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First-order behavior of the time constant in non-isotropic
continuous first-passage percolation

Anne-Laure Basdevant∗, Jean-Baptiste Gouéré† and Marie Théret‡

Abstract
Consider Ξ a homogeneous Poisson point process on Rd (d ≥ 2) with unit intensity with respect to

the Lebesgue measure. For ε ≥ 0, we define the Boolean model Σp,ε as the union of the balls of volume
ε for the p-norm (p ∈ [1, ∞]) and centered at the points of Ξ. We define a random pseudo-metric
on Rd by associating with any path a travel time equal to its p-length outside Σp,ε. This defines a
continuous model of first-passage percolation, that has been studied in [6, 7] for p = 2, the Euclidean
norm. For p = 1, this model is expected to share common properties with the classical first-passage
percolation on the graph Zd with a distribution of passage times of the form εδ0 + (1 − ε)δ1. The
exact calculation of the time constant of this model µ̃p,ε(x) is out of reach. We investigate here the
behavior of ε 7→ µ̃p,ε(x) near 0, and enlight how the speed at which ∥x∥p − µ̃p,ε(x) goes to 0 depends
on x and p. For instance, for p ∈ (1, ∞), we prove that ∥x∥p − µ̃p,ε(x) is of order εκp(x) with

κp(x) := 1
d − d1(x)−1

2 − d−d1(x)
p

,

where d1(x) is the number of non null coordinates of x. The exact order of ∥x∥p − µ̃p,ε(x) is also
given for p = 1 and p = ∞. Related results are also discussed, about properties of the geodesics, and
analog properties on closely related models.

1 Introduction
1.1 Main results
Boolean model. Consider a fixed dimension d ≥ 2, and equip Rd with the p-norm N = ∥ · ∥p with
some p ∈ [1,+∞], defined as usual: if z = (z1, · · · , zd) ∈ Rd, then

for p ∈ [1,∞) , ∥z∥p =
(

d∑
i=1

|zi|p
)1/p

; for p = ∞ , ∥z∥∞ = max
1≤i≤d

|zi| .

We denote by BN (c, r) the closed ball for the norm N centered at c ∈ Rd and of radius r ∈ (0,∞).
Let Ξ be a Poisson point process on Rd with intensity λ| · |, where λ ∈ (0,+∞) and | · | designates the
Lebesgue measure on Rd. For any r ≥ 0, we construct the Boolean model ΣN,λ,r by adding a ball of
radius r ∈ [0,+∞) around each center c ∈ Ξ. More formally, the Boolean model ΣN,λ,r is defined by

ΣN,λ,r =
⋃
c∈Ξ

BN (c, r) . (1)

Here we consider only the case where r is a constant, but the model can be generalized by considering
random radii. We refer to the book by Meester and Roy [16] for background on the Boolean model in the
Euclidean case, and to books by Last and Penrose [14] and by Schneider and Weil [17] for background
on Poisson processes.
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Continuous first-passage percolation. A continuous model of first-passage percolation can be de-
fined from the Boolean model by assuming that propagation occurs at speed 1 outside ΣN,λ,r, and at
infinite speed inside ΣN,λ,r i.e. the travel time T̃N,λ,r(π) of a path π is the N -length of π outside ΣN,λ,r.
Optimizing on polygonal paths between two points x, y ∈ Rd leads to the definition of the travel time
T̃N,λ,r(x, y) between x and y as the minimal time needed to see propagation from x to y:

T̃N,λ,r(x, y) = inf
π
T̃N,λ,r(π)

where the infimum runs over all polygonal paths from x to y. More formal definitions are given in Section
1.4. In the case where p = 2, i.e., the underlying norm is the Euclidean norm, this model was studied by
the second and third authors in [6, 7], and previously introduced by Marchand and the second author in
[5] as a tool to study another growth model considered by Deijfen [4]. By standard subadditive argument,
it is well known that for every z ∈ Rd, there exists a constant µ̃N,λ,r(z) ∈ [0, 1] such that

lim
s→∞

T̃N,λ,r(0, sz)
s

= µ̃N,λ,r(z) a.s. and in L1. (2)

This constant µ̃N,λ,r(z) is called the time constant in the direction z.

Properties of (λ, r) 7→ µ̃N,λ,r(z). Fix z ∈ Rd \ {0} and N = ∥ · ∥2 (i.e. p = 2). By isotropy, we
have µ̃∥·∥2,λ,r(z) = ∥z∥2µ̃∥·∥2,λ,r where µ̃∥·∥2,λ,r is a constant (depending on λ and r but not z). We
know that µ̃∥·∥2,λ,0 = 1, that µ̃∥·∥2,λ,r > 0 if and only if the corresponding Boolean model Σ∥·∥2,λ,r is
in some strongly subcritical percolation regime (see [6] for more details), and that (λ, r) 7→ µ̃∥·∥2,λ,r

is continuous (see [7] for more details). However, there is no way to calculate explicitly the value of
µ̃∥·∥2,λ,r when it is not null. For N = ∥ · ∥p for any p ∈ [1,+∞], the deterministic case r = 0 is still
trivial: µ̃∥·∥p,λ,0(z) = ∥z∥p, and it is expected that positivity and continuity of the time constant exhibit
the same behaviour as in the Euclidean case, but it is even more difficult to compute µ̃∥·∥p,λ,r(z). It thus
makes sense to consider specific cases. In this work, we focus on the following case

λ = 1 and r = ε1/d

2 for small ε.

This means that the number of balls per unit area is on average equal to 1, but each of them has a small
diameter equal to ε1/d and so a volume proportional to ε. We write for short

T̃p,ε(x, y) := T̃∥·∥p,1,ε1/d/2(x, y) and µ̃p,ε(z) := µ̃∥·∥p,1,ε1/d/2(z).

Our primary objective is to calculate the speed at which ∥z∥p − µ̃p,ε(z) goes to 0 when ε goes to 0.

Main results. Let N = ∥ · ∥p with p ∈ [1,+∞]. Let u = (u1, . . . , ud) ∈ Rd. We define

d1(u) = card({i ∈ {1, . . . , d} : ui ̸= 0})
d2(u) = d− d1(u)
d3(u) = card({i ∈ {1, . . . , d} : |ui| = ∥u∥∞}) (3)
d4(u) = d− d3(u)

where card(A) designates the cardinality of the finite set A. For a given p ∈ [1,∞], for u ∈ Rd such that
∥u∥p = 1, we define

κp(u) =



1
d1(u) if p = 1 ,

1
d− d1(u)−1

2 − d2(u)
p

if p ∈ (1,∞) ,

1
d4(u) + 1 if p = ∞ .

(4)

Notice that for any p ∈ [1,∞], and u ∈ Rd such that ∥u∥p = 1, d1(u) ≥ 1 and d − d1(u)−1
2 − d2(u)

p ≥
d− (d1(u) − 1) − d2(u) = 1, thus κp(u) ≤ 1. Our main result is the following.
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Theorem 1. For all p ∈ [1,∞], for all u ∈ Rd such that ∥u∥p = 1, there exist constants Ci = Ci(p, d, u) >
0, i = 1, 2 such that for ε small enough, we have

C1ε
κp(u) ≤ 1 − µ̃p,ε(u) ≤ C2ε

κp(u).

We call geodesic from x to y any polygonal path γ̃p,ε(x, y) from x to y such that T̃p,ε(x, y) =
T̃p,ε(γ̃p,ε(x, y)) (see Proposition 19 for the existence of a geodesic). In the course of the proof of Theorem
1, we also obtain an upper bound on the minimal length of a geodesic. More precisely, we prove that for
all u ∈ Rd such that ∥u∥p = 1, for ε small enough, a.s. for large s, there exists a geodesic γ̃p,ε(x, y) from
x to y such that

∥γ̃p,ε(su)∥p − s ≤ C3ε
κp(u)s (5)

(see Theorem 17 (ii)).
Moreover, at least in some specific directions or for some specific values of p, we can prove the

existence of the rescaled limit of 1 − µ̃N,ε(u) when ε goes to 0.

Theorem 2. Suppose we are in one of the following cases:

• p ∈ [1,∞] and u = (1, 0, . . . , 0) ;

• p ∈ {1, 2}, whatever u ∈ Rd such that ∥u∥p = 1 ;

• p = ∞ and u ∈ Rd such that ∥u∥∞ = 1 and d3(u) ∈ {1, 2}.

Then there exists a constant Kp(u) ∈ (0,∞) such that

lim
ε→0

1 − µ̃p,ε(u)
εκp(u) = Kp(u) .

Thus, for p = 1 and p = 2, we obtain the existence of the limit of (1 − µ̃p,ε(u))/εκp(u) when ε goes
to zero for any direction u. For p = 2, we have κ2(u) = 2

d+1 whatever u, as prescribed by the isotropy
of the model, and we obtain that

µ̃2,ε(u) = 1 − Cε2/(d+1) + o(ε2/(d+1))

for any u ∈ Rd such that ∥u∥2 = 1, with C = Kp(u) that does not depend on such a u. For p = 1, our
results are similar to the ones previously obtained on the graph Zd for the corresponding time constant
µε(z), see Equation (7) below.

Remark 3. The image of the homogeneous Poisson point process Ξ on Rd with intensity 1 by the map
x ∈ Rd 7→ xε−1/d is a homogeneous Poisson point process on Rd with intensity ε. Thus, the image of
ΣN,1,ε1/d/2 by this map has the same distribution as ΣN,ε,1/2. Using the homogeneity of a norm, we
deduce that, for any z ∈ Rd,

ε1/dT̃∥·∥p,ε,1/2(0, z) law= T̃∥·∥p,1,ε1/d/2(0, zε1/d)

which in turn implies that
µ̃p,ε(z) := µ̃∥·∥p,1,ε1/d/2(z) = µ̃∥·∥p,ε,1/2(z).

Hence, all our results also hold for this model.

1.2 Background and motivation
First-passage percolation on Zd. Classical first-passage percolation was introduced by Hammersley
and Welsh [10] in 1965 as a toy model to understand propagation phenomenon on a graph. Consider
the graph Zd (d ≥ 2) equipped with the set of edges between nearest neighbours, and associate with the
edges a family (τ(e)) of non-negative i.i.d. variables, with common distribution F . The variable τ(e)
is called the passage time of e, and represents the time needed to cross the edge e. This interpretation
leads naturally to the definition of a random pseudo metric τ on Zd: for any two points x, y ∈ Zd, τ(x, y)
is the minimal amount of time needed for the propagation to occur from x to y. We refer to the surveys
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[2, 12] for an overview on classical results in this model. By Kingman’s ergodic subadditive theorem, it
is well known that under a moment assumption on F , for any z ∈ Rd \ {0}, we have

lim
n→∞

τ(0, ⌊nz⌋)
n

= µF (z) a.s. and in L1 , (6)

where ⌊nz⌋ designates the coordinate-wise integer part of nz. The term µF (z) appearing here is a
constant, again called the time constant of the model in the direction z, that depends on z but also on
the dimension d of the underlying graph Zd and on the distribution F of the passage times. The function
z 7→ µF (z) is either the null function or a norm on Rd. As for the continuous counterpart of the time
constant defined previously, only few is known about µF (z), and in particular its value is not computable.
It is thus relevant to look at particular and simple choices of distributions F . One natural choice among
others is to consider a Bernoulli distribution with parameter 1−ε, i.e., P[τ(e) = 0] = ε = 1−P[τ(e) = 1].
Let us denote by µε(z) the corresponding time constant. The authors investigate in [3] at what speed
µε(z) goes to µ0(z) = ∥z∥1 when ε goes to 0, and they prove that

µε(z) = ∥z∥1 − C(z) ε1/d1(z) + o(ε1/d1(z)) (7)

where d1(z) is the number of non null coordinates of z, and C(z) is a constant whose dependence on z
is partially explicit.

Motivation. The asymptotic of (7) is related to the geometry of the lattice where the natural reference
distance is the ∥ · ∥1 distance. The primary motivation of the article is to understand the influence of
distance on the asymptotic. For this purpose, it is natural to work in a continuous setting where we have
all freedom on the choice of the norm. Our main result shows in particular that forgetting the lattice but
keeping the ∥ · ∥1 distance does not change the asymptotic at first order. In the case of the Euclidean
norm (p = 2), we prove that the behaviour of this asymptotic is different, as prescribed by the isotropy
of the model. We want to enlighten the fact that the proofs we build here to handle the p-norm for any
p ∈ [1,+∞] are very different from the ones used in [3] to prove (7) (we refer to Section 1.5 for a detailed
sketch of the proofs).

1.3 Framework
A related model. Since the diameter of each ball in the Boolean model is ε1/d and since we investigate
the first order when ε tends to 0, it is natural to neglect the possible overlaps between the balls and to
rule out paths traveling inside a ball without reaching its center. We are thus led to a new model where
we only consider polygonal paths going through points of Ξ (with the possible exception of the starting
and ending points) and where at each passage at a ball center, the path saves time ε1/d. We see this
time saved as a reward and refer to the model as the model with rewards. Let us rephrase the definition
(a formal definition is given in Section 1.4). In the new model, the travel time of a path π is replaced
by what we call abusively (because it can be negative) an alternative travel time Tp,ε(π) defined as the
p-length of π minus ε1/d times the number of rewards that π collects. Optimizing on relevant paths from
x to y leads to the definition of the alternative travel time Tp,ε(x, y) :

Tp,ε(x, y) = inf
π
Tp,ε(π)

where the infimum runs over all polygonal paths from x to y. For large ε > 0 one easily checks that
Tp,ε(x, y) = −∞ for any points x, y. For small enough ε > 0 (which is the regime we are interested
in) Theorem 6 ensures the existence of an alternative time constant: for every z ∈ Rd, there exists a
constant µp,ε(z) such that

lim
s→∞

Tp,ε(0, sz)
s

= µp,ε(z) a.s. and in L1.

Obviously, µp,0(z) = µ̃p,0(z) = ∥z∥p.
The model with rewards is more amenable to analysis than the model with balls. We will prove first

the analog of Theorems 1 and 2 for µp,ε instead of µ̃p,ε. Then, we will compare µp,ε to µ̃p,ε when it is
possible, or adapt the proofs from the model with rewards to the model with balls when needed. We
refer to Theorem 28 for a precise statement of the results we obtain for the model with rewards.
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A general norm N . The most natural norms to consider are probably the ∥ · ∥1 norm (corresponding
to the discrete framework) and the ∥ · ∥2 norm (the isotropic setting and thus maybe the easiest one).
However, if one wants to understand the influence of geometry, it is natural to investigate general norms.
We will indeed work in such a general setting and isolate the relevant geometric properties of the unit
ball which influence the asymptotic behaviour. We will obtain somehow abstract results (see Theorems
10 and 17) and then specialize them to the ∥ · ∥p norms in order to get the results announced in the
previous sections. As we will see in Section 6, handling the p-norms requires to treat separately the cases
p = 1 and p + ∞ that are somehow degenerated, it is thus valuable to work in the setting of a general
norm N and to specialize to the p-norms subsequently.

1.4 Definitions
We gather in this section all the definitions we need. Some of them are straightforward generalization to
a general norm N of definitions that have been stated informally in the previous sections for the p-norm.

The space Rd. Throughout the paper, d ∈ N designates the dimension of the space, and we always
assume that d ≥ 2. Let · designate the standard scalar product on Rd. We write N to designate a general
norm on Rd. We denote by BN (c, r) the closed ball for the norm N centered at c ∈ Rd and of radius
r ∈ (0,∞), and write BN (r) = BN (0, r) for short. We designate by | · | the Lebesgue measure - usually on
Rd or on Rd−1, we omit the precision when it is not confusing, but write | · |k for the Lebesgue measure
on Rk if needed. For a subset A of Rd, we denote by Ac = Rd \ A its complement. Throughout the
paper, u designates a vector of Rd such that N(u) = 1. For such a vector u, that lies on the boundary
of BN (1), we can consider u+H a supporting hyperplane of BN (1) at u, i.e., satisfying

∀v ∈ H , N(u+ v) ≥ N(u) = 1 .

Such a supporting hyperplane always exists by convexity of BN (1) (but it may not be unique). For given
u and H, we designate by u⋆ the vector normal to H and satisfying u · u⋆ = 1.

The Poisson point process. Let Ξ be a Poisson point process on Rd with intensity | · | = | · |d. Let
ε > 0. We consider two different models (see T and T̃ below). The points of Ξ are seen as the locations
of rewards of value ε1/d, or as centers of balls of diameter ε1/d for the norm N . In this setting, we define
the Boolean model ΣN,ε as

ΣN,ε =
⋃
c∈Ξ

BN

(
c,
ε1/d

2

)
.

The paths. In the course of this paper, we will consider two types of path, referred to as polygonal
paths or generalized paths.

Definition 4. A polygonal path π (or path, for short) is a finite sequence of distinct points π =
(x0, x1, . . . , xn), except maybe that x0 = xn, and such that xi ∈ Ξ for all i ∈ {1, . . . , n−1} (we emphasize
the fact that we do not require that x0 or xn belong to Ξ). We denote Π(x, y) the set of polygonal paths
π = (x0 = x, x1, . . . , xn = y) from x to y.

A generalized path π is a finite sequence of distinct points π = (x0, x1, . . . , xn), except maybe that
x0 = xn (without consideration for the Poisson point process Ξ at all). We denote Π̂(x, y) the set of
generalized paths from x to y.

Sometimes, we will also need to consider the polygonal curve associated with π = (x0, . . . , xn) which
we will denote by [π]. For a given segment [a, b] ⊂ Rd, we write N([a, b]) = N(b− a) for the N -length of
the segment [a, b]. By a slight abuse of notation, since [a, b] ∩ ΣN,ε is a finite disjoint union of segments,
we denote by N([a, b] ∩ ΣN,ε) the finite sum of the N -lengths of the disjoint connected components
of [a, b] ∩ ΣN,ε. We define N([a, b] ∩ Σc

N,ε) = N([a, b]) − N([a, b] ∩ ΣN,ε). For any generalized path
π = (x0, x1, . . . , xn), we denote by N(π) the length of π for the norm N , i.e.,

N(π) =
n∑

i=1
N([xi−1, xi]) =

n∑
i=1

N(xi − xi−1) .
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We denote by N(π ∩ Σc
N,ε) the N -length of π outside ΣN,ε, i.e.,

N(π ∩ Σc
N,ε) =

n∑
i=1

N([xi−1, xi] ∩ Σc
N,ε) .

We denote by ♯π the cardinality of Ξ ∩ [π]. Note that for any generalized path, this quantity is a.s. finite
and for a polygonal path π = (x0, x1, . . . , xn) such that x0, xn /∈ Ξ, we have a.s.

♯π = n− 1 .

