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Abstract
Physics-informed machine learning combines the expressiveness of data-based approaches with
the interpretability of physical models. In this context, we consider a general regression problem
where the empirical risk is regularized by a partial differential equation that quantifies the physical
inconsistency. We prove that for linear differential priors, the problem can be formulated as a
kernel regression task. Taking advantage of kernel theory, we derive convergence rates for the
minimizer f̂n of the regularized risk and show that f̂n converges at least at the Sobolev minimax
rate. However, faster rates can be achieved, depending on the physical error. This principle is
illustrated with a one-dimensional example, supporting the claim that regularizing the empirical
risk with physical information can be beneficial to the statistical performance of estimators.
Keywords: Physics-informed machine learning, Kernel methods, Rates of convergence, Physical
regularization

1. Introduction

Physics-informed machine learning. Physics-informed machine learning (PIML) refers to a sub-
domain of machine learning that combines physical knowledge and empirical data to enhance per-
formance of tasks involving a physical mechanism. Following the influential work of Raissi et al.
(2019), the field has experienced a notable surge in popularity, largely driven by scientific computing
and engineering applications. We refer the reader to the surveys by Rai and Sahu (2020), Karni-
adakis et al. (2021), Cuomo et al. (2022), and Hao et al. (2022). In a nutshell, the success of PIML
relies on the smart interaction between machine learning and physics. In its most standard form, this
achievement is realized by integrating physical equations into the loss function. Three common use
cases include solving systems of partial differential equations (PDEs), addressing inverse problems
(e.g., learning the PDE governing an observed phenomenon), and further improving the statistical
performance of empirical risk minimization. This article focuses on the latter approach, known as
hybrid modeling (e.g., Rai and Sahu, 2020).
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Hybrid modeling. Consider the classical regression model Y = f⋆(X) + ε, where the function
f⋆ : Rd → R is unknown. The random variable Y ∈ R is the target, the random variable X ∈ Ω ⊆
[−L,L]d the vector of features, and ε a random noise. Given a sample {(X1, Y1), . . . , (Xn, Yn)} of
i.i.d. copies of (X,Y ), the goal is to construct an estimator f̂n of f⋆ based on these n observations.
The distinctive element of PIML is the inclusion of a prior on f⋆, asserting its compliance with
a known PDE. Therefore, it is assumed that f⋆ is at least weakly differentiable, belonging to the
Sobolev space Hs(Ω) for some integer s > d/2, and that there is a known differential operator D
such that D(f⋆) ≃ 0. For instance, if the desired solution f⋆ is intended to conform to the wave
equation, then D(f)(x, t) = ∂2t,tf(x, t) − ∂2x,xf(x, t) for (x, t) ∈ Ω. Overall, we are interested in
the minimizer of the empirical risk function

Rn(f) =
1

n

n∑
i=1

|f(Xi)− Yi|2 + λn∥f∥2Hs
per([−2L,2L]d) + µn∥D(f)∥2L2(Ω) (1)

over the class F = Hs
per([−2L, 2L]d) of candidate functions, where λn > 0 and µn ⩾ 0 are

hyperparameters that weigh the relative importance of each term. We refer to the appendix for
a precise definition of the periodic Sobolev space Hs

per([−2L, 2L]d), as well as the continuous
extension Hs(Ω) ↪→ Hs

per([−2L, 2L]d). It is stressed that the ∥ · ∥Hs
per([−2L,2L]d) norm is the

standard ∥·∥Hs([−2L,2L]d) norm—the symbol “per” highlights that we consider functions belonging
to a periodic Sobolev space. The choice of the periodic Sobolev space Hs

per([−2L, 2L]d) is merely
technical—the reader can be confident that all subsequent results remain applicable to the standard
Sobolev space Hs(Ω), as will be stressed later.

The first term in (1) is the standard component of supervised learning, corresponding to a least-
squares criterion that measures the prediction error over the training sample. The second term
∥f∥2

Hs
per([−2L,2L]d)

corresponds to a Sobolev penalty for s > d/2, which enforces the regularity of

the estimator. Finally, the L2 penalty ∥D(f)∥2L2(Ω) on Ω quantifies the physical inconsistency of f
with respect to the differential prior on f⋆: the more f aligns with the PDE, the lower the value of
∥D(f)∥2L2(Ω). It is this last term that marks the originality of the hybrid modeling problem.

In this context, beyond classical statistical analyses, an interesting question is to quantify the
impact of the physical regularization ∥D(f)∥2L2(Ω) on the empirical risk (1), typically in terms of
convergence rate of the resulting estimator. It is intuitively clear, for example, that if the target
f⋆ satisfies D(f⋆) = 0 (i.e., f⋆ is a solution of the underlying PDE), then, under appropriate
conditions, the estimator f̂n should have better properties than a standard estimator of the empirical
risk. This is the challenging problem that we address in this contribution.

Contributions. We are interested in the statistical properties of the minimizer of (1) over the space
Hs

per([−2L, 2L]d), denoted by

f̂n = argmin
f∈Hs

per([−2L,2L]d)

Rn(f). (2)

We show in Section 3 that problem (2) can be formulated as a kernel regression task, with a kernelK
that we specify. This allows us, in Section 4, to use tools from kernel theory to determine an
upper bound on the rate of convergence of f̂n to f⋆ in L2(Ω,PX), where PX is the distribution
of X on Ω. In particular, this rate can be evaluated by bounding the eigenvalues of the integral
operator associated with the kernel. The latter problem is studied in detail in Theorem 5, where
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the corresponding eigenfunctions are characterized through a weak formulation. Overall, we show
that f̂n converges to f⋆ at least at the Sobolev minimax rate. The complete mechanics are illustrated
in Section 5 for the operator D = d

dx in dimension d = 1, showcasing a simple but instructive case.
In such a setting, the convergence rate is shown to be

E
∫
[−L,L]

|f̂n − f⋆|2dPX =∥D(f⋆)∥L2(Ω) On

(
n−2/3 log3(n)

)
+ ∥f⋆∥2Hs(Ω)On

(
n−1 log3(n)

)
.

Thus, the lower the modeling error ∥D(f⋆)∥L2(Ω), the lower the estimation error. In particular,
if f⋆ exactly satisfies the PDE, i.e., ∥D(f⋆)∥L2(Ω) = 0, then the rate is n−1 (up a to log factor),
significantly better than the Sobolev rate of n−2/3. This shows that the use of physical knowledge
in the PIML framework has a quantifiable impact on the estimation error.

2. Related works

Approximation classes and Sobolev spaces. Since Sobolev spaces are often considered too ex-
pensive for practical implementation, various alternative classes of functions over which to mini-
mize the empirical risk function (1) have been suggested in the literature. In the case of a second-
order and coercive PDE in dimension d = 2, and with an additional prior on the boundary con-
ditions, Azzimonti et al. (2015), Arnone et al. (2022), and Ferraccioli et al. (2022) propose finite-
element-based methods to optimize the minimization over H2(Ω). However, the most commonly
used approach to minimize the risk functional involves neural networks, which leverage the back-
propagation algorithm for efficient computation of successive derivatives and optimize (1) through
gradient descent. The so-called PINNs (for physics-informed neural networks—Raissi et al., 2019)
have been successfully applied to a diverse range of physical phenomena, including sea temperature
modeling (de Bézenac et al., 2019), image denoising (Wang et al., 2020a), turbulence (Wang et al.,
2020b), blood streams (Arzani et al., 2021), glacier dynamics (Riel et al., 2021), and heat transfers
(Ramezankhani et al., 2022), among others. The neural architecture of PINNs is often designed
to be large (e.g., Arzani et al., 2021; Krishnapriyan et al., 2021; Xu et al., 2021), allowing it to
approximate any function in Hs(Ω) (De Ryck et al., 2021; Doumèche et al., 2023).

Sobolev regularization. In the PIML literature, the Sobolev regularization is either directly im-
plemented as such (Shin, 2020; Doumèche et al., 2023) or in a more implicit manner, by assuming
that the operator D is inherently regular (e.g., second-order elliptic, parabolic, or hyperbolic) and
specifying boundary conditions (Azzimonti et al., 2015; Shin, 2020; Arnone et al., 2022; Ferraccioli
et al., 2022; Wu et al., 2022; Mishra and Molinaro, 2023; Shin et al., 2023). It turns out, however,
that the specific form taken by the Sobolev regularization is unimportant. This will be enlightened
by our Theorem 4.6, which shows that using equivalent Sobolev norms does not alter the conver-
gence rate of the estimators. From a theoretical perspective, much of the literature delves into the
properties of PINNs in the realm of PDE solvers, usually through the analysis of their generaliza-
tion error (Shin, 2020; De Ryck and Mishra, 2022; Wu et al., 2022; Doumèche et al., 2023; Mishra
and Molinaro, 2023; Qian et al., 2023; Ryck et al., 2023; Shin et al., 2023). Overall, there are few
theoretical guarantees available regarding hybrid modeling, with the exception of Azzimonti et al.
(2015), Shin (2020), Arnone et al. (2022), and Doumèche et al. (2023).

PIML and kernels. Other studies have revealed interesting connections between PIML and kernel
methods. In noiseless scenarios, the use of kernel methods to construct meshless PDE solvers under
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the Sobolev regularity hypothesis has long been explored by, for example, Schaback and Wendland
(2006). Recently, Batlle et al. (2023) uncovered convergence rates under regularity assumptions
on the differential operator equivalent to a Sobolev regularization. For inverse PIML problems, Lu
et al. (2022) and de Hoop et al. (2023) take advantage of a kernel reformulation of PIML to establish
convergence rates for differential operator learning. This generalizes results obtained by Nickl et al.
(2020) using Bayesian inference methods. However, none of these works has specifically addressed
hybrid modeling. To the best of our knowledge, the present study is the first to show that the physical
regularization term ∥D(f)∥L2(Ω) in the PIML loss (1) may lead to improved convergence rates.

3. PIML as a kernel method

Throughout the article, we let Ω ⊆ [−L,L]d (L > 0) be a bounded Lipschitz domain. Assum-
ing that Ω is Lipschitz allows a high level of generality regarding its regularity, encompassing
C1-manifolds (such as the Euclidean ball {x ∈ Rd | ∥x∥2 ⩽ L}), as well as domains with
non-differentiable boundaries (such as the hypercube [−L,L]d). (A summary of the mathemati-
cal notation and functional analysis concepts used in this paper is to be found in Appendix A.) The
target function f⋆ : Rd → R is assumed to belong to the Sobolev space Hs(Ω) for some positive
integer s > d/2. Furthermore, this function is assumed to approximately satisfy a linear PDE on Ω
(the coefficients of which are potentially non-constant) with derivatives of order less than or equal
to s. In other words, one has D(f⋆) ≃ 0 for some known operator D of the following form:

Definition 3.1 (Linear differential operator) Let s ∈ N. An operator D : Hs(Ω) → L2(Ω) is a
linear differential operator if, for all f ∈ Hs(Ω),

D(f) =
∑
|α|⩽s

pα∂
αf,

where pα : Ω → R are functions such that maxα ∥pα∥∞ < ∞. (By definition, {|α| ⩽ s} = {α ∈
Nd | ∥α∥1 ⩽ s} and ∥ · ∥∞ stands for the supremum norm of functions.)

Given s, the linear differential operator D , and a training sample {(X1, Y1), . . . , (Xn, Yn)}, we con-
sider the estimator f̂n that minimizes the regularized empirical risk (1) over the periodic Sobolev
space Hs

per([−2L, 2L]d). Recall that Hs
per([−2L, 2L]d) is the subspace of Hs([−2L, 2L]d) con-

sisting of functions whose 4L-periodic extension is still s-times weakly differentiable. The im-
portant point to keep in mind is that any function of Hs(Ω) can be extended to a function in
Hs

per([−2L, 2L]d) (see Proposition A.6 in the appendix), which makes it equivalent to suppose
that f⋆ ∈ Hs(Ω) or f⋆ ∈ Hs

per([−2L, 2L]d), as shown in Theorem 4.6. The extension mechanism
is illustrated in Figure 1.

The key step to turn the minimization of (1) into a kernel method is to observe that any function
f ∈ Hs

per([−2L, 2L]d) can be linearly mapped in L2([−2L, 2L]d) in such a way that the norm
∥ · ∥L2([−2L,2L]d) of the embedding is equal to λn∥f∥2Hs

per([−2L,2L]d)
+ µn∥D(f)∥2L2(Ω), i.e., the

regularization term of (1). Proposition 3.2 below shows that this embedding takes the form of the
inverse square root of a positive diagonalizable operator On.

Proposition 3.2 (Differential operator) There exists a positive operator On on L2([−2L, 2L]d)

such that O
−1/2
n : Hs

per([−2L, 2L]d) → L2([−2L, 2L]d) is well-defined and satisfies, for any
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Ω +L-L +2L-2L

4L- periodic

Figure 1: Illustration of a 4L-periodic extension of a function in Hs(Ω) to Hs
per([−2L, 2L]d) for

d = 1.

f ∈ Hs
per([−2L, 2L]d),

∥O−1/2
n (f)∥2L2([−2L,2L]d) = λn∥f∥2Hs

per([−2L,2L]d) + µn∥D(f)∥2L2(Ω).

Moreover, there is an orthonormal basis of eigenfunctions vm ∈ Hs
per([−2L, 2L]d) of On associated

with eigenvalues am > 0 such that, for any f ∈ L2([−2L, 2L]d),

∀x ∈ [−2L, 2L]d, On(f)(x) =
∑
m∈N

am⟨f, vm⟩L2([−2L,2L]d)vm(x).

Denote by δx the Dirac distribution at x. Informally, the properties of the embedding O
−1/2
n :

Hs
per([−2L, 2L]d) → L2([−2L, 2L]d) in Proposition 3.2 suggest that something like

f(x) “ = ” ⟨f, δx⟩ = ⟨O−1/2
n (f),O1/2

n (δx)⟩L2([−2L,2L]d)

should be true. In other terms, still informally, we may write f(x) = ⟨z, ψ(x)⟩L2([−2L,2L]d), with

z = O
−1/2
n (f), ψ(x) = O

1/2
n (δx), and ∥z∥2

L2([−2L,2L]d)
= λn∥f∥2Hs

per([−2L,2L]d)
+µn∥D(f)∥2L2(Ω).

We recognize a reproducing property, turning ψ into a kernel embedding associated with the risk (1).
This mechanism is formalized in the following theorem.

Theorem 3.3 (Kernel of linear PDEs) Assume that s > d/2, and let λn > 0, µn ⩾ 0. Let am and
vm be the eigenvalues and eigenfunctions of On. Then the space Hs

per([−2L, 2L]d), equipped with

the inner product ⟨f, g⟩RKHS = ⟨O−1/2
n f,O

−1/2
n g⟩L2([−2L,2L]d), is a reproducing kernel Hilbert

space. In particular,

(i) The kernel K : [−2L, 2L]d × [−2L, 2L]d → R is defined by

K(x, y) =
∑
m∈N

amvm(x)vm(y).

(ii) For all x ∈ [−2L, 2L]d, K(x, ·) ∈ Hs
per([−2L, 2L]d).

5



DOUMÈCHE BACH BIAU BOYER

(iii) For all f ∈ Hs
per([−2L, 2L]d),

∀x ∈ [−2L, 2L]d, f(x) = ⟨f,K(x, ·)⟩RKHS.

(iv) For all f ∈ Hs
per([−2L, 2L]d),

∥f∥2RKHS = λn∥f∥2Hs
per([−2L,2L]d) + µn∥D(f)∥2L2(Ω).

Proof [sketch] The complete proof is given in Appendix B. Only a rough sketch is given here by
examining the simplified case where L = π/2, Ω = [−π, π]d = [−2L, 2L]d, and D has constant
coefficients. This means that we consider functions with periodic derivatives on Ω, penalized by the
PDE on the whole domain [−π, π]d. It turns out that, in this case, the corresponding operator On,
satisfying

∥O−1/2
n (f)∥2L2([−π,π]d) = λn∥f∥2Hs

per([−π,π]d) + µn∥D(f)∥2L2([−π,π]d) := ∥f∥2RKHS

has an explicit form. To see this, denote by FS the Fourier series operator. By the Parseval’s
theorem, for any frequency k ∈ Zd, one has FS(O−1/2

n (f))(k) =
√
ak FS(f)(k), where

ak = λn
∑
|α|⩽s

d∏
j=1

k
2αj

j + µn

( ∑
|α|⩽s

pα

d∏
j=1

k
αj

j

)2
.

Accordingly, On is diagonalizable with eigenfunctions vk : x 7→ exp(i⟨k, x⟩) associated with the
eigenvalues a−1

k . Next, using the Fourier decomposition of f , we have, for all x ∈ [−π, π]d,

f(x) =
∑
k∈Zd

FS(f)(k) exp(i⟨k, x⟩) =
∑
k∈Zd

FS(O−1/2
n (f))(k)a

−1/2
k exp(i⟨k, x⟩).

Since a−1
k ⩽ λ−1

n (
∑

|α|⩽s

∏d
j=1 k

2αj

j )−1, it is easy to check that
∑

k∈Zd a
−1
k < ∞ and that the

function ψx such that FS(ψx)(k) = a
−1/2
k exp(i⟨k, x⟩) belongs to Hs

per([−π, π]d). We therefore

have the kernel formulation f(x) = ⟨O−1/2
n (f), ψx⟩L2([−π,π]d), where ∥O−1/2

n (f)∥2
L2([−π,π]d)

=

∥f∥2RKHS. The corresponding kernel is then defined by

K(x, y) = ⟨ψx, ψy⟩L2([−π,π]d) =
∑
k∈Z

akvk(x)v̄k(y).

The complete proof of Theorem 3.3 is more technical because, in the our case Ω ⊊ [−2L, 2L]d

and D may have non-constant coefficients. Thus, the operator On is not diagonal in the Fourier
space. To characterize its eigenvalues am and eigenfunctions vm, we resort to classical results of
PDE theory building upon functional analysis.

