126 0.926
HighRotation 0.03985 69 min 0848 0.178 0.121 0.927
HighZoom 0.04682 68 min 0.840 0.180 0.133 0.921
Depth16 0.04915 85 min 0.853 0.173 0.115 0.930
Depth64 0.04556 95 min 0.843 0.184 0.126 0.924
Margin01 0.01945 74 min 0.854 0.171 0.117 0.932
Margin05 0.1112 80 min 0.848 0.180 0.119 0.926
Margin1 0.2272 70 min 0.852 0.176 0.114 0.926
Lr10-3 0.04441 71 min 0.842 0.180 0.132 0.918
Lr10-4 0.04515 76 min 0.853 0.173 0.117 0.927
Scheduler300 0.0347 78 min 0.865 0.157 0.111 0.939
Scheduler100 0.03972 80 min 0.855 0.172 0.112 0.933
LowThreshold 0.03001 69 min 0.816 0.081 0.246 0.935
HighThreshold 0.03001 69 min 0.826 0.245 0.049 0.935

Figure 8: Table of the different models with their relative efficiency

Appendix C Fairness results

italic: gap between groups for a specific model to the benefit of minority groups
italic and bold: gap between groups for a specific model to the benefit of major-

ity groups

writing in green: metric improvement from base model
writing in red: metric deterioration from base model

highlighting in green: bias suppression from base model
highlighting in yellow: bias creating from base model to the benefit of minority

groups
highlighting in red: bias creating from base model to the benefit of majority

groups
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C.1 Sampling choice

Sampling Base Random

Male

Accuracy 0.847 (0.841-0.852) 0.867 (0.861-0.872)
TLR 0.889 (0.883-0.896) 0.912 (0.906-0.917)
FMR 0.176 (0.169-0.184) 0.145 (0.138-0.153)
FNMR 0.122 (0.114-0.129) 0.117 (0.109-0.124)

Female

Accuracy 0.894 (0.882-0.906) 0.909 (0.898-0.92)
TLR 0.651 (0.599-0.706) 0.68 (0.624-0.729)
FMR 0.064 (0.054-0.075) 0.054 (0.044-0.063)
FNMR 0.269 (0.231-0.31) 0.221 (0.186-0.257)

Sampling Base Random

White

Accuracy 0.866 (0.86-0.872) 0.878 (0.873-0.884)

TLR 0.886 (0.879-0.892) 0.898 (0.892-0.904)
FMR 0.147 (0.14-0.155) 0.122 (0.115-0.129)
FNMR 0.115 (0.107-0.124) 0.121 (0.113-0.129)

Non-White

Accuracy 0.879 (0.867-0.891) 0.913 (0.901-0.924)

TLR 0.736 (0.693-0.781) 0.731 (0.681-0.778)
FMR 0.082 (0.07-0.093) 0.053 (0.044-0.063)
FNMR 0.222 (0.193-0.252) 0.183 (0.156-0.212)

Black

Accuracy 0.899 (0.869-0.93) 0.873 (0.84-0.903)

TLR 0.5 (0.143-1.0) 0.5 (0.0-1.0)
FMR 0.011 (0.0-0.023) 0.034 (0.019-0.054)
FNMR 0.695 (0.564-0.816) 0.725 (0.605-0.829)
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Sampling Base Random

White Male

Accuracy 0.853 (0.846-0.859) 0.865 (0.858-0.872)
TLR 0.844 (0.835-0.855) 0.858 (0.848-0.868)
FMR 0.156 (0.147-0.164) 0.134 (0.126-0.143)

FNMR 0.131 (0.121-0.142) 0.136 (0.124-0.146)

Non-White Female

Accuracy 0.878 (0.869-0.887) 0.913 (0.906-0.92)
TLR 0.794 (0.772-0.815) 0.807 (0.785-0.829)
FMR 0.096 (0.087-0.105) 0.066 (0.059-0.075)

FNMR 0.173 (0.155-0.19) 0.127 (0.111-0.143)

Black Female

Accuracy 0.962 (0.924-0.987) 0.96 (0.92-0.987)
TLR 0.0 (0.0-1.0) 0.0 (0.0-0.5)
FMR 0.025 (0.0-0.064) 0.041 (0.014-0.083)
FNMR xxx [xxx - xxx] xxx [xxx - xxx]