The model with balls. We first consider the model where a ball of diameter ε1/d is located at each
point of Ξ. The travel time T̃N,ε(π) of a generalized path π = (x0, x1, . . . , xn) is

T̃N,ε(π) = N(π ∩ Σc
N,ε).

We define the travel time T̃N,ε(x, y) between x and y as

T̃N,ε(x, y) = inf
π∈Π̂(x,y)

T̃N,ε(π) .

We want to emphasize that the optimization can be made on polygonal paths instead of generalized
paths, i.e.,

T̃N,ε(x, y) = inf
π∈Π(x,y)

T̃N,ε(π) .

This equality is stated in Proposition 18. We usually denote by γ̃N,ε(x, y) any geodesic from x to y for
the time T̃N,ε, i.e., γ̃N,ε(x, y) ∈ Π̂(x, y) such that T̃N,ε(x, y) = T̃N,ε(γ̃N,ε(x, y)) (see Proposition 19 for
the existence of a geodesic). For short, we write γ̃N,ε(z) := γ̃N,ε(0, z). The time constant in this model
is defined through standard subadditive arguments in the following way: for every z ∈ Rd, there exists
a constant µ̃N,ε(z) ≥ 0 such that

lim
s→∞

T̃N,ε(0, sz)
s

= µ̃N,ε(z) a.s. and in L1. (8)

We recall that when N is the p-norm, we write T̃p,ε, γ̃p,ε and µ̃p,ε instead of T̃∥·∥p,ε, γ̃∥·∥p,ε and µ̃∥·∥p,ε.

The model with rewards. We now consider the model where a reward of value ε1/d is located on
each point of Ξ. The alternative travel time TN,ε(π) of a path π = (x0, x1, . . . , xn) is

TN,ε(π) = N(π) − ε1/d♯π .

We emphasize that TN,ε(π) may be negative, the terminology alternative travel time is chosen by analogy
with the model with balls but may be confusing. We define the alternative travel time TN,ε(x, y) between
x and y by

TN,ε(x, y) = inf
π∈Π̂(x,y)

TN,ε(π) . (9)

As previously remarked, for large ε > 0 the model degenerates and TN,ε(x, y) = −∞ for any points x, y.
However, for small enough ε > 0 (which is the relevant regime for our asymptotic study) Theorem 6
ensures that a.s., for any points x, y ∈ Rd, there exists a geodesic (that is, a minimiser in (9)) among
polygonal paths Π(x, y). We usually denote by γN,ε(x, y) any chosen geodesic between x and y. For
short, we write γN,ε(z) := γN,ε(0, z). Moreover, an alternative time constant µN,ε(z) can be defined in
this setting. Note that Theorem 6 does not say anything about the uniqueness of the geodesics. For
some norms N (for instance N = ∥ · ∥1), they can in fact be non unique. We recall that when N is the
p-norm, we write Tp,ε, γp,ε and µp,ε instead of T∥·∥p,ε, γ∥·∥p,ε and µ∥·∥p,ε.

1.5 Ideas of the proofs
We present here a detailed outline of the proof. We hope it will be useful to the reader before beginning
the reading of the proofs, and also that it will serve as a guide throughout the reading of the article.
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Theorem 1 and its version for the model with rewards. The proof of Theorem 1 relies on the
analogous result in the model with rewards and on its proof. These results are stated in the first item
of Theorem 10 in the case of a general norm N . For the reader’s convenience, we restate them here: for
small ε > 0,

ḡu(C1ε
−1) ≤ 1 − µN,ε(u) ≤ gu(C2ε

−1). (10)
In the above inequalities ḡu and gu are two functions related to the local geometry of the unit ball BN (1)
in the neighborhood of u, a vector such that N(u) = 1. We will give the definitions below. For the
moment, the important point is that the lower and the upper bounds match at first order when N is
symmetric enough, which is the case when N = ∥ · ∥p for some p ∈ [1,+∞] where both are of order
εκp(u).

Let us be slightly more precise about the links between the results in the two models. The upper
bound in Theorem 1 is a direct consequence of the upper bound in (10) (which is the hardest part) once
we establish that 1 − µ̃N,ε(u) ≤ 1 − µN,ε(u). The lower bound in Theorem 1 is proven by adapting the
proof of the lower bound in (10).

We focus hereafter on the model with rewards.

Upper bound in (10). Recall that u ∈ Rd is such that N(u) = 1. We also need a hyperplane H such
that u+H is a supporting hyperplane of BN (1) at u. If BN (1) is differentiable at u, then u+H is simply
the tangent hyperplane to BN (1) at u. Aiming at proving (10), we investigate TN,ε(0, su) for large s.
We are thus interested in polygonal paths from 0 to su with many points (and thus many ε1/d rewards)
and not too large length. The following family of sets then naturally comes into play. For η > 0, we
define (see Figure 1, that will be duplicated later in the article)

Kη(u) := {v ∈ H : N(u+ v) ≤ 1 + η}.

The relevance of Kη(u) is as follows. Consider a polygonal path π = (x0, . . . , xn) from 0 to su for some

BN(1)

BN(1+η)

u+H

u

u+Kη(u)

BN(1)

BN(1+η)

u+H

u

u+Mη(u)

Figure 1: Illustration of the sets Kη(u) and Mη(u) (note that Mη(u) is here strictly included in Kη(u)).

s ≥ 0 such that each of its increments xi − xi−1 belongs to the cone with direction u and base Kη(u).
By definition of Kη(u), we have N(π) ≤ s(1 + η). At a heuristic level, it may thus be natural to restrict
our attention to such paths for some η conveniently depending on ε. Moreover, one can guess using a
greedy algorithm (such a greedy algorithm for a different cone is used and thus defined below in the
paragraph about lower bound) that the number of points of such a path is at most of order |Kη(u)|1/ds
where |Kη(u)| is the (d − 1)-dimensional Lebesgue measure of Kη(u). Of course, the geodesics cannot
be all of the previous kind. However, we prove the following closely related result which validates the
above heuristic (see Proposition 13). For some constant c > 0, for large s ≥ 0 and for any path π from
0 to su, we have:

N(π) ≤ (1 + η)s =⇒ ♯π ≤ c|Kη(u)|1/ds. (11)
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Thus any upper bound on N(γN,ε(su)) provides in turn an upper bound on ♯γN,ε(su). Note moreover
that for any geodesic γN,ε(su) from 0 to su, we have

N(γN,ε(su)) = TN,ε(0, su) + ε1/d♯γN,ε(su) ≤ s+ ε1/d♯γN,ε(su). (12)

Thus any upper bound on ♯γN,ε(su) also provides an upper bound on N(γN,ε(su)). Finally, we need the
following crude inequality (see (24)) coming from greedy animals: for some constant c, almost surely, for
any path π from 0 to a faraway point,

♯π ≤ cN(π). (13)
From this first upper bound, using repeatedly and alternately (11) and (12) we get, after a finite number
of steps, good upper bounds on ♯γN,ε(su) and on N(γN,ε(su)). From the upper bound on ♯γN,ε(su)
we deduce straightforwardly the desired lower bound on TN,ε(0, su) and thus on µN,ε(u). The obtained
bound involves the family of sets Kη(u) through the function gu, which is the reciprocal of the decreasing
homeomorphism defined by η 7→ η−d|Kη(u)|.

Lower bound in (10). The desired lower bound on 1−µN,ε(u) comes from the construction of a good
path by a greedy algorithm. We need the following symmetric variant of Kη(u) (see Figure 1):

Mη(u) := Kη(u) ∩ (−Kη(u)).

We now refer to Figure 2. Instead of the cone of direction u and base Kη(u) considered before, we now

s.u0 u

u+H

su+H

u+Mη(u)
X1

X2

X3

Figure 2: Illustration of the greedy algorithm. The path constructed is drawn in blue. At each step, the
path goes through the first point of Ξ in the green cone in front of it.

consider the cone of direction u and base Mη(u). We define X1 as the first (for the coordinate along u
in the direct sum Rd = Ru⊕H) point of Ξ in the cone, X2 for the first point in the translated cone with
apex at X1 and so on. One key point (and this is the reason for the symmetrisation) is that the expected
value of the i.i.d. increments of the path belongs to R+u. Therefore, at first order, this allows us to build
a path from 0 to a faraway point su with a good control on the number of points and on the length of this
path. This is sufficient to yield the desired upper bound on µN,ε(u). The obtained bound involves the
family of sets Mη(u) through the function ḡu, which is the reciprocal of the decreasing homeomorphism
defined by η 7→ η−d|Mη(u)|.

On the proof of Theorem 2. The existence of the limit stated in Theorem 2 comes from the mono-
tonicity of

ε 7→ 1 − µp,ε(u)
εκp(u) ,

the bounds provided by (10) in this setting (yielding that the above function is bounded) and to the
close link between µp,ε(u) and µ̃p,ε(u) (see Theorem 17 (iii)). The monotocity stated above is derived,
after a proper scaling, from monotonicity at a very basic level (before taking any limit or infimum, see
Remark 31).
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On the link with (7). As explained in Section 1.2, in [3] the authors derived (7), which describes
an asymptotic behavior for first passage percolation on Zd. This behavior aligns with the asymptotic
behavior observed in our continuous setting when N = ∥ · ∥1. However, the overall strategy in [3] differs
significantly. The key result in [3] is to relate the discrete non oriented model to a semi-oriented and
semi-continuous model on Rd1(u) × Zd2(u) which can be understood through scaling.

1.6 Organization of the paper
The paper is organized as follows.

Section 2 is devoted to prove some basic results about the model with rewards: existence and classical
properties of the time constant µN,ε and of geodesics γN,ε(x, y) (see Theorem 6).

Section 3 focuses on some geometrical properties of objects associated with the norm N .
Section 4 is devoted to the study of the model with rewards. We follow the strategy sketched in

Section 1.5. In Section 4.1, we prove a lower bound on 1 − µN,ε(u) using a greedy algorithm. In Section
4.2, we obtain an upper bound on 1 − µN,ε(u) using a bootstrap argument, that involves a control on
♯γN,ε(su) and N(γN,ε(su)).

Section 5 examines the model with balls centered at the points of Ξ. First we prove in Section 5.1 that
we can deal with geodesics that have nice properties. Then we compare µ̃N,ε(u) with µN,ε(u) in Section
5.2. Finally we adapt in Sections 5.3 and 5.4 the proofs written in the study of the previous model to
this setting to get the results that are not direct consequences of the comparison between µ̃N,ε(u) and
µN,ε(u).

Finally in Section 6 we specialize to the case where N = ∥ · ∥p, the p-norm, for p ∈ [1,∞]. In Sections
6.1, 6.2 and 6.3, we compute estimates of the geometric quantities of interest. These estimates allow
us to prove Theorem 1, and its analog for the model with rewards (Theorem 28) in Section 6.4. By a
monotonicity argument, we finally prove Theorem 2 in Section 6.5.

The Appendix gathers the proofs of Sections 2 and 3 that are less innovative or more technical.

1.7 Notations
From Section 2 to Section 5, we work with a fixed general norm N . For that reason, we will omit the
subscript N in our notations, since no confusion is possible (for example we write Tε, µε instead of TN,ε,
µN,ε). In Section 6, we manipulate p-norms with different values of p, thus we reintroduce the subscript
p to emphasize the dependence on p.

2 Existence and basic properties of µε

Fix a norm N on Rd and consider the model where a reward of value ε1/d is located at each point of Ξ.
Recall that the alternative travel time Tε(π) of a generalized path π = (x0, . . . , xn) is defined by

Tε(π) = N(π) − ε1/d♯π,

where [π] :=
⋃n

i=1[xi−1, xi] is the polygonal curve with vertices (x0, . . . , xn) and ♯π denotes the cardinality
of the a.s. finite set Ξ ∩ [π].

Recall the definitions of generalized paths and of polygonal paths given in Definition 4. The first
result states that minimizing the travel time over generalized paths does not get a better result than
minimizing over polygonal paths.

Lemma 5. For all x, y ∈ Rd,

Tε(x, y) := inf{Tε(π) |π ∈ Π̂(x, y)} = inf{Tε(π) |π ∈ Π(x, y)}.

Proof. Let π1 = (x = x0, . . . , xn = y) ∈ Π̂(x, y) be a generalized path. Let us denote by a1, . . . , ak

the points of Ξ which are in [π1] \ {x0, xn} ranked by their order of apparition in the curve [π1]. Then
π2 = (x0, a1, . . . , ak, xn) belongs to Π(x, y). We have by construction ♯π1 ≤ ♯π2 and by triangle inequality,
N(π2) ≤ N(π1). This yields Tε(π2) ≤ Tε(π1).
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As already noted, the alternative travel time Tε(π) of a polygonal path π may be negative. Let
us also note that the alternative travel time between x and y does not satisfy the triangle inequality
Tε(x, y) ≤ Tε(x, z) + Tε(z, y). The setting is not exactly the most classic one. However, with some
almost classical argument, we can prove the following theorem. Since the proofs are not difficult nor
very innovative, we give them for the sake of completeness in the Appendix.

Theorem 6. For ε small enough (depending on N and d),

(i) There exists a.s. for all x, y ∈ Rd a finite polygonal path γε(x, y) ∈ Π(x, y) from x to y such that

Tε(x, y) = Tε(γε(x, y)) .

(ii) For every z ∈ Rd, there exists a deterministic constant µε(z) such that

lim
s→∞

TN,ε(0, sz)
s

= µε(z) a.s. and in L1. (14)

Moreover, the function µε(·) is a norm on Rd.

For all x, y ∈ Rd, any finite polygonal path γε(x, y) ∈ Π(x, y) from x to y such that Tε(x, y) =
Tε(γε(x, y)) is called a geodesic from x to y for the time Tε(x, y).

3 Some geometric results
As already mentioned in the introduction (Section 1.5), the exponent κp(u) given in Equation (4) is
expressed as a function of the rate of decay of two geometric sets related to the unit ball of the p-norm,
Kη(u) and Mη(u). In this section, we recall the definition of these geometric sets and give some property
of their volume. In particular, we show that the volume of one of them is also of the same order of
magnitude as an integral, which will appear naturally later on. These results rely on proofs that are
not essential for understanding the remainder of the proof and would disrupt the flow if included here.
Therefore, they have been moved to the appendix.

Throughout the paper we will repeatedly consider an element u ∈ Rd and a hyperplane H satisfying

N(u) = 1 and ∀v ∈ H, N(u+ v) ≥ N(u) = 1 . (15)

In other words, u lies on the boundary of BN (1), and u+H is a supporting hyperplane of BN (1) at u.
For any couple (u,H) satisfying (15), we denote by u⋆ the vector normal to H such that u · u⋆ = 1:

∀v ∈ H, u⋆ · v = 0 and u · u⋆ = 1 . (16)

For a given η ≥ 0, let us consider the two following subsets of H (see Figure 1):

Kη(u) := {v ∈ H : N(u+ v) ≤ 1 + η} and Mη(u) := Kη(u) ∩ (−Kη(u)) .

We emphasize the fact that Kη(u) and Mη(u) depend on u but also on H, even if this dependence on
H is not explicit in the notation. The sets Kη(u) and Mη(u) are subsets of H, which is a hyperplane.
We thus write |Kη(u)| := |Kη(u)|d−1 (resp. |Mη(u)| := |Mη(u)|d−1) to designate the (d− 1)-dimensional
Lebesgue measure of Kη(u) (resp. Mη(u)). For η > 0, we define

hu(η) := η−d|Kη(u)| and h̄u(η) = η−d|Mη(u)|.

Proposition 7. The functions η 7→ hu(η) and η 7→ h̄u(η) are decreasing homeomorphism from (0,∞)
to (0,∞). We denote by gu and ḡu their inverse functions. Note that gu and ḡu are also decreasing
homeomorphism from (0,∞) to (0,∞).

We introduce now a function I defined by an integral and check that this function is of the same
order as the function hu.
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Figure 1: Illustration of the sets Kη(u) and Mη(u) (note that Mη(u) is here strictly included in Kη(u)).

Lemma 8. For any (u,H) satisfying (15) and u⋆ defined by (16), for η > 0, let us define,

I+(η) =
∫
Rd∩{x:x·u⋆>0}

exp(−(N(x) − (1 − η)x · u⋆))dx.

Then there exists two constants c1, c2 > 0 depending only on d and N such that, for any (u,H) satisfying
(15), for η > 0, we have

c1hu(η) ≤ I+(η) ≤ c2hu(η). (17)
Moreover, define also, for η > 0,

I(η) =
∫
Rd

exp(−(N(x) − (1 − η)x · u⋆))dx ,

then for η small enough (depending on d,N, u and H), we have

c1hu(η) ≤ I(η) ≤ 2c2hu(η). (18)

Finally, we state a basic geometrical lemma that will be useful in what follows.

Lemma 9. There exist two constants c, c′ > 0 depending only on d and N such that, for all (u,H)
satisfying (15), for u⋆ defined by (16), we have

c ≤ ∥u⋆∥2 ≤ c′.

Proof. Using that N and || · ||2 are equivalent, there exist α, β > 0 such that

B∥·∥2(α) ⊂ BN (1) ⊂ B∥·∥2(β).

So, we get the lower bound on ∥u⋆∥2 noticing that, for u ∈ BN (1),

1 = u · u⋆ ≤ ∥u∥2∥u⋆∥2 ≤ β∥u⋆∥2.

Moreover, u+H is a supporting hyperplane of BN (1) at u and u⋆ is normal to H so BN (1) is included
in {v ∈ Rd : v · u⋆ ≤ u · u⋆}. Applying this inequality to αu⋆/∥u⋆∥2 ∈ B∥·∥2(α) ⊂ BN (1), we get

α∥u⋆∥2 = α
u⋆

∥u⋆∥2
· u⋆ ≤ u · u⋆ = 1.

Finally, we get
β−1 ≤ ∥u⋆∥2 ≤ α−1.
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4 Study of µε(u)
The present section is devoted to the study of the time constant µε(u) associated with a general norm
N for the model with rewards located at the points of Ξ. With all (u,H) satisfying (15) we associate
the functions gu and ḡu given by Proposition 7. We prove the following theorem.

Theorem 10. There exist constants C1, C2 > 0 (depending only on d and N) such that for all (u,H)
satisfying (15), the following assertions hold.

(i) For ε small enough (depending on d,N, u and H), we have

ḡu(C1ε
−1) ≤ 1 − µε(u) ≤ gu(C2ε

−1) .

(ii) For ε small enough (depending on d,N, u and H), we have, for any δ > 0, a.s. for large s, for any
geodesic γε(su) ∈ Π(0, su) from 0 to su for the time Tε(0, su),

(1 − δ)ε−1/dḡu(C1ε
−1)s ≤ ♯γε(su) ≤ (1 + δ)ε−1/dgu(C2ε

−1)s
N(γε(su)) − s ≤ (1 + δ)gu(C2ε

−1)s.

