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Abstract
The class distribution of a training dataset is an important factor which influences the performance of a deep learning-based 
system. Understanding the optimal class distribution is therefore crucial when building a new training set which may be 
costly to annotate. This is the case for histological images used in cancer diagnosis where image annotation requires domain 
experts. In this paper, we tackle the problem of finding the optimal class distribution of a training set to be able to train an 
optimal model that detects cancer in histological images. We formulate several hypotheses which are then tested in scores of 
experiments with hundreds of trials. The experiments have been designed to account for both segmentation and classification 
frameworks with various class distributions in the training set, such as natural, balanced, over-represented cancer, and over-
represented non-cancer. In the case of cancer detection, the experiments show several important results: (a) the natural class 
distribution produces more accurate results than the artificially generated balanced distribution; (b) the over-representation 
of non-cancer/negative classes (healthy tissue and/or background classes) compared to cancer/positive classes reduces the 
number of samples which are falsely predicted as cancer (false positive); (c) the least expensive to annotate non-ROI (non-
region-of-interest) data can be useful in compensating for the performance loss in the system due to a shortage of expensive 
to annotate ROI data; (d) the multi-label examples are more useful than the single-label ones to train a segmentation model; 
and (e) when the classification model is tuned with a balanced validation set, it is less affected than the segmentation model 
by the class distribution of the training set.

Keywords Computer-aided diagnosis · Medical information retrieval · Image segmentation and classification · Deep 
learning · Class-biased training · Class distribution analysis · Histological image

Introduction

The huge success of deep learning models, such as con-
volutional neural networks (CNNs), in visual recognition 
[1–3] has encouraged researchers to explore their use in vari-
ous domains, including cancer detection from histological 
images [4–6].

Histological images (also referred to as whole-slide images 
or WSIs) are digitalized histological slides1. When working 
on a patient’s case, the manual analysis of WSIs demands a 
high level of concentration and is time-consuming for pathol-
ogists. In this context, an automatic system can help by filter-
ing out the healthy parts of the images and indicating possible 
(otherwise potentially overlooked) cancer regions. During the 
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last few decades, many automatic systems based on machine 
learning techniques including deep learning [4, 7–10] have 
been put forward for cancer detection. However, these meth-
ods are mainly focused on end-to-end pipeline developments 
for cancer detection, while the success of such systems 
depends on several hyper-parameters [11]. We hypothesized 
that one of the most important hyper-parameters is the class 
distribution of the training set, as the training set provides the 
supervision for all learning-based systems [12, 13]. Moreover, 
several studies have focused on class distribution analysis, in 
particular, the comparison between balanced and imbalanced 
distributions for different tasks, which illustrates its impor-
tance [14–17]. Nonetheless, the results of different studies are 
inconsistent, depending on the tasks, datasets and the machine 
learning techniques employed [16]. This inconsistency casts 
doubt on their generalization for WSI data in the context of 
cancer detection, which is our topic of interest.

Generally, in machine learning, an imbalanced data dis-
tribution has been shown to lead to inferior models com-
pared to a balanced distribution [18, 19]; and hence, a lot 
of effort has been put in to develop methods which over-
come data imbalance. Buda et al. [15] have reviewed the 
popular methods, such as oversampling, undersampling, 
thresholding, cost-sensitive learning, one-class classifica-
tion, and various hybrids. These studies may indeed lay 
the path for balanced distribution to become the default 
choice as a deep learning state-of-the-art method [4, 5, 
20], although Prati et al. [16], for example, have shown 
that it is not optimal in all cases. Unfortunately, very few 
analytical studies on the performance impact of different 
distributions exist in the literature [16, 17, 21]. Moreover, 
the available studies have been mainly conducted on toy 
datasets, even though real datasets may be very different 
and more complex. Thus, there is no evidence from the 
conclusions of these studies that they would be appropriate 
for cancer WSIs.

Furthermore, the outcomes of available studies are con-
tradictory: some support the natural distribution2 [22], some 
support an imbalanced distribution [17, 21] while others 
support a balanced distribution [16]. For this reason, it is 
not straightforward to decide on a specific class distribution 
for all types of tasks. We believe that elaborate domain spe-
cific analysis is required for each specialized task, especially 
for a comparatively new and sensitive case, such as cancer 
detection from WSIs, which has not as yet been studied in 
any depth.

State-of-the-art methods for cancer detection [4, 5, 20] 
utilize different types of distribution (usually balanced) and 
obtain very convincing results for a large-scale breast can-
cer dataset using different models. In particular, the existing 
systems achieve very high sensitivity3 [5, 6], while false 
positives4 remain an ongoing issue [23]. However, to our 
knowledge, no analysis indicates if the commonly adopted 
balanced distribution is the most appropriate distribution for 
cancer detection in WSIs nor which class should be over-
represented. It is also worth knowing which distribution pro-
duces fewer false positives with high sensitivity and why. It 
would help in choosing training examples and their ratios for 
building robust training datasets.

In this paper, we present a data-driven analysis which 
determines the performance impact of different class distri-
butions on training data. We derive several hypotheses with 
regard to WSIs used for cancer detection, and test them with 
two commonly used target applications: image segmentation 
and classification. The goal of image segmentation is to seg-
ment predefined objects from the input image [24, 25] for 
the purposes of localization. This is performed by labeling 
each pixel of the corresponding object with a predefined 
color that corresponds to a class label. Image classification, 
on the other hand, is the process of assigning a class label(s) 
to the entire input image. We test the hypotheses with deep 
learning state-of-the-art technology for both segmentation 
and classification tasks. We choose the default choice fully 
convolutional neural network (FCNN) and CNN architec-
tures for the segmentation and classification task, respec-
tively; finding the optimal architecture is out of the scope 
of this research. We employ two datasets for training: one 
is multi-class (annotated with cancer, non-cancer, and other 
histological structures), and is applicable to the segmenta-
tion setting, whereas the other is binary class (annotated 
with cancer and non-cancer classes), and is applicable to the 
classification setting. With both datasets we conduct a series 
of experiments and analyze the results in detail to be able to 
provide comprehensive conclusions.

While the main focus of this paper concerns training data 
distribution, we also discuss the case of the test data distri-
bution to see if the proposed hypotheses hold for the dif-
ferent test distributions as well. To this end, we use the test 
set for an additional dataset along with the other datasets. 
However, the test data distribution is a large topic itself and 
will require a separate elaborate analysis

The rest of the paper is structured as follows. We first 
review the literature in "Literature Review". In "Materials 
and Methods", we present the materials and methodology 

2 Natural distribution is the distribution a data originally has, which 
can be either balanced or biased to a certain class.

3 Sensitivity is the proportion of actual positive cases that are pre-
dicted as positive.
4 Negative example wrongly predicted as positive class

1327Journal of Digital Imaging  (2022) 35:1326–1349

1 3



for the relevant hypotheses we formulate on the impact of 
class distributions. In "Experimental Details", we describe 
our experimental settings, while the results are presented and 
discussed in "Results and Discussion". In "Overall Discus-
sion and Conclusions", we draw our conclusions and discuss 
future directions.

Literature Review

The natural imbalanced distribution of data is generally con-
sidered a problem/obstacle in machine learning. Researchers 
put a lot of effort into balancing data. In contrast, compara-
tive analytical studies of different distributions are few in 
number. In this section, we investigate several studies related 
to class imbalance problems and class distribution analy-
sis. We also present the state-of-the-art cancer detection in 
WSIs.

Class Imbalance Problems

One of the common problems in machine learning is dealing 
with class-biased or imbalanced data. In the real world, the 
availability of some classes makes them an over-represented 
majority, while the scarcity of other classes makes them an 
under-represented minority. This imbalance usually makes 
the classification task challenging for a classifier. There are 
many studies [15, 18, 19, 26–35] showing that imbalanced 
training data leads to a loss in performance, so various meth-
ods have to be adopted to make the training data balanced. 
Prati et al. [16] list some of the most popular methods. Most 
studies are conducted on classical machine learning meth-
ods, and yet, only a few discuss the deep learning perspec-
tive [15, 36]. Among the studies referring to this perspective, 
some suggest data-level modifications [26, 28, 30, 37], some 
prefer tweaking different hyper-parameters of the network 
or making algorithm-level modifications [19, 33, 38], e.g., 
incorporating a new cost function, while others suggest com-
bining data and algorithm-level modifications [39, 40]. Buda 
et al. [15] performed a comparative study of different meth-
ods to address the class-biased problem. According to the 
authors, imbalanced data have an adversarial effect on the 
classification accuracy of the CNNs, similarly to classical 
machine learning techniques. The most recommended solu-
tion is to oversample the minority class [15, 31]. Johnson 
and Khoshgoftaar [36] conducted another detailed survey 
on recent techniques used to deal with the imbalanced data 
problem in deep learning. They concluded that not enough 
evidence exists to suggest that a particular technique is supe-
rior in dealing with class imbalance through the use of deep 
learning.