C.2 Normalization choice

Normalization Base Normalized

Male

Accuracy 0.847 (0.841-0.852) 0.818 (0.812-0.824)
TLR 0.889 (0.883-0.896) 0.861 (0.854-0.868)
FMR 0.176 (0.169-0.184) 0.211 (0.203-0.219)
FNMR 0.122 (0.114-0.129) 0.136 (0.128-0.145)

Female

Accuracy 0.894 (0.882-0.906) 0.865 (0.85-0.878)
TLR 0.651 (0.599-0.706) 0.652 (0.597-0.707)
FMR 0.064 (0.054-0.075) 0.084 (0.073-0.096)
FNMR 0.269 (0.231-0.31) 0.319 (0.281-0.357)
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Normalization Base Normalized

White

Accuracy 0.866 (0.86-0.872) 0.843 (0.837-0.849)
TLR 0.886 (0.879-0.892) 0.862 (0.855-0.868)
FMR 0.147 (0.14-0.155) 0.172 (0.164-0.18)
FNMR 0.115 (0.107-0.124) 0.135 (0.126-0.143)

Non-White

Accuracy 0.879 (0.867-0.891) 0.864 (0.851-0.877)
TLR 0.736 (0.693-0.781) 0.7 (0.645-0.748)
FMR 0.082 (0.07-0.093) 0.083 (0.072-0.095)
FNMR 0.222 (0.193-0.252) 0.277 (0.248-0.312)

Black

Accuracy 0.899 (0.869-0.93) 0.84 (0.803-0.87)
TLR 0.5 (0.143-1.0) 0.5 (0.0-0.881)
FMR 0.011 (0.0-0.023) 0.032 (0.016-0.052)
FNMR 0.695 (0.564-0.816) 0.776 (0.679-0.863)

Normalization Base Normalized

White Male

Accuracy 0.853 (0.846-0.859) 0.835 (0.828-0.842)
TLR 0.844 (0.835-0.855) 0.821 (0.811-0.832)
FMR 0.156 (0.147-0.164) 0.176 (0.167-0.186)
FNMR 0.131 (0.121-0.142) 0.143 (0.131-0.155)

Non-White Female

Accuracy 0.878 (0.869-0.887) 0.865 (0.856-0.873)
TLR 0.794 (0.772-0.815) 0.78 (0.758-0.801)
FMR 0.096 (0.087-0.105) 0.102 (0.093-0.112)
FNMR 0.173 (0.155-0.19) 0.201 (0.184-0.22)

Black Female

Accuracy 0.962 (0.924-0.987) 0.92 (0.867-0.96)
TLR 0.0 (0.0-1.0) 0.0 (0.0-1.0)
FMR 0.025 (0.0-0.064) 0.043 (0.014-0.087)
FNMR xxx [xxx - xxx] xxx [xxx - xxx]

C.3 Augmentation choice
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Augmentation Base No augmentation High zoom

Male

Accuracy 0.847 (0.841-0.852) 0.815 (0.809-0.821) 0.83 (0.823-0.836)
TLR 0.889 (0.883-0.896) 0.865 (0.858-0.872) 0.88 (0.874-0.886)
FMR 0.176 (0.169-0.184) 0.198 (0.19-0.207) 0.192 (0.184-0.2)
FNMR 0.122 (0.114-0.129) 0.166 (0.157-0.175) 0.139 (0.13-0.147)

Female

Accuracy 0.894 (0.882-0.906) 0.856 (0.842-0.87) 0.852 (0.838-0.866)
TLR 0.651 (0.599-0.706) 0.65 (0.597-0.706) 0.655 (0.598-0.706)
FMR 0.064 (0.054-0.075) 0.078 (0.066-0.09) 0.087 (0.075-0.099)
FNMR 0.269 (0.231-0.31) 0.352 (0.317-0.391) 0.364 (0.326-0.405)

Augmentation High deformation High color jitter High rotation

Male

Accuracy 0.835 (0.829-0.841) 0.819 (0.813-0.825) 0.83 (0.824-0.836)

TLR 0.884 (0.878-0.89) 0.873 (0.866-0.88) 0.881 (0.875-0.888)
FMR 0.183 (0.175-0.191) 0.205 (0.197-0.213) 0.19 (0.182-0.198)
FNMR 0.14 (0.131-0.148) 0.146 (0.137-0.155) 0.14 (0.132-0.149)

Female

Accuracy 0.852 (0.838-0.864) 0.842 (0.827-0.856) 0.88 (0.867-0.892)