Notice that how small ε has to be in Points (i) and (ii) of Theorem 10 depends on N and d but also
on u and H. This dependence appears for instance through the use of Lemma 8 (see how (17) implies
(18) for η small enough).

It is a little bit frustrating not to be able to give a lower bound on N(γε(su)) in Theorem 10. In
fact, such a lower bound exists in some specific cases, for directions u in which BN (1) does not have
a (d − 1)-dimensional flat edge: see Proposition 15 in Section 4.2 for more details. However, we have
no hope with our approach to obtain a lower bound in general direction, see Remark 29 for a concrete
example.

4.1 Proof of the lower bound on 1 − µε(u)
This section is devoted to the proof of a lower bound on 1 −µε(u), i.e., the proof of Proposition 11 - and
incidentally, as a corollary, we get a lower bound on ♯γε(su) for large s too, see Corollary 12 below. To
do so, it is enough to exhibit a path from 0 to su (for a given direction u and s large enough) whose N -
length is not too high, but that gathers enough rewards. This is done in Proposition 11 through a greedy
algorithm, as sketched in Section 1.5. This algorithm adds recursively to the path π = (0, x1 · · · , xn−1)
the closest point xn of the Poisson point process Ξ (in a certain sense) which is located in a cone with
origin xn−1 and oriented in the direction u. This cone condition gives us a good upper bound on the
N -length of the path we construct. However, we have to be careful in our procedure to be sure that the
path π does not go too far away from the prescribed direction u. We thus take care to compensate any
gap previously created between the direction of xn−1 and the prescribed direction u by choosing wisely
the direction of the next point xn the path collects. This is the reason why it is the set Mη(u), which is
a symmetrized version of Kη(u), that arises in the proof.

Fix (u,H) satisfying (15), i.e., fix a direction u ∈ Rd with N(u) = 1, and fix H such that u+H is a
supporting hyperplane of BN (1) at u. Recall that

Mη(u) := {v ∈ H : N(u+ v) ≤ 1 + η and N(u− v) ≤ 1 + η} and h̄u(η) := η−d|Mη(u)| .

Proposition 7 states that η 7→ h̄u(η) is a decreasing homeomorphism from (0,∞) to (0,∞) so we can
define its inverse function ḡu which is also a decreasing homeomorphism from (0,∞) to (0,∞). To prove
the lower bound on 1 − µε(u) given in (i) of Theorem 10, we prove in fact the following proposition.

Proposition 11. There exists a constant c > 0 (depending only on d,N) such that, for all (u,H)
satisfying (15), for all ε > 0, for all η ∈ (0, 1), we have

µε(u) ≤ 1 + η − cε1/d|Mη(u)|1/d.

In particular, with C1 :=
( 2

c

)d, we have that for ε small enough (depending on d,N, u and H),

µε(u) ≤ 1 − ḡu

(
C1ε

−1) .
12
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Figure 2: Illustration of the greedy algorithm. The path constructed is drawn in blue. At each step, the
path goes through the first point of Ξ in the green cone in front of it.

Proof. To prove this proposition, we construct, using a greedy algorithm, a path πs from 0 to su with
length close to s(1 + η) but going through a number of points of Ξ larger than c|Mη(u)|1/ds (see Figure
2).

We first introduce some notation. For s ≥ 0, let

Cη(s) := {x = λu+ v : 0 ≤ λ ≤ s , v ∈ H , N(λu+ v) ≤ λ(1 + η), N(λu− v) ≤ λ(1 + η)} .

Hence, Cη(s) is a cone with axis u and of basis Mη (basis not necessarily orthogonal to its axis). Thus,
if u⋆ denotes the vector orthogonal to H such that u · u⋆ = 1, we have1

|Cη(s)| = 1
d∥u⋆∥2

|Mη(u)|sd.

In the algorithm, we construct a path (0, x1, . . . , xn, su) from 0 to su such that xi+1 is the first point of
Ξ in the cone xi + Cη(∞). We prove that the length of such path cannot be much larger than (1 + η)s
and its number of points is at least of order |Mη(u)|1/ds. Optimizing on η yields then Proposition 11.

Recall that Ξ denotes the points of a Poisson point process with intensity 1 on Rd. By induction we
define a sequence (Xn)n≥0 in Rd with X0 = 0 and if

λn+1 := inf{s > 0 : (Xn + Cη(s)) ∩ Ξ ̸= ∅} ,

we set Xn+1 = Xn + λn+1u + Wn+1 with Wn+1 ∈ H and such that {Xn+1} = (Xn + Cη(λn+1)) ∩ Ξ.
We define Sn =

∑n
i=1 λi and Vn =

∑n
i=1 Wi. By the proprieties of Poisson point processes, (λi)i≥1

and (Wi)i≥1 are i.i.d. random variables and since Mη(u) is a symmetric set, W1 has also a symmetric
distribution and so Vn is a symmetric random walk.

Let us now define, for s > 0,
Z(s) := sup{n ≥ 0 : Sn ≤ s}

and consider the path πs = (0, X1, . . . , XZ(s), su) (see Figure 2 for an illustration of the greedy algorithm).
Let us find an upper bound of Tε(πs) by finding an upper bound of its length and a lower bound of Z(s),
its number of points.

The sequence (λi)i≥1 is i.i.d. and we have

P(λ1 ≥ t) = exp
(

− 1
d∥u⋆∥2

|Mη(u)|td
)

1This can be proven using the same change of variable Ψ. Indeed,

|Cη(s)| =
∫
Rd

1x∈Cη(s)dx =
1

∥u⋆∥2

∫
Rd

10≤λ≤s1v/λ∈Mη(u)dλ dv

=
1

∥u⋆∥2

∫
Rd

λd−110≤λ≤s1w∈Mη(u)dλ dw =
1

∥u⋆∥2
|Mη(u)|

sd

d
.
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so that

E(λ1) =
(

|Mη(u)|
d∥u⋆∥2

)−1/d ∫ ∞

0
exp(−vd)dv := |Mη|−1/d

2cu

where

2cu :=
(

1
d∥u⋆∥2

)1/d(∫ ∞

0
exp(−vd)dv

)−1
.

Since Sn =
∑n

i=1 λi, a standard renewal theorem (see for instance [8] Section 10.2) yields that, for s
large enough, we have

cu|Mη(u)|1/ds ≤ Z(s) ≤ 3cu|Mη(u)|1/ds . (19)
This gives a lower bound for the number of points of πs. It remains now to find an upper bound for the
length of πs. Note first that if we consider the path π′

s = (0, X1, . . . , XZ(s)), we have by construction

N(Xi+1 −Xi) ≤ (1 + η)λi+1

so
N(π′

s) ≤ (1 + η)SZ(s) .

Thus

N(πs) ≤ (1+η)SZ(s)+N(su−(SZ(s)u+VZ(s))) ≤ (1+η)SZ(s)+s−SZ(s)+N(VZ(s)) ≤ (1+η)s+N(VZ(s)) .

Let us now prove that N(VZ(s))/s tends a.s. to 0. The process (Vk)k≥0 is a symmetric random walk
with increments (Wk)k≥1 and by construction, we have

N(λ1u+W1) ≤ λ1(1 + η)

which yields
N(W1) ≤ λ1(1 + η) +N(λ1u) ≤ 3λ1

for η ∈ (0, 1). This implies that E(N(W1)) is finite. By the law of large numbers, we obtain that

lim
n→∞

Vn

n
= 0 a.s.

Using that for s large enough Z(s) ≤ 3cu|Mn|1/ds a.s., this implies that

lim
n→∞

N(VZ(s))
s

= lim
n→∞

N(VZ(s))
Z(s) · Z(s)

s
= 0 a.s.

Hence, for all η ∈ (0, 1), we have, for s large enough,

Tε(0, su) ≤ Tε(πs) ≤ s

(
1 + η +

N(VZ(s))
s

− ε1/dcu|Mη(u)|1/d

)
.

We deduce

µε(u) = lim
s→∞

Tε(0, su)
s

≤ 1 + η − ε1/dcu|Mη(u)|1/d = 1 − η
(
cu

(
εh̄u(η)

)1/d − 1
)
.

Let us define c1 := inf{cu, u ∈ BN (1)} and note, in view of Lemma 9, that c1 > 0. We get, for all
u ∈ BN (1),

µε(u) ≤ 1 − η
(
c1
(
εh̄u(η)

)1/d − 1
)
.

This proves the first part of Proposition 11. Taking

η = ḡu

((
2
c1

)d

ε−1

)
,

(notice that η < 1 for ε small enough), we obtain that c1
(
εh̄u(η)

)1/d = 2, thus

µε(u) ≤ 1 − η .
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Let us note that this implies a lower bound for the number of points taken by the geodesic, that we
state in the following Corollary.

Corollary 12. Let C1 = C1(d,N) be the constant given by Proposition 11. For all (u,H) satisfying
(15), for ε small enough (depending on d,N, u and H), we have, for any δ > 0, a.s. for large s, for any
geodesic γε(su) from 0 to su for the time Tε(0, su),

ε1/d♯γε(su) ≥ (1 − δ)ḡu(C1ε
−1)s . (20)

Proof. Indeed, if γε(su) denotes a geodesic from 0 to su, we have

ε1/d♯γε(su) = N(γε(su)) − Tε(0, su) ≥ s

(
1 − Tε(0, su)

s

)
.

Using that 1 − Tε(0,su)
s converges to 1 − µε(u) and Proposition 11, we get that for any ε small enough,

for any δ > 0, a.s. for s large enough,

ε1/d♯γε(su) ≥ (1 − δ)ḡu(C1ε
−1)s .

4.2 Proof of the upper bound on 1 − µε(u)
We want now to find a lower bound for µε(u), as stated in Theorem 10. The idea of the proof as
been presented in Section 1.5. It relies on a bootstrap argument, that involves a control on the length
N(γε(su)) and the number of rewards ♯γε(su) of a geodesic γε(su). The key property used in the proof
is Proposition 13 below, that states that a path from 0 to su with small N -length cannot collect too
much rewards. In the course of the proof, we will also prove the upper bounds on N(γε(su)) and ♯γε(su)
stated in Point (ii) of Theorem 10. We conclude this section by noticing that, at least under some
added hypothesis, we can recover a lower bound on N(γε(su)) (see Proposition 15) by a final last use of
Proposition 13 and the lower bound on ♯γε(su) proved in Section 4.1 (see Corollary 12).

We start by proving the following proposition.

Proposition 13. Let us consider the event

E(η, s, u, c) := {∃π ∈ Π(0, su), N(π) ≤ (1 + η)s, ♯π ≥ c|Kη(u)|1/ds}.

Then there exists some constants c, c′ > 0 depending only on d and N such that for any (u,H) satisfying
(15), there exists η̄ > 0 (depending on d,N, u and H) such that, for η < η̄, for all s > 0, we have

P[E(η, s, u, c)] ≤ 2 exp[−sc′|Kη(u)|1/d]. (21)

In particular, for all η ∈ (0, η̄) there exists a.s. sη such that, for s ≥ sη, every path π ∈ Π(0, su) such
that N(π) ≤ (1 + η)s satisfies ♯π ≤ c|Kη(u)|1/ds.

To prove this proposition, we will need the following lemma which roughly states the same thing except
that we consider now a path from the origin 0 to the hyperplane su + H. We denote by Π(0, su + H)
the set of all polygonal paths π ∈ Π(0, y) for some y ∈ su+H. We recall that the definition of I(η) for
η > 0 is given in Lemma 8.

Lemma 14. For A > 0 and (u,H) satisfying (15), define

F(η, s, u,A,H) := {∃π ∈ Π(0, su+H),∀x ∈ π, x · u⋆ ≤ s,N(π) ≤ (1 + η)s, ♯π ≥ As}.

Then, for all A > 0, for all (u,H) satisfying (15), for all s > 0 and η > 0,

P[F(η, s, u,A,H)] ≤ exp[−s(A log 2 − 21+1/dI(η)1/dη)] .

We first explain how Lemma 14 implies the proposition.
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Proof of Proposition 13 using Lemma 14. A path π ∈ Π(0, su) can be decomposed into two paths π1
and π2 where π1 is the restriction of the path π until it intersects the hyperplane su + H and π2 is
the intersection of the path π afterwards. Note that N(π) = N(π1) + N(π2) and moreover N(π1) ≥ s,
since π1 goes from 0 to some z ∈ su + H thus N(π1) ≥ N(z) ≥ N(su) = s. If π satisfies the property
appearing in the definition of the event E(η, s, u, c), we thus get N(π2) ≤ ηs and moreover we have either
♯π1 ≥ c|Kη(u)|1/ds/2 or ♯π2 ≥ c|Kη(u)|1/ds/2. Hence, if we define

G(η, s, u, c) := {∃π ∈ Π(su, ⋆), N(π) ≤ ηs, ♯π ≥ c

2 |Kη(u)|1/ds} ,

we get
E(η, s, u, c) ⊂ F

(
η, s, u,

c

2 |Kη(u)|1/d, H
)

∪ G(η, s, u, c) .

Using (18) in Lemma 8, we see that we can choose c such that for η small enough we have

c|Kη(u)|1/d

2 log 2 ≥ η5I(η)1/d

so that
c|Kη(u)|1/d

2 log 2 − 21+1/dI(η)1/dη ≥ I(η)1/dη(5 − 4) = I(η)1/dη.

Thus by Lemma 14 we get

P
[
F
(
η, s, u,

c

2 |Kη(u)|1/d, H
)]

≤ exp[−sI(η)1/dη)] ≤ exp[−sc1|Kη(u)|1/d]

for some constant c1. Moreover, let q = c
2 |Kη(u)|1/ds, then for any β > 0, using the fact that 1x>0 ≤ eβx

and by Mecke Equation (see Theorem 4.4 in [14])

P[G(η, s, u, c)] = P[∃π ∈ Π(0, ⋆), N(π) ≤ ηs, ♯π ≥ q]

≤ P[∃(x1, . . . , xq) ∈ Ξ,
q∑

i=1
N(xi − xi−1) ≤ ηs]

≤ E

 ∑
(x1,...,xq)∈Ξ

1ηs−
∑q

i=1
N(xi−xi−1)≥0


≤ exp(βηs)E

 ∑
(x1,...,xq)∈Ξ

exp
(

−β
q∑

i=1
N(xi − xi−1)

)
= exp(βηs)

(∫
(Rd)q

exp(−β
q∑

i=1
N(xi − xi−1))dx1 . . . dxq

)

= exp(βηs)
(∫

Rd

exp(−βN(x))dx
)q

= exp(βηs)
(

1
βd

∫
Rd

exp(−N(x))dx
)q

.

Chose β0 := β0(d) such that the bracket above is equal to 1/2. Then

P[G(η, s, u, c)] ≤ exp(β0ηs− q log 2)

= exp
(

−ηs
( c

2hu(η)1/d log 2 − β0

))
,

where hu(η) = η−d|Kη(u)|. By Proposition 7, hu(η) tends to infinity as η tends to 0, we choose η̄ :=
η̄(d,N, u,H) such that β0 ≤ c

4hu(η)1/d(2 log 2 − 1) for η ≤ η̄. This yields

P[G(η, s, u, c)] ≤ exp
[
−s c4 |Kη(u)|1/d)

]
.
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This implies that (21) holds with c′ = min(c1, c/4). Moreover, if we set λn = n/(c|Kη(u)|1/d), we get

∞∑
n=1

P[E(η, λn, u, c)] ≤ 2
∞∑

n=1
exp

[
−c′

c
n

]
.

Thus, Borel-Cantelli Lemma yields that for n large enough, every path π ∈ Π(0, λnu) such that N(π) ≤
(1 + η)λn satisfies ♯π < c|Kη(u)|1/dλn = n. Then for s ∈ [λn, λn+1[, if π is a path from 0 to su such
that N(π) ≤ (1 + η)s, adding to π a straight line colinear to u yields a path from 0 to λn+1u such that
N(π) ≤ (1 + η)λn+1. Thus we deduce that ♯π < n + 1. Since ⌊c|Kη(u)|1/ds⌋ = n, this implies in fact
that ♯π ≤ c|Kη(u)|1/ds.

We now prove Lemma 14.

Proof of Lemma 14. Let q = ⌈As⌉. Let π = (0, x1, . . . , xq, xq+1) ∈ Π(0, su + H) where x1, . . . , xq are
points of the Ξ and xq+1 − xq is colinear to u. Set x0 = 0. Thus

N(π) =
q+1∑
i=1

N(xi − xi−1) =
q∑

i=1
N(xi − xi−1) + |s− xq · u⋆| =

q∑
i=1

N(xi − xi−1) + s− xq · u⋆ .

Thus

N(π) ≤ (1 + η)s ⇔
q∑

i=1
N(xi − xi−1) ≤ ηs+ xq · u⋆.

We get for any α, β > 0, using the fact that 1x>0 ≤ ex and by Mecke Equation (see Theorem 4.4 in [14]),

P[F(η, s, u,A,H)] = P(∃x1, . . . , xq ∈ Ξ, xq · u⋆ ≤ s,

q∑
i=1

N(xi − xi−1) ≤ ηs+ xq · u⋆)

≤ E

 ∑
x1,...,xq∈Ξ

1xq·u⋆≤s1
∑q

i=1
N(xi−xi−1)≤ηs+xq·u⋆


≤

∫
(Rd)q

exp
(
β(s− xq · u⋆) + α

(
ηs−

q∑
i=1

N(xi − xi−1) + xq · u⋆

))
dx1 . . . dxq .

Taking β = αη, we get

P[F(η, s, u,A,H)]

≤ exp(2αηs)
∫

(Rd)q

exp
(

−α

(
q∑

i=1
N(xi − xi−1) − (1 − η)

q∑
i=1

(xi − xi−1) · u⋆

))
dx1 . . . dxq

= exp(2αηs)
(∫

Rd

exp (−α(N(x) − (1 − η)x · u⋆)) dx
)q

= exp(2αηs)
(
I(η)
αd

)q

.

We conclude taking α such that αd = 2I(η).