The message of Theorem 3.3 is that minimizing the empirical risk (1) can be cast as a kernel method
associated with the regularization λn∥f∥2Hs

per([−2L,2L]d)
+ µn∥D(f)∥2L2(Ω). In other words, (1) can

be rewritten as

f̂n = argmin
f∈Hs

per([−2L,2L]d)

1

n

n∑
i=1

|f(Xi)− Yi|2 + ∥f∥2RKHS.

6
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This result is interesting in itself because it fundamentally shows that a PIML estimator (and there-
fore its variants implemented in practice, such as PINNs) can be regarded as a kernel estimator.
Note however that computing K(x, y) is not always straightforward and may require the use of
numerical techniques. This kernel is characterized by the following weak formulation.

Proposition 3.4 (Kernel characterization) The kernel K is the unique solution to the following
weak formulation, valid for all test functions ϕ ∈ Hs

per([−2L, 2L]d),

∀x ∈ Ω, λn
∑
|α|⩽s

∫
[−2L,2L]d

∂αK(x, ·) ∂αϕ+ µn

∫
Ω

D(K(x, ·)) D(ϕ) = ϕ(x).

Regardless of the analytical computation of K, formulating the problem as a minimization in a
reproducing kernel Hilbert space provides a way to quantify the impact of the physical regularization
on the estimator’s convergence rate, which is our primary goal.

4. Convergence rates

The results of the previous section allow us to draw on the existing literature on kernel learning to
gain a deeper understanding of the properties of the estimator f̂n and the influence of the operator D
on the convergence rate.

4.1. Eigenvalues of the integral operator

The convergence rate of f̂n to f⋆ is determined by the decay speed of the eigenvalues of the so-called
integral operator LK : L2(Ω,PX) → L2(Ω,PX), defined by

∀f ∈ L2(Ω,PX),∀x ∈ Ω, LKf(x) =

∫
Ω
K(x, y)f(y)dPX(y),

where PX is the distribution of X on Ω (e.g., Caponnetto and Vito, 2007). Note that the integral
in the definition of LK could also have been taken over [−2L, 2L]d because the support of PX is
included in Ω̄. However, finding the eigenvalues of LK is not an easy task—even when X is uni-
formly distributed on Ω—, not to mention the fact that PX is usually unknown in real applications.
Nevertheless, we show in Theorem 4.2 that these eigenvalues can be bounded by the eigenvalues of
the operator COnC, where C is the projection on Ω defined below. Importantly, COnC no longer
depends on PX . Moreover, its non-zero eigenvalues are characterized by a weak formulation, as we
will see in Theorem 4.5.

Definition 4.1 (Projection on Ω) Let C be the operator on L2([−2L, 2L]d) defined by Cf = f1Ω.
Then C2 = C, i.e., C is a projector, and

⟨f, C(g)⟩L2([−2L,2L]d) =

∫
[−2L,2L]d

fg1Ω = ⟨C(f), g⟩L2([−2L,2L]d),

i.e., C is self-adjoint.

As for now, it is assumed that the distribution PX of X has a density dPX
dx with respect to the

Lebesgue measure on Ω.

7
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Theorem 4.2 (Kernels and eigenvalues) Let K : [−2L, 2L]d × [−2L, 2L]d → R be the kernel of
Theorem 3.3. Assume that there exists κ > 0 such that dPX

dx ⩽ κ. Then the eigenvalues am(LK) of
LK are bounded by the eigenvalues am(COnC) of COnC on L2([−2L, 2L]d) in such a way that
am(LK) ⩽ κam(COnC).

4.2. Effective dimension and convergence rate

We will see in the next subsection how to compute the eigenvalues of COnC. Yet, assuming we
have them at hand, it is then possible to obtain a bound on the rate of convergence of f̂n to f⋆ by
bounding the so-called effective dimension of the kernel (Caponnetto and Vito, 2007), defined by

N (λn, µn) = tr(LK(Id + LK)−1),

where Id is the identity operator, i.e., Id(f) = f , and the symbol tr stands for the trace, i.e., the
sum of the eigenvalues. Lemma D.1 in the appendix shows that, whenever dPX

dx ⩽ κ,

N (λn, µn) ⩽
∑
m∈N

1

1 + (κam(COnC))−1
. (3)

Putting all the pieces together, we have the following theorem, which bounds the estimation error
between f̂n and f⋆.

Theorem 4.3 (Convergence rate) Assume that s > d/2, f⋆ ∈ Hs(Ω), dPX
dx ⩽ κ for some κ > 0,

µn ⩾ 0, limn→∞ λn = limn→∞ µn = limn→∞ λn/µn = 0, λn ⩾ n−1, and N (λn, µn)λ
−1
n =

on(n). Assume, in addition, that, for some σ > 0 and M > 0, the noise ε satisfies

∀ℓ ∈ N, E(|ε|ℓ | X) ⩽
1

2
ℓ! σ2 M ℓ−2. (4)

Then, for some constant C4 > 0 and n large enough,

E
∫
Ω
|f̂n − f⋆|2dPX

⩽ C4 log
2(n)

(
λn∥f⋆∥2Hs(Ω) + µn∥D(f⋆)∥2L2(Ω) +

M2

n2λn
+
σ2N (λn, µn)

n

)
.

The sub-Gamma assumption (4) on the noise ε is quite general and is satisfied in particular when ε is
bounded (possibly depending on X), or when ε is Gaussian and independent of X (e.g., Boucheron
et al., 2013, Theorem 2.10). We stress that the result of Theorem 4.3 is general and holds regardless
of the form of the linear differential operator D . A simple bound on N (λn, µn), neglecting the
dependence in D , allows to show that the PIML estimator converges at least at the Sobolev minimax
rate over the class Hs(Ω).

Proposition 4.4 (Minimum rate) Suppose that the assumptions of Theorem 4 are verified, and let
λn = n−2s/(2s+d)

√
log(n) and µn = λn

√
log(n). Then the estimator f̂n converges at a rate at

least larger than the Sobolev minimax rate, up to a log term, i.e.,

E
∫
Ω
|f̂n − f⋆|2dPX = On

(
n−2s/(2s+d) log3(n)

)
.

8



PHYSICS-INFORMED MACHINE LEARNING AS A KERNEL METHOD

However, this is only an upper bound, and we expect situations where f̂n has a faster convergence
rate thanks to the inclusion of the physical penalty ∥D(f)∥L2(Ω). Such an improvement will depend
on the magnitude of the modeling error ∥D(f⋆)∥L2(Ω) and on the effective dimension N (λn, µn).
To achieve this goal, the eigenvalues am of COnC must be characterized and then plugged into
inequality (3). This is the problem addressed in the next subsection.

4.3. Characterizing the eigenvalues

The goal of this section is to specify the spectrum of COnC. It is worth noting that ker(COnC) is
not empty, as it encompasses every smooth function with compact support in ]−2L, 2L[d\Ω̄. The
next theorem characterizes the eigenfunctions associated with non-zero eigenvalues and shows that
they are in fact smooth functions on Ω and (Ω̄)c satisfying two PDEs.

Theorem 4.5 (Eigenfunction characterization) Assume that s > d/2 and that the functions pα in
Definition 3.1 belong to C∞(Ω). Let am > 0 be a positive eigenvalue of the operator COnC. Then
the corresponding eigenfunction vm satisfies vm = a−1

m Cwm, where wm ∈ Hs
per([−2L, 2L]d).

Moreover, for any test function ϕ ∈ Hs
per([−2L, 2L]d),

λn
∑
|α|⩽s

∫
[−2L,2L]d

∂αwm ∂αϕ+ µn

∫
Ω

D(wm) D(ϕ) = a−1
m

∫
Ω
wmϕ. (5)

In particular, any solution of the weak formulation (5) satisfies the following PDE system:

(i) wm ∈ C∞(Ω) and

∀x ∈ Ω, λn
∑
|α|⩽s

(−1)|α|∂2αwm(x) + µnD∗Dwm(x) = a−1
m wm(x),

where D∗(f) :=
∑

|α|⩽s(−1)|α|∂α(pαf) is the adjoint operator of D .

(ii) wm ∈ C∞([−2L, 2L]d\Ω̄) and

∀x ∈ [−2L, 2L]d\Ω̄,
∑
|α|⩽s

(−1)|α|∂2αwm(x) = 0.

Notice that wm might be irregular on the boundary ∂Ω, but only there.

Theorem 4.5 is important insofar as it allows to characterize the positive eigenvalues am of the
operatorCOnC. Indeed, these eigenvalues are the only real numbers such that the weak formulation
(5) admits a solution. This weak formulation has to be solved in a case-by-case study, given the
differential operator D . As an illustration, an example is presented in the next section with D = d

dx .

4.4. The choice of Sobolev regularization is unimportant

So far, we have considered problem (1) with the Sobolev regularization ∥f∥2
Hs

per([−2L,2L]d)
. How-

ever, other choices of Sobolev norms, such as ∥f∥2Hs(Ω), are also possible. Fortunately, this choice
does not affect the effective dimension N (λn, µn), and thus the convergence rate in Theorem 4.3.

9
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Theorem 4.6 (Equivalent regularities and effective dimension) Assume that s > d/2. Then the
following three estimators correspond each to a kernel learning problem:

f̂ (1)n = argmin
f∈Hs(Ω)

n∑
i=1

|f(Xi)− Yi|2 + λn∥f∥2Hs(Ω) + µn∥D(f)∥2L2(Ω),

f̂ (2)n = argmin
f∈Hs

per([−2L,2L]d)

n∑
i=1

|f(Xi)− Yi|2 + λn∥f∥2Hs
per([−2L,2L]d) + µn∥D(f)∥2L2(Ω),

f̂ (3)n = argmin
f∈Hs(Ω)

n∑
i=1

|f(Xi)− Yi|2 + λn∥f∥2 + µn∥D(f)∥2L2(Ω),

where ∥·∥ is any of the equivalent Sobolev norms. Moreover, these three estimators share equivalent
effective dimensions N (λn, µn). Accordingly, they share the same upper bound on the convergence
rate given by Theorem 4.3.

The incorporation of a Sobolev regularization in the empirical risk function is needed to guarantee
that f̂n has good statistical properties. For example, even with the simplest PDEs, the minimizer
of

∑n
i=1 |f(Xi) − Yi|2 + µn∥D(f)∥2L2(Ω) might always be 0, independently of the data points

(Xi, Yi) (see, e.g., Doumèche et al., 2023, Example 5.1). A way to overcome these statistical issues
is to specify the boundary conditions, and to consider regular differential operators D and smooth
domain Ω. For example, Azzimonti et al. (2015), Arnone et al. (2022), and Ferraccioli et al. (2022)
consider models such that f⋆|∂Ω = 0, where Ω is an Euclidean ball of Rd and D are second-order
elliptic operators. However, these assumptions amount to adding a Sobolev penalty, since, in this
case, ∥D(f)∥L2(Ω) and ∥f∥H2

0 (Ω) are equivalent norms (e.g., Evans, 2010, Chapter 6.3, Theorem 4).
Similar results hold for second order parabolic PDEs (Evans, 2010, Chapter 7.1, Theorem 5) and
for second order hyperbolic PDEs (Evans, 2010, Chapter 7.2, Theorem 2). The need for a Sobolev
regularization is explained by the fact that the Sobolev embedding Hs(Ω) ↪→ C0(Ω) only holds
for s > d/2. In other words, the Sobolev regularization is needed to give a sense to the pointwise
evaluations |f(Xi)− Yi|.

5. Application: speed-up effect of the physical penalty

Our objective is to apply the framework presented above to the case d = 1, Ω = [−L,L], s = 1,
f⋆ ∈ H1(Ω), and D = d

dx . Of course, assuming that D(f⋆) ≃ 0 is a strong assumption, equivalent
to assuming that f⋆ is approximately constant. However, the goal of this section is to provide
a simple illustration where the kernel K of Theorem 3.3 can be analytically computed and the
eigenvalues of the operator LK can be effectively bounded. The next result is a consequence of
Proposition 3.4.

Proposition 5.1 (One-dimensional kernel) Assume that s = 1, Ω = [−L,L], and D = d
dx . Then,

letting γn =
√

λn
λn+µn

, one has, for all x, y ∈ [−L,L],

K(x, y) =
γn

2λn sinh(2γnL)

(
(cosh(2γnL) + cosh(2γnx)) cosh(γn(x− y))

+ ((1− 2× 1x>y) sinh(2γnL)− sinh(2γnx)) sinh(γn(x− y))
)
.
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An example of kernel K with L = 1 and λn = µn = 1 is shown in Figure 2. Following the
strategy of Section 4, it remains to bound the positive eigenvalues am of the operator COnC using
Theorem 4.5. According to the latter, this is achieved by solving the weak formulation

∀ϕ ∈ H1
per([−2L, 2L]), λn

∫
[−2L,2L]d

wmϕ+ (λn + µn)

∫
Ω

d

dx
wm

d

dx
ϕ = a−1

m

∫
Ω
wmϕ.

Proposition 5.2 (One-dimensional eigenvalues) Assume that s = 1, Ω = [−L,L], and D = d
dx .

Then, for all m ⩾ 3,

4L2

(λn + µn)(m+ 4)2π2
⩽ am ⩽

4L2

(λn + µn)(m− 2)2π2
,

where am are the eigenvalues of COnC.

Using inequality (3), we can then bound the effective dimension of the kernel. This allows us, via
Theorem 4.3, to specify the convergence rate of f̂n to f⋆.

Theorem 5.3 (Kernel speed-up) Assume that f⋆ ∈ H1([−L,L]), dPX
dx ⩽ κ for some κ > 0, and

the noise ε satisfies the sub-Gamma condition (4). Let λn = n−1 log(n) and

µn =

{
n−2/3/∥D(f⋆)∥L2(Ω) if ∥D(f⋆)∥L2(Ω) ̸= 0

1/ log(n) if ∥D(f⋆)∥L2(Ω) = 0.

Then the estimator f̂n of f⋆ minimizing the empirical risk function (1) with s = 1 and D = d
dx

satisfies

E
∫
[−L,L]

|f̂n − f⋆|2dPX = ∥D(f⋆)∥L2(Ω) On

(
n−2/3 log3(n)

)
+ (∥f⋆∥2H1(Ω) + σ2 +M2)On

(
n−1 log3(n)

)
.

This bound reflects the benefit of the physical penalty ∥D(f⋆)∥L2(Ω) on the performance of the
estimator f̂n. Indeed, when ∥D(f⋆)∥L2(Ω) = 0 (i.e., the physical model is perfect), then f⋆ is a
constant function, and the PIML method recovers the parametric convergence rate of n−1. Here, the
physical information directly improves the convergence rate. Otherwise, when ∥D(f⋆)∥L2(Ω) > 0,
we recover the Sobolev minimax convergence rate in H1(Ω) of n−2/3 (up to a log factor—see
Tsybakov, 2009, Theorem 2.11). We emphasize that this rate is also optimal for our problem, since
∥D(f⋆)∥L2(Ω) ⩽ ∥f⋆∥H1(Ω), i.e., it is as hard to learn a function of bounded ∥D(·)∥L2(Ω) norm as
it is to learn a function of bounded H1(Ω) norm. In this case, the benefit of physical modeling is
carried by the constant ∥D(f⋆)∥L2(Ω) in front of the convergence rate, i.e., the better the modeling,
the smaller the estimation error. Note however that the parameter µn in Theorem 5.3 depends on
the unknown physical inconsistency ∥D(f⋆)∥L2(Ω). In practice, on may resort to a cross-validation-
type strategy to estimate µn.
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Figure 3: Error bounds err(n) (mean ± std over 10 runs) of the kernel estimator f̂n with respect to
the sample size n, in log-log scale, for the perfect modeling case (left) and the imperfect
one (right). The experimental convergence rates, obtained by fitting a linear regression,
are displayed in orange dotted.
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Figure 2: KernelK of Proposition
5.1 with L = 1, λn =
µn = 1.

We conclude this section with a small numerical experi-
ment1 illustrating Theorem 5.3. We consider two problems: a
perfect modeling situation where Y = 1 + ε, and an imper-
fect modeling one where Y = 1 + 0.1|X| + ε. In both cases,
X ∼ U ([−1, 1]) and ε ∼ N (0, 1). The difference is that in
the perfect modeling case, D(f⋆) = 0, whereas in the imper-
fect situation ∥D(f⋆)∥2L2([−1,1]) = 2/300. For each n, we let

err(n) = E
∫
Ω |f̂n − f⋆|2dPX . Figure 3 shows the values of

log(err)(n) as a function of log(n), for n ranging from 10 to
10000 (the quantity log(err)(n) is estimated by an empirical
mean over 500-sample Monte Carlo estimations, repeated ten
times). The experimental convergence rates obtained by fitting
linear regressions are −1.02 in the perfect modeling case and
−0.77 in the imperfect one. These experimental rates are con-
sistent with the results of Theorem 5.3, insofar as −1.02 ⩽ −1
and −0.77 ⩽ −2/3.

6. Conclusion

From the physics-informed machine learning point of view, we have shown that minimizing the
empirical risk regularized by a PDE can be viewed as a kernel method. Leveraging kernel theory,
we have explained how to derive convergence rates. In particular, the simple but instructive example
D = d

dx illustrates how to compute both the kernel and the convergence rate of the associated
estimator. To the best of our knowledge, this is the first contribution that demonstrates tangible
improvements in convergence rates by including a physical penalty in the risk function. Thus, the
take-home message is that physical information can be beneficial to the statistical performance of
the estimators. Note that our work does not include boundary conditions h, but they could easily

1. The code to reproduce all numerical experiments can be found here.
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be considered. A first solution is to add another penalty to Rn of the form ∥h − f∥2L2(∂Ω), which
would insert the extra term

∫
∂Ω(K(x, ·) − h)ϕ in Proposition 3.4. A second solution is to enforce

the conditions at new data points X(b)
j sampled on ∂Ω (as done, for example, in Raissi et al., 2019).