TLR 0.664 (0.605-0.717) 0.652 (0.594-0.704) 0.665 (0.612-0.72)
FMR 0.08 (0.068-0.093) 0.094 (0.082-0.107) 0.078 (0.066-0.089)
FNMR 0.377 (0.339-0.416) 0.391 (0.353-0.43) 0.297 (0.254-0.336)
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Augmentation Base No augmentation High zoom

White

Accuracy 0.866 (0.86-0.872) 0.834 (0.828-0.84) 0.841 (0.835-0.846)

TLR 0.886 (0.879-0.892) 0.859 (0.852-0.865) 0.871 (0.864-0.877)
FMR 0.147 (0.14-0.155) 0.168 (0.16-0.175) 0.161 (0.154-0.169)
FNMR 0.115 (0.107-0.124) 0.163 (0.153-0.173) 0.155 (0.146-0.165)

Non-White

Accuracy 0.879 (0.867-0.891) 0.835 (0.821-0.847) 0.866 (0.854-0.879)

TLR 0.736 (0.693-0.781) 0.707 (0.654-0.757) 0.73 (0.684-0.773)
FMR 0.082 (0.07-0.093) 0.084 (0.072-0.097) 0.079 (0.067-0.091)
FNMR 0.222 (0.193-0.252) 0.35 (0.32-0.381) 0.263 (0.235-0.294)

Black

Accuracy 0.899 (0.869-0.93) 0.85 (0.816-0.883) 0.835 (0.799-0.868)
TLR 0.5 (0.143-1.0) 0.5 (0.0-1.0) 0.5 (0.143-1.0)
FMR 0.011 (0.0-0.023) 0.028 (0.012-0.045) 0.024 (0.008-0.041)
FNMR 0.695 (0.564-0.816) 0.745 (0.641-0.841) 0.746 (0.644-0.837)

Augmentation High deformation High color jitter High rotation

White

Accuracy 0.846 (0.84-0.852) 0.841 (0.835-0.847) 0.853 (0.847-0.859)
TLR 0.875 (0.869-0.882) 0.866 (0.859-0.873) 0.871 (0.864-0.878)
FMR 0.154 (0.147-0.162) 0.173 (0.165-0.181) 0.159 (0.152-0.167)
FNMR 0.154 (0.144-0.162) 0.136 (0.127-0.145) 0.128 (0.12-0.137)

Non-White

Accuracy 0.862 (0.85-0.875) 0.85 (0.837-0.864) 0.843 (0.83-0.857)
TLR 0.741 (0.695-0.784) 0.717 (0.669-0.766) 0.731 (0.681-0.77)
FMR 0.09 (0.078-0.103) 0.082 (0.07-0.095) 0.091 (0.077-0.104)
FNMR 0.25 (0.224-0.28) 0.307 (0.274-0.341) 0.299 (0.27-0.328)

Black

Accuracy 0.822 (0.783-0.859) 0.882 (0.853-0.912) 0.864 (0.832-0.893)
TLR 0.5 (0.167-0.875) 0.556 (0.2-1.0) 0.5 (0.143-0.857)
FMR 0.033 (0.016-0.053) 0.027 (0.011-0.045) 0.034 (0.016-0.054)
FNMR 0.754 (0.656-0.844) 0.667 (0.545-0.778) 0.646 (0.543-0.764)
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Augmentation Base No augmentation High zoom

White Male

Accuracy 0.853 (0.846-0.859) 0.816 (0.808-0.823) 0.827 (0.82-0.835)

TLR 0.844 (0.835-0.855) 0.813 (0.802-0.823) 0.832 (0.822-0.843)

FMR 0.156 (0.147-0.164) 0.179 (0.169-0.188) 0.172 (0.162-0.181)
FNMR 0.131 (0.121-0.142) 0.193 (0.18-0.206) 0.175 (0.163-0.187)

Non-White Female

Accuracy 0.878 (0.869-0.887) 0.851 (0.841-0.86) 0.865 (0.855-0.874)

TLR 0.794 (0.772-0.815) 0.78 (0.757-0.803) 0.79 (0.768-0.81)

FMR 0.096 (0.087-0.105) 0.097 (0.088-0.107) 0.099 (0.089-0.109)
FNMR 0.173 (0.155-0.19) 0.241 (0.22-0.26) 0.206 (0.189-0.224)