We can now prove the upper bound on the number of points and the length of a geodesic given in
(ii) of Theorem 10, i.e., we can prove that there exists a constant C2 (depending only on d and N) such
that, for any (u,H) satisfying (15), for ε small enough (depending on d,N, u and H), we have for any
δ > 0, a.s., for s large enough, for any geodesic γε(su) ∈ Π(0, su) from 0 to su for the time Tε(0, su),

N(γε(su)) ≤ s(1 + (1 + δ)gu(C2ε
−1)) and ♯γε(su) ≤ (1 + δ)gu(C2ε

−1)ε−1/ds. (22)

17



Proof of (22). We begin by proving that there exists some C > 0 such that, for ε small enough, we have
a.s. for s large enough

N(γε(su)) ≤ s[1 + Cε1/d] . (23)

We use tools that come from the study of the greedy paths and greedy lattice animals. Let

G(s) := sup
{

♯π

N(π) : π ∈ Π(0, ⋆) , π ̸⊂ BN (s)
}

≤ sup
{

♯π

N(π) : π ∈ Π(0, ⋆)
}

:= G .

Let G(∞) be the increasing limit of G(s). We have the follonwing properties : G(∞) ≤ G, G(∞) is
constant a.s. and

G(∞) = E[G(∞)] ≤ E[G] ≤ c

∫ ∞

0
δ1([r,+∞[)1/ddr := C/4 .

This is a consequence of (11) and Lemma 2.1 in [5] (which is the analog in a continuous setting of a
result by Martin [15] in a discrete setting), and these results have already been useful to study continuous
first-passage percolation (see [6] Theorem 3.1 or [7] Theorem 13 and Corollary 14). Thus, a.s. for large
enough s, for all π ∈ Π(0, ⋆) such that π ̸⊂ BN (s/2) we have

♯π ≤ (C/2)N(π) . (24)

In particular, this holds for γε(su), a geodesic from 0 to su. Using that T (γε(su)) ≤ s, we get

s ≥ T (γε(su)) = N(γε(su))
[
1 − ε1/d ♯γε(su)

N(γε(su))

]
≥ N(γε(su))[1 − Cε1/d/2]

which gives N(γε(su)) ≤ s[1 − Cε1/d/2]−1 ≤ s[1 + Cε1/d] for ε small enough.
Let’s now consider c > 0 such that the conclusion of Proposition 13 holds, i.e., for any u ∈ BN (1),

for η small enough we have a.s. that for s large enough, any path π : 0 7→ su such that N(π) ≤ (1 + η)s
go trough less than c|Kη(u)|1/d points of Ξ. Now define the sequence (ηn)n≥0 by

η0 = Cε1/d and ηn+1 = c|Kηn(u)|1/dε1/d.

The function η 7→ |Kη(u)| is continuous and increases with η so the sequence (ηn) is monotonic. Assume
that ε is small enough such that Cε1/d ≤ 1 and c|K1(u)|1/dε1/d ≤ 1. We get then by induction that the
the sequence (ηn) remains in [0, 1] so it converges to a solution of the equation

η = c|Kη(u)|1/dε1/d ,

i.e, either to 0 or to η∞ := gu((cdε)−1). Note that in both cases, if we fix some δ > 0, we have, for n
large enough, ηn ≤ (1 + δ)η∞.

Assume moreover that ε is small enough such that Proposition 13 holds for η0, i.e., η0 ≤ η̄. Let
us prove by induction on n that for all n ≥ 1, there exists a.s. (a random) sn such that, for s > sn,
♯γε(su) ≤ ηnε

−1/ds. We have seen that for s large enough, N(γε(su)) ≤ s[1 + η0]. Using Proposition
13, we get that for s large enough ♯γε(su) ≤ c|Kη0(u)|1/ds = η1ε

−1/ds. Note that if the sequence
(ηn) is non-decreasing, this directly implies that ♯γε(su) ≤ ηnε

−1/ds. Thus we can assume that (ηn) is
non-increasing.

Assume now that we proved that for s large enough ♯γε(su) ≤ ηnε
−1/ds. Since T (γε(su)) ≤ s, we

get that N(γε(su)) = T (γε(su)) + ε1/d♯γε(su) ≤ s(1 + ηn). Since ηn ≤ η0 ≤ η̄, we can again apply
Proposition 13 which yields that for s large enough ♯γε(su) ≤ c|Kηn

(u)|1/ds = ηn+1ε
−1/ds. Hence, for

all n ≥ 0, we have a.s. for s large enough

♯γε(su) ≤ ηnε
−1/ds

and
N(γε(su)) ≤ s(1 + ηn) .

We conclude using that for n large enough, ηn ≤ (1 + δ)η∞.
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End of the proof of Theorem 10. Using (22) and the inequality Tε(0, su) ≥ s− ε1/d♯γε(su) we get that,
for ε small enough, we have for any δ > 0, a.s. for s large enough,

Tε(0, su) ≥ (1 − (1 + δ)gu(cε−1))s .

Since µε(u) = lims→∞ Tε(0, su)/s, we get for ε small enough, for any δ > 0,

1 − µε(u) ≤ (1 + δ)gu(cε−1).

Letting δ tend to 0, we get the upper bound in (i) of Theorem 10. The lower bound in (i) of Theorem 10
have been established in Proposition 11. Moreover we just proved the upper bounds in (ii) of Theorem
10 and the lower bound on ♯γε(su) have been established in Corollary 12.

At this stage, we could hope to get a lower bound on N(γε(su)), using Proposition 13 and the
lower bound on ♯γε(su) obtained in Theorem 10 (ii). However, in a general setting, we cannot control
the difference between gu and ḡu, thus what we get is not very satisfying. Nevertheless, we can state
the following result, that will be useful for specific choices of the norm N . Consider the case where
|K0(u)| = 0. This hypothesis corresponds to the fact that BN (u) does not have a (d − 1)-dimensional
flat edge in the direction of u. Notice that ℓ̂u : η 7→ |Kη(u)| is continuous and strictly increasing. Indeed
ℓ̂u is obviously non-decreasing, and since ℓ̂u(η) = ηdhu(η) the continuity of ℓ̂u is a consequence of the
continuity of hu stated in Proposition 7. In the course of the proof of Proposition 7, we in fact proved
that (ℓ̂u) 1

d−1 is concave, see (40). Since (ℓ̂u) 1
d−1 is concave, non-decreasing and goes to infinity when

η goes to infinity, this function has to be increasing, thus ℓ̂u is increasing. If |K0(u)| = 0, then ℓ̂u is
a bijection from [0,∞) onto [0,∞). Let us denote by ℓu its inverse function. We can now state the
following result.

Proposition 15. Let u,H satisfying (15). Suppose that |K0(u)| = 0, and denote by ℓu : [0,∞) → [0,∞)
the inverse function of η 7→ |Kη(u)|. Let c be the constant appearing in Proposition 13, and C1 the
constant appearing in Theorem 10. For ε small enough (depending on d,N, u and H), we have, for any
δ ∈ (0, 1], a.s. for large s, for any geodesic γε(su) from 0 to su for the time Tε(0, su),

N(γε(su)) − s ≥ ℓu

(
(1 − δ)dc−dε−1ḡu(C1ε

−1)d
)
s .

Proof of Proposition 15. Let c be the constant appearing in Proposition 13, and C1 the constant appear-
ing in Theorem 10. From the lower bound on ♯γε(su) obtained in Theorem 10 (ii), we know that for ε
small enough, for any δ ∈ (0, 1], we have a.s. for large s,

♯γε(su) ≥
(

1 − δ

2

)
ε−1/dḡu(C1ε

−1)s . (25)

Define η := ℓu

(
(1 − δ)dc−dε−1ḡu(C1ε

−1)d
)
. Since we assume that |M0(u)| ≤ |K0(u)| = 0, we get

that h̄u(η) = η−d|Mη(u)| = o(η−d) as η tends to 0. So its inverse function ḡu satisfies in turn that
ḡu(x) = o(x−1/d) as x tends to infinity. Using that ℓu(0) = 0 and η ≤ ℓu

(
c−dε−1ḡu(C1ε

−1)d
)
, we get

that η tends to 0 as ε tends to 0 (uniformly with respect to δ ∈ (0, 1]). Moreover, we have |Kη(u)| =
(1 − δ)dc−dε−1ḡu(C1ε

−1)d by definition of ℓu. This leads to

c|Kη(u)|1/d = (1 − δ)ε−1/dḡu(C1ε
−1) . (26)

By Proposition 13, we know that for ε small enough, so that η < η̄, a.s., for s large enough, every path
π ∈ Π(0, su) such that N(π) ≤ (1 + η)s satisfies ♯π ≤ c|Kη(u)|1/ds. From (25) and (26), we get that a.s.,
for s large enough,

N(γε(su)) > (1 + η)s

which ends the proof of Proposition 15.

Remark 16. For (u,H) satisfying (15), recall that Π(0, su + H) is the set of paths from 0 to some
y ∈ su+H. We can define the time travel from 0 to su+H by

Tε(su+H) := inf{Tε(π), π ∈ Π(0, su+H)}
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and prove, for small enough ε, that

µε(u,H) := lim
s→∞

Tε(su+H)
s

exists a.s. and in L1.

Note that, in view of Lemma 14, one can use the same argument as above to show that 1 − µε(u,H) ≤
gu

(
C2ε

−1). Moreover, to get a lower bound for this quantity, we can use a very similar greedy algorithm
than the one explained in Section 4.1 except that instead of looking at the next point of Ξ in a cone of
basis Mη, we look at the next point of Ξ in a cone of basis Kη. The set Kη not being symmetric, we
cannot control anymore the deviation of the path with respect to the direction u ((Vn)n≥0 is not anymore
a symmetric random walk) but the path created will still end at tome su + y, with y ∈ H, giving that
1 − µε(u,H) ≥ gu

(
C1ε

−1) . Hence, we finally get

gu

(
C1ε

−1) ≤ 1 − µε(u,H) ≤ gu

(
C2ε

−1) ,
with the same function gu appearing on both sides of the inequalities.

5 Study of µ̃ε(u)
We now consider a general norm N , and study the model with balls of radii ε1/d/2 centered at the points
of Ξ. We can state the analog to Theorem 10 in this setting, together with a comparison between the
time constants in the model with rewards and the model with balls.

Theorem 17. There exist some constants C2, C3 > 0 (depending only on d and N , C2 is the same
constant as the one appearing in Theorem 10) such that for all (u,H) satisfying (15), the following
assertions hold.

(i) For ε small enough (depending on d,N, u and H), we have

ḡu(C3ε
−1) ≤ 1 − µ̃N,ε(u) ≤ 1 − µN,ε(u) ≤ gu(C2ε

−1) .

(ii) For ε small enough (depending on d,N, u and H), for any δ > 0, a.s. for large s, there exists a
geodesic γ̃N,ε(su) ∈ Π̂(0, su) from 0 to su for the time T̃N,ε(0, su) such that

N(γ̃N,ε(su)) − s ≤ (1 + δ)gu(C2ε
−1)s.

(iii) Moreover, we have

lim
ε→0

µN,ε(u) − µ̃N,ε(u)
gu(C2ε−1) = 0.

Let us emphasize the fact that we do not state a control on ♯γ̃N,ε(su) in Theorem 17: indeed γ̃N,ε(su) ∈
Π̂(0, su) is a generalized path, that does not have to travel between points of Ξ, thus the quantity
♯γ̃N,ε(su) does not have a relevant signification. However, we do obtain a control on the number of balls
of the Boolean model really useful to a geodesic if we look at geodesics inside a set of paths that are
easier to deal with: for more details, we refer to Proposition 19 in Section 5.1 that states the existence
of a geodesic γ̌ε(0, su) in a restrictive set Π̌(0, su) ⊂ Π(0, su), and to Equation (32) that gives an upper
bound for ♯γ̌ε(0, su) - the lower bound on ♯γ̌ε(0, su) is a straigthforward consequence of the upper bound
on µ̃N,ε(u), as in the proof of Corollary 12 in the model with rewards.

For specific choices of the norm N , namely when N is the p-norm, it can be proved that the upper
bound and lower bound appearing in Theorems 10 (i) and 17 (i) are of the same order in ε (see Section
6). In this case, Assertion (iii) in Theorem 17 implies that Theorem 17 (i) is a consequence of Theorem
10 (i). However, it is not true in general, thus the different assertions in Theorem 17 must be stated
separately.
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Figure 3: The path π (in red) is a generalized path from x to y. In blue, a polygonal path π′ from x to
y such that T̃ε(π′) ≤ T̃ε(π).

5.1 Some properties of the geodesics γ̃ε(su)
Recall that for x, y ∈ Rd, T̃ε(x, y) denotes the travel time between x and y in the first passage percolation
model defined in Section 1.4

T̃ε(x, y) := inf
π∈Π̂(x,y)

T̃ε(π) ,

where, for a path π,
T̃ε(π) = N(π ∩ Σc

ε).
In this section, we prove that, for ε small enough, geodesics and the time constant exist for this model
and besides, we can impose some properties on the geodesics such that this model can be easily compared
to the model with rewards. We begin by proving that, as in the model with rewards, the infimum can
in fact be taken only on polygonal paths.

Proposition 18. For every x, y ∈ Rd, we have

T̃ε(x, y) = inf
π∈Π̂(x,y)

T̃ε(π) = inf
π∈Π(x,y)

T̃ε(π).

Proof. Fix x, y ∈ Rd and consider a path π ∈ Π̂(x, y). We want to construct a path π′ ∈ Π(x, y) such
that T̃ε(π′) ≤ T̃ε(π).

We associate with the path π the sequence (C1, . . . , Ck) of the k connected components of Σε that the
curve [π] intersects ranked by the order in which they appear in [π] (k ∈ N may be null). If there exists
i0 < i1 such Ci0 = Ci1 := C, we can replace π by π̂ defined as the concatenation of the three following
paths:

• the subpath π1 of π from x to the first point a in [π] ∩ C;

• the subpath π3 of π from the last point b in [π] ∩ C to y;

• between those subpaths, a path π2 between a and b satisfying [π2] ⊂ C, i.e., that remains inside C.

Since T̃ε(π2) = 0, we have T̃ε(π̂) = T̃ε(π̂1) + T̃ε(π̂3) ≤ T̃ε(π), thus we can suppose that the connected
components (C1, . . . , Ck) are distinct and the path π successively enters in the distinct connected com-
ponents (C1, . . . , Ck) and never go back to one of them once it has left it. For sake of clarity, we assume
here that x and y does not belong to Σε. We let the reader check that the proof below can be easily
adapted if this condition does not hold.

Let us denote by (ai, 1 ≤ i ≤ k) the first point of [π] in Ci and (bi, 1 ≤ i ≤ k) its last point (see Figure
3). Then we have

T̃ε(π) =
k∑

i=0
N(ai+1 − bi)

with the convention x = b0 and y = ak+1. Let ci ∈ Σ ∩ Ci be such that ai ∈ ∂BN (ci, ε
1/d/2) and

di ∈ Σ ∩ Ci such that bi ∈ ∂BN (ci, ε
1/d/2). Let πi = (ci, xi,1, . . . , xi,ni

, di) be a polygonal path (i.e.,
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with vertices in Ξ) from ci to di which remains in Ci. Consider now the path π′ from x to y which is the
concatenation of the paths (πi, 1 ≤ i ≤ k), namely

π′ := (x, c1, x1,1, . . . , x1,n1 , d1, c2, . . . , dk, y).

By construction π′ ∈ Π(x, y) and

T̃ε(π′) = N([x, c1] ∩ Σc
ε) +N([dk, y] ∩ Σc

ε) +
k−1∑
i=1

N([di, ci+1] ∩ Σc
ε)

≤ N(c1 − x) − ε1/d

2 +N(y − dk) − ε1/d

2 +
k−1∑
i=1

(
N(ci+1 − di) − ε1/d

)
. (27)

But, by triangle inequality, we have

N(ci+1 − di) ≤ N(bi − di) +N(ai+1 − bi) +N(ci+1 − ai+1) = ε1/d +N(ai+1 − bi) ,

and
N(c1 − x) ≤ N(a1 − x) + ε1/d

2 and N(y − dk) ≤ N(y − bk) + ε1/d

2 .

So we get that T̃ε(π′) ≤ T̃ε(π) as wanted.

The next step is now to prove the existence of geodesics and of a time constant for this model.
However, the proofs are more classical in this case than for the model with rewards. Indeed, the random
variables (T̃ε(x, y), x, y ∈ Rd) are the travel times in a first passage percolation model, in particular,
they are non negative, satisfy the triangle inequality and are bounded by N(y − x). A classical use of
Kingman’s subadditive ergodic theorem enables then to prove the existence of the time constant: for
every z ∈ Rd, there exists a constant µ̃ε(z) ∈ [0, N(z)] such that

lim
s→∞

T̃ε(0, sz)
s

= µ̃ε(z) a.s. and in L1.

Besides, the Euclidean case N := ∥ · ∥2, has been studied in [6] where a condition is given to ensure that
µ̃ε(·) := µ̃2,ε(·) is strictly positive in terms of a percolation event for the Boolean model Σ∥·∥2,ε. This
result implies in particular that µ̃2,ε(·) is a norm for small enough ε. Using the equivalence of the norm
on Rd, we have that ΣN,ε ⊂ Σ∥·∥2,cε for some c > 0 so it is easy to deduce that, in fact, for any norm
N , the function µ̃N,ε(·) is strictly positive for small enough ε.2 When µ̃ε := µ̃N,ε(·) is a norm, a shape
theorem also holds:

for any δ > 0, for t large enough {z ∈ Rd, T̃ε(0, z) ≤ t} ⊂ (1 + δ)Bµ̃ε
(1) a.s.

where Bµ̃ε
(1) denotes the unit ball for the norm µ̃ε. This implies in particular that for any n ∈ N and

any x, y ∈ BN (n), there exists a.s. some K > 0 such that

T̃ε(x, y) := inf{T̃ε(π) : π ∈ Π(x, y)} = min{T̃ε(π) : π ∈ Π(x, y), π ⊂ BN (K)} ,

since the last set of paths is a.s. finite. This gives the existence, for any x, y ∈ Rd, of a geodesic
γε(x, y) ∈ Π(x, y), i.e., a polygonal path such that

T̃ε(x, y) = T̃ε(γε(x, y)).

Of course, such geodesic is not unique since we can modify it inside any connected component of Σε.
To compare the model with rewards and the first passage percolation model, we will need in fact more
properties on the geodesics we consider. So we introduce here a third set of paths, namely Π̌ε(x, y), and
prove that the geodesics can be chosen inside this set. For a path π = (x = x0, x1, . . . , xn = y) from x
to y, let us denote by (C1, . . . , Ck) the connected component of Σε that the curve [π] intersects. Define
Π̌ε(x, y) as the set of paths from x to y such that

2It should be possible to characterize exactly the set of ε such that µ̃N,ε(·) is a norm in terms of an event of percolation
for the Boolean model ΣN,ε similar to the one given in [6].
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(i) π ∈ Π(x, y).

(ii) When [π] exits a connected component of Σε, it never re-enters again.

