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Abstract

Message-Passing Neural Networks (MPNNs), the most prominent Graph Neural
Network (GNN) framework, celebrate much success in the analysis of graph-
structured data. Concurrently, the sparsification of Neural Network models attracts
a great amount of academic and industrial interest. In this paper we conduct a struc-
tured study of the effect of sparsification on the trainable part of MPNNs known as
the Update step. To this end, we design a series of models to successively sparsify
the linear transform in the Update step. Specifically, we propose the ExpanderGNN
model with a tuneable sparsification rate and the Activation-Only GNN, which has
no linear transform in the Update step. In agreement with a growing trend in the
literature the sparsification paradigm is changed by initialising sparse neural net-
work architectures rather than expensively sparsifying already trained architectures.
Our novel benchmark models enable a better understanding of the influence of the
Update step on model performance and outperform existing simplified benchmark
models such as the Simple Graph Convolution. The ExpanderGNNs, and in some
cases the Activation-Only models, achieve performance on par with their vanilla
counterparts on several downstream tasks, while containing significantly fewer
trainable parameters. In experiments with matching parameter numbers our bench-
mark models outperform the state-of-the-art GNN models. Our code is publicly
available at: https://github.com/ChangminWu/ExpanderGNN.

1 Introduction

In recent years we have witnessed the blossom of Graph Neural Networks (GNNs). They have
become the standard tools for analysing and learning graph-structured data (Wu et al. 2020) and have
demonstrated convincing performance in various application areas, including chemistry (Duvenaud
et al. 2015), social networks (Monti et al. 2019), natural language processing (Yao et al. 2019) and
neural science (Griffa et al. 2017).

Among various GNN models, Message-Passing Neural Networks (MPNNs, Gilmer et al. (2017))
and their variants are considered to be the dominating class. In MPNNs, the learning procedure
can be separated into three major steps: Aggregation, Update and Readout, where Aggregation and
Update are repeated iteratively so that each node’s representation is updated recursively based on
the transformed information aggregated over its neighbourhood. There is thus a division of labour
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between the Aggregation and the Update step, where the Aggregation utilises local graph structure,
while the Update step is only applied to single node representations at a time independent of the local
graph structure. From this a natural question then arises: What is the impact of the graph-agnostic
Update step on the performance of GNNs? Since the Update step is the main source of model
parameters in MPNNs, understanding its impact is fundamental in the design of parsimonious GNNs.

Wu et al. (2019) first challenged the role of the Update step by proposing a Simple Graph Convolution
(SGC) model where they removed the non-linearities in the Update steps and collapsed the consecutive
linear transforms into a single transform. Their experiments showed, surprisingly, that in some
instances the Update step of Graph Convolutional Network (GCN, Kipf & Welling (2017)) can be
left out completely without the models’ accuracy decreasing.

In the same spirit, we propose in this paper to analyse the impact of the Update step and its
sparsification in a systematic way. To this end, we propose two nested model classes, where the
Update step is successively sparsified. In the first model class which we refer to as ExpanderGNN,
the linear transform layers of the Update step are sparsified; while in the second model class, the
linear transform layers are removed and only the activation functions remain in the model. We name
the second model Activation-Only GNN and it contrasts the SGC where the activation functions
where removed to merge the linear layers.

Inspired by the recent advances in the literature of sparse Convolutional Neural Network (CNN)
architectures (Prabhu et al. 2018), we propose to utilise a random sparsification scheme, which is
motivated by the study of expander graphs (hence the model’s name). Here the sparsification is
performed at intialisation and accordingly saves the cost of more traditional methods, which often
iteratively prune connections during training.

Through a series of empirical assessments on different graph learning tasks (graph and node classifi-
cation as well as graph regression), we demonstrate that the Update step can be heavily simplified
without inhibiting performance or relevant model expressivity. Our findings partly agree with the
work in Wu et al. (2019), in that dense Update steps in GNN are expensive and often ineffectual. In
contrast to their proposition, we find that there are many instances in which leaving the Update step
out completely significantly harms performance. In these instances our Activation-Only model shows
superior performance while matching the number of parameters and efficiency of the SGC.

Our contributions can be summarised as follows.

1. We explore the impact of the Update step and its sparsification in MPNNs through the newly
proposed model class of ExpanderGNNs with tuneable density. We show empirically that a
sparse Update step matches the performance of the standard model architectures.

2. As an extreme case of the ExpanderGNN, as well as an alternative to the SGC, we propose
the Activation-Only GNNs that remove the linear transformation layer from the Update step
and keep non-linearity in tact. We observe the Activation-Only models to exhibit comparable,
sometimes significantly superior performance to the SGC while being equally time and
memory efficient.

Both of our proposed model classes can be extrapolated without further efforts to a variety of models
in the MPNN framework and hence provide practitioners with an array of efficient and often highly
performant benchmark models.

The rest of this paper is organised as follows. In Section 2, we provide an overview of the related
work. Section 3 introduces preliminary concepts of MPNNs, followed by a detailed presentation
of our two proposed model classes. Section 4 discusses our experimental setting and empirical
evaluation of the proposed models in a variety of downstream graph learning tasks.