Class Distribution Analysis

All the articles from the previous subsection describe the 
adversarial effects of imbalanced data, and suggest methods 
for making the class distribution of the training data bal-
anced. However, these methods do not provide the answer 
to an important question, namely, whether the balanced 
distribution is optimal for all types of learning techniques 
and datasets, and if we are to answer this question, com-
parative studies on different training class distributions will 
be required. Unfortunately, such studies are few in number, 
while hundreds are available on solving data imbalance, 
as mentioned in "Class Imbalance Problems". Among the 
available comparative studies, Reshma et al. [41] present a 
short study on the impact of non-ROIs and natural distribu-
tion where the conclusions are in favor to non-ROIs biased 
dataset. Weiss and Provost [17, 21] showed that neither a 
naturally occurring class distribution nor a balanced distri-
bution is best for learning, and often a substantially better 
performance can be obtained by using a different class dis-
tribution. For their analysis, they employed 26 datasets from 
the UCI repository [42]. According to the analysis by Prati 
et al. [16] on 20 datasets from UCI [42] and a small number 
of private datasets, the best distribution for seven different 
learning algorithms, including neural networks, is a bal-
anced distribution. They conclude that only support vector 
machines are less affected by class imbalance. However, this 
study was carried out on toy datasets; and hence, there is no 
evidence that the commonly prescribed balanced distribution 
is a generalizable solution for more complex real datasets. 
Consequently, a separate analysis is required for each special 
kind of data. This conclusion is clearly connected to the No 
Free Lunch Theorem [43], which states that there is no sin-
gle model that works best for every task. For example, Zhu 
et al. [22] conducted an elaborate domain specific study to 
optimize the training data distribution for land cover data 
in a bid to detect change. According to the authors, a class 
distribution proportional to the naturally occurring distribu-
tion is superior to a balanced distribution for land cover data 
when using random forests as the learning algorithm. To our 
knowledge, there is no such comparative study for cancer 
detection in WSIs.

Studies on Cancer Detection in WSIs

In recent years, the use of deep CNNs has shown incred-
ible performance levels with regard to cancer detection in 
WSIs [44]. However, the recommended systems have not 
been adopted at a clinical level, as the performance thresh-
old needed to gain the trust of pathologists has not yet been 
met [45]. Therefore, developing efficient methods for cancer 
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detection remains an active area of research, as there are 
still some hyper-parameters to tune in order to achieve a 
low-cost, high-performing system that could reduce false 
predictions and cognitive load [46]. Several deep learning 
systems have been proposed during the last few years, spe-
cifically from 2015 onward. Bejnordi et al. [4] have organ-
ised a worldwide challenge known as CAMELYON to gather 
together different methods for cancer detection in WSIs. 
Before this annual event, the use of WSIs in computational 
tasks was limited to patches which had been pre-extracted 
by the pathologist [47]. Most of the proposed methods in 
the CAMELYON16 challenge are based on deep learn-
ing: the variation in the participants’ results is induced by 
hyper-parameter settings and data pre-processing. The win-
ning team [6] trained two 22-layer GoogleNets (V1), one 
with randomly sampled training patches—probably biased 
towards negative examples—and another with additional 
hard negative examples. The final decision was based on the 
combination of predictions from two models. Additionally, 
they trained a random forest classifier with 28 handcrafted 
features extracted from the output heat maps of the CNNs. 
They used color normalization to cope with color variation 
in the WSIs while also applying rotation, and adding extra 
color noise to training patches for data augmentation during 
training. Liu et al. [5] (from GoogleAI) used the GoogleNet 
(V3) [48]. They applied a random patch sampling technique 
to obtain a balanced training set. Moreover, to deal with the 
scarcity of tumor patches, they applied several data augmen-
tation techniques, including rotation, mirroring, and exten-
sive color disturbance. However, in their extended work 
[44], they selected a training distribution biased towards the 
negative class by a factor of four. Lin et al. [47] proposed a 
framework for fast and dense scanning during prediction. In 
their framework, they converted the modified VGG16 to a 
fully convolutional neural network (FCNN), which was fol-
lowed by a patch reconstruction method. In their proposed 
system, they used false positive generated patches in train-
ing. Veeling et al. [49] proposed a rotation equivariance 
framework by adopting G-CNN architecture [50]. To test the 
effectiveness of their method, they proposed a new dataset, 
known as PatchCamelyon (PCam), which gives a balanced 
distribution. In [51, 52], the authors proposed a new data-
set for different types of breast cancer, and an end-to-end 
deep learning framework for multilabel tissue segmentation 
utilizing their dataset while network parameters were deter-
mined with a deep analysis. Other cancer detection studies 
have been covered in [45, 53], and a number of end-to-end 
pipelines were developed in these studies, but training class 
distribution was not considered. Furthermore, filtering out 
non-ROIs and creating a training dataset with artificially bal-
anced or a slightly skewed distribution towards the negative 
class has been a common practice. In other words, the usual 
natural distribution and non-ROIs have yet to be explored. 

In this study, we investigate the usability of non-ROIs and 
natural distribution for the WSI data. Moreover, we compare 
three other commonly adopted distributions, namely bal-
anced, cancer-biased, and non-cancer-biased.

Materials and Methods

According to Prati et al. [16], the impact of different class 
distributions on various datasets is not always the same. An 
accurate study is therefore required to find the optimal class 
distribution for any crucial task, such as cancer detection 
from WSIs.

The commonly preferred balanced distribution of the 
training set [4, 5, 20, 49] is not necessarily the best distri-
bution for cancer detection without carrying out a proper 
comparative study. Based on this observation, we conducted 
several preliminary experiments for cancer detection with 
balanced and imbalanced (both naturally and artificially gen-
erated) training sets. From our preliminary experiments, we 
found that the artificially generated balanced set does not pro-
vide the best performance. The results encouraged us to draw 
certain hypotheses and investigate the results at length. These 
hypotheses led to the design of a new generic framework that 
can be applied to any new task to provide an optimal choice 
of class distribution in the training set for a machine learn-
ing model. Figure 1 illustrates the methodological frame-
work for this analytical study. However, before describing 
the proposed hypotheses and corresponding framework, we 
discuss the main elements of this domain-specific study, i.e., 
the WSIs and their corresponding details, to be able to famil-
iarize the reader with the general terms and notations.

Whole Slide Image

We use whole slide images (WSIs) as the image format for 
this study. WSIs are the digital conversion of conventional 
histological glass slides containing a tissue sample [54, 55]. 
Unlike a normal image, a WSI is stored in a multi-resolution 
pyramid structured file. The file contains multiple versions 
of downsampled images, and usually comprises 8 to 10 lev-
els of resolution, including the original level. This allows 
the extraction of the WSI image at any resolution, and takes 
low to high magnification levels into account. Level 0 is 
considered to be the highest magnification level, and at this 
level a WSI could be several gigapixels in size.

The examination of lymph node sections, either on glass 
slides or on WSIs, is common practice for the evaluation of 
tumors and their spread. However, this evaluation has some 
well-known limitations, such as being time-consuming, 
laborious, and dependent upon the pathologist’s expertise 
and level of fatigue. In this regard, researchers have endeav-
ored to find computer-aided diagnosis (CAD) systems which 
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can act as a tool to assist pathologists. Machine learning 
techniques, in particular, are used. While applying machine 
learning, two regions in a WSI are generally recognized:

• Regions of interest (ROIs) are the regions that alert 
pathologists to check for abnormalities. In the case of 
lymph node WSIs, the regions containing lymph nodes 
are ROIs, since the health of lymph node tissue is what 
pathologists observe. The ROIs can in turn be divided 
into two classes: positive and negative. Metastasis is con-
sidered a positive class, cancer (denoted by ℂ in the rest 
of the paper), while any remaining ROIs are considered 
a negative class, non-cancer (denoted by ¬ℂ).

• Other regions (non-ROIs) are mainly background and 
histological structures other than lymph node tissue. The 
non-ROIs, that is to say, non-lymph nodes, are considered 
as belonging to the negative class, other (denoted as �).

In other words, three classes are usually considered in 
a WSI: the positive ROI class, cancer ( ℂ ), the negative 
ROI class, non-cancer ( ¬ℂ ), and the negative non-ROI 
class, other ( � ). Since the cancer class ( ℂ ) is of the utmost 
importance to the binary classification task, both � and ¬ℂ 
are merged into one class and simply considered being the 
negative class ¬ℂ.

Figure 2 shows an example of a metastatic lymph node WSI 
with its corresponding regions. In a WSI dataset, the non-ROI 

class is usually over-represented, while the two ROI classes 
could be balanced or imbalanced, depending on which WSIs 
have been included in the dataset (more details are provided 
in "The Datasets and Preprocessing"). On average, a WSI con-
tains 70 to 80% of non-ROI pixels [6, 47]. We consider this 
usual bias towards non-ROIs as the natural distribution.

Fig. 1  Our methodologi-
cal framework. To answer 
the general question of what 
the optimal class distribu-
tion of the training set should 
be, we created d training sets 
with n patches and d different 
distributions. We then trained d 
models corresponding to each 
distribution that we tested on 
the same unseen test set. The 
training data distribution of the 
best model for test data was 
considered as the best distribu-
tion. We repeated each experi-
ment 10 times and calculated 
the mean to be able to make the 
final decision

Fig. 2  (a) Metastatic lymph node WSI and (b) its annotation. In (b), 
the color red represents the cancer class ( ℂ ), blue represents the non-
cancer class ( ¬ℂ ), and gray represents other class, mainly the back-
ground ( � ). Both ℂ and ¬ℂ are ROIs, while � is not
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Patch Categories in WSI Data

Due to typical memory limitations, rather than using the 
whole images as training examples, it is common practice 
to use patches extracted from the WSIs. We hence consider 
these patches for training and testing purposes. Furthermore, 
the patches help create a different distribution in the training 
set for our analysis. However, in our research, the patches 
need to be placed in different categories. Thus, we consider 
different categories of patches based on the annotation of 
the WSIs in the dataset.