Black Female

Accuracy 0.962 (0.924-0.987) 0.96 (0.92-0.987) 0.987 (0.962-1.0)
TLR 0.0 (0.0-1.0) 0.0 (0.0-1.0) 0.0 (0.0-1.0)
FMR 0.025 (0.0-0.064) 0.028 (0.0-0.068) 0.0 (0.0-0.0)
FNMR xxx [xxx - xxx] xxx [xxx - xxx] xxx [xxx - xxx]

Augmentation High deformation High color jitter High rotation

White Male

Accuracy 0.835 (0.829-0.843) 0.826 (0.819-0.833) 0.841 (0.833-0.848)
TLR 0.834 (0.824-0.844) 0.823 (0.812-0.833) 0.833 (0.821-0.844)
FMR 0.162 (0.153-0.172) 0.184 (0.175-0.193) 0.168 (0.159-0.177)
FNMR 0.167 (0.155-0.179) 0.154 (0.143-0.166) 0.145 (0.133-0.158)

Non-White Female

Accuracy 0.866 (0.856-0.875) 0.845 (0.835-0.854) 0.858 (0.848-0.867)
TLR 0.799 (0.777-0.82) 0.777 (0.754-0.8) 0.799 (0.779-0.82)
FMR 0.1 (0.091-0.11) 0.107 (0.097-0.117) 0.105 (0.095-0.115)
FNMR 0.2 (0.183-0.219) 0.246 (0.226-0.265) 0.211 (0.193-0.229)

Black Female

Accuracy 0.957 (0.914-0.986) 1.0 (1.0-1.0) 0.963 (0.927-0.988)
TLR 0.0 (0.0-0.525) 0.0 (0.0-0.0) 0.0 (0.0-1.0)
FMR 0.029 (0.0-0.06) 0.0 (0.0-0.0) 0.038 (0.012-0.077)
FNMR xxx [xxx - xxx] xxx [xxx - xxx] xxx [xxx - xxx]

C.4 Depth choice
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Depth 16 32 (base) 64

Male

Accuracy 0.837 (0.831-0.843) 0.847 (0.841-0.852) 0.831 (0.824-0.837)
TLR 0.883 (0.877-0.89) 0.889 (0.883-0.896) 0.882 (0.875-0.888)
FMR 0.181 (0.173-0.189) 0.176 (0.169-0.184) 0.184 (0.177-0.192)
FNMR 0.136 (0.128-0.145) 0.122 (0.114-0.129) 0.147 (0.139-0.156)

Female

Accuracy 0.872 (0.858-0.883) 0.894 (0.882-0.906) 0.857 (0.843-0.869)
TLR 0.679 (0.629-0.726) 0.651 (0.599-0.706) 0.649 (0.593-0.701)
FMR 0.086 (0.074-0.098) 0.064 (0.054-0.075) 0.103 (0.089-0.117)
FNMR 0.288 (0.251-0.325) 0.269 (0.231-0.31) 0.316 (0.277-0.357)

Depth 16 32 (base) 64

White

Accuracy 0.857 (0.852-0.863) 0.866 (0.86-0.872) 0.839 (0.833-0.845)

TLR 0.875 (0.868-0.881) 0.886 (0.879-0.892) 0.872 (0.865-0.879)
FMR 0.152 (0.145-0.16) 0.147 (0.14-0.155) 0.163 (0.155-0.171)
FNMR 0.129 (0.12-0.138) 0.115 (0.107-0.124) 0.156 (0.148-0.166)

Non-White

Accuracy 0.857 (0.843-0.87) 0.879 (0.867-0.891) 0.867 (0.854-0.879)

TLR 0.731 (0.685-0.774) 0.736 (0.693-0.781) 0.719 (0.668-0.769)
FMR 0.087 (0.075-0.099) 0.082 (0.07-0.093) 0.079 (0.067-0.091)
FNMR 0.276 (0.248-0.306) 0.222 (0.193-0.252) 0.267 (0.237-0.298)

Black

Accuracy 0.857 (0.825-0.89) 0.899 (0.869-0.93) 0.879 (0.85-0.912)

TLR 0.5 (0.167-0.881) 0.5 (0.143-1.0) 0.5 (0.125-1.0)
FMR 0.027 (0.012-0.047) 0.011 (0.0-0.023) 0.034 (0.018-0.056)
FNMR 0.672 (0.566-0.772) 0.695 (0.564-0.816) 0.609 (0.491-0.726)
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Depth 16 32 (base) 64