2 Related Work

In recent years the idea of utilising expander graphs in the design of neural networks is starting
to be explored in the CNN literature. Most notably, Prabhu et al. (2018) propose to replace linear
fully connected layers in deep networks using an expander graph sampling mechanism and hence,
propose a novel CNN architecture they call X-nets. The great innovation of this approach is that
well-performing sparse neural network architectures are initialised rather than expensively calculated.
Furthermore, they are shown to compare favourably in training speed, accuracy and performance
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trade-offs to several other state-of-the-art architectures. McDonald & Shokoufandeh (2019) and
Kepner & Robinett (2019) build on the X-net design and propose alternative expander sampling
mechanisms to extend the simplistic design chosen in the X-nets. Independent of this literature
branch, Bourely et al. (2017) explore 6 different mechanisms to randomly sample expander graph
layers. Across the literature the results based on expander graph layers are encouraging.

The Sparisification and Pruning of neural networks is a very active research topic (Hoefler et al. 2021,
Blalock et al. 2020). In particular, a wealth of algorithms sparsifying neural network architectures at
initialisation has recently been proposed (Tanaka et al. 2020, Wang, Zhang & Grosse 2020, Lee et al.
2019). While these algorithms make pruning decisions on a per-weight basis, Frankle et al. (2021)
find that these algorithms produce equivalent results to a per-layer choice of a fraction of weights
to prune, as is directly done in our chosen sparsification scheme. All of these research efforts are
pruning CNNs, typically the VGG and ResNet architectures. To the best of our knowledge, our work
is the first investigating the potential of sparsifying the trainable parameters in GNNs.

Both Wu et al. (2019) and Salha et al. (2019) observed that simplifications in the Update step of
the GCN model is a promising area of research. Wu et al. (2019) proposed the SGC model, where
simplification is achieved by removing the non-linear activation functions from the GCN model.
This removal allows them to merge all linear transformations in the Update steps into a single linear
transformation without sacrificing expressive power. Salha et al. (2019) followed a similar rationale
in their simplification of the graph autoencoder and variational graph autoencoder models. These
works have had an immediate impact on the literature featuring as benchmark models and object
of study in many recent papers: The idea of omitting the Update step guided Chen et al. (2020) in
the design of simplified models and has found successful application in various areas where model
complexity needs to be reduced (Waradpande et al. 2020, He et al. 2020) or very large graphs need
to be processed (Salha et al. 2020). In our work we aim to extend these efforts by providing more
simplified benchmark models for GNNs without a specific focus on the GCN.

3 Investigating the Role of the Update step

In this section, we present the two proposed model classes, where we sparsify or remove the linear
transform layer in the Update step, with the aim to systematically analyse the impact of the Update
step. We begin in Section 3.1 by introducing the general model structure of MPNNs, the GNN class
we study in this paper. We then demonstrate how the ExpanderGNN and Activation-Only GNN are
constructed in Sections 3.2 and 3.3, respectively.

3.1 Preliminaries

Message-Passing Graph Neural Networks We define graphs G = (A,X) in terms of their
adjacency matrix A = [0, 1]n×n, which contains the information of the graph’s node set V, and
the node features X ∈ Rn×s. Given a graph G, a graph learning task aims at learning meaningful
embeddings on the node or graph level that can be used in downstream tasks such as node or graph
classification. MPNNs, a prominent paradigm that arose in recent years for performing machine
learning tasks on graphs, learn such embeddings by iteratively aggregating information from the
neighbourhoods of each node and updating their representations based on this information. Precisely,
the learning procedure of MPNNs can be divided into the following phases:

Initial (optional). In this phase, the initial node features X are mapped from the feature space to a
hidden space by a parameterised neural network U (0), usually a fully-connected linear layer.

H(1) = U (0)(X) =
(
h
(1)
1 , . . . ,h(1)

n

)
,

where the hidden representation of node i is denoted as h(1)
i , which will be used as the initial point

for later iterations.

Aggregation. In this phase, MPNNs gather, for each node, information from the node’s neighbour-
hood, denoted N (i) for node i. The gathered pieces of information are called “messages”, denoted
by mi. Formally, if f (l)(·) denotes the aggregation function at iteration l, then

m
(l)
i = f (l)

({
h
(l)
j |j ∈ N (i)

})
.
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Due to the isotropic nature of graphs (arbitrary node labelling), this function needs to be permutation
equivariant or invariant. It also has to be differentiable so that the framework will be end-to-end
trainable.

Update. The nodes then update their hidden representations based on their current representations
and the received “messages”. Let U (l) denote the update function at iteration l. For node i, we have

h
(l+1)
i = U (l)

(
h
(l)
i ,m

(l)
i

)
.

Readout (optional). After L aggregation and update iterations, depending on the downstream
tasks, the MPNN will either output node representations directly or generate a graph representation
via a differentiable readout function,

g = R
({

h
(L)
i |i ∈ V

})
.