Our theorems hold for this extended training sample, provided that f⋆|∂Ω = h.
An important future research direction is to implement numerical strategies for computing the

kernelK in the general case. If successful, such strategies can then be used directly to solve general
physics-informed machine learning problems. In order to derive theoretical guarantees, we need
to go further by obtaining bounds on the eigenvalues of the operator associated with the problem.
The key lies in Theorem 4.5, which characterizes the eigenvalues by a weak formulation. Once
established, such bounds can be employed to obtain accurate rates for related techniques, typically
physics-informed neural networks. It would also be interesting to derive rates of convergence in the
setting s ⩽ d/2 using the so-called source condition (e.g., Blanchard and Mücke, 2020). An even
more ambitious goal is to generalize the approach to nonlinear differential systems, for example
polynomial. Overall, we believe that our results pave the way for a deeper understanding of the
impact of physical regularization on empirical risk minimization performance.
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Appendix A. Some fundamentals of functional analysis

A.1. Sobolev spaces

Norms. The p norm ∥x∥p of a d-dimensional vector x = (x1, . . . , xd) is defined by ∥x∥p =

(1d
∑d

i=1 |xi|p)1/p. For a function f : Ω → R, we let ∥f∥Lp(Ω) = ( 1
|Ω|

∫
Ω |f |p)1/p. Simi-

larly, ∥f∥∞,Ω = supx∈Ω |f(x)|. For the sake of conciseness, we sometimes write ∥f∥∞ instead
of ∥f∥∞,Ω.

Multi-indices and partial derivatives. For a multi-index α = (α1, . . . , αd) ∈ Nd and a differen-
tiable function f : Rd → R, the α partial derivative of f is defined by

∂αf = (∂1)
α1 . . . (∂d)

αdf.

The set of multi-indices of sum less than k is defined by

{|α| ⩽ k} = {(α1, . . . , αd1) ∈ Nd, α1 + · · ·+ αd1 ⩽ k}.

If α = 0, ∂αf = f . Given two multi-indices α and β, we write α ⩽ β when αi ⩽ βi for all
1 ⩽ i ⩽ d. The set of multi-indices less than α is denoted by {β ⩽ α}. For a multi-index α such
that |α| ⩽ k, both sets {|β| ⩽ k} and {β ⩽ α} are contained in {0, . . . , k}d and are therefore finite.

Hölder norm. ForK ∈ N, the Hölder norm of orderK of a function f ∈ CK(Ω,R) is defined by
∥f∥CK(Ω) = max|α|⩽K ∥∂αf∥∞,Ω. This norm allows to bound a function as well as its derivatives.
The space CK(Ω,R) endowed with the Hölder norm ∥ · ∥CK(Ω) is a Banach space. The space
C∞(Ω̄,Rd2) is defined as the subspace of continuous functions f : Ω̄ → R satisfying f |Ω ∈
C∞(Ω,R) and, for all K ∈ N, ∥f∥CK(Ω) <∞.

Lipschitz function. Given a normed space (V, ∥·∥), the Lipschitz norm of a function f : V → Rd

is defined by

∥f∥Lip = sup
x,y∈V

∥f(x)− f(y)∥2
∥x− y∥

.

A function f is Lipschitz if ∥f∥Lip <∞. The mean value theorem implies that for all f ∈ C1(V,R),
∥f∥Lip ⩽ ∥f∥C1(V ).
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Lipschitz surface and domain. A surface Γ ⊆ Rd is said to be Lipschitz if locally, in a neigh-
borhood U(x) of any point x ∈ Γ, an appropriate rotation rx of the coordinate system transforms Γ
into the graph of a Lipschitz function ϕx, i.e.,

rx(Γ ∩ U(x)) = {(x1, . . . , xd−1, ϕx(x1, . . . , xd−1)),∀(x1, . . . , xd) ∈ rx(Γ ∩ Ux)}.

A domain Ω ⊆ Rd is said to be Lipschitz if its has Lipschitz boundary and lies on one side of it,
i.e., ϕx < 0 or ϕx > 0 on all intersections Ω ∩ Ux. All manifolds with C1 boundary and all convex
domains are Lipschitz domains (e.g., Agranovich, 2015).

Sobolev spaces. Let Ω ⊆ Rd be an open set. A function g ∈ L2(Ω,R) is said to be the αth
weak derivative of f ∈ L2(Ω,R) if, for all ϕ ∈ C∞(Ω̄,R) with compact support in Ω, one has∫
Ω gϕ = (−1)|α|

∫
Ω f∂

αϕ. This is denoted by g = ∂αf . For s ∈ N, the Sobolev space Hs(Ω) is
the space of all functions f ∈ L2(Ω,R) such that ∂αf exists for all |α| ⩽ s. This space is naturally
endowed with the norm

∥f∥Hs(Ω) =
( ∑

|α|⩽s

∥∂αu∥2L2(Ω)

)1/2
.

Of course, if a function f belongs to the Hölder space CK(Ω̄,R), then it belongs to the Sobolev
space HK(Ω), and its weak derivatives are the usual derivatives. For more on Sobolev spaces, we
refer the reader to Evans (2010, Chapter 5).

Fundamental results on Sobolev spaces. Let Ω ⊆ Rd be an open set and let s ∈ N be an order of
differentiation. It is not straightforward to extend a function f ∈ Hs(Ω) to a function f̃ ∈ Hs(Rd)
such that

f̃ |Ω = f |Ω and ∥f̃∥Hs(Rd) ⩽ CΩ∥f∥Hs(Ω),

for some constant CΩ independent of f . This result is known as the extension theorem in Evans
(2010, Chapter 5.4) when Ω is a manifold with C1 boundary. However, the simplest domains in
PDEs take the form ]0, L[3×]0, T [, the boundary of which is not C1. Fortunately, Stein (1970,
Theorem 5, Chapter VI.3.3) provides an extension theorem for bounded Lipschitz domains. The
following two theorems are proved in Doumèche et al. (2023).

Theorem A.1 (Sobolev inequalities) Let Ω ⊆ Rd be a bounded Lipschitz domain and let s ∈ N.
If s > d1/2, then there is an operator Π̃ : Hs(Ω) → C0(Ω,R) such that, for all f ∈ Hs(Ω),
Π̃(f) = f almost everywhere. Moreover, there is a constant CΩ > 0, depending only on Ω, such
that ∥Π̃(f)∥∞,Ω ⩽ CΩ∥f∥Hs(Ω).

Theorem A.2 (Rellich-Kondrachov) Let Ω ⊆ Rd be a bounded Lipschitz domain and let s ∈ N.
Let (fp)p∈N ∈ Hs+1(Ω) be a sequence such that (∥fp∥Hs+1(Ω))p∈N is bounded. There exists a
function f∞ ∈ Hs+1(Ω) and a subsequence of (fp)p∈N that converges to f∞ with respect to the
Hs(Ω) norm.

A.2. Fourier series on complex periodic Sobolev spaces

Let L > 0.
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Definition A.3 (Periodic extension operator) Let d ∈ N⋆. The periodic extension operator Eper :
L2([−2L, 2L]d) → L2([−4L, 4L]d) is defined, for all function f : [−2L, 2L[d→ R and all x =
(x1, . . . , xd) ∈ [−4L, 4L]d, by

Eper(f)(x) = f
(
x1 − 4L

⌊ x1
4L

⌋
, . . . , xd − 4L

⌊ xd
4L

⌋)
.

Definition A.4 (Periodic Sobolev spaces) Let s ∈ N. The space of functions f such thatEper(f) ∈
Hs([−4L, 4L]d) is denoted by Hs

per([−2L, 2L]d).

If s > 0, then Hs
per([−2L, 2L]d) is a strict linear subspace of Hs([−2L, 2L]d). For example, for all

s ⩾ 1, the function f(x) = x21 + · · ·+ x2d belongs to Hs([−2L, 2L]d), but f /∈ Hs
per([−2L, 2L]d).

Indeed, thoughEper(f) is continuous, it is not weakly differentiable. The following characterization
of periodic Sobolev spaces in terms of Fourier series are well-known (see, e.g., Temam, 1995,
Chapter 2.1).

Proposition A.5 (Fourier decomposition on periodic Sobolev spaces) Let s ∈ N and d ⩾ 1.
For all function f ∈ Hs

per([−2L, 2L]d), there exists a unique vector z ∈ CZd
such that f(x) =∑

k∈Zd zk exp(i
π
2L⟨k, x⟩), and

∀|α| ⩽ s, ∂αf(x) =
(
i
π

2L

)|α| ∑
k∈Zd

zk exp(i
π

2L
⟨k, x⟩)

d∏
j=1

k
αj

j .

Moreover, for all multi-index |α| ⩽ s, ∥∂αf∥2
L2([−2L,2L]d))

= ( π
2L)

2|α|∑
k∈Zd |zk|2

∏d
j=1 k

2αj

j .

Therefore, ∥f∥2
Hs([−2L,2L]d)

=
∑

k∈Zd |zk|2
∑

|α|⩽s(
π
2L)

2|α|∏d
j=1 k

2αj

j .

Proof The uniqueness of the decomposition is a consequence of

zk =
1

4dLd

∫
[−2L,2L]d

f(x) exp(−i π
2L

⟨k, x⟩)dx.

To prove the existence of such a decomposition, consider f ∈ Hs
per([−2L, 2L]d). Since f ∈

L2([−2L, 2L]d) and its derivative with respect to the first variable ∂1f ∈ L2([−2L, 2L]d), f and
∂1f can be decomposed into the following multidimensional Fourier series (see, e.g., Brezis, 2010,
Chapter 5.4):

∀x ∈ [−2L, 2L]d, f(x) =
∑
k∈Zd

zk exp(i
π

2L
⟨k, x⟩),

∀x ∈ [−2L, 2L]d, ∂1f(x) =
∑
k∈Zd

z̃k exp(i
π

2L
⟨k, x⟩).

Observe that Eper(f) has the same Fourier decomposition as f and that Eper(∂1f) has the same
decomposition as ∂1f . The goal is to show that z̃k = i π

2Lk1zk. By definition of the weak derivative
∂1Eper(f), for any test function ϕ ∈ C∞([−4L, 4L]d) with compact support in [−4L, 4L]d, one
has ∫

[−4L,4L]d
ϕ∂1Eper(f) = −

∫
[−4L,4L]d

Eper(f)∂1ϕ.
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Let

ψ(u) =



0 if − 4L ⩽ u ⩽ −1− 2L∫ u
−1−2L exp( −1

(2L+1+v)2
) exp( −1

(2L+v)2
)dv

(
∫−2L
−1−2L exp( −1

(2L+1+v)2
) exp( −1

(2L+v)2
dv)−1

, if − 1− 2L ⩽ u ⩽ −2L,

1 if − 2L ⩽ u ⩽ 2L− 1,
1− ψ(u− 4L) if 2L− 1 ⩽ u ⩽ 2L,

0 if 2L+ 1 ⩽ u ⩽ 4L.

One easily verifies that ψ ∈ C∞([−4L, 4L]) and that it has a compact support in [−4L, 4L]. More-
over, ∥ψ∥∞ = 1. Notice that, for all function g ∈ L2([−2L, 2L]) and any 4L-periodic function
ϕ ∈ C∞([−4L, 4L]) whose support is not necessary compact,∫

[−4L,4L]
gϕψ =

∫
[−2L,2L]

gϕ and
∫
[−4L,4L]

g(ϕψ)′ =

∫
[−2L,2L]

gϕ′. (6)

To generalize such a property in dimension d, we let ψd(x) =
∏d

j=1 ψ(xj). Then, for all k ∈ Zd,
ϕk,d(x) := ψd(x) exp(−i π

2L⟨k, x⟩) is a smooth function with compact support. Thus, by definition
of the weak derivative,∫

[−4L,4L]d
ϕk,d∂1Eper(f) = −

∫
[−4L,4L]d

Eper(f)∂1ϕk,d.

Moreover, using the left-hand side of (6), we have that∫
[−4L,4L]d

ϕk,d∂1Eper(f) =

∫
[−2L,2L]d

exp(−i π
2L

⟨k, x⟩)∂1Eper(f)(x)dx = (4L)dz̃k,

while, using the right-hand side of (6), we have that∫
[−4L,4L]d

Eper(f)∂1ϕk,d =
−iπ
2L

k1

∫
[−2L,2L]d

Eper(f)(x) exp(
−iπ
2L

⟨k, x⟩)dx = (4L)d
−iπ
2L

k1zk.

Therefore, z̃k = i π
2Lk1zk.

The exact same reasoning holds for ∂jf , for all 1 ⩽ j ⩽ d. By iterating on the successive
derivatives, we obtain that for all |α| ⩽ s, ∂αf(x) = (i π

2L)
|α|∑

k∈Zd zk exp(i
π
2L⟨k, x⟩)

∏d
j=1 k

αj

j ,
as desired. The last two equations of the proposition are direct consequences of Parseval’s theorem.

This proposition states that there is a one-to-one mapping between Hs
per([−2L, 2L]d) and {z ∈

CZd |
∑

k |zk|2(1 + ∥k∥22)s < ∞ and z̄k = z−k}. In particular, this shows that for s > 0,
Hs

per([−2L, 2L]d) is an Hilbert space for the norm ∥ · ∥Hs([−2L,2L]d).

A.3. Fourier series on Lipschitz domains

As for now, it is assumed that Ω ⊆ [−L,L]d is a bounded Lipschitz domain. The objective of this
section is to parameterize the Sobolev space Hs(Ω) by the space CZd

of Fourier coefficients.
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Proposition A.6 (Fourier decomposition of Hs(Ω)) Let s ∈ N. For any function f ∈ Hs(Ω),
there is a vector z ∈ CZd

such that
∑

k∈Zd |zk|2∥k∥2s2 <∞ and

∀|α| ⩽ s,∀x ∈ Ω, ∂αf(x) =
(
i
π

2L

)|α| ∑
k∈Zd

zk exp(i
π

2L
⟨k, x⟩)

d∏
j=1

k
αj

j .

Thus, f can be linearly extended to the function Ẽ(f)(x) =
∑

k∈Zd zk exp(i
π
2L⟨k, x⟩) which be-

longs to Hs
per([−2L, 2L]d). Moreover, there is a constant Cs,Ω, depending only on the domain Ω

and the order of differentiation s, such that, for all f ∈ Hs(Ω),

∥Ẽ(f)∥2Hs
per([−2L,2L]d) =

∑
k∈Zd

|zk|2
∑
|α|⩽s

( π

2L

)2|α| d∏
j=1

k
2αj

j ⩽ C̃s,Ω∥f∥2Hs(Ω).

Proof Let f ∈ Hs(Ω). According to the Sobolev extension theorem (Evans, 2010, Chapter 5.4),
there is an extension operator E : Hs(Ω) → Hs([−2L, 2L]d) and a constant Cs,Ω, depending
only Ω and s, such that, for all f ∈ Hs(Ω), E(f) ∈ Hs([−2L, 2L]d) and ∥E(f)∥Hs([−2L,2L]d) ⩽

Cs,Ω∥f∥Hs(Ω). Choose ϕ ∈ C∞([−2L, 2L]d, [0, 1]) with compact support, and such that ϕ = 1 on
Ω and ϕ = 0 on [−2L, 2L]d\[−3L/2, 3L/2]d. Then the extension operator Ẽ(f) = ϕ × E(f) is
such that Ẽ(f) ∈ Hs

per([−2L, 2L]d). In addition, the Leibniz formula on weak derivatives shows
that there is a constant C̃s,Ω such that ∥Ẽ(f)∥2

Hs([−2L,2L]d)
⩽ C̃s,Ω∥f∥2Hs(Ω). The result is then a

direct consequence of Proposition A.5 applied to Ẽ(f).

Classical theorems on series differentiation show that given any vector z ∈ CZd
satisfying∑

k∈Zd

|zk|2∥k∥2s2 <∞ and z̄ = −z,

the associated Fourier series belongs to Hs(Ω). This shows that one can identify Hs(Ω) with
{z ∈ CZd |

∑
k∈Zd |zk|2∥k∥2s2 < ∞ and z̄ = −z}, and the inner product ⟨f, g⟩Hs([−2L,2L]d)) =∑

|α|⩽s

∫
[−2L,2L]d ∂

αf∂αg with ⟨z̃, z⟩CZd =
∑

k∈Zd z̃kz̄k
∑

|α|⩽s(
π
2L)

2|α|∏d
j=1 k

2αj

j .

Proposition A.7 (Countable reindexing of Hs(Ω)) There is a one-to-one mapping k : N → Zd

such that, letting ej = (x 7→ exp(i π
2L⟨k(j), x⟩)), any function f ∈ Hs(Ω) can be written as∑

j∈N zjej , with z ∈ CN and
∑

j∈N |zj |2j2s/d <∞.

Proof Let f ∈ L2(Ω). By Proposition A.6, we know that f ∈ Hs(Ω) if and only if there is a
vector z ∈ CZd

such that
∑

k∈Zd |zk|2∥k∥2s2 < ∞, and f(x) =
∑

k∈Zd zk exp(i
π
2L⟨k, x⟩). Let

j ∈ N 7→ k(j) ∈ Zd be a one-to-one mapping such that ∥k(j)∥1 is increasing. Then, for all K > 0,(
K + (d+ 1)− 1

(d+ 1)− 1

)
⩽ argmin{j ∈ N | ∥k(j)∥1 ⩾ K} ⩽ 2d

(
K + (d+ 1)− 1

(d+ 1)− 1

)
.

Indeed,
(
K + (d+ 1)− 1

(d+ 1)− 1

)
corresponds to the number of vectors (n0, . . . , nd) ∈ Nd+1 such

that n0 + · · · + nd = K, where nℓ represents the order of differentiation along the dimension ℓ
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and where n0 is a fictive dimension to take into account derivatives of order less than s). Since(
K + (d+ 1)− 1

(d+ 1)− 1

)
∼

j→∞
Kd

d! , we deduce that there are constants C1, C2 > 0 such that C1j
1/d ⩽

∥k(j)∥1 ⩽ C2j
1/d. Observe that ∥k∥2s2 ⩾ (maxdj=1 kj)

2s ⩾ ∥k∥2s1 /d2s, and that ∥k∥2s2 ⩽

(dmaxdj=1 k
2
j )

s ⩽ ds∥k∥2s1 . We conclude that f ∈ Hs(Ω) if and only if f can be written as∑
j∈N zk(j) exp(i

π
2L⟨k(j), x⟩), where

∑
j∈N |zk(j)|22j2s/d <∞.