For a multi-class WSI dataset annotated using three dif-
ferent classes as shown in Fig. 2, we consider four catego-
ries of patches as defined in Table 1. Patches that contain 
more than 99.999% class � pixels are labeled as the other 
( � ) category. The remaining patches belong to the other 
categories: cancer ( ℂ ), non-cancer ( ¬ℂ ), or mixed ( ℂ&¬ℂ ) 
with an optional presence of class � pixels ( < 99.999% ). 
For example, in a patch with 100% ℂ pixels, there are no � 
pixels. Among the four patch categories, we consider the 
category ℂ&¬ℂ as being multi-label (since it contains two 
ROI classes at the same time), and the others as single-label. 
Note that we use the same notations for pixel classes.

We use the categories described above to design several 
experiments with the aim of testing various hypotheses con-
cerning the class distribution of the training set, which are 
described in "Hypotheses and Relevant Class Distributions".

Hypotheses and Relevant Class Distributions

We make several hypotheses and design several experiments 
with the relevant class distributions to be able to test the 
proposed hypotheses.

The first hypothesis (H1) revisits the superiority of bal-
anced distribution when training a model, while the other three 

hypotheses consider the impact of one balanced and two other 
class-biased distributions (H2 to H4) in different situations.

While testing one hypothesis, the total number of patches 
in the training set of each experiment is kept the same to 
ensure fair comparison. The experiments within a group of 
experiments differ from one another according to the patch 
categories that make up the training set, and according to 
their ratio, i.e., the distribution of the classes in the training 
set. The hypotheses are presented below.

H1: Natural distribution is not an optimal method for 
training a model 

As mentioned in "Whole Slide Image", the WSI data 
are naturally biased towards the non-ROI class, � . In other 
words, the natural distribution of the WSIs is the over-rep-
resentation of class � . However, class � is not a region of 
interest for pathologists. In this case, it is a common practice 
to filter out the excessive examples of class � and make a 
balanced training set out of the remaining classes.

We hypothesize that the trained model with over-represented 
class � (i.e., natural distribution) will be effective at detecting 
the regions that are not of interest (non-ROIs) to pathologists, 
since it will be trained using a large number of different non-
ROI cases. However, we also hypothesize that this distribu-
tion will be less effective for the less frequently occurring ROI 
cases, although these cases are much more interesting to detect 
for pathologists.

Table 1  Definition of Patch Categories

Dataset type Patch category Definition Label type Comment

Multi-class Other ( �) Containing > 99.999% � pixels Single-label Non-ROI/non-lymph node as the negative non-
ROI class

Cancer ( ℂ) Containing > 0.001% ℂ pixels and no ¬ℂ 
pixels.

Single-label Metastasis as the positive ROI class

Non-cancer ( ¬ℂ) Containing > 0.001% ¬ℂ pixels and no ℂ 
pixels.

Single-label Lymph node without metastasis as the negative 
ROI class

Mixed ( ℂ&¬ℂ) Containing > 0.001% ℂ pixels and > 0.001% 
¬ℂ pixels.

Multi-label Belongs to both ℂ and ¬ℂ class at the same time

Binary class Cancer ( ℂ) Containing ℂ pixels at a particular center 
region of the patch.

Single-label Metastasis as the positive class

Non-cancer ( ¬ℂ) Containing ¬ℂ or � pixels and no ℂ pixels at 
the central region.

Single-label Lymph node or non-lymph node (unlike multi-
class dataset case) without metastasis as the 
negative class

Table 2  Experiment settings E1: E1 settings are designed to test 
H1 (natural distribution is not optimal) with a total of 9 units ( � ) of 
patches in the training set of each experiment

Experiment ID Distribution Patch ratio 
(𝕆 ∶ ℂ ∶ ¬ℂ)

E1.a Balanced 3 : 3 : 3
E1.b Over-represented 

� (natural)
7 : 1 : 1
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To test H1, we designed two experiments: E1.a and 
E1.b, i.e., in Fig. 1, d = 2 . In E1.a, we consider the same 
number of patches in each of the three classes, whereas 
in E1.b the training examples are highly biased (7 times) 
towards class � (similar to the natural distribution) as pre-
sented in Table 2. We hereby introduce � to denote a unit 
(fixed amount) of patches. For a particular dataset, the size 
of � is determined by the size of the smallest patch cat-
egory (the category with the least number of patches) and 
its largest presence in the expected patch ratios. The size 
of � is determined so that we can consider both the under 
and over-representation of that smallest category for the 
given dataset. In this regard, we consider only single-label 
patch categories. For example, let us suppose that ℂ is the 
smallest category with size N (total number of extracted 
patches), and in the expected patch ratios given in Table 2, 
its largest presence is 3, then � = N∕3 . To test H1, a total 
of 9� of patches is used to create both the natural and bal-
anced distributions, i.e., in Fig. 1, n = 9�.

This hypothesis can be tested on the multi-class data-
set only. Since class � is not annotated separately in the 
binary class datasets, it is not possible to accurately sepa-
rate class � from class ¬ℂ , especially if histological struc-
tures are available in � regions.

H2: Over-representing the ¬ℂ class in the training 
set reduces false positives during cancer detection

We observed that in WSIs the regions for class ¬ℂ 
are more heterogeneous than the regions for class ℂ . 
Indeed, class ¬ℂ regions may contain germinal centers, 
macrophage, blood vessels or artifacts (e.g. ,blur areas), 
etc. (see Fig. 3). Here, some of these are visually similar 
to class ℂ regions. Diversity of the ¬ℂ regions (both in 

training and test sets) would almost certainly increase in 
more complex anatomic structures than lymph nodes. To 
ensure the coverage of different variations and to reduce 
any confusion with class ℂ regions, the over-representation 
of class ¬ℂ could be useful. Thus, over-representing class 
¬ℂ compared to class ℂ should reduce the false positive 
rate for class ℂ.

To test this hypothesis, we designed three experiments 
(i.e., in Fig. 1, d = 3 ), as presented in Table 3. In E2.a, 
we consider the balanced case between ℂ and ¬ℂ , while 
E2.b over-represents ¬ℂ and E2.c over-represents ℂ respec-
tively. In the literature, the ratio of under-representation to 
over-representation is around 1:3 [4, 44], so we follow the 
same ratio in our experimental design. The total number of 
patches in the experiments used to test this hypothesis (H2) 
is lower than that of H1, mainly because of the expected 
ratio (1:3) and the total number of extracted patches for 
the less frequently occurring ROI classes ( ℂ and ¬ℂ ). 
Thus, the results of experiments E1 and E2 are not fully 
comparable.

Fig. 3  Samples of heterogene-
ous patches of class ¬ℂ (lymph 
node): (a) usual lymphocytes 
in lymph nodes, (b) sinusal 
macrophages in lymph nodes, 
(c) germinal center, (d) blood 
vessel, (e) fibrosis with lym-
phocyte, and (f) artifact (blur 
area). Here, (b) and (c) have 
some common visual features 
with class ℂ ; on the other hand, 
(d), (e), and (f) are non-specific 
structures which might also 
appear in the other two classes, 
ℂ and �

Table 3  Experiment settings E2: E2 settings are designed to test H2 
(i.e., ¬ℂ-biased training produces fewer false positives) with single-
label patches. There is a total of 4 � patches in the training set of 
each experiment

Experiment ID Distribution  Patch ratio 
(ℂ ∶ ¬ℂ)

E2.a Balanced 2 : 2
E2.b Over-represented ¬ℂ 1 : 3
E2.c Over-represented ℂ 3 : 1
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This hypothesis can be tested on both multi-class and 
binary class datasets. For the multi-class dataset, we do not 
consider patches from category �—it is important to recall 
that there are many � pixels in ROI patches—to be able to 
focus on the ROI cases, similarly to the common trends in 
the literature of filtering out non-ROIs. Although we do not 
use the patch categories ℂ&¬ℂ and � in the experiment 
setting given in Table 3, we use them for H3 and H4 and for 
re-testing H2. Further details are provided in the following 
paragraphs.

H3: Multi-label examples are more useful than single-
label examples as training data

This hypothesis states that the patches containing both 
ROI classes ℂ and ¬ℂ (i.e., belonging to category ℂ&¬ℂ ) 
add more valuable information during training than the 
patches containing a single ROI class (i.e., categories ℂ or 
¬ℂ ). Indeed, by having both classes of pixels at the same 
time, multi-label patches include boundary information for 
the two classes; and hence, there is more contextual infor-
mation that could be helpful during training, especially for 
segmentation models, which can localize multiple classes 
within the same patch. In other words, we consider having 
multiple ROI classes in the same patch as advantageous.

To test this hypothesis, we had to design a trio of experi-
ments analogous to E2 (which are designed with single-label 
patches). To construct class-biased distributions, we replaced 
the under-represented class examples (category ℂ or ¬ℂ ) in 
E2.b and E2.c with examples of multi-label patches (category 
ℂ&¬ℂ ). At the same time, to re-evaluate H2 in the current 
case, we designed the corresponding E2.a experiment as well. 
The detailed design of the experiments is given in Table 4. 
First, in E3.a, we considered a balanced case between ℂ and 
¬ℂ . Then, similarly to E2, in E3.b and E3.c we considered 
over-represented ¬ℂ and over-represented ℂ cases respec-
tively. The total number of patches in E3.* is the same as in 
E2.*, namely 4 � . Hence, the result of an E2.* experiment is 
comparable with the result of the corresponding E3.* experi-
ment, where * can be replaced by a, b, or c.