White Male

Accuracy 0.84 (0.833-0.847) 0.853 (0.846-0.859) 0.827 (0.82-0.834)
TLR 0.833 (0.822-0.844) 0.844 (0.835-0.855) 0.831 (0.82-0.841)
FMR 0.161 (0.153-0.17) 0.156 (0.147-0.164) 0.169 (0.16-0.179)
FNMR 0.157 (0.146-0.169) 0.131 (0.121-0.142) 0.181 (0.168-0.193)

Non-White Female

Accuracy 0.866 (0.857-0.875) 0.878 (0.869-0.887) 0.858 (0.849-0.867)
TLR 0.795 (0.773-0.815) 0.794 (0.772-0.815) 0.779 (0.757-0.8)
FMR 0.102 (0.093-0.112) 0.096 (0.087-0.105) 0.111 (0.102-0.121)
FNMR 0.194 (0.177-0.213) 0.173 (0.155-0.19) 0.204 (0.186-0.222)

Black Female

Accuracy 0.972 (0.93-1.0) 0.962 (0.924-0.987) 0.959 (0.918-0.986)
TLR 0.0 (0.0-1.0) 0.0 (0.0-1.0) 0.0 (0.0-1.0)
FMR 0.028 (0.0-0.056) 0.025 (0.0-0.064) 0.028 (0.0-0.058)
FNMR xxx [xxx - xxx] xxx [xxx - xxx] xxx [xxx - xxx]

C.5 Margin choice

Margin 1 0.5

Male

Accuracy 0.84 (0.835-0.846) 0.832 (0.826-0.838)
TLR 0.886 (0.88-0.892) 0.877 (0.871-0.883)
FMR 0.184 (0.176-0.191) 0.185 (0.177-0.193)
FNMR 0.124 (0.116-0.132) 0.144 (0.136-0.153)

Female

Accuracy 0.872 (0.859-0.884) 0.876 (0.862-0.889)
TLR 0.663 (0.608-0.713) 0.658 (0.6-0.712)
FMR 0.077 (0.066-0.089) 0.072 (0.062-0.084)
FNMR 0.323 (0.286-0.363) 0.313 (0.274-0.353)

Margin 0.2 (base) 0.1

Male

Accuracy 0.847 (0.841-0.852) 0.849 (0.844-0.856)

TLR 0.889 (0.883-0.896) 0.894 (0.887-0.9)
FMR 0.176 (0.169-0.184) 0.169 (0.162-0.177)
FNMR 0.122 (0.114-0.129) 0.123 (0.115-0.131)

Female

Accuracy 0.894 (0.882-0.906) 0.857 (0.844-0.871)

TLR 0.651 (0.599-0.706) 0.664 (0.609-0.715)
FMR 0.064 (0.054-0.075) 0.086 (0.074-0.098)
FNMR 0.269 (0.231-0.31) 0.339 (0.302-0.38)
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Margin 1 0.5

White

Accuracy 0.852 (0.846-0.858) 0.848 (0.843-0.854)

TLR 0.875 (0.869-0.882) 0.873 (0.866-0.88)
FMR 0.154 (0.147-0.162) 0.153 (0.146-0.161)
FNMR 0.14 (0.13-0.148) 0.149 (0.14-0.158)

Non-White

Accuracy 0.86 (0.846-0.872) 0.867 (0.855-0.879)

TLR 0.743 (0.698-0.788) 0.72 (0.673-0.763)
FMR 0.093 (0.08-0.106) 0.085 (0.074-0.097)
FNMR 0.254 (0.225-0.283) 0.253 (0.222-0.283)

Black

Accuracy 0.878 (0.845-0.908) 0.888 (0.855-0.914)

TLR 0.5 (0.119-1.0) 0.5 (0.0-1.0)
FMR 0.044 (0.023-0.066) 0.03 (0.015-0.05)
FNMR 0.694 (0.562-0.821) 0.673 (0.553-0.794)

Margin 0.2 (base) 0.1

White

Accuracy 0.866 (0.86-0.872) 0.86 (0.855-0.866)
TLR 0.886 (0.879-0.892) 0.88 (0.873-0.887)
FMR 0.147 (0.14-0.155) 0.147 (0.14-0.155)
FNMR 0.115 (0.107-0.124) 0.129 (0.12-0.137)

Non-White

Accuracy 0.879 (0.867-0.891) 0.878 (0.866-0.889)
TLR 0.736 (0.693-0.781) 0.717 (0.668-0.762)
FMR 0.082 (0.07-0.093) 0.077 (0.066-0.089)
FNMR 0.222 (0.193-0.252) 0.246 (0.217-0.276)