A.4. Operator theory

An operator is a linear function between two Hilbert spaces, potentially of infinite dimensions. The
objective of this section is to give conditions on the regularity of such an operator so that it behaves
similarly to matrices in finite dimension spaces. For more advanced material, the reader is referred
to the textbooks by Evans (2010, Chapter D.6) and Brezis (2010, Problem 37 (6)).

Definition A.8 (Hermitian spaces and Hermitian basis) (H, ⟨·, ·⟩) is a Hermitian space when H
is a complex Hilbert space endowed with an Hermitian inner product ⟨·, ·⟩. This Hermitian in-
ner product is associated with the norm ∥u∥2 = ⟨u, u⟩, defining a topology on H . We say that
(vn)n∈N ∈ HN is a Hermitian basis of H if ⟨vn, vm⟩ = δn,m, and if for all u ∈ H , there exists a
sequence (zn)n∈N ∈ CN such that limn→∞ ∥u −

∑n
j=1 zjvj∥ = 0. H is said to be separable if it

admits an Hermitian basis.

Definition A.9 (Self-adjoint operator) Let (H, ⟨·, ·⟩) be a Hermitian space. Let O : H → H be
an operator. We say that O is self-adjoint if, for all u, v ∈ H , one has ⟨Ou, v⟩ = ⟨u,Ov⟩.

Definition A.10 (Compact operator) Let (H, ⟨·, ·⟩) be a Hermitian space. Let O : H → H be an
operator. We say that O is compact if, for any bounded set S ⊆ H , the closure of O(S) is compact.

Theorem A.11 (Spectral theorem) Let O be a compact self-adjoint operator on a separable Her-
mitian space (H, ⟨·, ·⟩). Then O is diagonalizable in an orthonormal basis with real eigenvalues,
i.e., there is an Hermitian basis (vm)m∈N and real numbers (am)m∈N such that, for all u ∈ H ,
O(u) =

∑
m∈N am⟨vm, u⟩vm.

Definition A.12 (Positive operator) An operator O on a Hermitian space (H, ⟨·, ·⟩) is positive if,
for all u ∈ H , ⟨u,Ou⟩ ⩾ 0.

Theorem A.13 (Courant-Fischer min-max theorem) Let O be a positive compact self-adjoint
operator on a separable Hermitian space (H, ⟨·, ·⟩). Then the eigenvalues of O are positive and,
when reindexing them in a non-increasing order,

am(O) = max
Σ⊆H

dimΣ=m

min
u∈Σ
u̸=0

∥u∥−2⟨u,Ou⟩.

Definition A.14 (Order on Hermitian operators) Let O1 and O2 be two positive compact self-
adjoint operators on a separable Hermitian space (H, ⟨·, ·⟩). We say that O1 ⪰ O2 if, for all
u ∈ H , ⟨u,O1u⟩ ⩾ ⟨u,O2u⟩. According to the Courant-Fischer min-max theorem, this implies
that, for all m ∈ N, am(O1) ⩾ am(O2).

23
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A.5. Symmetry and PDEs

The goal of this section is to recall various techniques useful for the determination of the eigenfunc-
tions of a differential operator.

Definition A.15 (Symmetric operator) An operator O on a Hilbert space H ⊆ L2([−2L, 2L]d)
is said to be symmetric if, for all functions f ∈ H and for all x ∈ [−2L, 2L]d, O(f)(−x) =
O(f(−·))(x), where f(−·) is the function such that f(−·)(x) = f(−x).

For example, the Laplacian ∆ in dimension d = 2 is a symmetric operator, since ∆f(−·)(x) =
(∂21,1f(−·))(x) + (∂22,2f(−·))(x) = ∆f(−x). However, ∂1 is not symmetric, since ∂1f(−·)(x) =
−(∂1f)(−x).

Proposition A.16 (Eigenfunctions of symmetric operators) Let O be a symmetric operator on a
Hilbert space H . Then, if v is an eigenfunction of O , vsym = v+ v(−·) and vantisym = v− v(−·)
are two eigenfunctions of O with the same eigenvalue as v, and

∫
[−2L,2L]d v

symvantisym = 0.
Notice that v = (vsym + vantisym)/2.

Proof Let v be an eigenfunction of O for the eigenvalue a ∈ R, i.e., O(v) = av. Since O
is symmetric, O(v(−·)) = O(v)(−·) = av(−·). Therefore, vsym and vantisym are two eigen-
functions of O with a as eigenvalue. Since vsym is symmetric and vantisym is antisymmetric,∫
[−2L,2L]d v

symvantisym = 0, and so they are orthogonal.

Appendix B. The kernel point of view of PIML

This appendix is devoted to providing the tools of functional analysis relevant to our problem.

B.1. Properties of the differential operator

Let λn > 0 and µn ⩾ 0. We study in this section some of the properties of the differential opera-
tor On such that, for all f ∈ Hs

per([−2L, 2L]d), ∥O−1/2
n (f)∥2

L2([−2L,2L]d)
= λn∥f∥2Hs

per([−2L,2L]d)
+

µn∥D(f)∥2L2(Ω).

Proposition B.1 (Differential operator) There is an injective operator On : L2([−2L, 2L]d) →
Hs

per([−2L, 2L]d) defined as follows: for all f ∈ L2([−2L, 2L]d), On(f) is the unique element of
Hs

per([−2L, 2L]d) such that, for any test function ϕ ∈ Hs
per([−2L, 2L]d),

λn
∑
|α|⩽s

∫
[−2L,2L]d

∂αϕ ∂αOn(f) + µn

∫
Ω

Dϕ DOn(f) =

∫
[−2L,2L]d

ϕf.

Moreover, ∥Onf∥Hs
per([−2L,2L]d) ⩽ λ−1

n ∥f∥L2([−2L,2L]d), i.e., On is bounded.

Proof We use the framework provided by Evans (2010, page 304) to prove the result. Let the
bilinear form B : Hs

per([−2L, 2L]d)×Hs
per([−2L, 2L]d) → R be defined by

B[u, v] = λn
∑
|α|⩽s

∫
[−2L,2L]d

∂αu ∂αv + µn

∫
Ω

Du Dv.
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Observe that B is coercive since B[u, u] ⩾ λn∥u∥2Hs
per([−2L,2L]d)

. Moreover, using the Cauchy-

Schwarz inequality (x1 + · · ·+ xN )2 ⩽ N(x21 + · · ·+ x2N ), we see that∫
Ω
|Du|2 =

∫
Ω

∣∣∣ ∑
|α|⩽s

pα∂
αu

∣∣∣2
⩽ (max

α
∥pα∥∞)2

∫
[−2L,2L]d

( ∑
|α|⩽s

|∂αu|
)2

⩽ (max
α

∥pα∥∞)2 2s ∥u∥2Hs
per([−2L,2L]d).

Therefore, using the Cauchy-Schwarz inequality, we have∣∣∣ ∫
Ω

Du Dv
∣∣∣ ⩽ (max

α
∥pα∥∞)2 2s ∥u∥Hs

per([−2L,2L]d)∥v∥Hs
per([−2L,2L]d).

Thus,

|B[u, v]| ⩽ (λn + (max
α

∥pα∥∞)2 2sµn)∥u∥Hs
per([−2L,2L]d)∥v∥Hs

per([−2L,2L]d),

showing thereby the continuity of B.
Next, for f ∈ L2([−2L, 2L]d), observe that ϕ 7→

∫
[−2L,2L]d ϕf is a bounded linear form on

Hs
per([−2L, 2L]d), since∣∣∣ ∫

[−2L,2L]d
ϕf

∣∣∣ ⩽ ∥ϕ∥L2([−2L,2L]d)∥f∥L2([−2L,2L]d) ⩽ ∥ϕ∥Hs
per([−2L,2L]d)∥f∥L2([−2L,2L]d).

Thus, the Lax-Milgram theorem (Evans, 2010, Chapter 6.2, Theorem 1) ensures that for all f ∈
L2([−2L, 2L]d), there is a unique element w ∈ Hs

per([−2L, 2L]d) such that, for any test function
ϕ ∈ Hs

per([−2L, 2L]d),

λn
∑
|α|⩽s

∫
[−2L,2L]d

∂αϕ ∂αw + µn

∫
Ω

Dϕ Dw =

∫
[−2L,2L]d

ϕf.

Call On the function associatingw to f . Then, by the uniqueness ofw provided by the Lax-Milgram
theorem, we deduce that On is injective and linear. Moreover, using the coercivity of B, we have

∥Onf∥2Hs
per([−2L,2L]) ⩽ λ−1

n B[Onf,Onf ] = λ−1
n ⟨Onf, f⟩L2([−2L,2L]d)

⩽ λ−1
n ∥f∥L2([−2L,2L]d)∥Onf∥L2([−2L,2L]d)

⩽ λ−1
n ∥f∥L2([−2L,2L]d)∥Onf∥Hs

per([−2L,2L]d).

In particular, ∥Onf∥Hs
per([−2L,2L]d) ⩽ λ−1

n ∥f∥L2([−2L,2L]d), and the proof is complete.

Proposition B.2 (Diagonalization on L2) There exists an orthonormal basis (vm)m∈N of the space
L2([−2L, 2L]d) of eigenfunctions of On, associated with non-increasing strictly positive eigenval-
ues (am)m∈N, such that On =

∑
m∈N am⟨vm, ·⟩L2([−2L,2L]d)vm.
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Proof By the Rellich-Kondrakov theorem (Theorem A.2), the operator On : L2([−2L, 2L]d) →
L2([−2L, 2L]d) is compact. Moreover, by definition of On, for all f, g ∈ L2([−2L, 2L]d), one
has ⟨f,Ong⟩L2([−2L,2L]d) = B[Onf,Ong] = ⟨Onf, g⟩L2([−2L,2L]d). Therefore, On is self-adjoint.
Furthermore, ⟨f,Onf⟩L2([−2L,2L]d) = B[Onf,Onf ] ⩾ λn∥Onf∥Hs

per([−2L,2L]) > 0, since On is
injective. This means that On is strictly positive. The result is then a consequence of the spectral
theorem (Theorem A.11).

Proposition B.3 (Diagonalization on Hs) The orthonormal basis (vm)m∈N of Proposition B.2 is
in fact a basis ofHs

per([−2L, 2L]d). Moreover, letting C1 = (λn+(maxα ∥pα∥∞)2 2sµn), we have
that for all f ∈ Hs

per([−2L, 2L]d),∑
m∈N

a−1
m ⟨f, vm⟩2L2([−2L,2L]d) ⩽ C1∥f∥2Hs

per([−2L,2L]d).

Proof We follow the framework of Evans (2010, page 337). First observe that Onvm = amvm and
∥vm∥L2([−2L,2L]d) = 1, implies that ∥Onvm∥Hs

per([−2L,2L]d) ⩽ λ−1
n ∥vm∥L2([−2L,2L]) implies that

∥vm∥Hs
per([−2L,2L]d) ⩽ λ−1

n a−1
m . Therefore, vm ∈ Hs

per([−2L, 2L]d), and we can apply B to it. For
all m ∈ N,

B[vm, vm] = B[vm, a
−1
m Onvm] = a−1

m ⟨vm, vm⟩L2([−2L,2L]d) = a−1
m .

Similarly, if m ̸= ℓ, B[vm, vℓ] = a−1
m ⟨vm, vℓ⟩L2([−2L,2L]d) = 0. Remark that B is a inner product

on Hs
per([−2L, 2L]d) and (

√
amvm)m∈N is an orthonormal family for the B-inner product. Indeed,

notice that if, for a fixed u ∈ Hs
per([−2L, 2L]d), one has B[vm, u] = 0 for all m ∈ N, then

⟨vm, u⟩L2([−2L,2L]d) = 0. Thus, since (vm)m∈N is an orthonormal basis of L2([−2L, 2L]d), u = 0.
Let, for N ∈ N and u ∈ Hs

per([−2L, 2L]d),

uN =

N∑
m=0

B[u, a1/2m vm]a1/2m vm.

Since vm ∈ Hs
per([−2L, 2L]d), one has uN ∈ Hs

per([−2L, 2L]d). Upon noting that B[u− uN , u−
uN ] ⩾ 0 and thatB[u−uN , u−uN ] = B[u, u]−

∑N
m=0B[u, a

1/2
m vm]2 (using the bilinearity ofB),

we derive the following Bessel’s inequality for B

∞∑
m=0

B[u, a1/2m vm]2 ⩽ B[u, u] ⩽ C1∥u∥2Hs
per([−2L,2L]d). (7)

Then, for all ℓ ⩾ p,

B[uℓ − up, uℓ − up] =
ℓ∑

m=p

B[u, a1/2m vm]2 ⩽
∞∑

m=p

B[u, a1/2m vm]2
p→∞−−−→ 0.

This shows that (uN )N∈N is a Cauchy sequence for the B-inner product. Since, B[uℓ − up, uℓ −
up] ⩾ λ−1

n ∥uℓ − up∥2Hs([−2L,2L]d)
, (uN )N∈N is also a Cauchy sequence for the ∥ · ∥Hs

per([−2L,2L]d)
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norm. Recalling that Hs
per([−2L, 2L]d) is a Banach space, we deduce that u∞ := limN→∞ uN

exists and belongs toHs
per([−2L, 2L]d). SinceB is continuous with respect to the ∥·∥Hs

per([−2L,2L]d)

norm, we also deduce that, for all m ∈ N, B[u− u∞, vm] = 0, i.e., u = u∞. In conclusion,

u =
∑
m∈N

B[u, a1/2m vm]a1/2m vm.

This means that (vm)m∈N is a basis of Hs
per([−2L, 2L]d). Moreover, using the Bessel’s inequality

(7), we have that
∑∞

m=0B[u, a
1/2
m vm]2 =

∑
m∈N a

−1
m ⟨u, vm⟩2

L2([−2L,2L]d)
⩽ C1∥u∥2Hs

per([−2L,2L]d)
.

Proposition B.4 (Differential inner product) The operators

• O
−1/2
n : Hs

per([−2L, 2L]d) → L2([−2L, 2L]d), defined by

O−1/2
n =

∑
m∈N

a−1/2
m ⟨vm, ·⟩L2([−2L,2L]d)vm,

• and O
1/2
n : L2([−2L, 2L]d) → Hs

per([−2L, 2L]d), defined by

O1/2
n =

∑
m∈N

a1/2m ⟨vm, ·⟩L2([−2L,2L]d)vm,

are well-defined and bounded. Moreover, for all u ∈ Hs
per([−2L, 2L]d),

O1/2
n O−1/2

n (u) = u,

and
∥O−1/2

n (u)∥2L2([−2L,2L]d) = λn∥u∥2Hs
per([−2L,2L]d) + µn∥D(u)∥2L2(Ω).

Proof Proposition B.3 shows that, for all u ∈ Hs
per([−2L, 2L]d),

∑
m∈N a

−1
m ⟨u, vm⟩2

L2([−2L,2L]d)
⩽

C1∥u∥2Hs([−2L,2L]d)
. Therefore, (

∑N
m=0 a

−1/2
m ⟨vm, u⟩L2([−2L,2L]d)vm)N∈N is a Cauchy sequence

converging in L2([−2L, 2L]d). Denote the limit of this sequence by O
−1/2
n (u). Since B[u, u] =∑

m∈N a
−1
m ⟨u, vm⟩2

L2([−2L,2L]d)
, we deduce that

∥O−1/2
n (u)∥2L2([−2L,2L]d) = λn∥u∥2Hs

per([−2L,2L]d) + µn∥D(u)∥2L2(Ω).

Finally, using ∥O−1/2
n (u)∥2

L2([−2L,2L]d)
⩽ C1∥u∥2Hs

per([−2L,2L]d)
, we conclude that the operator O

−1/2
n

is bounded.
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Moreover, (
∑N

m=0 a
1/2
m ⟨vm, u⟩L2([−2L,2L]d)vm)N∈N is also a Cauchy sequence in the space

Hs
per([−2L, 2L]d). To see this, note that

∑N
m=0 a

1/2
m ⟨vm, u⟩L2([−2L,2L]d)vm ∈ Hs

per([−2L, 2L]d),
and that this sequence is a Cauchy sequence for the B inner product, because

B
[ ℓ∑
m=p

a1/2m ⟨vm, u⟩L2([−2L,2L]d)vm,
ℓ∑

m=p

a1/2m ⟨vm, u⟩L2([−2L,2L]d)vm

]

=

ℓ∑
m=p

am⟨vm, u⟩2L2([−2L,2L]d)B[vm, vm]

=
ℓ∑

m=p

⟨vm, u⟩2L2([−2L,2L]d)

⩽
∞∑

m=p

⟨vm, u⟩2L2([−2L,2L]d)

p→∞−−−→ 0.

Thus, it
∑N

m=0 a
1/2
m ⟨vm, u⟩L2([−2L,2L]d)vm converges in Hs

per([−2L, 2L]d) to a limit that we de-

note by O
1/2
n (u). By the continuity of B, B[O

1/2
n (u),O

1/2
n (u)] ⩽ ∥u∥2

L2([−2L,2L]d)
. Therefore,

∥O1/2
n (u)∥2

Hs
per([−2L,2L]d)

⩽ λ−1
n ∥u∥2

L2([−2L,2L]d)
, i.e., O

1/2
n is bounded.