(iii) for every connected component Ci, the subpath [π]∩Ci can be written as πi = (ai, xi,0, . . . , xi,mi
, bi)

where mi ≥ 0, ai (resp. bi) is in the boundary of Ci and BN (xi,0, ε
1/d/2) (resp. BN (xi,mi

, ε1/d/2))
and for every j ∈ {0, . . . ,mi − 1}, N(xi,j+1 − xi,j) ≤ ε1/d.

We emphasize that we impose that mi ≥ 0 in the third point. This means that each time the path enters
a connected component C of Σε, it gets at least trough one point of Ξ ∩ C.

Proposition 19. For ε small enough there exists a.s., for every x, y ∈ Rd, a path γ̌ε(x, y) ∈ Π̌ε(x, y)
such that

T̃ε(x, y) = T̃ε(γ̌ε(x, y)) .

Proof. Consider π ∈ Π̂(x, y) a geodesic between x and y. We have already noticed that such path
necessarily satisfies Point (ii) of the definition of Π̌ε(x, y). We construct now of new path π′ between x
and y in the exact same way than in proof of Proposition 18 except that we impose moreover that the
polygonal subpath πi = (ci, xi,1, . . . , xi,ni

, di) created inside Ci between ci and di satisfies N(xi,j+1 −
xi,j) ≤ ε1/d (such sequence of points necessarily exists since Ci is a connected component of balls of
diameter ε1/d). Besides, since π is a geodesic, we necessarily have T̃ε(π) = T̃ε(π′) so in particular,
Inequality (27) must be an equality. This implies that [π′] cannot intersect other connected components
of Σε than the one already intersected by π. So we deduce that each time π′ enters a connected component
C of Σε, it gets at least trough one point of Ξ ∩ C. Hence, π′ is indeed a path of Π̌ε(x, y).

5.2 Comparison between µ̃ε(u) and µε(u)
The comparison between µ̃ε(u) and µε(u) is made in two steps. The first and easy step is to notice that,
by looking at nice geodesics for the model with balls, we can prove that T̃ε(0, x) ≥ Tε(0, x) for every x,
thus µ̃ε(u) ≤ µε(u). In the second step, we have to prove that T̃ε(0, x) − Tε(0, x) is not too big. When
a path π = (0, x1, . . . , xn) goes through points (xi) of Ξ that are at N -distance bigger than ε1/d, the
corresponding balls of the Boolean model do not overlap, thus T̃ε(π) ≤ Tε(π). The travel time T̃ε(π)
may be larger than Tε(π) only if π goes through balls of the Boolean model that overlap. The difference
T̃ε(π) − Tε(π) can thus be controlled for a path π = (0, x1, . . . , xn) by obtaining an upper bound on the
numbers of couples of points among the (xi) that are at N -distance less than ε1/d (see Inequality (29)).
This upper bound is proved through Lemmas 20 and 21, using ideas that are quite similar to the ones
used in Section 4.2.

By Proposition 19, for all x ∈ Rd,we know that there exists a geodesic γ̃ε(x) = (0 = x0, . . . , xn = x) ∈
Π̌ε(0, x) for T̃ε(0, x) such that, for all 0 < i < n, xi ∈ Ξ and if xi and xi+1 are in the same connected
component of Σε, N(xi+1 − xi) ≤ ε1/d. Let (C1, . . . , Ck) be the distinct connected components of Σε

that the curve [γ̃ε(x)] intersects, and write [γ̃ε(x)] ∩ Ci = (ai, xi,0, . . . , xi,mi
, bi) as in property (iii) of the

definition of Π̌ε(0, x). Then

N(γ̃ε(x) ∩ Σε) =
k∑

i=1
N(γ̃ε(x) ∩ Ci)

and

N(γ̃ε(x) ∩ Ci) = ε1/d

2 +
mi−1∑
j=0

N(xi,j+1 − xi,j) + ε1/d

2 ≤ (mi + 1)ε1/d .

We get that
N(γ̃ε(x) ∩ Σε) ≤ ε1/d♯γ̃ε(x) (28)

thus
T̃ε(0, x) ≥ Tε(0, x).

This already yields that µ̃ε(u) ≥ µε(u).
Let’s now find an upper bound for µ̃ε(u) − µε(u). For any polygonal path π = (x0, . . . , xq+1) with

xi ∈ Ξ for 1 ≤ i ≤ q, we define

Y (π) := {j ∈ J1 : q + 1K,∃i < j,N(xj − xi) ≤ ε1/d} .
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Note that the balls BN (xj , ε
1/d/2), j /∈ Y (π) are pairwise disjoint. By discarding, if necessary, the first

and last of these balls, we obtain that

T̃ (π) ≤ N(π) − ε1/d(q − 1 − card(Y (π))) ≤ T (π) + ε1/d(2 + card(Y (π))).

Applying this inequality to a geodesic γε(su) from 0 to su in the model with rewards studied previously,
we get

T̃ (γε(su)) ≤ T (γε(su)) + ε1/d(2 + card(Y (γε(su)))). (29)
We obtain an upper bound for card(Y (γε(su))) by proving the following two lemmas.

Lemma 20. For a path π = (x0, . . . , xq+1) let us define

Z(π) := {j ∈ J1 : q + 1K, N(xj − xj−1) ≤ 5ε1/d}.

Then we have a.s., for any geodesic γ for the model with rewards, card(Y (γ)) ≤ 2card(Z(γ)).

Lemma 21. Let C2 be such that Theorem 10 holds. Fix (u,H) satisfying (15). Then, for any λ > 0,
there exists ε0 > 0 such that for ε < ε0, we have, a.s. for s large enough, for any geodesic γε(su) from 0
to su for the model with rewards,

card(Z(γε(su))) ≤ λgu(C2ε
−1)ε−1/ds.

Assuming these lemmas hold, we get that for any λ > 0, for ε small enough we have a.s. for s large
enough,

T̃ (γε(su)) ≤ T (γε(su)) + (2ε1/d + 2λgu(C2ε
−1)s)

which implies that
lim sup

ε→0

µ̃ε(u) − µε(u)
gu(C2ε−1) ≤ 2λ

and so Theorem 17 (iii) holds.

Proof of Lemma 20. To prove this inequality between the cardinal of Y (π) and Z(π), we in fact prove
that

card(Y (π) \ Z(π)) ≤ card(Z(π)).
Let us first note that for a path π = (0, x1, . . . , xq) with xi ∈ Ξ for 1 ≤ i ≤ q, we have a.s. (since 0 /∈ Ξ
a.s.)

Tε(π) =
q∑

i=1

(
N(xi − xi−1) − ε1/d

)
.

Thus if Tε(π) ≤ −Kε1/d it implies in particular that card(Z(π)) ≥ K. Let now γ = (0, x1, . . . , xq, x) be
a geodesic from 0 to x for Tε and let j(1) < . . . < j(l) be the indices such that

Y (γ) \ Z(γ) = {xj(1), . . . , xj(l)}.

Let us define, for i ≤ q, the truncated path γi = (0, x1, . . . , xi). Let us prove by induction on i that

card(Z(γj(i))) ≥ i (30)

which would imply that

card(Z(γ)) ≥ card(Z(γj(l))) ≥ l = card(Y (γ) \ Z(γ)) .

We have by definition xj(1) ∈ Y (γ)\Z(γ), i.e., there exists some k < j(1) such that N(xj(1) −xk) ≤ ε1/d

but N(xj(1) − xj(1)−1) ≥ 5ε1/d. Using that

ε1/d ≥ N(xk − xj(1)) ≥ Tε(xk, xj(1)) = Tε(xk, xj(1)−1) + Tε(xj(1)−1, xj(1)) ≥ Tε(xk, xj(1)−1) + 3ε1/d

we get that
Tε(xk, xj(1)−1) ≤ −2ε1/d
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which implies in particular that

card(Z(γj(1))) ≥ card(Z((xk, . . . , xj(1)−1))) ≥ 1.

Fix i, and assume now that for every m < i, we have card(Z(γj(m))) ≥ m. Let k < j(i) be such that
N(xj(i) − xk) ≤ ε1/d. Let m < i be such that j(m) < k ≤ j(m + 1) with the convention j(0) = 0. We
have

ε1/d ≥ Tε(xk, xj(i)) = Tε(xk, xj(m+1)−1) +
i∑

p=m+1
Tε(xj(p)−1, xj(p)) +

i−1∑
p=m+1

Tε(xj(p), xj(p+1)−1) .

By definition of the indexes j(p), we have Tε(xj(p)−1, xj(p)) ≥ 3ε1/d so we get

Tε(xk, xj(m+1)−1) +
i−1∑

p=m+1
Tε(xj(p), xj(p+1)−1) ≤ ε1/d(1 − 3(i−m)) ≤ −2(i−m)ε1/d .

This implies in particular that
card(Z((xk, . . . , xj(i)))) ≥ i−m

for some k ≥ j(m). But, by hypothesis, we have

card(Z((0, . . . , xk−1))) ≥ card(Z((0, . . . , xj(m)))) ≥ m

so we get
card(Z(γj(i))) ≥ i .

Proof of Lemma 21. Fix some C2 such that Theorem 10 holds. Fix some λ > 0. Setting η∞ :=
gu(C2ε

−1), we want to prove that for ε small enough, we have, a.s. for s large enough, for any geodesic
γε(su) from 0 to su for the model with rewards,

card(Z(γε(su))) ≤ λη∞ε
−1/ds.

Recall that we have a.s. for s large enough N(γε(su)) ≤ s(1+2η∞) and ♯γε(su) ≤ 2η∞ε
−1/ds. Thus, it is

sufficient to show that for s large enough, for any path π from 0 to su+H such that N(π) ≤ s(1 + 2η∞)
and ♯π ≤ 2η∞ε

−1/ds , we have
♯Z(π) ≤ λη∞ε

−1/ds.

Let q0 := λη∞ε
−1/ds, q1 := 2η∞ε

−1/ds, η := 2η∞ and set

H(s) := {∃π ∈ Π(0, su+H), N(π) ≤ (1 + η)s, ♯π ≤ q1, card(Z(π)) ≥ q0}.

Proving that H(s) does not occur a.s. for s large enough will yield Lemma 21. To bound P(H(s)), we
roughly use the same idea as in Section 4.2. For a sequence of points (xi)1≤i≤q in Ξ, let us denote by
(ti)1≤i≤q their increments, i.e., ti = xi − xi−1 (with the convention t1 = x1). Then, we have

P[H(s)] =
∑
q≤q1

∑
Z⊂{1,...,q},|Z|≥q0

P(AZ)

where

AZ := {∃(xi)1≤i≤q ∈ Ξq, xq · u⋆ ≤ s,

q∑
i=1

N(ti) ≤ ηs+ xq · u⋆,∀j ∈ Z, tj · u⋆ ≤ 5ε1/d}.

Using Chernov inequality, we have for all α, β > 0,

P[AZ ]

≤
∫

(Rd)q

exp
(
β(s− xq · u⋆) + α(ηs+ xq · u⋆ −

q∑
i=1

N(ti))
)∏

j∈Z

exp
(α

2 (4ε1/d − (tj · u⋆))
)
dt1 . . . dtq .
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Taking β = αη, we get

P[AZ ] ≤ exp(α(2ηs+ 2ε1/dcard(Z))
∫

(Rd)q

exp
(

−α
q∑

i=1

[
N(ti) −

(
1 − η − 1j∈Z

2

)
(ti · u⋆)

])
dt1 . . . dtq

= exp(2α(ηs+ ε1/dcard(Z))
(
I(η)
αd

)q−card(Z)(I( 1
2 + η)
αd

)card(Z)

= exp(2α(ηs+ ε1/dcard(Z))
(
I(η)1−card(Z)/qI( 1

2 + η)card(Z)/q

αd

)q

.

We know that limη→0 I(η) = limη→0 hu(η) = +∞ whereas I(η) is bounded on [1/2, 1]. Since η∞
tends to 0 as ε tends to 0, we deduce that for ε small enough, I(η) ≥ I( 1

2 + η) and so we get that for
card(Z) ≥ q0 and q ≤ q1,

I(η)1−card(Z)/qI

(
1
2 + η

)card(Z)/q

≤ I(η)1−q0/q1I

(
1
2 + η

)q0/q1

= I(η)1−λ/2I

(
1
2 + η

)λ/2

≤ c1I(2η∞)1−λ/2

for λ ∈ (0, 1) and c1 := sup{I(x), x ∈ [1/2, 1]} ∨ 1. Using (18) in Lemma 8, which states that I is of the
same order than hu near 0, we also get, for some constant c2, for ε small enough,

I(2η∞) ≤ c2hu(2η∞) ≤ c2hu(η∞) = c2C2ε
−1.

So we get, for some constant c3 > 0,

P[H(s)] ≤
∑

q0≤q≤q1

2q exp(2α(2η∞s+ ε1/dq1)
(
c3ε

−1+λ/2

αd

)q

.

≤
∑
q≥q0

exp(8αη∞s)
(

2c3ε
−1+λ/2

αd

)q

Taking αd = 4c3ε
−1+λ/2, i.e., α = c4ε

−(1/d)+λ/(2d), we obtain

P[H(s)] ≤ 2 exp(8c4ε
−(1/d)+λ/(2d)η∞s− q0 log 2)

= 2 exp(−sε−1/dη∞(λ log 2 − 8c4ε
λ/(2d))).

Hence, for any λ ∈ (0, 1), if ε is small enough, this quantity decreases to 0 exponentially fast in s. Taking

sn := nε1/d/(λη∞)

Borel-Cantelli Lemma yields that there exists a.s. n0 such that, for n ≥ n0, H(sn) does not occur. Since
for s ∈ [sn, sn+1[, ⌊λη∞ε

−1/ds⌋ = ⌊λη∞ε
−1/dsn⌋, we deduce using the same argument as in proof of

Proposition 13, that in fact H(s) does not occur for s large enough.

5.3 Proof of the lower bound on 1 − µ̃ε(u)
When 1 − µε(u) is of order gu(C2ε

−1) when ε goes to 0, it is a straightforward consequence of Theorem
17 (iii) that the same holds for 1 − µ̃ε(u). It will be the case for specific choices of the norm N , namely
the p-norms, see Section 6. However, in general setting, the lower bound on 1 −µε(u) given by Theorem
10 is ḡu(C1ε

−1), and there is no way to deduce the same lower bound for 1 − µ̃ε(u) through Theorem 17
(iii). It is however easy to adapt the greedy algorithm used to prove the lower bound on 1 − µε(u) in
Section 4.1 to get the same type of lower bound on 1 − µ̃ε(u). The idea is to add an extra space between
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two consecutive points of the process Ξ that are collected by the greedy algorithm, to make sure that
the corresponding balls of diameter ε1/d in the Boolean model do not intersect. Let us get into details.

Fix (u,H) satisfying (15) and recall that

Mη := {v ∈ H : N(u+ v) ≤ 1 + η and N(u− v) ≤ 1 + η} and h̄u(η) := η−d|Mη(u)| .

We state the following analog of Proposition 11.

Proposition 22. There exists a constant c′ > 0 (depending only on d,N) such that, for all (u,H)
satisfying (15), for all ε > 0, for all η ∈ (0, 1), we have

µ̃ε(u) ≤ 1 + η − c′ε1/d|Mη|1/d .

In particular, with C ′
1 :=

(
2
c′

)d

, we have that for ε small enough (depending on d,N, u and H),

µ̃ε(u) ≤ 1 − ḡu(C ′
1ε

−1) .

Proof. We use almost the same greedy algorithm as in the proof of Proposition 11 except that we impose
also that two consecutive points taken by the greedy path must be at distance at least 1. Recall that for
s ≥ 0

Cη(s) := {x = λu+ v : 0 ≤ λ ≤ s , v ∈ H , N(λu+ v) ≤ λ(1 + η), N(λu− v) ≤ λ(1 + η)} ,

and we have
|Cη(s)| = 1

d∥u⋆∥2
|Mη|sd .

Recall that Ξ denotes the points of a Poisson point process with unit intensity on Rd. By induction we
define a sequence (Xn)n≥0 in Rd with X0 = 0 and if

λn+1 := inf{s > 1 : (Xn + Cη(s)) ∩ Ξ ̸= ∅}

(we emphasize the fact that we require that s > 1), we set Xn+1 = Xn +λn+1u+Wn+1 with Wn+1 ∈ H
and such that Xn+1 = (Xn + Cη(λn+1)) ∩ Ξ. We define Sn =

∑n
i=1 λi and Vn =

∑n
i=1 Wi. By the

properties of Poisson point processes, (λi)i≥1 and (Wi)i≥1 are i.i.d. random variables and since Mη(u)
is a symmetric set, W1 has also a symmetric distribution and so Vn is a symmetric random walk.

Let us now define, for s > 0,
Z(s) := sup{n ≥ 0 : Sn ≤ s}

and consider the path πs = (0, X1, . . . , XZ(s), su). Let us find an upper bound of T̃ε(πs) by finding an
upper bound of its length and a lower bound of Z(s), its number of points.

The sequence (λi)i≥1 is i.i.d. and we have for t ≥ 1,

P(λ1 ≥ t) = exp
(

− 1
d∥u⋆∥2

|Mη(u)|(td − 1)
)

so that

E(λ1) = 1 +
∫ ∞

1
exp

(
− 1
d∥u⋆∥2

|Mη(u)|(td − 1)
)
du

= 1 +
(

|Mη(u)|
d∥u⋆∥2

)−1/d ∫ ∞

(|Mη(u)|/∥u⋆∥2)1/d

exp(−vd)dv := 1 + |Mη(u)|−1/d

2c′
u

where

2c′
u :=

(
1

d∥u⋆∥2

)1/d
(∫ ∞

(|Mη(u)|/∥u⋆∥2)1/d

exp(−vd)dv
)−1

.

Using that for any η ∈ (0, 1), Mη(u) ⊂ BN (0, 3) we see that the (d− 1)-dimensional volume |Mη(u)| of
Mη(u) is bounded by some constant c′

1 (depending only on d and N) for η ∈ (0, 1). By Lemma 9, we
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also know that c ≤ ∥u⋆∥2 ≤ c′ for constants c, c′ ∈ (0,∞) (depending only on d and N). We deduce that
there exist some constants c2, c3 > 0 (depending only on d and N also) such that for η ∈ (0, 1),

c2|Mη|−1/d ≤ E(λ1) ≤ c3|Mη|−1/d .

Since Sn =
∑n

i=1 λi, a standard renewal theorem yields that, setting c4 = 1/(2c3) and c5 = 2/c2, for s
large enough, we have a.s.

c4|Mη|1/ds ≤ Z(s) ≤ c5|Mη|1/ds . (31)

This gives a lower bound for the number of points in πs. The rest of the proof of Proposition 22 is a
copy of the proof of Proposition 11 with Equation (31) instead of (19).