Black

Accuracy 0.899 (0.869-0.93) 0.877 (0.847-0.91)
TLR 0.5 (0.143-1.0) 0.5 (0.0-1.0)
FMR 0.011 (0.0-0.023) 0.019 (0.008-0.036)
FNMR 0.695 (0.564-0.816) 0.686 (0.561-0.796)
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Margin 1 0.5

White Male

Accuracy 0.835 (0.827-0.842) 0.83 (0.823-0.838)
TLR 0.832 (0.822-0.842) 0.833 (0.822-0.844)
FMR 0.166 (0.157-0.176) 0.164 (0.155-0.173)

FNMR 0.162 (0.151-0.175) 0.179 (0.167-0.191)

Non-White Female

Accuracy 0.873 (0.865-0.882) 0.875 (0.866-0.883)
TLR 0.799 (0.777-0.819) 0.789 (0.768-0.808)
FMR 0.104 (0.094-0.114) 0.096 (0.087-0.106)

FNMR 0.172 (0.154-0.189) 0.184 (0.167-0.204)

Black Female

Accuracy 0.971 (0.942-1.0) 1.0 (1.0-1.0)
TLR 0.0 (0.0-0.5) 0.0 (0.0-1.0)
FMR 0.029 (0.0-0.057) 0.0 (0.0-0.0)
FNMR xxx [xxx - xxx] xxx [xxx - xxx]

Margin 0.2 (base) 0.1

White Male

Accuracy 0.853 (0.846-0.859) 0.854 (0.848-0.861)
TLR 0.844 (0.835-0.855) 0.842 (0.831-0.852)
FMR 0.156 (0.147-0.164) 0.152 (0.143-0.16)
FNMR 0.131 (0.121-0.142) 0.134 (0.124-0.145)

Non-White Female

Accuracy 0.878 (0.869-0.887) 0.878 (0.869-0.887)
TLR 0.794 (0.772-0.815) 0.788 (0.765-0.809)
FMR 0.096 (0.087-0.105) 0.094 (0.084-0.103)
FNMR 0.173 (0.155-0.19) 0.179 (0.161-0.196)

Black Female

Accuracy 0.962 (0.924-0.987) 0.933 (0.88-0.973)
TLR 0.0 (0.0-1.0) 0.0 (0.0-1.0)
FMR 0.025 (0.0-0.064) 0.042 (0.014-0.087)
FNMR xxx [xxx - xxx] xxx [xxx - xxx]

C.6 Learning rate choice
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lr 5.10-4, scheduler 200 (base) 10-3 10-4

Male

Accuracy 0.847 (0.841-0.852) 0.831 (0.826-0.837) 0.841 (0.835-0.846)

TLR 0.889 (0.883-0.896) 0.881 (0.875-0.888) 0.888 (0.881-0.894)
FMR 0.176 (0.169-0.184) 0.182 (0.174-0.19) 0.181 (0.173-0.188)
FNMR 0.122 (0.114-0.129) 0.15 (0.142-0.159) 0.129 (0.121-0.136)

Female

Accuracy 0.894 (0.882-0.906) 0.843 (0.829-0.856) 0.874 (0.861-0.886)

TLR 0.651 (0.599-0.706) 0.652 (0.597-0.705) 0.657 (0.603-0.712)
FMR 0.064 (0.054-0.075) 0.093 (0.081-0.106) 0.079 (0.067-0.091)
FNMR 0.269 (0.231-0.31) 0.374 (0.334-0.413) 0.306 (0.267-0.345)

lr scheduler 100 scheduler 300

Male

Accuracy 0.847 (0.841-0.853) 0.847 (0.841-0.852)

TLR 0.887 (0.88-0.894) 0.893 (0.888-0.899)
FMR 0.171 (0.162-0.179) 0.171 (0.164-0.179)
FNMR 0.13 (0.121-0.138) 0.129 (0.121-0.137)

Female

Accuracy 0.855 (0.841-0.869) 0.858 (0.844-0.871)

TLR 0.654 (0.596-0.712) 0.659 (0.608-0.713)
FMR 0.082 (0.071-0.095) 0.092 (0.08-0.106)
FNMR 0.365 (0.325-0.407) 0.339 (0.299-0.382)
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lr 5.10-4, scheduler 200 (base) 10-3 10-4

White

Accuracy 0.866 (0.86-0.872) 0.855 (0.85-0.861) 0.853 (0.848-0.859)