In short, we re-tested H2 with the current E3 experiment 
setting and tested H3 by comparing the corresponding pairs 
(E3.*, E2.*).

H4: Non-ROI data are useful for training
Training CNNs requires very large datasets; sometimes, 

data augmentation is applied to make a dataset artificially 
larger [57]. Although data augmentation is useful in increas-
ing the generalization power of CNN models, it can cause 
overfitting in the case of small datasets [58]. Obtaining a 
non-artificially augmented large dataset of WSIs is gener-
ally expensive, since annotating ROI data requires domain 
experts. However, in our particular case, annotating non-
ROIs is less expensive. Furthermore, inside the ROIs, there 
are some common non-ROI regions. Non-ROI examples 
are required to learn how to classify these common non-
ROIs inside the ROIs. By considering all these reasons, we 
hypothesize that non-ROI data could be useful for training 
a CNN, especially when the annotated ROI dataset is small.

To test this hypothesis, we designed a trio of experiments 
analogous to E3. Specifically, we replaced some examples 
of class ℂ and ¬ℂ from E3.* with class � examples (see 
Table 5) to simulate the shortage of ROI data. However, we 
still kept the balanced, ¬ℂ-biased and ℂ-biased distribution 
in the corresponding experiment for ROI classes. Hence, this 
represents another setting for testing H2 in which, along with 
class ¬ℂ , we consider another negative class (non-ROI class, 
� ). We are thus revisiting H2 as over-representing negative 
classes (both ¬ℂ and � ) compared to the positive class (ℂ) 
reduces the false positives.

We designed three experiments denoted as E4.*, as shown 
in Table 5, analogous to the E3.* experiments. Similarly to 
the E3 experiment settings, E4 serves two purposes. The first 
purpose is to test H4 by comparing E4 with E3; the second 
is to re-test H2 with the current E4 settings. Here, we design 
E4.a by replacing the same number of patches for categories 
ℂ and ¬ℂ with patches for category � from E3.a, thereby 
adding some extra non-ROI information while keeping the 
balance between ROI classes. We designed the following 
two experiments, E4.b and E4.c, as the corresponding pair 
for E3.b and E3.c by replacing 1 � patches from the over-
represented ROI class with patches of category � . As we 
kept the total number of training examples 4 � , the E4.* 
experiments are comparable with the previous E2.* and 
E3.* experiments.

Table 4  Experiment settings E3: E3 settings are designed to re-test 
H2 when multi-label patches are used and to test H3 (i.e., multi-label 
patches are more useful than single-label patches)

Experiment ID Distribution Patch ratio 
(ℂ ∶ ¬ℂ ∶ ℂ&¬ℂ)

E3.a Balanced 1.5 : 1.5 : 1
E3.b Over-represented ¬ℂ 0 : 3 : 1
E3.c Over-represented ℂ 3 : 0 : 1

Table 5  Experiment settings E4: E4 settings are designed to re-test 
H2 where non-ROI patches are used, and to test H4 (i.e., non-ROI 
data are useful)

Experiment ID Distribution Patch ratio 
(𝕆 ∶ ℂ ∶ ¬ℂ ∶ ℂ&¬ℂ)

E4.a Balanced 1 : 1 : 1 : 1
E4.b Over-represented ¬ℂ 1 : 0 : 2 : 1
E4.c Over-represented ℂ 1 : 2 : 0 : 1

1333Journal of Digital Imaging  (2022) 35:1326–1349

1 3



In summary, the E1 experiment settings test H1 on the 
impact of a natural, balanced distribution, while the E2, E3, 
and E4 experiment settings test H2 on the impact of bal-
anced, class-biased distributions in three different cases. 
Moreover, the comparison between E2 and E3 tests the H3 
on the impact of multi-label patches. On the other hand, the 
comparison between E3 and E4 tests H4 on the usability of 
non-ROI patches.

Note that H2 is the only hypothesis that can be tested on 
both multi-class and binary class datasets: the other three are 
based on multi-class datasets only.

Processing Pipeline

After presenting the case study on data and formulating the 
hypotheses, other major steps are preprocessing, training, 
inference, and evaluation. All these steps are applicable for 
both segmentation at the pixel level and classification at the 
patch level settings: we mention some minor differences for 
each step.

At the preprocessing step, we extract overlapping patches 
at a particular stride and corresponding ground truth maps/
labels from the annotated training data. Instead of the 
often used random sampling [4–6] of patches, we extract 
overlapping patches by maintaining a particular stride, as 
empirically they perform better than with random extraction. 
Furthermore, since there is a lack of sufficient contextual 
information from the border pixels of a patch [59], it is pref-
erable to learn from overlapping patches uniformly sampled 
from all regions of a WSI.

For the patch-based datasets, the described preprocessing 
step is not required.

At the training step, we generate different class distribu-
tions in the training set, as described in "Hypotheses and 
Relevant Class Distributions". The patches from a particular 
category are selected randomly from all available patches 
for that category. The random patch selection is followed 
by shuffling the whole training set to prevent having all the 
patches in a mini-batch from the same category. This makes 
the convergence faster during training and provides greater 
accuracy [60]. The generated training set is used to train a 
fully convolutional neural network (FCNN) model for the 
segmentation task (i.e., pixel classification) or a CNN model 
for the classification task (i.e., patch classification).

Let Td = {(Ik, gk) ∶ 1 ≤ k ≤ n} be a training set of size 
n for a particular distribution, where Ik ∈ ℝ

l×l×3 is a patch 
of dimension l × l with its corresponding ground truth gk . 
Here, gk ∈ ℝ

l×l×C for the segmentation task and gk ∈ ℝ
C 

for the classification task, and C is the number of classes 
in the ground truth annotation (not to be confused with the 
cancer class ℂ ). The training is a process of finding a clas-
sifier function Md ∶ ℝ

l×l×3
→ ℝ

l×l×C (for segmentation) or 

Md ∶ ℝ
l×l×3

→ ℝ
C (for classification) by minimizing a loss 

function L(gk,Md(Θ, Ik)) , where Θ is the set of parameters 
of the classifier.

During inference, the trained model is employed to pre-
dict either pixels (in the segmentation task) or patches (in the 
classification task) for unseen test WSIs. For this purpose, 
we extract same-sized overlapping patches from the WSIs 
if the patches have not already been extracted in the test set. 
When the non-ROIs are annotated in the dataset (i.e., for 
the multi-class dataset), we predict the patches from WSIs. 
Otherwise (i.e., for the binary class dataset), the patches 
from tissue regions of WSIs are considered for prediction. 
From the extracted patches, we focus on a particular part 
in the middle, the central region, and the remaining part as 
a border for each patch. Similar to the PCam dataset, the 
ground truth of the central region is considered the ground 
truth of the whole patch. Although the patches overlap, we 
must emphasize that the central regions do not overlap.

Let Wi be the ith WSI from the test set, and Iij the jth 
patch in Wi . The trained model ( Md ) predicts the probabil-
ity ( ̂gij ∈ ℝ

l×l×C or ℝC ) of each class for each pixel in Iij 
for segmentation, or for the whole patch for classification. 
However, in the case of segmentation, the predicted prob-
ability of the central region of a patch is taken into account 
during evaluation. In other words, the predicted probability 
sij ∈ ℝ

r×r×C is considered, where r × r is the dimension of 
the central region and sij is the centre crop of ĝij.

During the evaluation, we consider class ℂ as the positive 
class and the other class(es) as the negative class for both the 
binary and multi-class datasets. Moreover, only the evalua-
tion result for class ℂ is presented, hence focusing on cancer 
detection. We also consider the patch-based evaluation for 
both the segmentation and classification tasks. It is worth 
mentioning here that we aim to detect the regions in a WSI 
where there are unhealthy parts, and filter out the WSIs that 
do not show any signs of cancer for the pathologists. In this 
context, it is not harmful if some pixels around a detected 
region are misclassified due to the existing gaps between the 
actual ground truth and human annotations. Notably, hav-
ing annotation gaps in the ground truth is acceptable for 
images whose size can be measured in gigapixels, since it is 
impractical to consider every pixel during manual annotation 
by a human. Consequently, it becomes less relevant to con-
sider the usual pixel-based evaluation for the segmentation 
task. Hence, we consider the patch-based evaluation rather 
than the pixel-based evaluation for both segmentation and 
classification.

To this end, we need to convert the pixel-based predicted 
probabilities of the segmentation task to a patch-based prob-
ability. Indeed, we require the predicted probability of class 
ℂ ( sℂ

ij
∈ ℝ ) for each patch rather than for each pixel, which 

we obtain by taking the class-wise max over sij ∈ ℝ
r×r×C . 
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The predicted probabilities ( sℂ
ij
 ) are computed for all the 

patches in the test set.
Since one random fold is not enough to validate a hypoth-

esis, we perform 10 trials (runs) for each experiment. The 
final result for an experiment is given by the mean computed 
over the 10 runs. We also compute the standard deviation to 
reflect how accurately the mean represents the 10 runs [61]. 
For our 11 experiments presented in Tables 2, 3, 4, and 5, 
we therefore have a total of 11 × 10 = 110 runs to test all 
the hypotheses for a particular hyper-parameter setting in 
relation to a particular dataset.

Experimental Details

The Datasets and Preprocessing

In our study, we used three datasets: one multi-class and two 
binary class. The multi-class dataset is for the segmentation 
task, and the binary class datasets are for classification.