To conclude the proof, observe that since (
∑N

m=0 a
−1/2
m ⟨vm, u⟩L2([−2L,2L]d)vm)N∈N converges

to O
−1/2
n (u) in L2([−2L, 2L]d), and since the inner product ⟨·, ·⟩ is continuous with respect to the

L2([−2L, 2L]d) norm (by the Cauchy-Schwarz inequality), then, for all u ∈ Hs
per([−2L, 2L]d), one

can write ⟨O−1/2
n (u), vm⟩L2([−2L,2L]d) = a

−1/2
m ⟨vm, u⟩L2([−2L,2L]d). Besides, since the sequence

(
∑N

m=0 a
1/2
m ⟨vm,O−1/2

n (u)⟩L2([−2L,2L]d)vm)N∈N converges to O
1/2
n O

−1/2
n (u) in L2([−2L, 2L]d),

one has that ⟨O1/2
n O

−1/2
n (u), vm⟩L2([−2L,2L]d) = ⟨u, vm⟩L2([−2L,2L]d). Finally, this shows that

O
1/2
n O

−1/2
n (u) = u, and the proof is complete.

Recall from Proposition A.7 that there exists a countable re-indexing k : N → Zd such that
∥k∥1 is non-decreasing. Recall that we have let ek(ℓ)(x) := exp(i⟨k(ℓ), x⟩).

Lemma B.5 (Non-empty intersection) Let V be a linear subspace of Hs
per([−2L, 2L]d) such that

dimV = m+ 1. Then V ∩ Span(ek(ℓ))ℓ⩾m ̸= ∅.

Proof Let z0, . . . , zm be a basis of V . Let us consider the linear function

T : (x0, . . . , xm) ∈ Rm+1 7→
(
⟨ek(j),

m∑
ℓ=0

xℓzℓ⟩L2([−2L,2L]d)

)
0⩽j⩽m−1

∈ Rm.

The rank–nullity theorem ensures that the dimension of the kernel of T is at least 1. Thus, there is a
linear combination z = x0z0 + · · ·+ xmzm such that, for all ℓ ⩽ m− 1, ⟨z, ek(ℓ)⟩L2([−2L,2L]d) = 0

and z ̸= 0. Since (ek(ℓ))ℓ⩾0 is a basis ofHs
per([−2L, 2L]d), we conclude that z ∈ Span(ek(ℓ))ℓ⩾m∩

V .
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Proposition B.6 (Eigenvalues of the differential operator) There is a constant C2 > 0, depend-
ing only on d and s, such that, for all m ∈ N,

am ⩽ C2λ
−1
n m−2s/d.

In particular,
∑

m∈N am <∞ if s > d/2.

Proof From the proof of Proposition A.7, we know that there exists a constant C1 > 0, depending
on d and s such that (1 + ∥k(m)∥22)s/2 ⩾ ∥k(m)∥s2 ⩾ ∥k(m)∥s1/ds ⩾ C1m

s/d. Therefore, there
exists a constant C3 > 0, depending on d and s, such that

∑
|α|⩽s

( π

2L

)2|α| d∏
j=1

kj(m)2αj ⩾ C3m
2s/d. (8)

Let C2 = 2C−1
3 , and let us prove Proposition B.6 by contradiction. Thus, suppose that there is

an integer m such that am > 2C−1
3 λ−1

n m−2s/d. Then, for all ℓ ⩽ m, a−1
ℓ < C3λnm

2s/d/2 and
C3λnm

2s/d/2 > B[vℓ, vℓ] ⩾ λn∥vℓ∥2Hs([−2L,2L]d)
. Thus, V = Span(v0, . . . , vm) is a subspace of

Hs
per([−2L, 2L]d) of dimension m+ 1. In particular, for all z ∈ V , there are weights βℓ ∈ R such

that z =
∑m

j=0 βℓvℓ, and so ∥z∥2
L2([−2L,2L]d)

=
∑m

ℓ=0 β
2
ℓ . Hence,

λn∥z∥2Hs([−2L,2L]d) ⩽ B[z, z] =

m∑
ℓ=0

β2j a
−1
ℓ ⩽ ∥z∥2L2([−2L,2L]d)λnC3m

2s/d/2. (9)

Let Ss : Hs
per([−2L, 2L]d) → L2([−2L, 2L]d) be the operator such that

Ss(ek(ℓ)) =
( ∑

|α|⩽s

( π

2L

)2|α| d∏
j=1

kj(ℓ)
2αj

)1/2
ek(ℓ).

Then, by definition, Ss is diagonalizable on Hs
per([−2L, 2L]d) with eigenfunctions ek(ℓ) and, for

all f ∈ Hs
per([−2L, 2L]d), ∥Ss(f)∥L2([−2L,2L]d) = ∥f∥Hs

per([−2L,2L]d). Since dimV = m + 1,
Lemma B.5 ensures that V ∩ Span(ek(ℓ))ℓ⩾m ̸= ∅. However, any z ∈ Span(ek(ℓ))ℓ⩾m can be
written z =

∑
j⩾m βℓek(ℓ), for weights βℓ ∈ R. Thus, using (8), we have that

∥z∥2Hs([−2L,2L]d) =
∑
j⩾m

β2ℓ ∥ek(ℓ)∥2Hs([−2L,2L]d) ⩾ C3m
2s/d

∑
ℓ⩾m

β2ℓ

= C3m
2s/d∥z∥2L2([−2L,2L]d).

Since, by assumption, z ∈ V , this contradicts (9).

Remark B.7 (Lower bound on a−1
m ) Using similar arguments but bounding the eigenvalues of Ss

by
∑

|α|⩽s

(
π
2L

)2|α|∏d
j=1 kj(ℓ)

2αj ⩾ 1, or directly applying the so-called Rayleigh’s formula

(Evans, 2010, Chapter 6.5, Theorem 2), one shows that, for all m ⩾ 0, a−1
m ⩾ λn.
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Let x ∈ [−2L, 2L]d. Let δx be the Dirac distribution, i.e., the linear form on C0([−2L, 2L]d) such
that, for all f ∈ C0([−2L, 2L]d), ⟨δx, f⟩ = f(x). Notice that δx is continuous with respect to the
∥ · ∥∞ norm. In the sequel, with a slight abuse of notation, we replace δx(f) by ⟨δx, f⟩. In effect, δx
can be approximated by a regularizing sequence (ξxm)m∈N with respect to the L2([−2L, 2L]d) inner
product, i.e.,

∀f ∈ C0([−2L, 2L]d), lim
m→∞

⟨ξxm, f⟩L2([−2L,2L]d) = f(x).

Therefore, the action of δx on f behaves like an inner product on L2([−2L, 2L]d), and this intuition
will be fruitful in the next Proposition. Moreover, since Hs

per([−2L, 2L]d) ⊆ Hs([−2L, 2L]d) ⊆
C0([−2L, 2L]d), when “applied” to any f ∈ Hs

per([−2L, 2L]d), δx can be considered as the evalu-

ation at x of the unique continuous representation of f . The following proposition shows that O
1/2
n

can be extended to δx in such a way that this extension stays self-adjoint.

Proposition B.8 (Self-adjoint operator extension) Let s > d/2 and, for x ∈ [−2L, 2L]d, let
O

1/2
n (δx) =

∑
m∈N a

1/2
m vm(x)vm. Then, almost everywhere in x according to the Lebesgue mea-

sure on [−2L, 2L]d, O
1/2
n (δx) ∈ L2([−2L, 2L]d) and, for all f ∈ L2([−2L, 2L]d),

⟨O1/2
n (f), δx⟩ = ⟨f,O1/2

n (δx)⟩L2([−2L,2L]d).

Proof Let ψN (x, y) =
∑N

m=0 α
1/2
m vm(x)vm(y). Then, for all N1 ⩽ N2,∫

[−2L,2L]d

∫
[−2L,2L]d

|ψN2(x, y)− ψN1(x, y)|2dxdy

=

∫
[−2L,2L]d

∫
[−2L,2L]d

∣∣∣ N2∑
m=N1+1

a1/2m vm(x)vm(y)
∣∣∣2dxdy

=

N2∑
m,ℓ=N1+1

am

∫
[−2L,2L]d

vm(x)vℓ(x)dx

∫
[−2L,2L]d

vm(y)vℓ(y)dy

=

N2∑
m=N1+1

am ⩽
∞∑

m=N1+1

am.

Proposition B.6 shows that limN1→∞
∑∞

m=N1
am = 0, hence (ψN )N∈N is a Cauchy sequence.

Therefore, ψ∞(x, y) =
∑

m∈N a
1/2
m vm(x)vm(y) converges in L2([−2L, 2L]d × [−2L, 2L]d) and∫

[−2L,2L]2d
|ψ∞(x, y)|2dxdy =

∑
m∈N

am.

Thus, by the Fubini-Lebesgue theorem, almost everywhere in x according to the Lebesgue measure
on [−2L, 2L]d, one has O

1/2
n (δx) := ψ∞(x, ·) ∈ L2([−2L, 2L]d). Recall that, by definition,

O1/2
n (f) =

∑
m∈N

a1/2m ⟨f, vm⟩L2([−2L,2L]d)vm ∈ Hs
per([−2L, 2L]d),
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so that ⟨O1/2
n (f), δx⟩ =

∑
m∈N a

1/2
m ⟨f, vm⟩L2([−2L,2L]d)vm(x). Moreover, for any function f ∈

L2([−2L, 2L]d),∫
[−2L,2L]d

|⟨f, ψN (x, ·)⟩L2([−2L,2L]d) − ⟨O1/2
n (f), δx⟩|dx

=

∫
[−2L,2L]d

∣∣∣ ∫
[−2L,2L]d

f(y)

N∑
m=0

a1/2m vm(x)vm(y)dy

−
∑
m∈N

a1/2m ⟨f, vm⟩L2([−2L,2L]d)vm(x)
∣∣∣dx

=

∫
[−2L,2L]d

∣∣∣ ∫
[−2L,2L]d

f(y)
∑
m>N

a1/2m vm(x)vm(y)
∣∣∣dxdy N→∞−−−−→ 0.

Therefore, since ∫
[−2L,2L]d

|⟨f, ψ∞(x, ·)⟩L2([−2L,2L]d) − ⟨O1/2
n (f), δx⟩|dx

⩽
∫
[−2L,2L]d

|⟨f, ψN (x, ·)⟩L2([−2L,2L]d) − ⟨O1/2
n (f), δx⟩|dx

+

∫
[−2L,2L]d

|⟨f, ψ∞(x, ·)− ψN (x, ·)⟩L2([−2L,2L]d)|dx,

and since ∫
[−2L,2L]d

|⟨f, ψ∞(x, ·)− ψN (x, ·)⟩L2([−2L,2L]d)|dx

⩽
(∫

[−2L,2L]d

∫
[−2L,2L]d

|f(y)|2dydx
)1/2

×
(∫

[−2L,2L]d

∫
[−2L,2L]d

|ψ∞(x, y)− ψN (x, y)|2dydx
)1/2

N→∞−−−−→ 0,

we deduce that
∫
[−2L,2L]d |⟨f, ψ∞(x, ·)⟩L2([−2L,2L]d) − ⟨O1/2

n (f), δx⟩|dx = 0. Hence, almost ev-

erywhere in x according to the Lebesgue measure on [−2L, 2L]d, we get that the operator O
1/2
n is

self-adjoint, i.e., ⟨O1/2
n (f), δx⟩ = ⟨f,O1/2

n (δx)⟩.

B.2. Proof of Theorem 3.3

Let s > d/2, n ∈ N, λn > 0, µn ⩾ 0, and consider a linear partial differential operator D(u) =∑
|α|⩽s pα∂

αu of order s such that maxα ∥pα∥∞ < ∞. Proposition B.1 and B.4 show that there
exists a compact self-adjoint differential operator On such that, for all f ∈ Hs

per([−2L, 2L]d),

∥O−1/2
n (f)∥2L2([−2L,2L]d) = λn∥f∥2Hs([−2L,2L]d) + µn∥D(f)∥2L2(Ω).
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Consider any target function f ∈ Hs
per([−2L, 2L]d). The Sobolev embedding theorem states that

Hs
per([−2L, 2L]d) ⊆ Hs([−2L, 2L]d) ⊆ C0([−2L, 2L]d). Thus, for all x ∈ Ω, we have that

f(x) = ⟨f, δx⟩. Proposition B.4 ensures that f(x) = ⟨O1/2
n O

−1/2
n (f), δx⟩ and Proposition B.8 that,

for almost every x ∈ Ω with respect to the Lebesgue measure,

f(x) = ⟨O−1/2
n (f),O1/2

n (δx)⟩L2([−2L,2L]d),

with O
−1/2
n (f) ∈ L2([−2L, 2L]d) and O

1/2
n (δx) ∈ L2([−2L, 2L]d). Proposition B.4 shows that

O
1/2
n (δx) = O

−1/2
n On(δx). Thus,

f(x) = ⟨f,On(δx)⟩RKHS,

where the RKHS inner product is defined by ⟨g, h⟩RKHS = ⟨O−1/2
n (g),O

−1/2
n (h)⟩L2([−2L,2L]d).

Since O
1/2
n (δx) ∈ L2([−2L, 2L]d), Proposition B.4 shows that On(δx) ∈ Hs

per([−2L, 2L]d). We
can therefore define the kernel

K(x, y) = ⟨On(δx),On(δy)⟩RKHS

= ⟨O1/2
n (δx),O

1/2
n (δy)⟩L2([−2L,2L]d).

Proposition B.8 ensures that K(x, y) = ⟨On(δx), δy⟩ = On(δx)(y) =
∑

m∈N amvm(x)vm(y).
Therefore, we know that K(x, ·) ∈ Hs

per([−2L, 2L]d), and we recognize the reproducing property
stating that, for all f ∈ Hs

per([−2L, 2L]d) and all x ∈ [−2L, 2L]d, f(x) = ⟨f,K(x, ·)⟩RKHS.

B.3. Proof of Proposition 3.4

Recall that K(x, ·) = On(δx). It was proven in Proposition B.8 that O
1/2
n (δx) ∈ L2([−2L, 2L]d).

By Proposition B.4,
∑N

m=0 a
1/2
m ⟨vm,O1/2

n (δx)⟩L2([−2L,2L]d)vm converges in Hs
per([−2L, 2L]d) to

K(x, ·). Let ϕ ∈ Hs
per([−2L, 2L]d) be a test function. SinceB is continuous onHs

per([−2L, 2L]d),

lim
N→∞

B
[ N∑
m=0

a1/2m ⟨vm,O1/2
n (δx)⟩L2([−2L,2L]d)vm, ϕ

]
= B[K(x, ·), ϕ].

Then,

B
[ N∑
m=0

a1/2m ⟨vm,O1/2
n (δx)⟩L2([−2L,2L]d)vm, ϕ

]
=

N∑
m=0

a1/2m ⟨vm,O1/2
n (δx)⟩L2([−2L,2L]d)B[vm, ϕ] (by bilinearity)

=
N∑

m=0

a−1/2
m ⟨vm,O1/2

n (δx)⟩L2([−2L,2L]d)⟨vm, ϕ⟩L2([−2L,2L]d) (since vm is an eigenfunction)

=
N∑

m=0

a−1/2
m ⟨O1/2

n (vm), δx⟩⟨vm, ϕ⟩L2([−2L,2L]d) (by Proposition B.8)

=
N∑

m=0

⟨vm, ϕ⟩L2([−2L,2L]d)vm(x).

32



PHYSICS-INFORMED MACHINE LEARNING AS A KERNEL METHOD

Notice that the expression above is the decomposition of ϕ on the vm basis. We conclude, as desired,
that B[K(x, ·), ϕ] = limN→∞B[

∑N
m=0 a

1/2
m ⟨vm,O1/2

n (δx)⟩L2([−2L,2L]d)vm, ϕ] = ϕ(x).

Appendix C. Integral operator and eigenvalues

C.1. Compactness of COnC

Lemma C.1 (Compactness) The operator COnC : L2([−2L, 2L]d) → L2([−2L, 2L]d) is posi-
tive, compact, and self-adjoint.

Proof Since C is a self-adjoint projector, then, for all f ∈ L2([−2L, 2L]d), ∥C(f)∥2
L2([−2L,2L]d)

⩽

∥f∥2
L2([−2L,2L]d)

. Thus, for any bounded sequence (fm)m∈N in L2([−2L, 2L]d), the sequence
(C(fm))m∈N is bounded. Since On is compact, upon passing to a subsequence, (OnC(fm))m∈N
converges to f∞ ∈ L2([−2L, 2L]d). Therefore, limm→∞ ∥COnC(fm) − C(f∞)∥2

L2([−2L,2L]d)
⩽

limm→∞ ∥OnC(fm) − f∞∥2
L2([−2L,2L]d)

= 0, i.e., (COnC(fm))m∈N converges to the function

C(f∞) ∈ L2([−2L, 2L]d). So, COnC : L2([−2L, 2L]d) → L2([−2L, 2L]d) is a compact op-
erator. Moreover, given any f ∈ L2([−2L, 2L]d), we have that ⟨f, COnC(f)⟩L2([−2L,2L]d) =

∥O1/2
n C(f)∥2

L2([−2L,2L]d)
⩾ 0, which means that COnC is positive. Finally, COnC is self-adjoint,

since C and On are self-adjoint.

C.2. Proof of Theorem 4.2

For clarity, the proof is divided into 4 steps. Steps 1 and 2 ensures that we can apply the Courant
Fischer min-max theorem to the integral operator. Step 3 connects the Courant Fischer estimates of
LK and COnC. Finally, Step 4 establishes the result on the eigenvalues.

Step 1: Compactness of the integral operator. Let LK,U be the integral operator associated
with the uniform distribution on Ω, i.e.,

∀f ∈ L2(Ω), ∀x ∈ Ω, LK,U f(x) =
1

|Ω|

∫
Ω
K(x, y)f(y)dy.

SinceK(x, y) =
∑

m∈N am(On)vm(x)vm(y),
∫
[−2L,2L]d vℓvm = 1ℓ=m, and

∑
m∈N am(On) <∞,

the Fubini-Lebesgue theorem states that∫
Ω2

|K(x, y)|2dxdy ⩽
∫
[−2L,2L]2d

|K(x, y)|2dxdy =
∑
m∈N

a2m(On) <∞,

which implies that LK,U is a Hilbert-Schmidt operator (Renardy and Rogers, 2004, Lemma 8.20).
As a consequence, LK,U is compact (Renardy and Rogers, 2004, Theorem 8.83). Observe that
LKf = LK,U f

dPX
dx . Let C2 > 0. Given any sequence (fn)n∈N such that ∥fn∥L2(Ω,PX) ⩽ C2, then,

clearly, ∥fn dPX
dx ∥L2(Ω) ⩽ κC2. This shows that the sequence (fn

dPX
dx )n∈N is bounded in L2(Ω).