TLR 0.886 (0.879-0.892) 0.874 (0.868-0.881) 0.878 (0.871-0.885)
FMR 0.147 (0.14-0.155) 0.152 (0.145-0.16) 0.152 (0.144-0.159)
FNMR 0.115 (0.107-0.124) 0.134 (0.125-0.143) 0.14 (0.131-0.148)

Non-White

Accuracy 0.879 (0.867-0.891) 0.832 (0.819-0.846) 0.889 (0.877-0.901)

TLR 0.736 (0.693-0.781) 0.714 (0.665-0.764) 0.738 (0.688-0.782)
FMR 0.082 (0.07-0.093) 0.074 (0.063-0.087) 0.084 (0.073-0.097)
FNMR 0.222 (0.193-0.252) 0.362 (0.33-0.392) 0.19 (0.162-0.219)

Black

Accuracy 0.899 (0.869-0.93) 0.743 (0.7-0.783) 0.891 (0.861-0.921)

TLR 0.5 (0.143-1.0) 0.5 (0.0-0.857) 0.5 (0.0-0.881)
FMR 0.011 (0.0-0.023) 0.028 (0.01-0.047) 0.034 (0.015-0.053)
FNMR 0.695 (0.564-0.816) 0.835 (0.768-0.897) 0.675 (0.537-0.804)

lr scheduler 100 scheduler 300

White

Accuracy 0.865 (0.86-0.871) 0.86 (0.854-0.866)

TLR 0.879 (0.872-0.886) 0.883 (0.877-0.89)
FMR 0.141 (0.134-0.148) 0.145 (0.138-0.153)
FNMR 0.126 (0.117-0.134) 0.132 (0.124-0.141)

Non-White

Accuracy 0.868 (0.855-0.88) 0.885 (0.874-0.897)

TLR 0.738 (0.69-0.783) 0.731 (0.685-0.777)
FMR 0.091 (0.077-0.104) 0.071 (0.06-0.083)
FNMR 0.235 (0.206-0.264) 0.23 (0.2-0.259)

Black

Accuracy 0.875 (0.845-0.905) 0.889 (0.859-0.918)
TLR 0.5 (0.0-0.857) 0.5 (0.167-0.876)
FMR 0.038 (0.019-0.059) 0.023 (0.008-0.038)
FNMR 0.684 (0.558-0.8) 0.642 (0.52-0.75)
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lr 5.10-4, scheduler 200 (base) 10-3 10-4

White Male

Accuracy 0.853 (0.846-0.859) 0.846 (0.838-0.853) 0.842 (0.835-0.849)

TLR 0.844 (0.835-0.855) 0.833 (0.822-0.844) 0.842 (0.831-0.852)
FMR 0.156 (0.147-0.164) 0.158 (0.149-0.166) 0.162 (0.153-0.17)
FNMR 0.131 (0.121-0.142) 0.148 (0.137-0.16) 0.153 (0.141-0.165)

Non-White Female

Accuracy 0.878 (0.869-0.887) 0.848 (0.839-0.857) 0.884 (0.875-0.893)

TLR 0.794 (0.772-0.815) 0.784 (0.764-0.806) 0.798 (0.778-0.818)
FMR 0.096 (0.087-0.105) 0.102 (0.092-0.112) 0.093 (0.084-0.103)
FNMR 0.173 (0.155-0.19) 0.243 (0.223-0.263) 0.162 (0.145-0.179)

Black Female

Accuracy 0.962 (0.924-0.987) 0.933 (0.88-0.973) 0.987 (0.962-1.0)
TLR 0.0 (0.0-1.0) 0.0 (0.0-1.0) 0.0 (0.0-1.0)
FMR 0.025 (0.0-0.064) 0.042 (0.013-0.087) 0.0 (0.0-0.0)
FNMR xxx [xxx - xxx] xxx [xxx - xxx] xxx [xxx - xxx]

lr scheduler 100 scheduler 300

White Male

Accuracy 0.85 (0.843-0.857) 0.847 (0.84-0.854)

TLR 0.834 (0.824-0.845) 0.844 (0.834-0.854)
FMR 0.15 (0.142-0.159) 0.153 (0.144-0.162)
FNMR 0.151 (0.139-0.162) 0.153 (0.142-0.165)

Non-White Female

Accuracy 0.863 (0.854-0.872) 0.873 (0.864-0.882)

TLR 0.794 (0.773-0.813) 0.788 (0.768-0.809)
FMR 0.104 (0.094-0.114) 0.096 (0.087-0.106)
FNMR 0.199 (0.182-0.216) 0.189 (0.172-0.207 )