Multi‑Class Dataset

We used the Metastatic Lymph Node dataset from the Uni-
versity Cancer Institute of Toulouse-Oncopole, which is 
abbreviated as MLNTO. This is a private dataset composed 
of metastatic lymph nodes from various primary tumors, 
such as melanoma, adenocarcinoma and squamous cell 
carcinoma relating to various anatomical sites. The data-
set contains 61 WSIs (34 for training and 27 for testing) of 
lymph nodes. With one exception, all the WSIs included in 
the MLNTO dataset contain metastasis. However, the meta-
static WSIs contain enough healthy regions to collect ¬ℂ 
examples for training and testing.

In the preparation process of the WSIs, the glass slides 
were stained with hematoxylin and eosin (H&E), and digi-
tized with a 3DHISTECH Pannoramic 250 digital slide scan-
ner at 0.243 � m per pixel resolution. Two expert pathologists 

provided the ground truth segmentation masks for all the 
WSIs. The ground truth annotations make MLNTO suitable 
for the segmentation task, although we can easily perform 
classification as well.

Three classes were considered during the annotation 
(see Fig. 2): metastasis/cancer ( ℂ ), lymph node/non-cancer 
( ¬ℂ ), and so-called other ( � ), the latter being either back-
ground or histological structures, such as adipose or fibrous 
tissue. The ground truth masks are provided for WSIs which 
have been downsampled 8 times with respect to the highest 
resolution, i.e., level 3. The average size of a training WSI 
is 9488 × 14, 648 pixels (after downsampling by a factor of 
8 from the highest resolution).

Figure 4 shows the class distributions of the pixels in the 
training and test sets respectively. The statistics indicate that 
the natural data distribution is imbalanced, with an over-rep-
resentation of class � in comparison to classes ℂ and ¬ℂ . In 
the training set, the percentages of classes � , ℂ and ¬ℂ are 
on average 78.3%, 11.1%, and 10.6%, respectively, while in 
the test set they are 79.4%, 13.8%, and 6.8%. The imbalanced 
nature of the data convinced us to better understand the impact 
of a balanced versus an imbalanced distribution of the classes 
for the learned models as well as the difficulty of choosing 
which WSIs to annotate for the purpose of training the models.

In our preprocessing step, a total of 127,898 overlapping 
patches of size ( l × l =) 384 × 384 pixels were extracted from 
the training set with a stride of l/2. The numbers of patches 
that fall into each category are given in Table 6. Consider-
ing the number of training patches, the value of � in the 
different experiment settings presented in Table 2 to 5 for 
MLNTO is 5000. By applying the same extraction process 
to the test set, we obtain 101,262 patches, of which 17,351 
belong to class ℂ.

Binary Class Dataset

We used two well-known binary class benchmarks, namely 
CAMELYON165 [56] and Patch Camelyon6 (PCam) [49] to 
further test hypothesis H2 in the binary classification setting.

Fig. 4  Class distributions of the pixels in the training (a) and test (b) 
sets from the MLNTO dataset

Table 6  Number of patches 
belonging to each category in 
the MLNTO training set, when 
WSIs are downsampled by a 
factor of 8 and the stride is l/2 
(i.e. 192)

patch category #patches

Other ( �) 90, 374
Cancer ( ℂ) 15, 328
Lymph node/non-

cancer ( ¬ℂ)
17, 274

Mixed ( ℂ&¬ℂ) 4922

5 https:// drive. google. com/ drive/ folde rs/ 0Bzsd kU4jW x9Bb1 9WNnd 
QTlUw b2M
6 https:// github. com/ basve eling/ pcam
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The CAMELYON16 dataset is a breast cancer dataset 
consisting of 399 WSIs of sentinel lymph nodes, with 270 
WSIs in the training set and 129 WSIs in the test set. There 
are 111 training WSIs and 49 test WSIs containing tumors 
(i.e., ℂ ). All the WSIs are in a multi-resolution pyramid 
structure, generally with 10 levels of resolution.

The PCam dataset is a new benchmark generated from 
CAMELYON16. Unlike the MLNTO and CAMELYON16 
datasets, PCam is a ready-to-go dataset, as the patches 
have already been separated. PCam contains 327,680 
patches of 96 × 96 pixels at level 2 (10× magnification). 
In PCam, the ratio of training, validation and test data is 
6:1:1. The dataset is balanced, i.e., the ratio of ℂ and ¬ℂ 
patches is 1:1 (Fig. 5a). The dataset considers 32 pixels at 
the edge as border pixels, while the central region is 32× 32 
pixels. The patch-level labels are established as follows: if 
there are any class ℂ pixels in the central region, the whole 
patch is labeled as category ℂ ; otherwise, the patch-level 
label is ¬ℂ . Since the ground truth annotations are class 
labels instead of class masks, we can only use PCam for 

the classification task. Besides, since PCam is a binary 
class dataset, we are only able to test H2 on this data-
set. To create an imbalanced distribution of a 1:3 ratio in 
the training set, we set � = 43, 690 . Note that, we created 
an artificially imbalanced distribution for the training set 
only: the validation and test sets are still balanced.

For the CAMELYON16 benchmark, we focus on the 
test set that we used. From the CAMELYON16 test set, 
the number of extracted test patches of size 96× 96 pixels 
is 10,487,709. The patches were extracted after filtering 
out the background of the WSIs at level 2, the stride being 
32 and the central region being 32× 32 pixels. Figure 5b 
shows the class distribution of the extracted patches, 
where the ratio of ℂ to ¬ℂ is 1:11.9.

Neural Architecture and Hyper‑Parameters

In this section, we describe the hyper-parameter settings 
for the segmentation and classification tasks along with 
the selected network architectures.

Segmentation Task

We selected U-net [62] as our CNN architecture (see Fig. 6) 
for the segmentation task because it has been proven to 
be effective, even when using a limited number of train-
ing images, and only requires a moderate amount of time to 
train. We implemented the U-net architecture using Keras 
[63] on the TensorFlow backend.

We used MLNTO to test our hypotheses in the segmenta-
tion setting. In all the experiments, we randomly selected 80% 
of the training data to train the model and the remaining 20% 
for validation.

Fig. 5  Class distributions of the PCam dataset (a) and the extracted 
patches from CAMELYON16 test set (b)

Fig. 6  The U-net architecture: the first and last layers represent the 
input and the output of the model respectively, while the layers that 
come after an arrow indicate the output of the operation denoted by 

the arrow. The number on top of each layer indicates the number of 
feature channels
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Each model was trained from scratch, i.e., without using 
transfer learning. After a preliminary empirical evaluation, we 
set the number of epochs (i.e., the number of times the algorithm 
passes through the entire training data) to 35 and the mini-batch 
size (i.e., the number of training examples that are provided as 
input in one iteration) to 5. We opted for the categorical cross-
entropy as the loss function, similarly to the original U-net. To 
optimize the objective function, we used the Adam optimizer 
[64]. The initial weights were drawn randomly from the zero-
mean Gaussian distribution as recommended in [1]. We used a 
standard deviation of 0.05, which is the default setting in Keras.

Classification Task

The CNNs are inherently translation equivariant, i.e., they 
can learn the same features from any particular location in 
an image. In WSIs, besides translation, the histological struc-
tures can be in any orientation. In other words, the rotation 
and reflection are common features in WSIs [65]. Thus, we 
selected the G-CNN architecture [50], a rotation and reflec-
tion equivariant architecture which was tuned for PCam data-
set by Veeling et al. [49]. The equivariant nature of G-CNNs 
is effective, and leads to state-of-the-art performance levels 
for WSI data [49]. For the detailed description of the G-CNN 
architecture, we refer to the article by Veeling et al. [49].

We used the PCam training and validation sets for train-
ing and validation. The models were tested with the test set 
of both PCam and CAMELYON16 test sets.

For the hyper-parameter setting, we kept the same7 pro-
posed by Veeling et al. [49] to reproduce the results (when 

we use the full training set) achieved by them, then used the 
same setting for our defined training sets of different distri-
butions. We changed however the mini-batch size to match 
our hardware configuration; the maximum possible mini-
batch size while training a G-CNN was 8. Like the original 
setting, we utilized the cross-entropy as the loss function 
and Adam as the optimizer. The initial learning rate was 
1e−3 , and it was reduced by a factor of 

√

0.1 after every 10 
epochs if there was no improvement in the validation loss. 
The training was stopped early if there was no significant 
improvement in validation accuracy within 12 epochs.

Evaluation Measures

We considered several metrics in our evaluation because 
no single metric can serve all our purposes [66]. Table 7 
presents the definitions of the evaluation metrics under 
consideration.

In our hypotheses, we emphasize false positives (FPs), 
and consider the precision and the false positive rate (FPR) 
as representative metrics. Along with the FPs, measuring the 
false negatives (FNs) is also important. We consider recall 
(also known as sensitivity or true positive rate, TPR) as a 
metric which is responsive to FNs.

Rather than measuring these values separately, we pre-
ferred to resort to curve-based metrics that show the trade-
off between two measures. The receiver operating char-
acteristic (ROC) curve plots the TPR at every FPR point. 
The precision-recall (PR) curve plots the precision at every 
recall point. Note that, in these cases the predicted probability 
threshold is automatically set to obtain a certain value of, 
let us say, recall. This means that in a ROC or PR space, a 
particular point is computed for different models at different 
thresholds of predicted probability. Thus, a fair comparison 
has to be prevented to enable hypothesis testing. To resolve 
this challenge, we computed precision and FPR for a constant 
list of predefined predicted probability thresholds for all the 
models, and presented them as precision and FPR curves. 
The constant list of thresholds includes 101 points from 0.0 
to 1.0 by maintaining a regular stride. Moreover, we used the 
area under curve (AUC) to compare curves overall.