Thus, since LK,U is compact, upon passing to a subsequence, LK,U (fn
dPX
dx ) = LK(fn) converges

in L2(Ω), and therefore in L2(Ω,PX). This shows that the integral operator LK is compact.
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Step 2: Courant Fischer min-max theorem. Using dPX
dx ⩽ κ and letting FS be the Fourier series

operator, i.e., FS(f)(k) = ⟨f, exp(−i π
2L⟨k, ·⟩)⟩L2([−2L,2L]d), we see that for all f ∈ L2(Ω,PX),

lim
n→∞

∥∥∥f −
∑

∥k∥2⩽n

FS(f)(k) exp(iπL−1⟨k, ·⟩)
∥∥∥
L2(Ω,PX)

⩽ κ lim
n→∞

∥∥∥f −
∑

k∈Zd, ∥k∥⩽n

FS(f)(k) exp(iπL−1⟨k, ·⟩)
∥∥∥
L2(Ω)

= 0.

Therefore, the Gram-Schmidt algorithm applied to the (exp(iπL−1⟨k, ·⟩))k∈Zd family provides a
Hermitian basis of L2(Ω,PX). In particular, the space L2(Ω,PX) is separable. Since LK is a
positive compact self-adjoint operator on L2(Ω,PX), Theorem A.11 and A.13 show that LK is
diagonalizable with positive eigenvalues (an(LK))n∈N, with

an(LK) = max
Σ⊆L2(Ω,PX)

dimΣ=n

min
f∈Σ
f ̸=0

∥f∥−2
L2(Ω,PX)

⟨f, LKf⟩L2(Ω,PX).

Step 3: Switching integrals. Observe that, for all f ∈ L2(Ω,PX),∫
Ω2

∑
m∈N

am(On)|f(x)||f(y)||vm(x)||vm(y)|dPX(x)dPX(y)

=
∑
m∈N

am(On)
(∫

Ω
|f(x)||vm(x)|dPX(x)

)2

⩽
∑
m∈N

am(On)∥f∥2L2(Ω,PX)

∫
Ω
|vm(x)|2dPX(x)

⩽ ∥f∥2L2(Ω,PX)κ
∑
m∈N

am(On) <∞.

In the last inequality, we used the fact that
∫
Ω |vm(x)|2dPX(x) ⩽ κ

∫
[−2L,2L]d |vm(x)|2dx = κ.

Therefore, according to the Fubini-Lebesgue theorem,

⟨f, LKf⟩L2(Ω,PX) =

∫
Ω2

f(x)
( ∑

m∈N
am(On)vm(x)vm(y)

)
f(y)dPX(y)dPX(x)

=
∑
m∈N

am(On)
(∫

Ω2

f(x)vm(x)dPX(x)
)2

=
∥∥∥O1/2

n

(
f
dPX

dx

)∥∥∥2
L2([−2L,2L]d)

.

Step 4: Comparison using Courant Fischer. Let z = f dPX
dx . By noting that f dP

dx = f dP
dx1Ω,

we see that Cz = z and ⟨f, LKf⟩L2(Ω,PX) = ⟨z, COnC(z)⟩L2([−2L,2L]d). Therefore, for any
Σ ⊆ L2(Ω,PX), we have

min
f∈Σ
f ̸=0

∥f∥−2
L2(Ω,PX)

⟨f, LKf⟩L2(Ω,PX) = min
f∈Σ
f ̸=0

∥f∥−2
L2(Ω,PX)

〈
f
dPX

dx
,COnC

(
f
dPX

dx

)〉
L2([−2L,2L]d)

⩽ min
z∈ dPX

dx
Σ

z ̸=0

κ∥z∥−2
L2([−2L,2L]d)

⟨z, COnC(z)⟩L2([−2L,2L]d),
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where the inequality is a consequence of ∥z∥2
L2([−2L,2L]d)

=
∫
Ω |f |2(dPX

dx )2 ⩽ κ∥f∥2L2(Ω,PX). Using
dPX
dx L

2([−2L, 2L]d) ⊆ L2([−2L, 2L]d), we conclude that

max
Σ⊆L2(Ω,PX)

dimΣ=m

min
f∈Σ
f ̸=0

∥f∥−2
L2(Ω,PX)

⟨f, LKf⟩L2(Ω,PX)

⩽ κ max
Σ⊆L2([−2L,2L]d)

dimΣ=m

min
z∈Σ
z ̸=0

∥z∥−2
L2([−2L,2L]d)

⟨z, COnC(z)⟩L2([−2L,2L]d). (10)

According to Lemma C.1, the operator COnC is compact, self-adjoint, and positive, and thus its
eigenvalues are given by the Courant-Fischer min-max theorem. Remark that the left-hand side
(resp. the right-hand term) of inequality (10) corresponds to the Courant-Fischer min-max char-
acterization of the mth eigenvalue of LK (resp. COnC). Therefore, we deduce that am(LK) ⩽
κam(COnC).

C.3. Bounding the kernel

The goal of this section is to upper bound the kernel K(x, y) defined in Theorem 3.3.

Proposition C.2 (Partial continuity of the kernel) Let x, y ∈ [−2L, 2L]d. Both functions K(x, ·)
and K(·, y) are continuous.

Proof It is shown in the proof of Proposition B.8 that ψ∞(x, y) :=
∑

m∈N a
1/2
m vm(x)vm(y) con-

verges in L2([−2L, 2L]d × [−2L, 2L]d), that
∫
[−2L,2L]2d |ψ∞(x, y)|2dxdy =

∑
m∈N am, and that

ψ∞(x, ·) :=
∑

m∈N a
1/2
m vm(x)vm converges in L2([−2L, 2L]d) almost everywhere in x. By defi-

nition, K(x, ·) = O
1/2
n ψ∞(x, ·). Using Proposition B.4, this implies

∥K(x, ·)∥2Hs
per([−2L,2L]d) ⩽ λ−1

n ∥ψ∞(x, ·)∥2L2([−2L,2L]d).

The Sobolev embedding theorem then ensures that K(x, ·) is continuous for any x. One shows with
the same argument that K(·, y) is continuous for any y.

Lemma C.3 (Trace reconstruction) Let z ∈ [−2L, 2L]d. Let (ψℓ)ℓ∈N be a sequence of functions
in L2([−2L, 2L]d) such that

∫
[−2L,2L]d ψ

2
ℓ = 1 and limℓ→∞ ψℓ = δz . Then

lim
ℓ→∞

∫
[−2L,2L]2d

K(x, y)ψℓ(x)ψℓ(y)dxdy = K(z, z).

Proof∣∣∣ ∫
[−2L,2L]2d

K(x, y)ψℓ(x)ψℓ(y)dxdy −
∫
[−2L,2L]d

ψℓ(x)K(x, z)dx
∣∣∣

=
∣∣∣ ∫

[−2L,2L]d
ψℓ(x)

(
K(x, z)−

∫
[−2L,2L]d

K(x, y)ψℓ(y)dy
)
dx

∣∣∣
⩽

(∫
[−2L,2L]d

ψ2
ℓ (x)dx

)1/2(∫
[−2L,2L]d

(
K(x, z)−

∫
[−2L,2L]d

K(x, y)ψℓ(y)dy
)2
dx

)1/2
.
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Recall that
∫
[−2L,2L]d ψ

2
ℓ (x)dx = 1 and limℓ→∞

∫
[−2L,2L]d K(x, y)ψℓ(y)dy = K(x, z). Let

gℓ(x) =

(
K(x, z)−

∫
[−2L,2L]d

K(x, y)ψℓ(y)dy

)2

.

Notice that

|gℓ(x)| ⩽ 2K2(x, z) + 2
∣∣∣ ∫

[−2L,2L]d
K(x, y)ψℓ(y)dy

∣∣∣2
⩽ 2K2(x, z) + 2

∫
[−2L,2L]d

K2(x, y)dy,

where we use the Cauchy-Schwarz inequality∣∣∣ ∫
[−2L,2L]d

K(x, y)ψℓ(y)dy
∣∣∣2 ⩽ ∫

[−2L,2L]d
K2(x, y)dy ×

∫
[−2L,2L]d

ψ2
ℓ (y)dy

and
∫
[−2L,2L]d ψ

2
ℓ (y)dy = 1. Moreover, for almost every z,∫
[−2L,2L]d

(
2K2(x, z) + 2

∫
[−2L,2L]d

K2(x, y)dy
)
dx

⩽ 2

∫
[−2L,2L]d

K2(x, z)dx+ 2

∫
[−2L,2L]2d

K2(x, y)dxdy <∞.

Therefore, using the dominated convergence theorem, we see that limℓ→∞
∫
[−2L,2L]d gℓ(x)dx =∫

[−2L,2L]d limℓ→∞ gℓ(x)dx. Since limℓ→∞ ψℓ = δz , by the partial continuity of the kernel, we
know that limℓ→∞ gℓ(x) = 0. So,

lim
ℓ→∞

∣∣∣ ∫
[−2L,2L]2d

K(x, y)ψℓ(x)ψℓ(y)dxdy −
∫
[−2L,2L]d

ψℓ(x)K(x, z)dx
∣∣∣ = 0,

and
lim
ℓ→∞

∫
[−2L,2L]2d

K(x, y)ψℓ(x)ψℓ(y)dxdy = K(z, z).

Proposition C.4 (Bounding the kernel) Let z ∈ [−2L, 2L]d. One has |K(z, z)| ⩽ λ−1
n .

Proof As in the proof of Theorem 4.2, it is easy to show that the operator L : f 7→ (x 7→∫
[−2L,2L]d K(x, y)f(y)dy) is compact and that ⟨f, L(f)⟩L2([−2L,2L]d) = ⟨f,On(f)⟩L2([−2L,2L]d).

Thus, the eigenvalues of L are upper bounded by those of On, and in turn, using Remark B.7, by
λ−1
n . Lemma C.3 states that

lim
ℓ→∞

⟨ψℓ, L(ψℓ)⟩L2([−2L,2L]d) = K(z, z).

Thus, the Courant-Fischer min-max theorem states that ⟨ψℓ, L(ψℓ)⟩L2([−2L,2L]d) ⩽ λ−1
n , and that

K(z, z) ⩽ λ−1
n .
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C.4. Proof of Theorem 4.5

For clarity, the proof will be divided into three steps.

Step 1: Weak formulation. According to Lemma C.1, the operator COnC can be diagonalized
in an orthonormal basis. Therefore, there are eigenfunctions vm ∈ L2([−2L, 2L]d) and eigenvalues
am such that

COnC(vm) = amvm.

Define wm = OnC(vm). Given that C(vm) ∈ L2([−2L, 2L]d), Proposition B.1 shows that wm ∈
Hs

per([−2L, 2L]d). Notice that Cwm = amvm. Since C2 = C, we have

vm = C(vm) = a−1
m C(wm).

By definition of the operator On, for any test function ϕ ∈ Hs
per([−2L, 2L]d),

B[wm, ϕ] = ⟨C(vm), ϕ⟩L2([−2L,2L]d) = a−1
m ⟨C(wm), ϕ⟩L2([−2L,2L]d).

This means that wm is a weak solution to the PDE

λn
∑
|α|⩽s

∫
[−2L,2L]d

∂αϕ ∂αwm + µn

∫
Ω

Dϕ Dwm = a−1
m

∫
Ω
ϕwm.

This proves (5).

Step 2: PDE in Ω. Next, for any Euclidian ball B ⊆ Ω and any function ϕ ∈ C∞(Ω) with
compact support in Ω, wm is a weak solution to the PDE

λn
∑
|α|⩽s

∫
B
∂αϕ ∂αwm + µn

∫
B

Dϕ Dwm = a−1
m

∫
B
ϕwm.

Noting that the ball, as a smooth manifold, is already its own map with the canonical coordinates.
The principal symbol (see, e.g., Chapter 2.9 Taylor, 2010) of this PDE is defined for all x ∈ Ω and
ξ ∈ Rd by

σ(x, ξ) = λn(−1)s
∑

|α|=2s

ξ2α + µn(−1)s
∑

|α|=2s

pα(x)
2ξ2α,

where ξ2α =
∏d

j=1 ξ
2αj

j . Clearly, |σ(x, ξ)| ̸= 0 whenever ξ ̸= 0. Hence, the symbol function
defined by u 7→ σ(x, ξ)× u is an isomorphism from R to R whenever ξ ̸= 0. This is the definition
of a general elliptic PDE. Since B is a smooth manifold with C∞-boundary and pα ∈ C∞(Ω̄),
the elliptic regularity theorem (Taylor, 2010, Chapter 5, Theorem 11.1) states that wm ∈ C∞(B).
Therefore, wm ∈ C∞(Ω). Overall,

∀x ∈ Ω, λn
∑
|α|⩽s

(−1)|α|∂2αwm(x) + µnD∗Dwm(x) = a−1
m wm(x).

This proves (i).
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Step 3: PDE outside Ω. To show the second statement of the proposition, fix ε > 0 such that
d(Ω, ∂[−2L, 2L]d) > ε. Observe that any function ϕ ∈ C∞(] − 2L − ε, 2L + ε[d\Ω̄) with
compact support in ] − 2L − ε, 2L + ε[d\Ω̄ can be linearly mapped into the function ϕ̃(x) =∑

k∈(4LZ)d ϕ(x+k) inHs
per([−2L, 2L]d). This function ϕ̃ is such that, for any u ∈ L2([−2L, 2L]d),∫

]−2L−ε,2L+ε[d ϕu =
∫
[−2L,2L]d ϕ̃u. We deduce that, for any ball B included in ] − 2L − ε, 2L +

ε[d\Ω̄, for any function ϕ ∈ C∞(]−2L− ε, 2L+ ε[d\Ω̄) with compact support in ]−2L− ε, 2L+
ε[d\Ω̄, wm is a weak solution to the PDE

λn
∑
|α|⩽s

∫
B
∂αϕ ∂αwm = λn

∑
|α|⩽s

∫
[−2L,2L]d

∂αϕ̃ ∂αwm = 0.

This PDE is elliptic and B is a smooth manifold with C∞-boundary. Therefore, the elliptic reg-
ularity theorem (Taylor, 2010, Chapter 5, Theorem 11.1) states that wm ∈ C∞(B). So, wm ∈
C∞([−2L, 2L]d\Ω̄) and

∀x ∈ [−2L, 2L]d\Ω̄, λn
∑
|α|⩽s

(−1)|α|∂2αwm(x) = 0.

This proves (ii).

C.5. High regularity in dimension 1

In this section, we assume that d = 1, s ⩾ 1, pα ∈ C∞(Ω̄), and the domain Ω is a segment, i.e.,
Ω = [L1, L2] ⊆ [−L,L] for some −L ⩽ L1, L2 ⩽ L.

Proposition C.5 (Regularity of the eigenfunctions of COnC) The functions (wm)N∈N of Theo-
rem 4.5 associated with non-zero eigenvalues satisfy the following properties:

(i) wm ∈ Cs−1([−2L, 2L]),

(ii) wm|Ω ∈ C∞(Ω̄),

(iii) wm|Ωc ∈ C∞(Ω̄c).

Proof Since d = 1 and wm ∈ Hs([−2L, 2L]), the Sobolev embedding theorem states that wm ∈
Cs−1([−2L, 2L]). Moreover, since wm ∈ C∞(Ω), since

D∗Du =

s∑
α=0

pα

( d
dt

)α( s∑
α̃=0

pα̃

( d
dt

)α̃
u
)

is a linear differential operator with coefficients in C∞(Ω̄), and since wm is the solution to the
ordinary differential equation

∀x ∈ Ω, λn

s∑
j=1

(−1)j
dj

dtj
wm(x) + µnD∗Dwm(x) = a−1

m wm(x),
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the Picard-Lindelöf theorem (or the Grönwall inequality) ensures that wm|Ω ∈ C∞(Ω̄). Similarly,
since wm ∈ C∞([−2L, 2L]d\Ω̄) and

∀x ∈ [−2L, 2L]d\Ω̄,
s∑

j=1

(−1)j
dj

dtj
wm = 0,

we have wm|Ωc ∈ C∞(Ω̄c).

Remark C.6 As a by-product, the limits limx→L1
x>L1

wm(x), limx→L2
x<L2

wm(x), limx→L1
x<L1

wm(x), and

limx→L2
x>L2

wm(x) exist.

Appendix D. From eigenvalues of the integral operator to minimax convergence
rates

D.1. Effective dimension

We recall that the effective dimension N of the kernel K is defined by

N (λn, µn) = tr(LK(Id + LK)−1),

where Id is the identity operator and the symbol tr stands for the trace, i.e., the sum of the eigen-
values (Caponnetto and Vito, 2007). So,

N (λn, µn) = tr(LK × (Id + LK)−1)

=
∑
m∈N

am(LK)

1 + am(LK)

=
∑
m∈N

1

1 + am(LK)−1
,

where am(LK) stands for the eigenvalues of the operator LK . The second equality is a consequence
of the fact that Id and LK are co-diagonalizable, and so are Id, LK , and (Id + LK)−1.

Lemma D.1 Assume that dP
dx ⩽ κ. Then

N (λn, µn) ⩽
∑
m∈N

1

1 + (κam(COnC))−1
.

Proof Apply Theorem 4.2 and observe that 0 < am(LK) ⩽ κam(COnC) ⇔ am(LK)−1 ⩾
(κam(COnC))

−1 ⇔ 1 + am(LK)−1 ⩾ 1 + (κam(COnC))
−1 ⇔ (1 + am(LK))−1 ⩽ (1 +

(κam(COnC))
−1)−1.
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D.2. Lower bound on the eigenvalues of the integral kernel

Lemma D.2 (Explicit computation of O−1
n ) Let f ∈ C∞(Ω) with compact support in Ω. Then

O−1
n (f) = λn

∑
|α|⩽s

(−1)|α|∂2αf + µnD∗Df.