5.4 Upper bound on N(γ̃ε(su))
To complete the proof of Theorem 17, it remains to prove (ii),i.e., the existence of a geodesic γ̃ε(su) ∈
Π̂(0, su) from 0 to su for the time T̃ε(0, su) such that N(γ̃ε(su)) is upper bounded. In fact, we will
choose our geodesic in Π̌ε(0, su). By Proposition 19, there exists γ̌ε(su) ∈ Π̌ε(0, su) that is a geodesic
from 0 to su for T̃ε(0, su). Since γ̌ε(su) ∈ Π̌ε(0, su), Equation (28) states that

N(γ̌ε(su) ∩ Σε) ≤ ε1/d♯γ̌ε(su)

which gives that
N(γ̌ε(su)) ≤ T̃ (γ̌ε(su)) + ε1/d♯γ̌ε(su) ≤ s+ ε1/d♯γ̌ε(su).

One can check that the proof of (22) (which gives an upper bound for the length and the number of
points of the geodesic in the model with rewards) only uses a similar inequality between N(γε(su)) and
♯γε(su). Mimicking this proof, we can so also obtain that, for any δ > 1,

N(γ̌ε(su)) ≤ s(1 + δgu(C2ε
−1)) and ♯γ̌ε(su) ≤ δgu(C2ε

−1)ε−1/ds. (32)

6 p-norm
In this section, we suppose that N is the p-norm for some p ∈ [1,∞]. We put a subscript p in our
notations to emphasize the dependence on p. For a given u ∈ Rd, we recall that the definition of di(u),
i ∈ {1, . . . , 4} is given in (3). For a given p ∈ [1,∞] the definition of κp(u) is given in (4).

This section is organized as follows. First in Section 6.1 we specify for each p ∈ [1,∞] and each
u ∈ Rd such that ∥u∥p = 1 what hyperplane u+H we consider as a supporting hyperplane of Bp(1) at u,
and fix some notations. In this setting, we evaluate |Kη(u)| in Section 6.2. This must be done separately
for p ∈ (1,∞), p = 1 and p = +∞, since the estimations are based on a proper rescaling of Kη(u) which
is not exactly of the same nature in those different situations. Then in Section 6.3 we compare |Mη(u)|
to |Kη(u)|. This allows us to apply the results proved for a general norm N to the p-norm in Section 6.4
to prove Theorem 1 and the analog for the model with rewards, namely Theorem 28 . Finally in Section
6.5 we prove Theorem 2, i.e., the existence of limε→0(1− µ̃ε(u))/εκp(u), by an argument of monotonicity,
at least for some p and u.

6.1 Choice and description of the supporting hyperplane u + H

We have to deal separately with the cases p ∈ (1,∞), p = 1 and p = ∞. From now on, until the end of
Section 6, we always consider that the hyperplane H we work with is the one described here.

Case p ∈ (1,∞). Consider N = ∥ · ∥p for some p ∈ (1,∞). Let u ∈ Rd be such that ∥u∥p = 1. Let
d1 := d1(u) be the number of coordinates of u that are not null. By invariance of the model under
symmetries along the hyperplanes of coordinates and by permutations of coordinates, we can suppose
that u = (u1, . . . , ud1 , 0, . . . , 0) with ui > 0 for i ∈ {1, . . . , d1}. The ball Bp(1) is strictly convex, and the
(unique) supporting hyperplane u+H of Bp(1) at u is given by

H := {v ∈ Rd : v · u⋆ = 0}
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where u⋆ = (up−1
1 , . . . , up−1

d1
, 0, . . . , 0) satisfies u ·u⋆ =

∑d1
i=1 u

p
i = 1 (u⋆ is the dual vector of u). Note that

we have H = H1 ⊕ H2 where H1 ⊂ Vect(e1, . . . , ed1) and H2 = Vect(ed1+1, . . . , ed), for (e1, . . . , ed) the
canonical orthonormal basis of Rd. For v ∈ H, we write v = v1 + v2 with v1 = (v1,1, . . . , v1,d1 , 0, . . . , 0) ∈
H1 and v2 = (0 . . . , 0, v2,d1+1, . . . , v2,d) ∈ H2.

Case p = 1. Consider N = ∥ · ∥1 and let u ∈ Rd be such that ∥u∥1 = 1. We can suppose that
u = (u1, . . . , ud1 , 0, . . . , 0) with ui > 0 for all i ∈ {1, . . . , d1} with d1 = d1(u). In this case, a supporting
hyperplane u+H of B1(1) at u is given by

H := {v ∈ Rd : v · u⋆ = 0}

where u⋆ = (1, . . . , 1, 0, . . . , 0) satisfies u ·u⋆ =
∑d1

i=1 ui = 1. We emphasize the fact that this hyperplane
u+H is not the unique supporting hyperplane of B1(1) at u if d1 < d, but this is the most natural choice of
supporting hyperplane since it is the most symmetric. As for p ∈ (1,∞), note that we have H = H1 ⊕H2
where H1 ⊂ Vect(e1, . . . , ed1) and H2 = Vect(ed1+1, . . . , ed), for (e1, . . . , ed) the canonical orthonormal
basis of Rd. For v ∈ H, we write v1 = (v1,1, . . . , v1,d1 , 0, . . . , 0) ∈ H1 and v2 = (0 . . . , 0, v2,d1+1, . . . , v2,d) ∈
H2.

Case p = ∞. Consider N = ∥ · ∥∞ and let u ∈ Rd be such that ∥u∥∞ = 1. We can suppose that
u = (1, . . . , 1, ud3+1, . . . , ud) with ui ∈ [0, 1) for all i ∈ {d3 + 1, . . . , d} with d3 := d3(u). In this case, a
supporting hyperplane u+H of B∞(1) at u is given by

H := {v ∈ Rd : v · u⋆ = 0}

where u⋆ = (1/d3, . . . , 1/d3, 0, . . . , 0) (with d3 non null coordinates) satisfies u ·u⋆ =
∑d3

i=1 1/d3 = 1. We
emphasize the fact that this hyperplane u+H is not the unique supporting hyperplane of B∞(1) at u if
d3 > 1, but this is the most natural choice of supporting hyperplane since it is the most symmetric. Note
that we have H = H3 ⊕H4 where H3 ⊂ Vect(e1, . . . , ed3) and H4 = Vect(ed3+1, . . . , ed), for (e1, . . . , ed)
the canonical orthonormal basis of Rd. For v ∈ H, we write v3 = (v3,1, . . . , v3,d3 , 0, . . . , 0) ∈ H3 and
v4 = (0 . . . , 0, v4,d3+1, . . . , v4,d) ∈ H4.

6.2 Evaluation of |Kη(u)|
The aim of this section is to prove the following estimate of |Kη(u)|.

Proposition 23. Consider N = ∥ · ∥p for some p ∈ [1,∞]. Let u ∈ Rd be such that ∥u∥p = 1 and let
u + H be the supporting hyperplane of Bp(1) at u as defined in Section 6.1. There exist two constants
A1 := A1(p, d, u), A2 := A2(p, d, u), such that for any η ∈ (0, 1], we have

A1η
γp(u) ≤ |Kη(u)| ≤ A2η

γp(u)

with

γp(u) :=


d1(u)−1

2 + d2(u)
p if p ∈ (1,∞) ,

d2(u) = d− d1(u) if p = 1 ,
d3(u) − 1 = d− (d4(u) + 1) if p = ∞ .

(33)

The proof of Proposition 23 is based on the simple idea that Kη(u), when properly rescaled with η,
looks roughly like a Euclidean ball in H. However, the good rescaling depends on p, and has to be done
in a specific way for p = 1 and p = ∞.

6.2.1 p-norm with p ∈ (1,∞)

For a given vector u ∈ Rd such that ∥u∥p = 1, we recall that the hyperplane H we consider, and its
description as H = H1 ⊕ H2, are given in Section 6.1. The good rescaling in η in this case is of order
η1/2 in H1 whereas it is of order η1/p in H2. We make it clear in the following lemma.
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Lemma 24. Let p ∈ (1,∞), let u ∈ Rd such that ∥u∥p = 1 and the corresponding hyperplane H as
defined in Section 6.1, and let

K̂η(u) := {v ∈ H : ∥u+ η1/2v1 + η1/pv2∥p
p ≤ 1 + η} .

Then, there exist η0 > 0, R1 > R0 > 0 (depending on p, d and u) such that, for all η ∈ (0, η0),

BH(R0) ⊂ K̂η(u) ⊂ BH(R1)

where BH(r) := {v ∈ H : ∥v∥2 ≤ r}.

Proof of Lemma 24. Let us find R0 such that BH(R0) ⊂ K̂η(u) for η ∈ (0, 1]. We have

|1 + t|p = 1 + pt+O(t2) .

Thus, there exists c > 0, such that, for all t ∈ [−1, 1],

|1 + t|p ≤ 1 + pt+ ct2.

Let R be small enough such that R ≤ min{ui, i ≤ d1} and dRp + cR2∑
i≤d1

up−2
i ≤ 1. Let v ∈ H be

such that ∥v∥∞ ≤ R. Then

∥u+ η1/2v1 + η1/pv2∥p
p = η∥v2∥p

p +
∑
i≤d1

|ui + η1/2v1,i|p .

If η ≤ 1, we have for all 1 ≤ i ≤ d1, ∥∥∥∥η1/2v1,i

ui

∥∥∥∥ ≤ R

ui
≤ 1 ,

hence we have
|ui + η1/2v1,i|p ≤ up

i + η1/2p v1,i u
p−1
i + η c v2

1,i u
p−2
i .

Using that v1 · u⋆ = 0 and ||u||p = 1, we get

∥u+ η1/2v1 + η1/pv2∥p
p ≤ ηd∥v2∥p

∞ + 1 + ηc
∑
i≤d1

v2
1,iu

p−2
i

≤ 1 + η

dRp + cR2
∑
i≤d1

up−2
i


≤ 1 + η

which proves that v ∈ K̂η(u). Using that ∥v∥2 ≥ ∥v∥∞, we get that BH(R) ⊂ K̂η(u).
Let us now find η0 > 0 and R1 > 0 such that K̂η(u) ⊂ BH(R1) for η ∈ (0, η0]. We have

|1 + t|p = 1 + pt+ p(p− 1)
2 t2 +O(t3) .

Thus, there exists c > 0 such that, for all t ∈ R,

|1 + t|p ≥ 1 + pt+ p(p− 1)
2 t2 − c|t|3.

Let R > 0 be such that
min

(
Rp,

p(p− 1)
2 R2 min

i≤d1
up−2

i

)
> 2

and let η0 > 0 be such that R3 c η
1/2
0
∑

i≤d1
up−3

i = 1. Let v ∈ H be such that ∥v∥∞ = R. We have, for
all 1 ≤ i ≤ d1,

|ui + η1/2v1,i|p ≥ up
i + η1/2 p v1,i u

p−1
i + η

p(p− 1)
2 v2

1,i u
p−2
i − cη3/2 |v1,i|3 up−3

i .
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Using that v1 · u⋆ = 0 and ∥u∥p = 1, we get, for η ∈ (0, η0)

∥u+ η1/2v1 + η1/pv2∥p
p ≥ η∥v2∥p

p + 1 + η
p(p− 1)

2
∑
i≤d1

v2
1,i u

p−2
i − c η3/2

∑
i≤d1

|v1,i|3 up−3
i

≥ 1 + η

∥v2∥p
∞ + p(p− 1)

2 ∥v1∥2
∞ min

i≤d1
up−2

i − ∥v1∥3
∞ c η

1/2
0

∑
i≤d1

up−3
i


≥ 1 + η

∥v2∥p
∞ + p(p− 1)

2 ∥v1∥2
∞ min

i≤d1
up−2

i −R3 c η
1/2
0

∑
i≤d1

up−3
i


> 1 + η

using that R = ∥v∥∞ = max(∥v1∥∞, ∥v2∥∞). Hence, for η ∈ (0, η0), we get that K̂η(u) ∩ {v ∈ H :
∥v∥∞ = R} = ∅. Since K̂η is connected and contains 0, we deduce that K̂η(u) ⊂ {v ∈ H : ∥v∥∞ < R}
for η ∈ (0, η0). Using that ∥v∥2 ≤

√
d ∥v∥∞, it implies that K̂η(u) ⊂ BH(

√
dR).

Proof of Proposition 23, case p ∈ (1,∞). Recall that

Kη̂(u) = {v ∈ H : ∥u+ v∥p ≤ 1 + η̂}
K̂η(u) = {v ∈ H : ∥u+ η1/2v1 + η1/pv2∥p

p ≤ 1 + η} ,

thus
v = v1 + v2 ∈ K̂η(u) ⇐⇒ η1/2v1 + η1/pv2 ∈ Kη̂(u) with η̂ := (1 + η)1/p − 1 .

Hence
|K̂η(u)| = |Kη̂(u)| η−γp(u)

with
γp(u) := d1(u) − 1

2 + d2

p
.

Lemma 24 implies that there exists constants A′
1(p, d, u), A′

2(p, d, u) such that, for η small enough,

A′
1 ≤ |K̂η(u)| ≤ A′

2

thus
A′

1η
γp(u) ≤ |Kη̂(u)| ≤ A′

2η
γp(u) .

Since η̂ ∼ η/p, we also get the existence of constants A′′
1(p, d, u), A′′

2(p, d, u) such that, for η̂ ≤ η̂0 small
enough,

A′′
1 η̂

γp(u) ≤ |Kη̂(u)| ≤ A′′
2 η̂

γp(u) .

Since η 7→ ηγp(u) is bounded away from 0 and ∞ on [η̂0, 1], we obtain the existence of constants A1(p, d, u),
A2(p, d, u) such that, for every η ∈ (0, 1],

A1η
γp(u) ≤ |Kη(u)| ≤ A′′

2η
γp(u) .

6.2.2 1-norm

For a given vector u ∈ Rd such that ∥u∥1 = 1, we recall that the hyperplane H, and its description as
H = H1 ⊕H2, are given in Section 6.1. The good rescaling in η is now of order 1 in H1 whereas it is of
order η in H2. We make it clear in the following lemma.
Lemma 25. Let u ∈ Rd such that ∥u∥1 = 1 and the corresponding hyperplane H as defined in Section
6.1, and let

K̂η(u) := {v ∈ H : ∥u+ v1 + η v2∥1 ≤ 1 + η} .
Then, there exist R1 > R0 > 0 (depending on d and u) such that, for all η ∈ (0, 1],

BH(R0) ⊂ K̂η(u) ⊂ BH(R1)

where BH(r) := {v ∈ H : ∥v∥2 ≤ r}.
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Proof of Lemma 25. As for the p-norm, it is sufficient to prove that for ∥v∥∞ small enough, we have
v ∈ K̂η(u), and for ∥v∥∞ = 3 for instance, we have v /∈ K̂η(u). We have

∥u+ v1 + η v2∥1 = ∥u+ v1∥1 + ∥ηv2∥1 =
∑
i≤d1

|ui + v1,i| + η∥v2∥1 .

If ∥v∥∞ ≤ min(ui, i ≤ d1) ∧ (1/d), we have |ui + v1,i| = ui + v1,i for all 1 ≤ i ≤ d1, thus using that
∥u∥1 = 1 and v1 ∈ H thus

∑d1
i=1 v1,i = 0, we get

∥u+ v1 + ηv2∥1 = 1 + η∥v2∥1 ≤ 1 + η ,

thus v ∈ K̂η(u).
Assume now that ∥v∥∞ = 3. Either ∥v1∥∞ = 3: then, since ∥u+ v1∥1 ≥ ∥v1∥∞ − ∥u∥∞ ≥ 2, we get

∥u+ v1 + η v2∥1 ≥ 2.

Or ∥v2∥∞ = 3: then using that v1 ∈ H and so ∥u+ v1∥1 ≥ 1, we get

∥u+ v1 + ηv2∥1 ≥ 1 + 3η .

In both cases, v /∈ K̂η(u).

Proof of Proposition 23, case p = 1. It is similar to the proof in the case p ∈ (1,∞). We now have

|K̂η(u)| = |Kη(u)|η−d2(u) := |Kη(u)|η−γ1(u)

with γ1(u) := d2(u), which yields similarly to the existence of constants A1(1, d, u), A2(1, d, u) such that,
for every η ∈ (0, 1],

A1η
γ1(u) ≤ |Kη(u)| ≤ A2η

γ1(u) .

6.2.3 ∞-norm

For a given vector u ∈ Rd such that ∥u∥∞ = 1, we recall that the hyperplane H, and its description as
H = H3 ⊕H4, are given in Section 6.1. The good rescaling in η is now of order η in H3 whereas it is of
order 1 in H4. We make it clear in the following lemma.
Lemma 26. Let u ∈ Rd such that ∥u∥∞ = 1 and the corresponding hyperplane H as defined in Section
6.1, and let

K̂η(u) := {v ∈ H : ∥u+ η v3 + v4∥∞ ≤ 1 + η} .
Then, there exist R1 > R0 > 0 (depending on d and u) such that, for all η ∈ (0, 1],

BH(R0) ⊂ K̂η(u) ⊂ BH(R1)

where BH(r) := {v ∈ H : ∥v∥2 ≤ r}.
Proof of Lemma 26. If ∥v∥∞ ≤ min(1 − ui, i > d3) and v ∈ H, then for all i > d3 we have

|ui + v4,i| ≤ ui + |v4,i| ≤ ui + ∥v∥∞ ≤ 1 ,

and for all i ≤ d3 we have

|ui + ηv3,i| ≤ ui + η|v3,i| ≤ 1 + η∥v∥∞ ≤ 1 + η ,

thus
∥u+ η v3 + v4∥∞ ≤ 1 + η ,

and so v ∈ K̂η(u).
If ∥v∥∞ = 2d, either ∥v4∥∞ = 2d and then

∥u+ ηv3 + v4∥∞ ≥ ∥v4∥∞ − 1 > 1 + η ,

or ∥v3∥∞ = 2d and then since
∑d3

i=1 v3,i = 0, this implies that there exists some index i0 ≤ d3 such that
v3,i0 ≥ 2, and then

∥u+ ηv3 + v4∥∞ ≥ ui0 + η v3,i0 > 1 + η .

In both cases, we conclude that v /∈ K̂η(u).
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Proof of Proposition 23, case p = ∞. In this case, we have

|K̂η(u)| = |Kη(u)|η−(d3−1) := |Kη(u)|η−γ∞(u)

with γ∞(u) := d3(u) − 1, which yields similarly to the existence of constants A1(∞, d, u), A2(∞, d, u)
such that, for every η ∈ (0, 1],

A1η
γ∞(u) ≤ |Kη(u)| ≤ A2η

γ∞(u) .