To calculate the mean curve of the 10 runs, we normal-
ized the predicted probabilities for each run by applying min-
max normalization, then computed the curve-based metrics 
for each run. To calculate the mean ROC and PR curves, we 
selected 1001 points from both the ROC and PR spaces for 
each run by using linear interpolation. We then calculated 
the mean over 10 runs. We considered 1001 points, as we 
have a huge number of data points (i.e., test patches) ranging 
from 32k to 10.5M, depending on the dataset.

Table 7  Definition of evaluation metrics. Notations: TP is true posi-
tive, TN is true negative, FN is false negative, FP is false positive, 
PPV is positive predictive value, TPR is true positive rate, FPR is 
false positive rate, ROC is receiver operating characteristic, PR is pre-
cision-recall, AUC  is area under curve

Metric Definition

Precision, PPV TP / (TP + FP)
Recall, Sensitivity, TPR TP / (TP + FN)
FPR FP / (TN + FP)
ROC curve Plot of TPR at every FPR
PR curve Plot of precision at every recall
FPR curve Plot of FPR at different threshold 

of predicted probabilities
Precision curve Plot of precision at different 

threshold of predicted 
probabilities

AUC Area between the curve and x-axis

7 https:// github. com/ basve eling/ keras- gcnn
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For FPR and precision curves, no interpolation is required 
to compute mean curves, since the predicted probability 
threshold is constant for all runs.

Results and Discussion

In this section, we present the results which allow us to 
decide whether a hypothesis is true or false. First, we experi-
ment on the multi-class dataset (i.e., MLNTO) while tak-
ing the segmentation task into account. Later, we discuss 
the results for the binary class datasets while taking the 
classification task into account. In both cases, we make a 
decision about a hypothesis based on the numeric results 
before discussing the reasons for the validity or invalidity 
of a hypothesis.

Results From Multi‑Class Dataset MLNTO

Natural Imbalanced Distribution Is Better

If we consider the experiment settings E1 as summarized 
in Table 2, we can observe that the results do not confirm 
hypothesis H1 and we can conclude that the naturally imbal-
anced distribution for class � (E1.b) produces more accu-
rate result than the artificial balanced distribution (E1.a) for 
WSIs in the segmentation setting.

Figure 7 shows the main results for H1. While consid-
ering the trade-off between two metrics, in Fig. 7a, which 
represents the ROC curve, we can observe that E1.b has a 
higher true positive rate (TPR) than E1.a at almost every 
false positive rate (FPR) point. In other words, models 

trained under the natural distribution give higher recall 
while also producing fewer false positives (FPs) than models 
trained under the balanced distribution.

According to the PR curve presented in Fig. 7b, the preci-
sion of E1.b is also higher at almost every recall point than 
that of E1.a. Even at the recall point 1.0, the precision of 
E1.b is better than that of the random chance baseline, while 
the precision of E1.a is as low as the random chance.

With regard to the precision and FPR curves in Fig. 7c, 
the conclusion in favor of E1.b also holds: E1.b has higher 
precision and a lower FPR than E1.a for all predefined 
thresholds.

We also applied statistical tests. When precision is calcu-
lated using the default argmax decision of the model, preci-
sion is about 7% higher in E1.b than E1.a, and the difference 
is statistically significant according to the t-test (p-value < 
0.002).

We further investigated why the distribution helps the 
models, if it is imbalanced towards � , by manually looking 
at the predicted masks of the models. Pathologists confirmed 
that the misclassification by E1.a (the balanced distribution) 
is certainly due to inter-class similar regions: the regions 
containing common histological structures, e.g., blood and 
fibrous tissue. These histological structures are common in 
both ROI ( ℂ and ¬ℂ ) and non-ROI ( � ) regions (see Fig. 8). 
When an ROI contains such a histological structure in a 
small area, the human annotator overlooks the small area, 
annotating it as a corresponding ROI ( ℂ or ¬ℂ ), although the 
annotation is actually wrong. During training, we therefore 
need enough examples of these inter-class similar regions 
(i.e., the over-representation of class � ) with their actual 
annotation to compensate for the unavoidable pitfalls arising 

Fig. 7  Natural distribution (E1.b) is better than balanced distribution 
(E1.a) ( ¬H1). Mean curves for (a) the ROC curve, (b) the PR curve, 
and (c) the precision and FPR curves. Sub-figures are obtained for 10 
runs for balanced distribution (E1.a, lines in green) and for natural 

over-representation of � distribution (E1.b, lines in blue). The stand-
ard deviation is represented by green/blue colored shading. MLNTO 
data have been used
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from the annotation, or else false positives may be caused 
during prediction.

Over‑Representing ¬ℂ Class Reduces False Positives

For testing hypothesis H2, “over-representing ¬ℂ class reduces 
false positives,” we first used the E2 settings, where every 
example belongs to a single-label category (see Table 3).

Figure 9 presents the main comparative results among 
the experiments, E2.a (for balanced distribution), E2.b (for 
over-represented ¬ℂ ), and E2.c (for over-represented ℂ ) for 

H2. In Fig. 9, we can first observe that the balanced distribu-
tion (E2.a) is not as robust as the other distributions (high 
standard deviation in green). We suspect that the random 
selection of the under-represented class ℂ in the training set 
could not cover all the cancer types from various anatomical 
sites, thereby inducing more uncertainty in the results and 
causing this deviation (we further discuss this in "Multi-
Label Examples Give Extra Advantages Over Single-Label 
Examples").

Nonetheless, if we consider the mean results (curves) over 
10 runs, we can see that the balanced distribution (green 

Fig. 8  Some examples of 
confusion between other ( � ) 
and cancer ( ℂ ) classes showing 
inter-class similar regions with 
common histological structures. 
On the first row, (a), (b), and (c) 
are patches of category ℂ with 
fluid, blood, and fibrosis with 
lymphocytes respectively, which 
are taken from the training set. 
On the second row, (d), (e), 
and (f) are patches of category 
� from the test set with the 
same histological structures 
respectively. During training, if 
there are not enough examples 
of class � containing the afore-
mentioned structures compared 
to ℂ , the common histological 
structures in the test patches are 
predicted as ℂ (false positive)

Fig. 9  Over-representation of negative classes ¬ℂ reduces false posi-
tives (hypothesis H2). Mean curves with standard deviation for experi-
ment settings E2.a (for balanced distribution in the training set, green), 

E2.b (for over-represented ¬ℂ , blue), and E2.c (for over-represented 
ℂ , red). Experiments test H2 in the case of E2, and every example 
belongs to a single-label category. Same notations as in Fig. 7
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curve) is at its lowest for the ROC curve (see Fig. 9a). The 
results are closer for the over-representation of ℂ (red curve) 
and ¬ℂ (blue curve).

The same holds for PR curves (Fig. 9b): while the bal-
anced distribution is the lowest on average and has a high 
standard deviation, the two other settings are close to each 
other and more robust, with a very small superiority in favor 
of the over-representation of ℂ.

While the previous two curves (ROC and PR) are com-
puted for automatic non-fixed thresholds and present the 
trade-off between two metrics, the precision and FPR curves 
are computed for predefined constant thresholds for all mod-
els and present threshold-wise fair comparison (Fig. 9c). 
When looking at the curves on Fig. 9c, we can see that the 
precision is the highest and the false positive rate (FPR) the 
lowest in the case of the over-representation of ¬ℂ (blue 
curve). We can also examine the area between the curve and 
the x-axis (i.e., AUC) to compare the curves. The AUC for 
the over-representation of ¬ℂ (E2.b) in terms of precision is 
0.77 compared to 0.67 and 0.68 for the over-representation 
of ℂ (E2.c) and balanced (E2.a) distribution respectively. 
Moreover, according to the t-test on the precision calculated 
from the default argmax decision of the models, we found 
that the precision of E2.b is statistically significantly higher 
than E2.a and E2.c with p-values < 0.0274 and 0.0013 
respectively. These results show that our hypothesis is true: 
the over-representation of the negative class ¬ℂ reduces the 

false positives, and the balanced distribution may be less 
robust than the others we tested.

We took a closer look at the data in order to gain a better 
insight into the numeric results. While examining several heat 
map images for the balanced distribution (E2.a) and for the over-
represented ℂ distribution (E2.c), and comparing them to the 
ground truth image, we observed that the errors are caused by 
the inter-class similar regions between classes ℂ and ¬ℂ along 
with the case described in "Natural Imbalance Distribution Is 
Better" (i.e., in relation to common histological structures).

The inter-class similar regions are the regions which 
share common visual characteristics between class ℂ and 
class ¬ℂ . Specifically, there are some ¬ℂ regions containing 
a germinal center, macrophages, and a blur area (a kind of 
artifact) (see Figs. 3 and 10) that have some visual charac-
teristics in common with class ℂ regions.