Proof Let ϕ ∈ Hs
per([−2L, 2L]d) be a test function. Since the successive derivatives of f are

smooth with compact support, by definition of the weak derivatives of ϕ, we may write

λn
∑
|α|⩽s

∫
[−2L,2L]d

∂αf∂αϕ =

∫
[−2L,2L]d

(
λn

∑
|α|⩽s

(−1)|α|∂2αf
)
ϕ.

Moreover, because the support of f is included in Ω, we have that

µn

∫
Ω

Df Dϕ = µn

∫
[−2L,2L]d

Df Dϕ = µn

∫
[−2L,2L]d

(D∗Df) ϕ.

We deduce that B[f, ϕ] =
∫
[−2L,2L]d(λn

∑
|α|⩽s(−1)|α|∂2αf + µnD∗Df)ϕ. Since this identity

holds for all ϕ ∈ Hs
per([−2L, 2L]d), and since there is a unique Lax-Milgram inverse satisfying this

condition, we conclude that

λn
∑
|α|⩽s

(−1)|α|∂2αf + µnD∗Df = O−1
n (f).

Lemma D.3 (Lower bound on the integral operator norm) Assume that

lim
n→∞

λn = lim
n→∞

µn = lim
n→∞

λn/µn = 0.

Then there is a constant C5 > 0 such that

∥LK∥op,L2(Ω,PX) := sup
∥f∥L2(Ω,PX )=1

∥LKf∥L2(Ω,PX) ⩾ C5µ
−1
n → ∞.

Proof The operator LK is diagonalizable according to Theorem 4.2, and thus its operator norm
sup∥f∥L2(Ω,PX )=1 ∥LKf∥L2(Ω,PX) is larger than the largest eigenvalue of LK . The Courant-Fischer

min-max theorem states that this eigenvalue is larger than ⟨f, LKf⟩ for any function f such that
∥f∥L2(Ω,PX) = 1. By the proof of Theorem 4.2, we know that

⟨f, LKf⟩L2(Ω,PX) =
∥∥∥O1/2

n

(
f
dPX

dx

)∥∥∥2
L2([−2L,2L]d)

=
〈
On

(
f
dPX

dx

)
, f
dPX

dx

〉
L2([−2L,2L]d)

.
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Consider a smooth function g with compact support in the set E = {z ∈ [−2L, 2L]d | dPX
dx ⩾

(4L)−d/2}. Let

f =
(
λn

∑
|α|⩽s

(−1)|α|∂2αg + µnD∗Dg
)
×
(dPX

dx

)−1
. (11)

Since g is smooth and, on E, (dPX
dx )−1 ⩽ 2(4L)d, we deduce that f ∈ L2(Ω,PX). According to

Lemma D.2, On(f
dPX
dx ) = g. Thus,

⟨f, LKf⟩L2(Ω,PX) =
〈
g, λn

∑
|α|⩽s

(−1)|α|∂2αg + µnD∗Dg
〉
L2([−2L,2L]d)

= λn∥g∥2Hs([−2L,2L]d) + µn∥Dg∥2L2(Ω).

Recall that

∥LK∥op,L2(Ω,PX) ⩾ (∥f∥L2(Ω,PX))
−2⟨f, LKf⟩L2(Ω,PX).

On the one hand, if D∗Dg = 0, then identity (11) implies that ∥f∥2L2(Ω,PX) = Θn→∞(λ2n), and
thus

(∥f∥L2(Ω,PX))
−2⟨f, LKf⟩L2(Ω,PX) = Θn→∞(λ−1

n ).

On the other hand, if D∗Dg ̸= 0, since µn/λn → ∞, (11) implies that ∥f∥2L2(Ω,PX) = Θn→∞(µ2n),
and thus

(∥f∥L2(Ω,PX))
−2⟨f, LKf⟩L2(Ω,PX) = Θn→∞(µ−1

n ).

Overall, we conclude that there is a constant C5 > 0, such that

∥LK∥op,L2(Ω,PX) ⩾ C5µ
−1
n .

D.3. Bounds on the convergence rate

Theorem D.4 (High-probability bound) Assume that the following four assumptions are satis-
fied:

(i) limn→∞ λn = limn→∞ µn = limn→∞ λn/µn = 0,

(ii) λn ⩾ n−1,

(iii) N (λn, µn)λ
−1
n = on(n),

(iv) for some σ > 0 and M > 0, the noise ε satisfies

∀ℓ ∈ N, E(|ε|ℓ | X) ⩽
1

2
ℓ! σ2 M ℓ−2.

Then, letting C3 = 96 log(6), for n large enough, for all η > 0, with probability at least 1− η,∫
Ω
∥f̂n(x)− f⋆(x)∥22dPX(x)

⩽ C3 log
2(η)

(
λn∥f⋆∥2Hs

per([−2L,2L]d) + µn∥D(f⋆)∥2L2(Ω) +
M2

n2λn
+
σ2N (λn, µn)

n

)
.
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Proof Observe that the kernel K of Theorem 3.3 depends on n and that the function f⋆ belongs to
a ball of radiusRn = (λn∥f⋆∥2Hs

per([−2L,2L]d)
+µn∥D(f⋆)∥2L2(Ω))

1/2. Consider the non-asymptotic
bound of Caponnetto and Vito (2007, Theorem 4) applied to K (that can be interpreted as a regular
kernel for the norm ∥f∥2RKHS = λn∥f∥2Hs([−2L,2L]d)

+ µn∥D(f)∥2L2(Ω), with an hyperparameter
set to 1). Thus, we have, with probability at least 1− η,

E(f̂n)− E(f⋆) ⩽ 32 log2(6η−1)
(
A(1) +

κ2nB(1)
n2

+
κnA(1)

n
+
κnM

2

n2
+
σ2N (λn, µn)

n

)
, (12)

where

(i) E(f) =
∫
Ω ∥f(x)− y∥22dP(X,Y )(x, y),

(ii) κn = supx∈ΩK(x, x) ⩽ λ−1
n , according to Proposition C.4,

(iii) and A (1) ⩽ R2
n and B(1) ⩽ R2

n (take c = 1 and λ = 1 in Caponnetto and Vito, 2007,
Proposition 3).

Inequality (12) is true as long as

(i) n ⩾ 64 log2(6/η)κnN (λn, µn), which holds for n large enough since κnN (λn, µn) =
On(λ

−1
n N (λn, µn)) = on(n) by assumption,

(ii) ∥LK∥op,L2(Ω,PX) ⩾ 1, which holds for n large enough by Lemma D.3, because, by assump-
tion, limn→∞ λn = limn→∞ µn = limn→∞ λn/µn = 0.

Since λn ⩾ n−1, we deduce that n−1κn ⩽ 1, and so

A(1) +
κ2nB(1)
n2

+
κnA(1)

n
⩽ 3(λn∥f⋆∥2Hs

per([−2L,2L]d) + µn∥D(f⋆)∥2L2(Ω)).

It follows that, letting C3 = 96 log(6), for n large enough, for all η > 0, with probability at least
1− η,

E(f̂n)− E(f⋆)

⩽ C3 log
2(η)

(
λn∥f⋆∥2Hs

per([−2L,2L]d) + µn∥D(f⋆)∥2L2(Ω) +
M2

n2λn
+
σ2N (λn, µn)

n

)
.

The conclusion is then a consequence of the identity E(f̂n)−E(f⋆) =
∫
Ω ∥f̂n(x)−f⋆(x)∥22dPX(x).

D.4. Proof of Theorem 4.3

Note that, for all f ∈ Hs
per([−2L, 2L]d), λn∥f∥2L2(Ω) ⩽ Rn(f). Since, f̂n is defined as minimiz-

ing Rn, we have that

λn∥f̂n∥2L2(Ω) ⩽ Rn(f̂n) ⩽ Rn(f
⋆) = λn∥f⋆∥2Hs(Ω) +

1

n

n∑
j=1

∥f⋆(Xi)− Yi∥22.
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By taking the expectation on these inequalities, we obtained that

E∥f̂n∥2L2(Ω) ⩽ ∥f⋆∥2Hs(Ω) + λ−1
n E∥ε∥22.

We therefore have the following bound on the risk, where the expectation is taken with respect to the
distribution of (f̂n, X), where X is a random variable independent from f̂n with distribution PX :

E∥f̂n(X)− f⋆(X)∥22

⩽ C3 log
2(η)

(
λn∥f⋆∥2Hs

per([−2L,2L]d) + µn∥D(f⋆)∥2L2(Ω) +
M2

n2λn
+
σ2N (λn, µn)

n

)
+ 2η(2∥f⋆∥2Hs(Ω) + λ−1

n E∥ε∥22).

Take η = n−2, i.e., log(1/η) = 2 log(n). Thus, lettingC4 = 4C3 = 384 log(6), for n large enough,

E∥f̂n(X)− f⋆(X)∥22

⩽ C4 log
2(n)

(
λn∥f⋆∥2Hs

per([−2L,2L]d) + µn∥D(f⋆)∥2L2(Ω) +
M2

n2λn
+
σ2N (λn, µn)

n

)
⩽ C4Cs,Ω log2(n)

(
λn∥f⋆∥2Hs(Ω) + µn∥D(f⋆)∥2L2(Ω) +

M2

n2λn
+
σ2N (λn, µn)

n

)
,

where Cs,Ω is the constant in the Sobolev extension.

D.5. Proof of Proposition 4.4

According to Caponnetto and Vito (2007, Proposition 3), if am = Om(m1/b), then∑
m∈N

1

1 + λnam
= On(λ

−b
n ). (13)

In particular, Proposition B.6 implies that

N (λn, µn) = On(λ
−d/2s
n ).

Combining this bound with Theorem D.4 shows that the PDE kernel approaches f⋆ at least at the
minimax rate on Hs(Ω), i.e., n−2s/(2s+d) (up to a log-term).

Appendix E. About the choice of regularization

E.1. Kernel equivalence

Lemma E.1 (Minimal Sobolev norm extension) Let s ∈ N. There is an extension E : Hs(Ω) →
Hs

per([−2L, 2L]d) such that

E(f) = argming∈Hs
per([−2L,2L]d), g|Ω=f ∥g∥Hs

per([−2L,2L]d).

Moreover, E is linear and bounded, which means that ∥f∥Hs(Ω) and ∥E(f)∥Hs
per([−2L,2L]d) are

equivalent norms on Hs(Ω).
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Proof We have already constructed an extension Ẽ : Hs(Ω) → Hs
per([−2L, 2L]d) in Proposi-

tion A.6. However, Ẽ does not minimize the Sobolev norm on Ωc. Let f ∈ Hs(Ω) and H0 = {g ∈
Hs

per([−2L, 2L]d), g|Ω = 0}. Clearly, (H0, ∥ · ∥Hs
per([−2L,2L]d)) is a Banach space. One has

min
g∈Hs

per([−2L,2L]d), g|Ω=f
∥g∥Hs

per([−2L,2L]d)

= min
g∈H0

∥Ẽ(f) + g∥Hs
per([−2L,2L]d)

= min
g∈H0

∥Ẽ(f) + g∥2Hs
per([−2L,2L]d)

= min
g∈H0

∥g∥2Hs
per([−2L,2L]d) + 2⟨Ẽ(f), g⟩Hs

per([−2L,2L]d).

The form ⟨·, ·⟩Hs
per([−2L,2L]d) is bilinear, symmetric, continuous, and coercive on H0 × H0. Thus,

according to the Lax-Milgram theorem (Brezis, 2010, e.g., Corollary 5.8), there exists a unique
element u(f) of H0 such that, for all g ∈ H0,

⟨u(f), g⟩Hs
per([−2L,2L]d) = −⟨Ẽ(f), g⟩Hs

per([−2L,2L]d). (14)

Thus, ⟨u(f) + Ẽ(f), g⟩Hs
per([−2L,2L]d) = 0. Moreover, u(f) is the unique minimum of g 7→

∥g∥2
Hs

per([−2L,2L]d)
+ 2⟨Ẽ(f), g⟩Hs

per([−2L,2L]d). Therefore, E(f) := Ẽ(f) + u(f) satisfies

E(f) = argming∈Hs
per([−2L,2L]d), g|Ω=f ∥g∥Hs

per([−2L,2L]d).

Let us now show that the extension E is linear. Let f1 ∈ Hs(Ω), f2 ∈ Hs(Ω), and λ ∈ R. We
have shown that, for g ∈ H0,

⟨u(f1) + Ẽ(f1), g⟩Hs
per([−2L,2L]d) = 0,

⟨u(f2) + Ẽ(f2), g⟩Hs
per([−2L,2L]d) = 0,

and ⟨u(f1 + λf2) + Ẽ(f1 + λf2), g⟩Hs
per([−2L,2L]d) = 0.

By subtracting the third identity to the first two ones, and observing that, since Ẽ is linear, Ẽ(f1 +
λf2) = Ẽ(f1) + Ẽ(λf2), we deduce that

⟨u(f1) + λu(f2)− u(f1 + λf2), g⟩Hs
per([−2L,2L]d) = 0.

As u(f) ∈ H0 for all f ∈ Hs(Ω), we deduce that u(f1) + u(f2) − u(f1 + f2) ∈ H0. Therefore,
taking g = u(f1) + u(f2)− u(f1 + f2), we have

∥u(f1) + λu(f2)− u(f1 + λf2)∥Hs
per([−2L,2L]d) = 0,

i.e., u(f1 + λf2) = u(f1) + λu(f2). Thus, E is linear.
Proposition A.6 shows that ∥Ẽ(f)∥2

Hs([−2L,2L]d)
⩽ C̃s,Ω∥f∥2Hs(Ω). Moreover, by definition

of E, ∥E(f)∥2
Hs([−2L,2L]d)

⩽ ∥Ẽ(f)∥2
Hs([−2L,2L]d)

. Thus, ∥E(f)∥2
Hs([−2L,2L]d)

⩽ C̃s,Ω∥f∥2Hs(Ω),
i.e., the extension E is bounded. Clearly, ∥E(f)∥2

Hs([−2L,2L]d)
⩾ ∥f∥2Hs(Ω). We conclude that

∥f∥Hs(Ω) and ∥E(f)∥Hs([−2L,2L]d) are equivalent norms.
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Proposition E.2 (Kernel equivalence) Assume that s > d/2. Let λn > 0 and µn ⩾ 0. Let ⟨·, ·⟩n
be inner products associated with kernels on Hs(Ω). Assume that there exist constants C1 > 0 and
C2 > 0 such that, for all n ∈ N and all f ∈ Hs(Ω),

C1(λn∥f∥2Hs(Ω) + µn∥D(f)∥2L2(Ω)) ⩽ ⟨f, f⟩n ⩽ C2(λn∥f∥2Hs(Ω) + µn∥D(f)∥2L2(Ω)).

Then the kernels associated with ⟨·, ·⟩n on Hs(Ω) have the same convergence rate as the kernel of
Theorem 3.3 associated with the λn∥f∥2Hs

per([−2L,2L]d)
+ µn∥D(f)∥2L2(Ω) norm.

Proof For clarity, the proof is divided into four steps.

Step1: From Hs(Ω) to Hs
per([−2L, 2L]d). Observe that

f̂n = argminf∈Hs
per([−2L,2L]d)

n∑
i=1

|f(Xi)− Yi|2 + λn∥f∥2Hs
per([−2L,2L]d) + µn∥D(f)∥2L2(Ω)

= E
(
argminf∈Hs(Ω)

n∑
i=1

|f(Xi)− Yi|2 + λn∥E(f)∥2Hs
per([−2L,2L]d) + µn∥D(f)∥2L2(Ω)

)
,

where E(f) is the extension Hs(Ω) → Hs
per([−2L, 2L]d) with minimal Hs

per([−2L, 2L]d) norm
(see Lemma E.1). Define

f̂ (5)n = argminf∈Hs(Ω)

n∑
i=1

|f(Xi)− Yi|2 + λn∥E(f)∥2Hs
per([−2L,2L]d) + µn∥D(f)∥2L2(Ω).

Then f̂n = E(f̂
(5)
n ), which means that for all x ∈ Ω, f̂n(x) = f̂

(5)
n (x). Thus, f̂n and f̂ (5)n have the

same convergence rate to u⋆.

Step 2: inner products equivalence. Lemma E.1 states that ∥f∥Hs(Ω) and ∥E(f)∥Hs
per([−2L,2L]d)

are equivalent norms on Hs(Ω). Therefore, there are constants C3 and C4 such that

C3(λn∥E(f)∥2Hs
per([−2L,2L]d) + µn∥D(f)∥2L2(Ω))

⩽ ∥f∥2n ⩽ C4(λnE(f)∥2Hs
per([−2L,2L]d) + µn∥D(f)∥2L2(Ω)).

This shows that the function ⟨·, ·⟩n : Hs(Ω) × Hs(Ω) → R is coercive with respect to the
(λn∥E(f)∥2

Hs
per([−2L,2L]d)

+ µn∥D(f)∥2L2(Ω)) norm. By the Cauchy-Schwarz inequality, ⟨·, ·⟩n is

continuous with respect to the same norm. Set ⟨f, g⟩pern = λn
∑

|α|⩽s

∫
[−2L,2L]d ∂

αE(f)∂αE(g) +

µn
∫
Ω D(f) D(g). Thus, by the Lax-Milgram theorem, there exists a linear operator O : Hs(Ω) →

Hs(Ω) such that, for all f , g ∈ Hs(Ω),

⟨Of, g⟩n = ⟨f, g⟩pern . (15)

Since
C3(∥Of∥pern )2 ⩽ ∥Of∥2n = ⟨Of, f⟩pern ⩽ ∥Of∥pern ∥f∥pern ,

we deduce that ∥Of∥pern ⩽ C−1
3 ∥f∥pern . Similarly, the coercivity and continuity of ⟨·, ·⟩pern with

respect to ⟨·, ·⟩n shows that ∥O−1f∥n ⩽ C4∥f∥n, so that ∥O−1f∥pern ⩽ C−1
3 C2

4∥f∥
per
n . All in all,

C3C
−2
4 ∥f∥pern ⩽ ∥Of∥pern ⩽ C−1

3 ∥f∥pern .