Black Female

Accuracy 0.971 (0.929-1.0) 1.0 (1.0-1.0)
TLR 0.0 (0.0-0.0) 0.0 (0.0-1.0)
FMR 0.029 (0.0-0.071) 0.0 (0.0-0.0)
FNMR xxx [xxx - xxx] xxx [xxx - xxx]

C.7 Threshold choice
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Threshold Low (0.48) Base (0.81) High (1.15)

Male

Accuracy 0.807 (0.801-0.813) 0.847 (0.841-0.852) 0.802 (0.795-0.808)

TLR 0.89 (0.884-0.896) 0.889 (0.883-0.896) 0.892 (0.886-0.898)
FMR 0.081 (0.074-0.088) 0.176 (0.169-0.184) 0.258 (0.25-0.267)
FNMR 0.27 (0.262-0.28) 0.122 (0.114-0.129) 0.061 (0.055-0.068)

Female

Accuracy 0.752 (0.736-0.77) 0.894 (0.882-0.906) 0.879 (0.866-0.891)

TLR 0.655 (0.602-0.712) 0.651 (0.599-0.706) 0.653 (0.599-0.706)
FMR 0.047 (0.036-0.057) 0.064 (0.054-0.075) 0.115 (0.103-0.129)
FNMR 0.547 (0.516-0.578) 0.269 (0.231-0.31) 0.156 (0.117-0.194)

Threshold Low (0.48) Base (0.81) High (1.15)

White

Accuracy 0.804 (0.797-0.81) 0.866 (0.86-0.872) 0.836 (0.83-0.842)

TLR 0.882 (0.875-0.888) 0.886 (0.879-0.892) 0.883 (0.876-0.889)
FMR 0.073 (0.066-0.079) 0.147 (0.14-0.155) 0.217 (0.209-0.225)
FNMR 0.287 (0.277-0.297) 0.115 (0.107-0.124) 0.042 (0.036-0.049)

Non-White

Accuracy 0.777 (0.761-0.793) 0.879 (0.867-0.891) 0.858 (0.845-0.871)

TLR 0.734 (0.693-0.779) 0.736 (0.693-0.781) 0.72 (0.671-0.761)
FMR 0.045 (0.035-0.056) 0.082 (0.07-0.093) 0.134 (0.12-0.148)
FNMR 0.442 (0.416-0.467) 0.222 (0.193-0.252) 0.171 (0.142-0.202)

Black

Accuracy 0.712 (0.673-0.754) 0.899 (0.869-0.93) 0.9 (0.87-0.927)

TLR 0.5 (0.167-1.0) 0.5 (0.143-1.0) 0.5 (0.0-1.0)
FMR 0.024 (0.009-0.044) 0.011 (0.0-0.023) 0.034 (0.015-0.054)
FNMR 0.792 (0.726-0.856) 0.695 (0.564-0.816) 0.619 (0.485-0.762)
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Threshold Low (0.48) Base (0.81) High (1.15)

White Male

Accuracy 0.798 (0.791-0.806) 0.853 (0.846-0.859) 0.819 (0.811-0.826)

TLR 0.84 (0.83-0.851) 0.844 (0.835-0.855) 0.846 (0.835-0.856)
FMR 0.074 (0.066-0.082) 0.156 (0.147-0.164) 0.226 (0.217-0.236)
FNMR 0.31 (0.297-0.322) 0.131 (0.121-0.142) 0.051 (0.042-0.06)

Non-White Female

Accuracy 0.782 (0.771-0.791) 0.878 (0.869-0.887) 0.863 (0.854-0.872)

TLR 0.79 (0.768-0.812) 0.794 (0.772-0.815) 0.778 (0.756-0.799)
FMR 0.055 (0.047-0.064) 0.096 (0.087-0.105) 0.149 (0.139-0.16)
FNMR 0.379 (0.361-0.397) 0.173 (0.155-0.19) 0.101 (0.085-0.117)

Black Female

Accuracy 0.91 (0.859-0.962) 0.962 (0.924-0.987) 0.972 (0.93-1.0)
TLR 0.0 (0.0-1.0) 0.0 (0.0-1.0) 0.0 (0.0-1.0)
FMR 0.028 (0.0-0.069) 0.025 (0.0-0.064) 0.029 (0.0-0.072)
FNMR xxx [xxx - xxx] xxx [xxx - xxx] xxx [xxx - xxx]
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