In Fig. 10, we illustrate an example of inter-class similar-
ity and intra-class difference. In Fig. 10a, the regions inside 
the blue contours are visually different from the usual ¬ℂ 
region (i.e., the region outside of the blue contour); hence, 
they are the intra-class difference regions of ¬ℂ . These ¬ℂ 
regions (inside blue contours) are visually more similar to 
the ℂ regions in Fig. 10b than the usual ¬ℂ regions (outside 
the blue contours) and hence they are examples of inter-class 
similar regions between ℂ and ¬ℂ classes. For instance, both 
are lighter in color than the other parts of the lymph node, 
the nuclei in both regions are farther from each other than 

Fig. 10  Examples of intra-class 
difference in ¬ℂ and inter-class 
similar regions between cancer 
ℂ and non-cancer ¬ℂ classes. 
(a) The regions inside the blue 
contours are examples of the 
intra-class different regions for 
the non-cancer ¬ℂ class, which 
are visually different from the 
usual non-cancer ¬ℂ region 
(i.e., the region outside the blue 
contour); these regions are visu-
ally more similar to the cancer 
ℂ regions in (b) than the non-
cancer ¬ℂ regions, and are thus 
examples of inter-class similar 
regions between cancer ℂ and 
non-cancer ¬ℂ classes
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the usual parts of the lymph node, and the nuclei in both 
regions are larger than the usual size of a nucleus. Hence, 
during training, if there are not enough examples of ¬ℂ con-
taining these specific inter-class similar regions compared 
to class ℂ examples, class ℂ will dominate. As a result, it 
is more likely that these regions will be predicted as ℂ in 
any of the test WSIs, although many of them will be false 
positives. Indeed, in practice, the number of these specific 
regions in the lymph node are few compared to the whole 
lymph node. Thus, it is better to choose a class-biased dis-
tribution toward ¬ℂ so that enough examples containing the 
aforementioned specific regions are used during training. 
The result of experiments E2 in Fig. 9 indicates this conclu-
sion empirically. We further test the H2 in two other settings, 

E3 and E4, in the following subsections, along with two 
other hypotheses H3 and H4.

Figure 11 shows some examples of heat maps of class 
ℂ generated by the experiments E3.a, E3.b, and E3.c for 
the WSI given in Fig. 2. From Fig. 11, we can see that the 
prediction by E3.b is better than the two other predictions 
regarding the number of false positives in the prediction.

Multi‑Label Examples Give Extra Advantages Over 
Single‑Label Examples

Unlike in the E2 settings, where every example belongs to a 
single-label category, in the E3 settings presented in Table 4, 
some of the examples belonging to a single-label category 

Fig. 11  Illustrative example 
E3.b is the best. Heat maps of 
class ℂ for the WSI given in 
Fig. 2 (one of the WSIs with the 
most false positives) from the 
test set of MLNTO. Here, (a) is 
the ground truth, (b) is the heat 
map generated by the E3.a, (c) 
by E3.b, and (d) by E3.c
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are replaced by multi-label examples (i.e., some pixels are 
ℂ and some are ¬ℂ in the same patch example). E3 setting 
serves two purposes; one is to test H3 (multi-label examples 
are more useful than single-label examples) by comparing 
with the experiment setting E2, and another is to revisit 
hypothesis H2 in a different setting. Figure 12 presents the 
mean curves and the standard deviation of 10 runs for E3.

By comparing single-label (Fig.  9) with multi-label 
(Fig. 12), we can immediately see that the results in Fig. 12 
have improved by considering both the curves and AUC val-
ues. The ROC curves in Fig. 12a are more stable (i.e. have 
less deviation) and have higher AUC than those in Fig. 9a 
except for E3.c ( ℂ-biased). Same improvements have been 
observed in the precision-recall (PR) curves, precision curves, 
and FPR curves. Multi-label examples significantly improve 
AUC in all metrics.

According to the t-test on the precision calculated from 
argmax decision, we found that the precision of E3.a and 
E3.b are significantly higher (p-value < 0.002 and 0.0002 
resp.) than those of E2.a and E2.b respectively, while the 
precision of E3.c is significantly lower (p-value < 0.04) than 
that of E2.c. In other word, the findings are consistent in all 
evaluation metrics. Hence, the H3 is true for E3.a and E3.b 
while not for E3.c.

We investigate the reason for having lower result for E3.c 
than for E2.c. According to our observation, the reason is the 
ratio of positive and negative classes in the training set of E3.c. 
Including the patch category ℂ&¬ℂ in E3.c changes the ratio 
of classes (negative:positive) from 1:3 (see Table 3) to 1:4 (see 
Table 4), i.e., it decreases the presence of negative class since 
ℂ&¬ℂ category contains class ℂ (positive class) pixels along 
with class ¬ℂ (negative class) pixels. Consequently, increasing 

the over-representation of the positive class decreases the result 
of E3.c. Thus, according to our general hypothesis H2, having 
a lower result in E3.c than E2.c is expected. At the same time, 
the better result of E3.a and E3.b than the corresponding E2.* 
empirically proves that H3 is true.

The multi-label patch category ℂ&¬ℂ gives two advan-
tages: (1) it gives an opportunity to the FCNN models to 
learn about two classes from the same patches thus gives 
a chance to learn boundary line between those classes; (2) 
in the case of micro-metastasis, it is not always possible to 
extract single-label patches for category ℂ , thus there is a 
chance of missing examples from a cancer type or WSI, 
however, it is always possible to extract patches of category 
ℂ&¬ℂ ; thus, it almost reduces the chance of missing any 
cancer type and example from a WSI which reduces the 
uncertainty and produces a less deviated result.

We re-tested the H2 in the current setting E3 by compar-
ing the results of E3.a, E3.b, and E3.c as described in the 
following paragraphs.

While considering the trade-off between FPR and TPR 
in ROC curves (see Fig. 12a), the results are comparable 
for all experiments (all ROC AUCs are 96), i.e., the ROC 
curve is insensitive to the different distribution in training 
set for this case.

According to the PR curves, and depending on the trade-
off under consideration, the settings have a different impact. 
For high precision, the over-represented ¬ℂ (in blue) is both 
robust (low standard deviation) and has a higher impact than 
the other settings. From these results, it is also clear that 
along with the distribution of the training set, the cutoff or 
threshold selection is also important if we are to obtain a 
desirable performance from the system.

Fig. 12  Multi-label examples give extra advantages over single-label 
examples (H3 hypothesis). Mean curves with standard deviation 
using E3 settings (Table  4) where there are multi-label examples: 

E3.a (for balanced distribution in the training set, green), E3.b (for 
over-represented ¬ℂ , blue), and E3.c (for over-represented ℂ , red) 
and using the same notations as in Fig. 9
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The differences are much greater when we consider pre-
cision and FPR curves (Fig. 12c). If we take a closer look 
at the blue curves on the right side of Fig. 12, the over-
representation of ¬ℂ (E3.b) has the highest precision (AUC 
0.87 ±0.04) and the lowest FPR (AUC 0.03±0.01), while 
the balanced distribution reaches an AUC of 0.75 ± 0.04 for 
precision and 0.07 ±0.02 for FPR. These results are consist-
ent with the results from Fig. 9c in terms of the interest of 
over-representing ¬ℂ , i.e., hypothesis H2.

Additionally, we used the t-test statistical test for precision 
when it was calculated using the default argmax function. We 
found that the precision is statistically significantly higher for 
E3.b ( 0.888 ± 0.053 ) than for both E3.a ( 0.776 ± 0.039 ) and 
E3.c ( 0.639 ± 0.056 ). Comparison between E3.b and E3.a 
provides the p-value < 2.95e−05 , while it is < 3.62e−09 for 
E3.b and E3.c. In other words, according to the t-test, the H2 
is significantly true in setting E3 as well.

Non‑ROI Data Are Useful

If we compare the result of E4.* (with non-ROI patches) 
(Fig. 13) with the result of E3.* (without non-ROI patches) 
(Fig. 12), we can see that the results for E4.* are slightly 
better than, or comparable with, the corresponding result 
for E3.*.

ROC curves in Fig. 13a are very similar to each other and 
also very similar to the curves obtained in E3 (AUC=0.96) 
(Fig. 12a). PR curves in Fig. 13b have similar shapes and 
are ordered the same way as in E3 (Fig. 12b). AUC values 
are also quite similar to each other when compared to E3.

According to Fig. 13c, the results for E4 have slightly 
improved compared to E3 (AUC increases slightly for pre-
cision and decreases slightly for the FPR) in Fig. 12c. The 
standard deviation for the 10 runs also slightly decreases, 
except for the balanced distribution, which still has the 
highest standard deviation, regardless of the measure being 
considered. By using the t-test on precision with the default 
argmax decision on predicted probabilities, we found that 
the higher precision for E4.b compared to E3.b is not statis-
tically different (p-value 0.22), while it is for the E*.c case 
(p-value 0.0034).

Nonetheless, the better results for E4.* compared to E3.* 
indicate that a considerable number of errors come from 
inter-class similar regions (or common histological struc-
ture) between ROIs and non-ROIs, as discussed in "Natural 
Imbalanced Distribution Is Better". However, misclassifi-
cation due to common histological structure (e.g., blood) 
between ROIs and non-ROIs is easy to identify, even with 
the naked eye, while misclassification due to inter-class 
similarity between the ROI classes, ℂ and ¬ℂ , is more diffi-
cult to identify. This explains why the experiment setting for 
E3.b is more appropriate than the setting for E4.b. Neverthe-
less, as H4 is a true hypothesis, inexpensive to annotate non-
ROI examples will be useful for CNN training. Therefore, if 
there is a shortage of expensive to annotate ROI examples 
while training a CNN, this can be compensated by adding 
relatively easy-to-annotate non-ROI examples. This result is 
also consistent with our results from hypothesis H1.

As like as E3 setting, we re-test H2 in the E4 setting, and 
the findings are quite similar to the E3 case. In other words, 
H2 is true in E4 settings as well.