6.3 Evaluation of |Mη(u)|
We now compare |Mη(u)| with |Kη(u)|.

Proposition 27. Consider N = ∥·∥p for some p ∈ [1,∞]. Let u ∈ Rd be such that ∥u∥p = 1 and let u+H
be the supporting hyperplane of Bp(1) at u as defined in Section 6.1. There exists ∆ = ∆(p, d, u) > 0
such that, for all η ∈ (0, 1],

∆|Kη(u)| ≤ |Mη(u)| ≤ |Kη(u)| .

Proof. We write the proof for p ∈ (1,∞) but it can be easily adapted to the cases p = 1 and p = ∞. Let
u = (u1, . . . , ud1 , 0, . . . , 0) with ui > 0 and ∥u∥p = 1,

H := {v ∈ Rd : v · u⋆ = 0}

where u⋆ = (up−1
1 , . . . , up−1

d1
, 0, . . . , 0) as given in Section 6.1. Recall that Lemma 24 states that if

K̂η(u) := {v ∈ H, ||u+ η1/2v1 + η1/pv2||pp ≤ 1 + η} ,

then there exist η0 > 0, R1 > R0 > 0 such that, for all η ∈ (0, η0),

BH(R0) ⊂ K̂η(u) ⊂ BH(R1)

with BH(r) := {v ∈ H : ∥v∥2 ≤ r}. Define M̂η(u) := K̂η(u) ∩ (−K̂η(u)), we also have

BH(R0) ⊂ M̂η(u) ⊂ BH(R1)

and so
∆ ≤ |M̂η(u)|

|K̂η(u)|
≤ 1

for some ∆(p, d, u) > 0. Using that a change of variable yields that |Kη̂(u)| = ηγp(u)|K̂η(u)| and
|Mη̂(u)| = ηγp(u)|M̃η(u)| with η̂ := (1 + η)1/p − 1, we also get

∆ ≤ |Mη(u)|
|Kη(u)| ≤ 1 .

6.4 Proof of Theorem 1
This section is devoted to the proof of Theorem 1, and the control (5) on the length of geodesics. We
also state the analog of Theorem 1 for µp,ε, together with estimates on the associated geodesics γp,ε(su),
and we compare the behavior of µp,ε(u) and µ̃p,ε(u).

Theorem 28. For all p ∈ [1,∞], for all u ∈ Rd such that ∥u∥p = 1, there exist constants Ci =
Ci(p, d, u) > 0, i = 1, . . . , 6 such that the following assertions hold.

(i) For ε small enough (depending on p, d, u), we have

C1ε
κp(u) ≤ 1 − µp,ε(u) ≤ C2ε

κp(u).
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(ii) For ε small enough (depending on p, d, u), we have a.s. for large s, for any geodesic γp,ε(su) ∈
Π(0, su) from 0 to su for the time Tp,ε(0, su),

C3ε
κp(u)s ≤ ε

1
d ♯γp,ε(su) ≤ C4ε

κp(u)s

∥γp,ε(su)∥p − s ≤ C5ε
κp(u)s.

(iii) Moreover, except if p = 1 and d1(u) = d, or if p = ∞ and d3(u) = 1, for ε small enough (depending
on p, d, u), we have a.s. for large s, for any geodesic γp,ε(su) ∈ Π(0, su) from 0 to su for the time
Tp,ε(0, su),

C6ε
κp(u)s ≤ ∥γp,ε(su)∥p − s .

(iv) Finally we have

lim
ε→0

µp,ε(u) − µ̃p,ε(u)
εκp(u) = 0.

Proof. This is an application of Theorems 10, 17 and Proposition 15. Fix p ∈ [1,∞], u ∈ Rd such that
∥u∥p = 1, H as given in Section 6.1 (thus (u,H) satisfies (15)) and recall that the definition of γp(u)
is given in (33). By Proposition 23, we know that there exist A1(p, d, u), A2(p, d, u) such that for any
η ∈ (0, 1],

A1η
γp(u) ≤ |Kη(u)| ≤ A2η

γp(u) . (34)

Recall that hu(η) = η−d|Kη(u)|, thus for any η ∈ (0, 1],

A1η
γp(u)−d ≤ hu(η) ≤ A2η

γp(u)−d .

By definition, gu = h−1
u , thus the previous inequalities imply that for any x large enough (such that

gu(x) ≤ 1), we have
B1x

1
γp(u)−d ≤ gu(x) ≤ B2x

1
γp(u)−d

with B1(p, d, u) = A
−1

γp(u)−d

2 and B2(p, d, u) = A
−1

γp(u)−d

1 . Applying these inequalities to x = Cε−1 for
some constant C = C(d, p) we obtain that for ε small enough,

B′
1ε

1
d−γp(u) ≤ gu(Cε−1) ≤ B′

2ε
1

d−γp(u)

for some constants B′
i = B′

i(p, d, u). Notice that by definition on γp(u) (see (33)) and κp(u) (see (4)), we
have

κp(u) = 1
d− γp(u) ,

thus we have just proved that for ε small enough,

B′
1ε

κp(u) ≤ gu(Cε−1) ≤ B′
2ε

κp(u) . (35)

Similarly, combining Proposition 23 with Proposition 27, and recalling that h̄u(η) = η−d|Mη(u)| and
ḡu = h̄−1

u , we obtain the existence of B′′
i = B′′

i (p, d, u), i = 1, 2, such that, for every ε small enough,

B′′
1 ε

κp(u) ≤ ḡu(Cε−1) ≤ B′′
2 ε

κp(u) . (36)

Finally, recall that in Proposition 15 we defined ℓu : [0,∞) → [0,∞) as the inverse function of ℓ̂u : η 7→
|Kη(u)| when |K0(u)| = 0. First, since K0(u) = {v ∈ H : ∥u + v∥p = ∥u∥p)}, the case |K0(u)| ̸= 0
corresponds to the case where u belongs to a (d − 1)-dimensional flat edge of Bp(1). For p ∈ (1,∞),
Bp(1) is strictly convex thus |K0(u)| = 0 for every direction u. For p = 1, |K0(u)| = 0 if and only if
d1(u) < d. For p = ∞, |K0(u)| = 0 if and only if d3(u) ≥ 2. We suppose from now on that we are in one
of those cases, i.e., that |K0(u)| = 0. In other words, we restrict ourselves to the cases where γp(u) > 0.
Equation (34) tells us that for any η ∈ (0, 1],

A1η
γp(u) ≤ ℓ̂u(η) ≤ A2η

γp(u) .
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This implies the existence of constants Ai(p, d, u), i = 1, 2, such that for every x small enough (so that
ℓu(x) ≤ 1), we have

A1x
1

γp(u) ≤ ℓu(x) ≤ A2x
1

γp(u) .

In particular, for constants C,C ′ depending on d and u, if x = C ′ε−1ḡu(Cε−1)d, we have for ε small
enough,

x ≥ C ′ε−1(B′′
1 ε

κp(u))d = A3ε
−1+dκp(u) = A3ε

κp(u)γp(u)

for a constant A3 = A3(p, d, u). Since ℓu is increasing, we get for ε small enough that

ℓu(x) ≥ ℓu(A3ε
−1+dκp(u)) ≥ A1(A3ε

κp(u)γp(u))
1

γp(u) = A4ε
κp(u) (37)

for a constant A4 = A4(p, d, u). Combining Theorems 10, 17 and Proposition 15 with Equations (35),
(36) and (37) ends the proof of Theorems 28 and 1, and Equation (5).

Remark 29. It is not a surprise that our proof does not provide a lower bound for the N -length of the
geodesic in any cases. Consider for instance the case d = 2 and N = ∥ · ∥1: choose u ∈ Rd satisfying
∥u∥1 = 1 and d1(u) = 2, for instance u = (1/2, 1/2). If we consider only oriented paths from 0 to
su, going successively vertically to the north or horizontally to the east, those paths have a ∥ · ∥1-length
equal to s. The maximal number Ms of rewards, i.e., of points of the Poisson point process Ξ, that such
an oriented path from 0 to su can collect has been introduced and studied by Hammersley [9], and is
known to be of order 1 - in fact, this problem is even solvable, it was proved by Logan and Shepp and
by Vershik and Kerov in 1977, and in a more probabilistic way by Aldous and Diaconis [1] in 1995,
that lims→∞ Ms/s = 1. Thus, by restricting ourselves to oriented paths from 0 to su (whose ∥ · ∥1-
length is s), it is already possible to obtain a quantity of rewards of order s, and thus a gain in time of
order ε1/ds = ε1/d1(u)s. Since our approach does not allow us to get something better than the order of
1 − µ1,ε(u) and ♯γ1,ε(su), we have no hope it allows us to exclude that ∥γ1,ε(su)∥1 could be s.

6.5 Monotonicity
Theorem 2 is now a direct consequence of the following proposition.
Proposition 30. Suppose we are in one of the following cases:

(i) p ∈ [1,∞] and u = (1, 0, . . . , 0) ;

(ii) p ∈ {1, 2}, whatever u ∈ Rd such that ∥u∥p = 1 ;

(iii) p = ∞ and u ∈ Rd such that ∥u∥∞ = 1 and d3(u) ∈ {1, 2}.

Then the function 1−µp,ε(u)
εκp(u) increases with respect to ε.

Indeed, Proposition 30 implies that
lim
ε→0

1 − µp,ε(u)
εκp(u)

exists by monotonicity, and Theorem 28 (iv) implies that

lim
ε→0

1 − µ̃p,ε(u)
εκp(u) = lim

ε→0

1 − µp,ε(u)
εκp(u) .

We prove first (i) for p ∈ (1,∞) which also implies, by isotropy, that (ii) holds for the Euclidean
norm. We then prove (ii) for the 1-norm and in the last section, we establish (iii).

Remark 31. In the realm of application of Proposition 30, we obtain the monotonicity of ε 7→ 1−µp,ε(u)
εκp(u)

as a consequence of a much stronger property. Indeed, by a rescaling argument, we express 1−µp,ε(u)
εκp(u) as

1 − µp,ε(u)
εκp(u) = min

s→∞
inf

π=(x0...,xq+1)∈Π(0,su)

q∑
i=1

fp,d,u,s,π,i(ε)

for given functions fp,d,u,s,π,i. What we actually prove is the monotonicity of each one of those functions
fp,d,u,s,π,i. The monotonicity of all the functions fp,d,u,s,π,i is not true for every p ∈ [1,∞] and every
u ∈ Rd such that ∥u∥p = 1. However, it doesn’t imply that the monotonicity of ε 7→ 1−µp,ε(u)

εκp(u) is not true,
only that our approach cannot work.

35



6.5.1 p-norm with p ∈ (1,∞)

Consider the p-norm with p ∈ (1,∞) and the direction e1 = (1, 0, . . . , 0). We want to prove that the
fraction (1 − µp,ε(e1))/εκp(e1) increases with respect to ε. To simplify notations, we write

κ := κp(e1) = 1
d− d−1

p

= p

pd− d+ 1 .

Let H = Vect(e2, . . . , ed) and for x ∈ Rd \ H, we write x = λx(e1 + tx) with λx ∈ R, tx ∈ H. For
π = (0, x1, . . . , xq, se1) a path from 0 to se1, let us define yi := xi+1 − xi with the convention x0 = 0,
xq+1 = se1. Then, a.s.,

Tp,ε(π) =
q∑

i=0

(
||yi||p − ε1/d

)
+ ε1/d

and so

µε(e1) = lim
s→∞

inf
π∈Π(0,su)

∑q
i=0
(
||yi||p − ε1/d

)
s

= lim
s→∞

inf
π∈Π(0,su)

∑q
i=0
(
|λyi

|(1 + ||tyi
||pp)1/p − ε1/d

)
s

.

Using that s =
∑
λyi

, we get

1 − µε(e1)
εκ

= lim
s→∞

sup
π∈Π(0,su)

q∑
i=0

λyi − |λyi |(1 + ||tyi ||pp)1/p + ε1/d

sεκ
.

Let ψ : Rd 7→ Rd be the linear map defined for x = λ(e1 + t) with t ∈ H by

ψ(λ(e1 + t)) := ε−κ+ 1
dλ(e1 + ε

κ
p t).

Recall that κ = p/(pd − d + 1) (we are here in the case d1 = 1 and d2 = d − 1). Using that H is of
dimension d− 1, we get det(ψ) = εα with

α = d

(
−κ+ 1

d

)
+ (d− 1)κ

p
= κ

(
−d+ d− 1

p

)
+ 1 = 0.

Hence, ψ preserves the Lebesgue measure on Rd and so ψ−1(Ξ) has the same law as Ξ. So we also have

1 − µε(e1)
εκ

= lim
s→∞

sup
π∈Π(0,su)

q∑
i=0

ε−κ+ 1
dλyi

− ε−κ+ 1
d |λyi

|(1 + ||ε
κ
p tyi

||pp)1/p + ε1/d

ε−κ+ 1
d sεκ

= lim
s→∞

sup
π∈Π(0,su)

q∑
i=0

|λyi |(sgn(λyi) − (1 + εκ||tyi ||pp)1/p) + εκ

sεκ
.

We then conclude the proof using the following elementary lemma.

Lemma 32. For any c ≥ 0, the functions f : x 7→ 1−(1+cx)1/p

x and g := x 7→ −1−(1+cx)1/p

x are non-
decreasing on R+

Indeed, assuming this lemma, the function (1 − µε(e1))/εκ is increasing with respect to ε since each
term of the previous sum increases with it.

Proof of Lemma 32. By a change a variable, it is sufficient to prove the case c = 1. Moreover since
g(x) = f(x) − 2

x , it is sufficient to prove that f is non-decreasing. We have

f ′(x) = 1
x2

(
(1 + x)

1
p −1

(
−x

p
+ 1 + x

)
− 1
)
.

So
f ′(x) ≥ 0 ⇐⇒ 1 +

(
1 − 1

p

)
x ≥ (1 + x)1− 1

p .

The last inequality holds for all x ≥ 0 by concavity of the function (1 + x)1−1/p.
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6.5.2 1-norm

Consider the 1-norm. Let u = (u1, . . . , ud1 , 0, . . . , 0) with ui > 0 and ||u||1 = 1. Recall the definition
of H, H1 and H2 given in Section 6.1. For x ∈ Rd \ H, we write x = λx(u + t1,x + t2,x) with λx ∈ R,
t1,x ∈ H1 and t2,x ∈ H2. With the same convention as in the previous paragraph, we have

1 − µε(u)
εκ

= lim
s→∞

sup
π∈Π(0,su)

q∑
i=0

λyi
− |λyi

| ||u+ t1,yi
+ t2,yi

||1 + ε1/d

sεκ
.

Recall that now we have κ := κd(u) = 1/d1. Let ψ : Rd 7→ Rd be the linear map defined for x =
λ(u+ t1 + t2) with t1 ∈ H1 and t2 ∈ H2 by

ψ(λ(u+ t1 + t2)) := ε−κ+ 1
dλ(u+ t1 + εκt2).

Using that H2 is of dimension d2, we get det(ψ) = εα with

α = d

(
−κ+ 1

d

)
+ d2κ = 1 + (d2 − d)κ = 0.

As before, ψ preserves the Lebesgue measure and so we get, using that ||u+t1 +t2||1 = ||u+t1||1 + ||t2||1,

1 − µε(u)
εκ

= lim
s→∞

sup
π∈Π(0,su)

q∑
i=0

|λyi
|(sgn(λyi

) − (||u+ t1,yi
||1 + εκ||t2,yi

||1)) + εκ

sεκ

= lim
s→∞

sup
π∈Π(0,su)

q∑
i=0

(
|λyi

|(sgn(λyi
) − ||u+ t1,yi

||1)
sεκ

+ |λyi
| ||t2,yi

||1 + 1
s

)
.

Since, by definition of H, ||u + t1,yi
||1 ≥ 1, the numerator |λyi

|(sgn(λyi
) − ||u + t1,yi

||1) is non positive
and so each term of the previous sum is again increasing with respect to ε.

6.5.3 ∞-norm

Consider the ∞-norm. By symmetry, it is sufficient to prove the result for u = (1, u2, . . . , ud) or u =
(1, 1, u3, . . . , ud) with ui ∈ [0, 1). Recall the definition of H,H3 and H4 given in Section 6.1. For
x ∈ Rd \ H, we write x = λx(u + t3,x + t4,x) with λx ∈ R, t3,x ∈ H3 and t4,x ∈ H4. With the same
convention as in the previous paragraph, we have

1 − µε(u)
εκ

= lim
s→∞

sup
π∈Π(0,su)

q∑
i=0

λyi − |λyi | ||u+ t3,yi + t4,yi ||∞ + ε1/d

sεκ
.

Recall that now κ := κd(u) = 1/(d4 +1). Let ψ : Rd 7→ Rd be the linear map defined for x = λ(u+t3 +t4)
with t3 ∈ H3 and t4 ∈ H4 by

ψ(λ(u+ t3 + t4)) := ε−κ+ 1
dλ(u+ εκt3 + t4).

As before, ψ preserves the Lebesgue measure since d(−κ+ 1
d ) + (d3 − 1)κ = 0 and so we get

1 − µε(u)
εκ

= lim
s→∞

sup
π:0→su

q∑
i=0

|λyi
|(sgn(λyi

) − ||u+ εκt3,yi
+ t4,yi

||∞) + εκ

sεκ
.

Let us check that if d3 ∈ {1, 2}, the function f(x) = 1−||u+xt3+t4||∞
x is non-decreasing on R∗

+ for any
(t3, t4) ∈ H3 ×H4.
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If d3 = 1, then H3 = {0}. So using that 1 − ||u+ t4||∞ ≤ 0, the function f is indeed non-decreasing.
If d3 = 2, then H3 = Vect(e2 − e1), so there exists some c ∈ R such that t3 = c(e2 − e1) and by

symmetry, we can assume c ≥ 0. Writing u = e1 + e2 + u4 with u4 ∈ H4, we have, for x ≥ 0,

||u+ xt3 + t4||∞ = max(1 + cx, ||u4 + t4||∞) i.e. f(x) = − max
(
c,

||u4 + t4||∞ − 1
x

)
and one can check that the function x 7→ max(c, c′/x) is non-increasing on R∗

+ for any (c, c′) ∈ R+ × R.