One easily verifies that O is self-adjoint.
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Step 3: Link between kernels. Let f ∈ Hs(Ω). Remember that, for all x ∈ Ω,K(x, ·) = On(δx)
satisfies a weak formulation consistent with the weak formulation of the minimal-Sobolev norm
extension in (14). Thus, E(K(x, ·)) = K(x, ·), and according to Theorem 3.3, we have f(x) =
⟨f,K(x, ·)⟩pern . In this proof, to distinguish between kernels, we denote the associated kernel by
Kper

n (x, y) := K(x, y). Using the spectral theorem for bounded operators, we have that O−1

admits a square root O−1/2 which is self-adjoint for the ⟨·, ·⟩pern inner product. Therefore, using
(15), we know that, for all x ∈ Ω, f(x) = ⟨O−1/2(f),O1/2K(x, ·)⟩pern . Since ∥O−1/2(f)∥pern =
∥f∥n, we deduce that Hs(Ω) is also a kernel space for the ∥ · ∥n norm, with kernel Kn(x, y) =
⟨O(K(x, ·)),K(y, ·)⟩pern .

Step 4: Eigenvalues of the integral operator. Define the integral operators Ln and Lper
n on

L2(Ω,PX) by

Lper
n (f) : x 7→

∫
Ω
Kper

n (x, y)f(y)dPX(y) and Ln(f) : x 7→
∫
Ω
Kn(x, y)f(y)dPX(y).

Recalling that Kper
n (x, y) =

∑
m∈N amvm(x)vm(y), we can use the same technique as in the proof

of Theorem 4.2 to apply the Fubini-Lebesgue theorem, and show that

⟨f, Ln(f)⟩L2(Ω,PX) = (∥O1/2On(f)∥pern )2.

Thus, C3C
−2
4 ⟨f, Lper

n (f)⟩ ⩽ ⟨f, Ln(f)⟩ ⩽ C−1
3 ⟨f, Lper

n (f)⟩. The Courant-Fischer min-max the-
orem guarantees that the eigenvalues of Lper

n are upper and lower bounded by those of Ln. In
particular, the effective dimensions N (λn, µn) related to ∥ · ∥pern and N per(λn, µn) satisfy

C3C
−2
4 N per(λn, µn) ⩽ N (λn, µn) ⩽ C−1

3 N per(λn, µn).

This implies that both kernels have equivalent effective dimensions.

E.2. Proof of Theorem 4.6

Proposition E.2 ensures that f̂ (1)n and f̂ (2)n converge at the same rate. If ∥ ·∥ and ∥ ·∥Hs(Ω) are equiv-
alent, then there are constants 0 < C1 < 1, C2 > 1 such that, for all f ∈ Hs(Ω), C1∥f∥2Hs(Ω) ⩽

∥f∥22 ⩽ C2∥f∥2Hs(Ω). Thus, C1(µn∥D(f)∥2L2(Ω) + λn∥f∥2Hs(Ω)) ⩽ µn∥D(f)∥2L2(Ω) + λn∥f∥ ⩽

C2(µn∥D(f)∥2L2(Ω) + λn∥f∥2Hs(Ω)). Proposition E.2 then shows that f̂ (2)n and f̂ (3)n converge at the
same rate.

Appendix F. Application: the case D = d
dx

F.1. Boundary conditions

Proposition F.1 Let s = 1, Ω = [−L,L], and D = d
dx . Then any weak solution wm of the weak

formulation (5) satisfies

(λn + µn) lim
x→−L,x>−L

d

dx
wm(x) = λn lim

x→−L,x<−L

d

dx
wm(x),

(λn + µn) lim
x→L,x<L

d

dx
wm(x) = λn lim

x→L,x>L

d

dx
wm(x).
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Proof The proof uses the framework of distribution theory. By the inclusion C∞([−2L, 2L]) ⊆
Hs

per([−2L, 2L]), we know that, considering any test function ϕ ∈ C∞([−2L, 2L]) with compact
support in ]−2L, 2L[, one hasB[wm, ϕ] = a−1

m ⟨wm1Ω, ϕ⟩. Moreover, standard results of functional
analysis (using the mollification of y 7→ 1|y−x|<3ε/2 with a parameter η = ε/8 as in Evans 2010,
Appendix C, Theorem 6) ensures that, for any x ∈ [−2L, 2L], there exists a sequence of functions
(ξxε )ε>0 such that, for all m,

(i) ξxε ∈ C∞([−2L, 2L]) with compact support in D,

(ii) ∥ξxε ∥∞ = 1,

(iii) and for all y ∈ [−2L, 2L],

|y − x| ⩾ 2ε⇒ ξxε (y) = 0

|y − x| ⩽ ε ⇒ ξxε (y) = 1.

Fix two of such sequences with x = −L and x = L, and let ϕε = ϕ× (ξ−L
ε + ξLε ). Notice that the

following is true:

(i) ϕε ∈ C∞([−2L, 2L]) has compact support and supp(ϕε) ⊆ supp(ϕ),

(ii) for all r ⩾ 0, dr

dxrϕε(−L) = dr

dxrϕ(−L),

(iii) for any function f ∈ L2([−2L, 2L]), limε→0⟨f, ϕε⟩ = 0,

(iv) and B[wm, ϕε] = a−1
m ⟨wm1Ω, ϕε⟩.

Choose supp(ϕ) ⊆ [−3L/2,−L/2]. Clearly,
∫ 2L
−2L(

d
dxwm)( d

dxϕε) =
∫ −L
−3L/2(

d
dxwm)( d

dxϕε) +∫ −L/2
−L ( d

dxwm)( d
dxϕε). The integration by parts formula implies

∫ −L

−3L/2

( d

dx
wm

)( d

dx
ϕε

)
= −

∫ −L

−3L/2

( d2

dx2
wm

)
ϕε + lim

x→−L,x<−L
ϕε(x)

d

dx
wm(x)

ε→0−−−→ lim
x→−L,x<−L

ϕε(x)
d

dx
wm(x).

Similarly,∫ −L/2

−L

( d

dx
wm

)( d

dx
ϕε

)
= −

∫ −L/2

−L

( d2

dx2
wm

)
ϕε − lim

x→−L,x>−L
ϕε(x)

d

dx
wm(x)

ε→0−−−→ − lim
x→−L,x>−L

ϕε(x)
d

dx
wm(x).

Note that limx→−L,x<−L ϕε(x) = limx→−L,x>−L ϕε(x) = ϕ(−L). Therefore,

lim
ε→0

∫ 2L

−2L

( d

dx
wm

)( d

dx
ϕε

)
= ϕ(−L)

(
lim

x→−L,x<−L

d

dx
wm(x)− lim

x→−L,x>−L

d

dx
wm(x)

)
.
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This means that the integral
∫ 2L
−2L(

d
dxwm)( d

dxϕε) quantifies the discontinuity in the derivative of wm

at −L. Thus, since

B[wm, ϕε] = a−1
m

∫ L

−L
wmϕε,

we obtain, letting ε→ 0 that

(λn + µn) lim
x→−L,x>−L

d

dx
wm(x) = λn lim

x→−L,x<−L

d

dx
wm(x).

The same analysis holds in a neighborhood of L, and leads to

(λn + µn) lim
x→L,x<L

d

dx
wm(x) = λn lim

x→L,x>L

d

dx
wm(x).

F.2. Proof of Proposition 5.1

Combining Theorem 4.6 and Proposition E.2, we know that

f̂ (1)n = argminf∈H1([−L,L])

n∑
i=1

|f(Xi)− Yi|2 + λn∥f∥2H1([−L,L]) + µn∥D(f)∥2L2([−L,L])

and

f̂ (2)n = argminf∈H1
per([−2L,2L])

n∑
i=1

|f(Xi)− Yi|2 + λn∥f∥2H1
per([−2L,2L]) + µn∥D(f)∥2L2([−L,L]),

converge at the same rate to f⋆. Moreover, the λn∥f∥2H1([−L,L]) + µn∥D(f)∥2L2([−L,L]) norm on
H1([−L,L]) defines a kernel. This is this particular kernel, denoted by K, that we compute in the
remaining of the proof. Employing the exact same arguments as for the kernel on H1

per([−2L, 2L]),
we know that for all x ∈ [−L,L], the function fx : y 7→ K(x, y) ∈ H1([−L,L]) is a solution to
the weak PDE

∀ϕ ∈ H1([−L,L]), λn

∫
[−L,L]

fxϕ+ (λn + µn)

∫
[−L,L]

d

dy
fx

d

dy
ϕ = ϕ(x).

Using the elliptic regularity theorem as in the proof of Theorem 4.5 and computing the bound-
ary conditions as in Proposition F.1 shows that fx ∈ C∞([−L, x]) ∩ C∞([x, L]), d

dyfx(−L) =
d
dyfx(L) = 0, and

λnfx − (λn + µn)
d2

dy2
fx = δx,

where δx is the Dirac distribution. Thus, since fx ∈ H1([−L,L]) ⊆ C0([−L,L]), there are con-
stants A and B such that{

∀ − L ⩽ y ⩽ x, fx(y) = A cosh(γn(x− y)) +B sinh(γn(x− y)),
∀x ⩽ y ⩽ L, fx(y) = A cosh(γn(x− y)) + (B + γn

λn
) sinh(γn(x− y)).

(16)
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The boundary conditions d
dyfx(−L) =

d
dyfx(L) = 0 lead to

P

(
A
B

)
=

(
0

− γn
λn

cosh(γn(x− L))

)
,

where

P =

(
sinh(γn(x+ L)) cosh(γn(x+ L))
sinh(γn(x− L)) cosh(γn(x− L))

)
.

Notice that detP = sinh(γn(x + L)) cosh(γn(x − L)) − sinh(γn(x − L)) cosh(γn(x + L)) =
sinh(2γnL). Thus,

P−1 = sinh(2γnL)
−1

(
cosh(γn(x− L)) − cosh(γn(x+ L))
− sinh(γn(x− L)) sinh(γn(x+ L))

)
.

This leads to (
A
B

)
=

γn
λn sinh(2γnL)

(
cosh(γn(x+ L)) cosh(γn(x− L))
− sinh(γn(x+ L)) cosh(γn(x− L))

)
=

γn
2λn sinh(2γnL)

(
cosh(2γnL) + cosh(2γnx)
sinh(2γnL))− sinh(2γnx)

)
. (17)

Combining (16) and (17), we are led to

K(x, y) =
γn

2λn sinh(2γnL)

(
(cosh(2γnL) + cosh(2γnx)) cosh(γn(x− y))

+ ((1− 2× 1x>y) sinh(2γnL)− sinh(2γnx)) sinh(γn(x− y))
)
.

One easily checks that K(x, y) = K(y, x) and that K(x, x) ⩾ 0.

F.3. Proof of Proposition 5.2

The strategy of the proof is to characterize the solutions wm to the weak formulation (5) with
D = d

dt and s = 1 > d/2 = 1/2. For clarity, the proof is divided into 5 steps.

Step 1: Symmetry. Recall that Ω = [−L,L]. Using the Lax-Milgram theorem, let us de-
fine the operator Õn as follows. For all f ∈ L2([−2L, 2L]), Õn(f) is the unique function of
H2

per([−2L, 2L]) such that, for all ϕ ∈ H2
per([−2L, 2L]), B[Õn(f), ϕ] = ⟨Cf,Cϕ⟩. Clearly, the

eigenfunctions of Õn associated to non-zero eigenvalues are the wm. Let ϕ ∈ H2
per([−2L, 2L]) be

a test function. Using∫ 2L

−2L
∂αϕ(−·)(x)∂αÕn(f)(−·)(x)dx = (−1)2α

∫ 2L

−2L
∂αϕ(−x)∂αÕn(f)(−x)dx

= −
∫ 2L

−2L
∂αϕ(x)∂αÕn(f)(x)dx,

we see that B[Õn(f)(−·), ϕ(−·)] = ⟨Cf(−·), Cϕ(−·)⟩. Therefore, since H2
per([−2L, 2L]) is sta-

ble by the action ϕ 7→ ϕ(−·), using the uniqueness statement provided by the Lax-Milgram the-
orem, we deduce that Õn(f)(−x) = Õn(f(−·))(x), so that Õn(f) is symmetric. According to
Proposition A.16, we can therefore assume that wm is either symmetric or antisymmetric.
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Step 2: PDE system. According to Theorem 4.5, C.5, and F.1, the following statements are
verified:

(i) The function wm ∈ C∞([−L,L]) and

∀x ∈ Ω, λn

(
1− d2

dx2

)
wm(x)− µn

d2

dx2
wm(x) = a−1

m wm(x).

Since a−1
m ⩾ λn (see Remark B.7), the solutions of this ODE are linear combinations of

cos(
√

a−1
m −λn
λn+µn

x) and sin(
√

a−1
m −λn
λn+µn

x).

(ii) The function wm ∈ C∞([−2L, 2L]\[−L,L]), with a C∞ junction condition at −2L, and

∀x ∈ [−2L, 2L]d\Ω̄,
(
1− d2

dx2

)
wm(x) = 0.

The solutions of this ODE are linear combinations of cosh(x) and sinh(x). The C∞ 4L-
periodic junction condition at −2L guarantees that there are two constants A and B such
that

∀ − 2L ⩽ x ⩽ −L,wm(x) = A cosh(x+ 2L) +B sinh(x+ 2L),

∀L ⩽ x ⩽ 2L,wm(x) = A cosh(x− 2L) +B sinh(x− 2L).

(iii) The function wm ∈ C0
per([−2L, 2L]).

(iv) One has

(λn + µn) lim
x→−L,x>−L

d

dx
wm(x) = λn lim

x→−L,x<−L

d

dx
wm(x),

(λn + µn) lim
x→L,x<L

d

dx
wm(x) = λn lim

x→L,x>L

d

dx
wm(x).

(v) One has
∫ 2L
−2Lw

2
m = 1.

Step 3: Symmetric eigenfunctions. Our goal in this paragraph is to describe the symmetric eigen-
functions, i.e., wm(−x) = wm(x). We denote by asymm the eigenvalues of such eigenfunctions.
From statements (i) and (ii) above, we deduce that there are two constant A and C such that

∀ − 2L ⩽ x ⩽ −L, wm(x) = A cosh(x+ 2L),

∀ − L ⩽ x ⩽ L, wm(x) = C cos
(√a−1

m − λn
λn + µn

x
)
,

∀L ⩽ x ⩽ 2L, wm(x) = A cosh(x− 2L).

Applying (iii) at x = −L leads to

A cosh(L) = C cos
(√(asymm )−1 − λn

λn + µn
L
)
. (18)
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Similarly, statement (iv) applied at x = −L shows that

λnA sinh(L) = −(λn + µn)C

√
(asymm )−1 − λn

λn + µn
sin

(
−

√
(asymm )−1 − λn

λn + µn
L
)
. (19)

Dividing (19) by (18) leads to

L

√
(asymm )−1 − λn

λn + µn
tan

(√(asymm )−1 − λn
λn + µn

L
)
= L

λn
λn + µn

tanh(L).

The equation x tan(x) = C̃, where C̃ is constant, has exactly one solution in any interval [π(k −
1/2), π(k + 1/2)] for k ∈ Z. Therefore, there is only one admissible value of

√
(asymm )−1−λn

λn+µn
in

each of these interval. So,

λn + (λn + µn)(m− 1/2)2π2/L2 ⩽ (asymm )−1 ⩽ λn + (λn + µn)(m+ 1/2)2π2/L2.

Step 4: Antisymmetric eigenfunctions. Our goal in this paragraph is to describe the antisym-
metric eigenfunctions, i.e., wm(−x) = −wm(x). We denote by aantim the eigenvalues of such
eigenfunctions. From statements (i) and (ii), we deduce that there are two constant B and D such
that 

∀ − 2L ⩽ x ⩽ −L, wm(x) = B sinh(x+ 2L),

∀ − L ⩽ x ⩽ L, wm(x) = D sin
(√

a−1
m −λn
λn+µn

x
)
,

∀L ⩽ x ⩽ 2L, wm(x) = B sinh(x− 2L).

Applying (iii) at x = −L, one has

B sinh(L) = D sin
(√(aantim )−1 − λn

λn + µn
L
)
. (20)

Similarly, applying (iv) at x = −L shows that

λnB cosh(L) = (λn + µn)D

√
(aantim )−1 − λn
λn + µn

cos
(
−

√
(aantim )−1 − λn
λn + µn

L
)
. (21)

Dividing (20) by (21) leads to

L
((aantim )−1 − λn

λn + µn

)−1/2
tan

(√(aantim )−1 − λn
λn + µn

L
)
= L(1 +

µ

λn
) tanh(L).

The equation tan(x)/x = C̃, where C̃ is constant, has exactly one solution in any interval [π(k −
1/2), π(k + 1/2)] for k ∈ Z. Therefore, there is only one admissible value of

√
(aantim )−1−λn

λn+µn
in

each of these interval. So,

λn + (λn + µn)(m− 1/2)2π2/L2 ⩽ (aantim )−1 ⩽ λn + (λn + µn)(m+ 1/2)2π2/L2.
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Step 5: Conclusion. Recall that the sequence (am)m∈N is a non-increasing re-indexing of the
sequences (asymm )m∈N and (aantim )m∈N. Putting the bounds obtained for asymm and aantim together, we
obtain

λn + (λn + µn)(m/2− 1)2π2/L2 ⩽ a−1
m ⩽ λn + (λn + µn)(m/2 + 1)2π2/L2,

and
(λn + µn)(m− 2)2π2/(4L2) ⩽ a−1

m ⩽ (λn + µn)(m+ 4)2π2/(4L2).

We conclude that

4L2

(λn + µn)(m+ 4)2π2
⩽ am ⩽

4L2

(λn + µn)(m− 2)2π2
.

F.4. Proof of Theorem 5.3

This is a straightforward consequence of Proposition 5.2, identity (13), and Theorem 4.3.
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