Fig. 13  Non-ROI data are useful (H4 hypothesis). Mean curves with 
standard deviation using E4 settings (Table  5) where � examples 
replace some ℂ examples and some ¬ℂ examples: E4.a (for balanced 

distribution in the training set, green), E4.b (for over-represented ¬ℂ , 
blue), and E4.c (for over-represented ℂ , red) and using the same nota-
tion as in previous figures
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Results for the Binary Class Datasets

In this section, we further discuss the results of hypothesis 
H2 ( ¬ℂ-bias produces fewer false positives) for the binary 
class datasets PCam and CAMELYON16 for the classifica-
tion task. Here, all the models were trained on the PCam 
dataset. The trained models were then tested on both PCam 
(balanced) and CAMELYON16 (highly imbalanced) test sets.

Balanced Test Set: Over‑Representing The Negative Class 
Reduces False Positives

According to the ROC and PR curves in Fig. 14a and b, all 
the distributions produce comparable results (also observed 

when zooming in). However, we can see that E2.b has a 
higher level of performance than the other two experiments 
at low thresholds.

According to the precision and FPR curves in Fig. 14c, 
E2.b has the highest level of performance, although for 
the threshold of predicted probability greater than 0.8, the 
results are comparable. According to the evaluation based on 
the argmax decision on the model, the precision of the E2.b 
is higher than E2.c (p-value < 0.019) and not statistically 
different from E2.a.

In other words, for the classification task with balanced 
test and validation sets, the ¬ℂ-biased distribution produced 
fewer FPs than the other two distributions, which is con-
sistent with previous results, and confirms the H2 hypoth-
esis. However, this is not always significantly true for this 

Fig. 14  Over-representing the negative class ¬ℂ reduces false positives—on PCam. Mean curves with standard deviation (std. dev.) of experi-
ments for balanced distribution (E2.a), for over-represented ¬ℂ (E2.b), and for over-represented ℂ (E2.c) on PCam

Fig. 15  Over-representing the negative class ¬ℂ reduces false posi-
tives—on CAMELYON16. Mean curves with standard deviation (std. 
dev.) of experiments E2.a (for balanced distribution), E2.b (for over-

represented ¬ℂ ), and E2.c (for over-represented ℂ ) using the same 
keys as in the other figures. In all the experiments, the models were 
trained on PCam and tested on CAMELYON16
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Fig. 16  Illustrative examples for ¬ℂ-biased training (E2.b) produces 
the smallest number of FPs (H2). Example heat maps of class ℂ gen-
erated by the experiments E2.a (for balanced distribution), E2.b (for 
over-represented ¬ℂ ), and E2.c (for over-represented ℂ ) for WSIs 

with macro-metastasis, micro-metastasis, and normal tissue from the 
CAMELYON16 test set. Here, in the WSIs, the regions inside the 
green contours are ground truth annotations for class ℂ
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classification task with balanced test and validation sets. We 
must assume that the balanced distribution of the valida-
tion set, which is used for parameter tuning during training, 
might be the reason.

Imbalanced Test Set: Over‑Representing The Negative Class 
Reduces False Positives

Figure 15 illustrates the test results for H2 on CAMEL-
YON16, whereas the models were trained on PCam. Accord-
ing to this figure, the results on CAMELYON16 are consist-
ent with the results on PCam, i.e., H2 is true, although not 
always significantly true for both balanced and imbalanced 
test sets, while the validation set has a balanced distribution.

Figure 15a shows that the ROC curves are insensitive 
to the different distributions in the training set. It may be 
because of the highly optimistic nature of ROC curves with 
regard to a highly imbalanced test set [67].

On the other hand, in Fig. 15b, it is clear that the PR 
curves are also insensitive to the different distributions in the 
training set for a highly imbalanced test set, except for a cer-
tain range of recall where we can observe some slight differ-
ences in favor of the balanced distribution for the recall range 
between 0.75 and 0.85, along with a high standard deviation.

On the contrary, in Fig. 15c, the precision of E2.b is 
higher than the two others for predicted probability thresh-
old less than 0.7. Moreover, E2.b has the lowest FPR. These 
results are consistent with the results we obtained for the 
PCam test set. According to the t-test on the precision cal-
culated from the default argmax decision of the models, 
the finding is consistent with the PCam case as well. Spe-
cifically, we found that the precision of E2.b is not signifi-
cantly higher (p-value ≈ 0.37) than that of E2.a, i.e., both 
are comparable, while it is significantly higher (p-value < 
0.04) than that of E2.c. In short, for the classification task 
with the mentioned setting, H2 is true, however, not always 
significantly true.

Note that the CAMELYON16 test set is highly imbal-
anced towards class ¬ℂ (see Fig. 5b). Thus, there is a strong 
likelihood of producing FPs, which is what the models do. 
Hence, the AUC of the precision curve in Fig. 15c is lower 
than the other two dataset cases presented in Figs. 9c, 12c, 
13c, and 14c. However, the high performance levels of the 
models in terms of the ROC, PR, and FPR curves shown 
in Fig. 15 indicate that they fail to reflect our observation, 
while the precision curve succeeds. Consequently, the pre-
cision curve is more robust than the ROC, PR, and FPR 
curves in comparing the performances of the different 
models.

We also observed the predictions of different experiments 
for the CAMELYON16 test set, and we found that, like the 
MLNTO dataset, the false positives are the major problem 
caused by inter-class similarity and intra-class difference. 

Figure 16 shows some examples of heat maps predicted by 
different experiments. According to this figure, the E2.b (for 
over-represented ¬ℂ ) produces fewer false positives than the 
other two experiments, which confirms that H2 is true.

Overall Discussion and Conclusions

In this research, we performed a data-level analysis to 
determine the optimal distribution of the classes in the 
training set for WSIs when using deep learning. In natural 
distribution, the WSI data is highly biased towards the 
non-ROIs, while the distribution of the two ROI classes is 
variable, depending on the WSIs which have been included 
in the dataset. The biases and variability of the distribution 
make us interested to investigate different distributions in-
depth. To conduct this analysis, we considered the case of 
FCNN for segmentation and CNN for patch classification.

To the best of our knowledge, our analysis is pioneer-
ing in the case of class distribution analysis of WSI data 
for deep learning models; previous research has focused 
on end-to-end pipeline development for cancer detection.

We first compared the natural distribution (biased 
towards non-ROI pixels/patches) with the more commonly 
used balanced distribution (H1, experimental setting E1). 
We found that the natural distribution of the WSI data is 
superior to the artificially balanced distribution. Since non-
ROI examples are usually much easier to annotate, and 
annotation of ROI is costly in domains where only experts 
can provide the labels, this result is of huge importance.

We then focused on the distribution of ROI classes. The 
ROI class distribution can be balanced, as in the MLNTO 
training set, or highly imbalanced, as in the CAMELYON16 
test set. Since the natural distribution of the ROI classes in 
a WSI dataset is variable, choosing an optimal distribution 
for the ROI class while building a training set is an issue. 
In H2, and with experimental setting E2, we show that the 
generally recommended balanced distribution is not the best. 
Instead, the non-cancer-biased training set produces the best 
performance, bearing in mind precision and the number of 
false positives.

In the literature, multi-label patches are considered prob-
lematic [20]. According to the test result of hypothesis H3, 
we found that multi-label patches give extra advantages over 
single-label patches. Both the AUCs and curves were signifi-
cantly improved for the multi-label patches case. Thus, when 
building a training dataset, they can be of huge importance. 
In other words, it is better to have multi-label patches than 
additional positive examples.

We carried out an in-depth analysis of the results from 
the first hypothesis that non-ROIs can still be of use. They 
are indeed useful as a replacement of ROI data in a case 
where the ROI data are limited or small. Moreover, they are 
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easier to annotate than cancer/non-cancer (i.e., ROI data). 
This finding is very important because non-ROIs could be 
the choice for obtaining a large enough dataset at a low cost 
for training a deep model.

In addition to observing the results of deep learning mod-
els, we also had a close look at the data to be able to form 
medically oriented conclusions. While manually observing 
the predicted mask, we learned the importance of class het-
erogeneity and inter-class similarity. When building a new 
dataset of histological images, more examples should be 
added from a heterogeneous class, which can compensate 
for the confusion caused by inter-class similarities.

When it comes to the two different tasks, segmentation 
and classification, we found that classification is less sensi-
tive to the different distributions in the training set.

While we mainly focused on the training set distribution 
and, to a lesser extent, on the test set distribution for which 
we obtained consistent results, we did not study the distribu-
tion of the validation set. This set can also have an impact, 
since it is used for tuning the models during training. For 
example, for the classification task and when anaylzing the 
impact of the test set distribution, we kept the original (bal-
anced) distribution of the PCam validation set. The balanced 
distribution of the validation set may have an impact on the 
relative insensitivity of the test distribution with regard to 
the classification task. We aim to address this challenge in 
future work. Moreover, we found that the precision curve is 
more robust than the popular ROC and PR curves in differ-
entiating models and reflecting the FP production. A sepa-
rate comparative study among different evaluation metrics 
could be another track worth investigating in future work. 
We tested the hypotheses for the single level of WSIs. It 
could also be interesting to investigate them for multiple 
levels of WSIs. We kept this point for future work.

In summary, our study is representative, although not 
exhaustive. The conclusions could be further tested in other 
domains. We believe that the outcomes of the analysis will 
be helpful for researchers who are building a training dataset 
of WSIs or other applications. Such analyses could also help 
in other real-world problems where data have a complex 
history, as discussed by Crawford [13] regarding the impor-
tance of building a training set with proper distribution.
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