Appendix
A : Proof of Theorem 6
Proof of Theorem 6 (i): Existence of a geodesic. To prove that a finite geodesic exists between two points,
we need to show that paths with a large N -length cannot have a small travel time. Let us denote by
Π(0, ⋆) the set of polygonal paths starting from 0. For any s > 0 and k > 1, using a union bound in the
first inequality, we have

P(∃π ∈ Π(0, ⋆), N(π) ≥ ks, Tε(π) ≤ s) ≤
∑
i≥0

P(∃π ∈ Π(0, ⋆),#π = i,N(π) ≥ ks, Tε(π) ≤ s)

=
∑
i≥0

P(∃π ∈ Π(0, ⋆),#π = i, ks ≤ N(π) ≤ s+ iε1/d)

=
∑

i≥(k−1)sε−1/d

P(∃π ∈ Π(0, ⋆),#π = i,N(π) ≤ s+ iε1/d).

Setting ξ0 = 0, we have, for β > 0, using that 1x≥0 ≤ eβx and by Mecke Equation (see Theorem 4.4 in
[14]),

P(∃π ∈ Π(0, ⋆),#π = i,N(π) ≤ s+ iε1/d) = P(∃(ξj)j≤i ∈ Ξ,
i∑

j=1
N(ξj − ξj−1) ≤ s+ iε1/d)

≤
∫

(Rd)i

exp(β(s+ iε1/d −
i∑

j=1
N(ξj − ξj−1))dξ1 . . . dξi

≤ exp(βs)
(∫

Rd

exp(β(ε1/d −N(z))dz
)i

≤ exp(βs)
(

exp(βε1/d)
βd

∫
Rd

exp(−N(z))dz
)i

.

Let’s take β such that 1
βd

∫
Rd exp(−N(z))dz < 1/4 and ε0 small enough such that exp(βε1/d

0 ) < 2. We
get then, for ε < ε0,

P(∃π ∈ Π(0, ⋆),#π = i,N(π) ≤ s+ iε1/d) ≤ exp(βs)
2i

. (38)

In particular, for all s > 0, for ε < ε0,

lim
k→∞

P(∃π ∈ Π(0, ⋆), N(π) ≥ ks, Tε(π) ≤ s) = 0. (39)

Fix n ∈ N and let us now prove that there exists a.s. a geodesic from x to y for any x, y ∈ BN (n). Using
(39), we get that there exists a.s. a (random) K such that for any polygonal path π starting from 0 with
N(π) ≥ Kn, we have Tε(π) ≥ 4n. Let now π̄ = (x, x1, . . . , xk, y) be a polygonal path from x to y such
that N(π̄) ≥ (K + 1)n. Then π = (0, x1, . . . , xk, y) is a polygonal path starting from 0 and by triangle
inequality N(π) ≥ N(π̄) − N(x) ≥ Kn and so that Tε(π) ≥ 4n. Using that Tε(π) ≤ N(x) + Tε(π̄), we
deduce that Tε(π̄) ≥ 3n. Since Tε(x, y) ≤ N(y− x) ≤ 2n, we get in particular that, for all x, y ∈ BN (n),

inf{Tε(π) : π ∈ Π(x, y)} = inf{Tε(π) : π ∈ Π(x, y), π ⊂ BN (K ′)}
= min{Tε(π) : π ∈ Π(x, y), π ⊂ BN (K ′)}
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with K ′ := (K + 2)n. The last infimum is taken on a finite set of paths since there is a finite number
of points of Ξ in BN (K ′). This implies the almost sure existence of a finite geodesic between x and y.
This holds for any n ∈ N, so we deduce the a.s. existence of a geodesic for any x, y ∈ Rd.

Proof of Theorem 6 (ii): Existence of the time constant. Let us define, for x ∈ Rd

Jε(x) = inf{Tε(π) : π ∈ Π(x, ⋆)} and Xε(x, y) = Tε(x, y) − Jε(x) − Jε(y) ,

where Π(x, ⋆) is the set of polygonal paths starting from x. Taking π = (x) (the path reduced to the
single point x), we note that Jε(x) ≤ 0. Moreover, note that Equation (39) implies that Jε(x) and
Tε(x, y) are a.s. finite for ε small enough so Xε(x, y) is well defined. Moreover, since Jε(x) ≤ Tε(x, y),
we get that Xε(x, y) is non-negative. Let us prove that Xε(x, y) satisfies the triangle inequality, i.e., for
x, y, z ∈ Rd, Xε(x, z) ≤ Xε(x, y) +Xε(y, z).

Let γε(y, x) = (y, a1, . . . , an−1, x) be a geodesic from y to x and γε(y, z) = (y, b1, . . . , bm−1, z) be a
geodesic from y to z. Set a0 = b0 = y and an = x, bm = z. Let i0, j0 be two indices such that ai0 = bj0

and such that {ai0+1, . . . , an} and {bj0+1, . . . , bm} are disjoint. Such indices exist since a0 = b0 = y. Let
γ1 := (ai0 , . . . , an−1, x) and γ2 := (bj0 , . . . , bm−1, z) (γ1 and γ2 can be reduced to a point if i0 = n or
j0 = m). Let γ′

1 := (y, a1 . . . , ai0) and γ′
2 := (y, b1 . . . , bj0). We have

Tε(x, y) = Tε(γ1) + Tε(γ′
1) + ε1/d1{ai0 ∈Ξ}

Tε(y, z) = Tε(γ2) + Tε(γ′
2) + ε1/d1{bj0 ∈Ξ}

(the potential reward located at ai0 = bj0 is taking into account both in Tε(γ1) and in Tε(γ′
1)). Moreover,

noticing that (x, an−1, . . . , ai0 = bj0 , . . . , bm−1, z) is a polygonal path from x to z with distinct vertices,
we get

Tε(x, z) ≤ Tε(γ1) + Tε(γ2) + ε1/d1{ai0 ∈Ξ}.

Besides, Tε(γ′
1) ≥ Jε(y) and Tε(γ′

2) ≥ Jε(y). So

Tε(x, y) + Tε(y, z) ≥ 2Jε(y) + Tε(x, z).

This yields

Xε(x, y) +Xε(y, z) ≥ 2Jε(y) + Tε(x, z) − Jε(x) − 2Jε(y) − Jε(z) = Xε(x, z)

and so the random variables (Xε(x, y), x, y ∈ Rd) satisfy the triangle inequality. In particular, for any
u ∈ Rd, if we set for m ≥ n ≥ 0, Xn,m := Xε(nu,mu), the process (Xn,m, 0 ≤ n ≤ m) is subadditive:

Xl,m ≤ Xl,n +Xn,m for any 0 ≤ l ≤ n ≤ m.

To apply Kingman’s subadditive ergodic theorem, we must also check that E(X0,n) is finite. We have

0 ≤ X0,n = Tε(0, nu) − Jε(nu) − Jε(0).

Using that Tε(0, nu) ≤ nN(u), we get

E(X0,n) ≤ nN(u) + 2E(|Jε(0)|).

Recall that Jε(0) ≤ 0 and we have for s ≥ 0,

P (Jε(0) ≤ −s) ≤
∑
i≥0

P(∃π ∈ Π(0, ⋆),#π = i,N(π) ≤ −s+ ε1/di).

Note that the bound obtain in (38) holds in fact also if s < 0, so we get, for ε < ε0,

P (|Jε(0)| ≥ s) ≤
∑
i≥0

exp(−βs)
2i

= 2 exp(−βs)
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which proves the integrability of Jε(0) for ε small enough. Using the stationarity and the ergodicity of
the process, Kingman’s subadditive ergodic theorem [13] implies the existence of a limit

µε(u) := lim
n→∞

X0,n

n
= inf

n≥0

E(X0,n)
n

a.s. and in L1.

Note that we have µε(u) ≥ 0 since X0,n ≥ 0. Moreover, since, for any n ≥ 0, the random variables
Jε(nu) have the same law and have finite expectation, we get that

lim
n→∞

Jε(nu) + Jε(0)
n

= 0 a.s. and in L1.

So we also get
µε(u) = lim

n→∞

Tε(0, nu)
n

a.s. and in L1.

It just remains to prove that this limit holds in fact for s going to infinity, s ∈ R. We write, for s > 0,

T (0, ⌊s⌋u) −N(su− ⌊s⌋u)
s

≤ T (0, su)
s

≤ T (0, ⌊s⌋u) +N(su− ⌊s⌋u)
s

T (0, ⌊s⌋u)
⌊s⌋

⌊s⌋
s

− (s− ⌊s⌋)N(u)
s

≤ T (0, su)
s

≤ T (0, ⌊s⌋u)
⌊s⌋

⌊s⌋
s

+ (s− ⌊s⌋)N(u)
s

which yields
µε(u) = lim

s→∞

Tε(0, su)
s

a.s. and in L1.

It remains to prove that for ε small enough µε(·) is a norm. Triangle inequality and homogeneity are
straightforward. For the separation, using (38), we have, for ε small enough and u ∈ Rd such that
N(u) = 1,

P
(
Tε(0, su) ≤ s

2

)
≤

∑
i≥sε−1/d/2

P
(

∃π ∈ Π(0, ⋆),#π = i,N(π) ≤ s

2 + iε1/d
)

≤ 2 exp(βs/2)
2sε−1/d/2

which tends to 0 as s tends to infinity if ε is small enough (uniformly in u). In particular, this implies
that, for small enough ε, for all u ∈ BN (1), µε(u) ≥ 1/2. Hence, we get that, for small enough ε, µε(·)
is a norm and, in fact, for all u ∈ Rd,

N(u)
2 ≤ µε(u) ≤ N(u).

B : Proofs of Section 3
Proof of Proposition 7. Let (u,H) satisfying (15), i.e., let u ∈ Rd be such that N(u) = 1 and let u+H
be a supporting hyperplane of BN (1) at u. Let η ≥ 0. We recall the following definitions (see Figure 1
for an illustration):

Kη(u) := {v ∈ H : N(u+ v) ≤ 1 + η} and Mη(u) := Kη(u) ∩ (−Kη(u))

and
hu(η) := η−d|Kη(u)| and h̄u(η) := η−d|Mη(u)|.

Let us prove that hu is a decreasing homeomorphism from (0,∞) to (0,∞). The reader can check
that the proof can be easily adapted to show that h̄u is also a decreasing homeomorphism from (0,∞)
to (0,∞).

First notice that v ∈ H 7→ N(u+ v) is convex. Indeed, for all v, v′ ∈ H, for all λ ∈ [0, 1], we have

N(u+ λv + (1 − λ)v′) = N(λ(u+ v) + (1 − λ)(u+ v′))
≤ N(λ(u+ v)) +N((1 − λ)(u+ v′)) = λN(u+ v) + (1 − λ)N(u+ v′) .

40



By convexity, for all λ ∈ [0, 1] and η, η′ > 0 we have

λKη(u) + (1 − λ)Kη′(u) ⊂ Kλη+(1−λ)η′(u)

so
|Kλη+(1−λ)η′(u)| 1

d−1 ≥ |λKη(u) + (1 − λ)Kη′(u)| 1
d−1 .

Using Brunn-Minkowski’s inequality, we have

|λKη(u) + (1 − λ)Kη′(u)| 1
d−1 ≥ λ|Kη(u)| 1

d−1 + (1 − λ)|Kη′(u)| 1
d−1 ,

so
η 7→ |Kη(u)| 1

d−1 (40)

is concave and so, in particular, is continuous. This already proves that hu is continuous. Let v ∈ H
and η > 0. For all λ ∈ [0, 1], by convexity, we have

N(u+ λv) ≤ λN(u+ v) + (1 − λ)N(u) = λN(u+ v) + (1 − λ)

thus
N(u+ v) − 1 ≤ η =⇒ N(u+ λv) − 1 ≤ λη ,

and so
λKη(u) ⊂ Kλη(u) .

This gives that for all 0 < η1 ≤ η2, (
η1

η2

)d−1
|Kη2(u)| ≤ |Kη1(u)|

so the function ru(η) := |Kη(u)|
ηd−1 is non-increasing. This implies that hu(η) = ru(η)/η is decreasing.

Moreover, by triangle inequality, we have, for any u ∈ Rd such that N(u) = 1,

{v ∈ H : N(v) ≤ η} ⊂ Kη(u) ⊂ {v ∈ H : N(v) ≤ 2 + η}.

Using that N is equivalent to the euclidean norm, we get, for some constants c, c′ depending only on d
and N ,

{v ∈ H, ∥v∥2 ≤ cη} ⊂ Kη(u) ⊂ {v ∈ H, ∥v∥2 ≤ c′(2 + η)}.

Since H is (d− 1)-dimensional, this gives that, for some A := A(d,N) > 0 and B := B(d,N) > 0,

Aηd−1 ≤ |Kη(u)| ≤ B(2 + η)d−1 ,

and so
Aη−1 ≤ hu(η) ≤ Bη−d(2 + η)d−1.

This implies in particular that hu tends to +∞ at 0 and to 0 at infinity.

Proof of Lemma 8. Let ∥ · ∥2 be the Euclidean norm. We will show the existence of a function ψ := ψη :
H → H that is an affine transformation with positive determinant such that

N(u+ ψ(t)) ≤ 1 + η for all t ∈ H such that ∥t∥2 ≤ 1 (41)

and
N(u+ ψ(t)) ≥ 1 + η for all t ∈ H such that ∥t∥2 ≥ d− 1. (42)

Let us prove that such a function ψ exists. The set

Kη(u) = {v ∈ H : N(u+ v) ≤ 1 + η}
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is compact, convex, with non-empty interior. Thus, by John-Loewner Theorem (see for instance Theorem
III in [11]), there exists a centered ellipsoïde J of H and a c ∈ H such that

c+ J ⊂ Kη(u) ⊂ c+ (d− 1)J.

Let BH(r) := B∥·∥2,H(r) be the ball of H of radius r for the Euclidean norm ∥ · ∥2. Let ψ : H 7→ H

be the linear function with positive determinant such that ψ(BH(1)) = J and ψ := c+ψ. Then, we have

ψ(BH(1)) = c+ J ⊂ Kη ⊂ c+ (d− 1)J = ψ(BH(d− 1))

which shows that (41) and (42) hold. Moreover, we can find bounds on the determinant of ψ. Indeed,
we have

det(ψ) = |ψ(BH(1))|
|BH(1)| = |ψ(BH(1))|

Vd−1

where Vd−1 is the volume of the unit euclidean ball of Rd−1. Using that

|ψ(BH(1))| ≤ |Kη(u)| ≤ |ψ(BH(d− 1))|

we get
Vd−1 det(ψ) ≤ |Kη(u)| ≤ (d− 1)d−1Vd−1 det(ψ) . (43)

Recall now that
I+(η) =

∫
Rd∩{x:x·u⋆>0}

exp(−(N(x) − (1 − η)x · u⋆))dx .

By the change of variable3 x = λu+ v with λ = x · u⋆ and v ∈ H, we have

I+(η) = 1
∥u⋆∥2

∫ ∞

0

∫
H

exp(−(N(λu+ v) − (1 − η)λ))dv dλ

= 1
∥u⋆∥2

∫ ∞

0

∫
H

λd−1 exp
(

−ηλ− ηλ
N(u+ w) − 1

η

)
dw dλ .

Let x = λη and w = ψ(t). Then
I+(η) = 1

∥u⋆∥2
η−d det(ψ)G(η)

with
G(η) =

∫ ∞

0

∫
H

xd−1 exp
(

−x− x
N(u+ ψ(t)) − 1

η

)
dt dx .

Let us prove that there exists two constants c, c′ > 0 (depending only on d and N) such that c ≤ G(η) ≤ c′

for η > 0. Let us define

gη(t) := N(u+ ψ(t)) − 1
η

.

First recall that if t ∈ BH(1), then gη(t) ≤ 1. Thus

G(η) ≥
∫ ∞

0

∫
BH (1)

xd−1 exp(−2x)dt dx = Vd−1

∫ ∞

0
xd−1 exp(−2x)dx = Vd−1d!

2d
:= c .

On the other side, if ∥t∥2 ≥ d then gη(t) ≥ 1. Let t0 = ψ
−1(0). Note that gη(t0) = 0 and so ∥t0∥2 ≤ d.

Using the convexity of gη, we get that for ∥t∥2 ≥ d,

gη(t) ≥ ∥t− t0∥2

d+ ∥t0∥2
≥ ∥t∥2

2d − 1
2 .

3This change of variable can be written as follows. Let f1 = u⋆/∥u⋆∥2 and let (f2, . . . , fd) be an orthonormal basis
of H, thus (f1, . . . , fd) is an orthonormal basis of Rd. Let x =

∑d

i=1 xifi and u =
∑d

i=1 uifi be the decomposition of
x and u in this basis. Consider now the basis (u, f2, . . . , fd) and x = λu +

∑d

i=1 vifi the decomposition of x in this
basis. Then x1 = λu1 and for every i ∈ {2, . . . , d} we have xi = x · fi = λui + vi. Thus the change of basis is given
by Ψ : (λ, v2, . . . , vd) 7→ (x1, x2, . . . , xd) = (λu1, v2 + λu2, . . . , vd + λud). The Jacobian of Ψ is JΨ(λ, v2, · · · , vd) =
detΨ′(λ, v2, . . . , vd) = u1 = u · u⋆/∥u⋆∥2 = 1/∥u⋆∥2.
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Since gη is non-negative on H, this lower bound holds in fact on H (notice that (∥t∥2/(2d)) − (1/2) < 0
for ∥t∥2 < d). This yields

G(η) ≤
∫ ∞

0

∫
H

xd−1 exp
(

−x− x

(
∥t∥2

2d − 1
2

))
dt dx

≤
∫ ∞

0

∫
Rd−1

xd−1 exp
(

−x

2 − ∥xt∥2

2d

)
dt dx

≤
∫ ∞

0
exp(−x

2 )dx
∫
Rd−1

exp
(

−∥v∥2

2d

)
dv := c′ < ∞ .

Hence we get, using (43), that for η > 0

c

∥u⋆∥2
((d− 1)d−1Vd−1)−1|Kη(u)| ≤ ηdI+(η) ≤ c′

∥u⋆∥2
(Vd−1)−1|Kη(u)| .

We conclude the study of I+(η) using Lemma 9 which bounds ∥u⋆∥2 uniformly in u ∈ BN (1). We now
study I(η) defined by

I(η) =
∫
Rd

exp(−(N(x) − (1 − η)x · u⋆))dx.

We have I(η) = I+(η) + I−(η) where

I−(η) =
∫
Rd∩{x:x·u⋆<0}

exp(−(N(x) − (1 − η)x · u⋆))dx.

Note that for η ∈ [0, 1], 0 ≤ I−(η) ≤
∫
Rd exp(−N(x))dx < ∞ so I− is bounded around 0. On the

contrary, since I+(η) is of the same order as hu(η) := Kη(u)η−d, Proposition 7 implies that I+ tends to
infinity at 0. So we get that I(η) ∼ I+(η) for η going to 0 and so for η small enough, we have

c1hu(η) ≤ I(η) ≤ 2c2hu(η)

as desired.
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