Note that various choices of Aggregation, Update and Readout functions are proposed in the literature.
To avoid shifting from the subject of this paper, we work with the simplest and most widely used
function choices, such as sum, mean and max aggregators for Aggregation, the Multi-Layer Perceptron
(MLP) for the Update step and summation for the Readout. As an example to visualise our models in
Sections 3.2 and 3.3 we use the following matrix representation of the GCN’s model equation,

H(L) = σ
(
Â . . . σ

(
ÂH(1)W (1)

)
. . .W (L)

)
, (1)

where σ denotes a nonlinear activation function, W (i) contains the trainable weights of the linear
transform in the Update step and Â = D̃−

1
2 ÃD̃−

1
2 is the symmetric normalised adjacency matrix

with Ã = A+I denoting the adjacency matrix with added self-loops and D̃ being the corresponding
degree matrix.

3.2 Sparsifying the Update step: Expander GNN

In this section we propose the ExpanderGNN model where sampled expander graphs are used to
initialise sparse linear layers in the Update step. We begin by discussing how linear layers in a neural
networks can be represented by bipartite graphs.

Linear Layer as a graph The fully-connected linear transform layer in MLPs can be represented
by a bipartite graph B(S1,S2,E), where S1 and S2 are two sets of nodes and E the set of edges that
satisfy ∀u ∈ S1,∀v ∈ S2,∃(u, v) ∈ E; ∀u, v ∈ S1(resp.S2),@(u, v) ∈ E. The number of edges,
i.e., parameters, is |S1||S2| and the edges can be encoded in matrix form by W ∈ R|S1|×|S2|, the
weight matrix in (1), that maps the input node features of dimension |S1| to output node features of
dimension |S2|.

Expander Linear Layer Given the bipartite graph corresponding to a linear transform layer
B(S1,S2,E), we follow the design of Prabhu et al. (2018) to construct the sparsifier by sampling its
subgraph of specific expander structure.
Definition 1. Suppose |S1| ≤ |S2|. For each vertex u ∈ S1, we uniformly sample d vertices
{vui }i=1,...,d from S2 to be connected to u. Then, the constructed graph B′(S1,S2,E′) is a subgraph
of B with edge set E′ = {(u, vui ) : u ∈ S1, i ∈ {1, . . . , d}}. Else if |S1| > |S2|, we define the
expander sparsifier with the roles of S1 and S2 reversed meaning that we sample nodes from S1. We
call a linear layer with a computational graph B′(S1,S2,E′) an expander linear layer.

The theoretical computational cost of an expander linear layer is equal to 2ndmin(|S1|, |S2|) Floating
Point Operations (FLOPs). The tunable parameter d can therefore lead to significant computational
savings as the computational cost of a fully connected linear layer equals 2n|S1||S2| FLOPs.

We refer to the density of the expander linear layer as the ratio of the number of sampled connections
to the number of connections in the complete bipartite graph. For example, the fully-connected
layer has density 1. The sampling scheme in Definition 1 returns an expander linear layer of density
d/max(|S1|, |S2|).
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Iteration 1

Iteration 2

Iteration L

Aggregation Update

Figure 1: Illustration of the main computational steps in ExpanderGNNs. (Left) Aggregation or
graph propagation step and (Right) Update step. The red lines in the Update step represent preserved
connections in MLPs sampled as expander sparsifier structures. In the Aggregation step only a subset
of the exchanged messages are illustrated.

When we replace all linear layers in the Update steps of a GNN with expander linear layers constructed
by the sampling scheme in Definition 1, we get the ExpanderGNN. An illustration can be found in
Figure 1.

When compared to pruning algorithms which sparsify neural network layers by iteratively removing
parameters according to certain metric during training, the expander sparsifiers have two advantages:

1. The expander design assures that paths exist between consecutive layers, avoiding the risk of
layer-collapse that is common in many pruning algorithms, where the algorithm prunes all
parameters (weights) in one layer and cuts down the flow between input and output (Tanaka
et al. 2020).

2. The expander sparsifier removes parameters at initialisation and keeps the sparsified struc-
tures fixed during training, which avoids the expensive computational cost stemming from
adapting the neural network architecture during or after training and then retraining the
network as is done in the majority of pruning algorithms (Frankle & Carbin 2019, Han et al.
2015).

Motivation of Expander Linear Layer The sampling scheme in Definition 1 samples bipartite
graphs with good expansion properties, which are commonly discussed in the field of error correcting
codes under the name “lossless expanders” (Hoory et al. 2006, pp. 517-522). Expander graphs
can be informally defined to be highly connected and sparse graphs (Lubotzky 2012). They are
successfully applied in communication networks where communication comes at a certain cost and is
to be used such that messages are spread across the network efficiently (Lubotzky 2012). Equally,
in a neural network each parameter (corresponding to an edge in the neural network architecture)
incurs a computational cost and is placed to optimise the overall performance of the neural network
architecture. Therefore, the use of expander graphs in the design of neural network architectures is
conceptually well motivated.

In Bölcskei et al. (2019) the connectedness of a sparse neural network architecture was linked to
the complexity of a given function class which can be approximated by sparse neural networks.
Hence, utilising neural network parameters to optimise the connectedness of the network maximises
the expressivity of the neural network. In Kepner & Robinett (2019) and Bourely et al. (2017) the
connectedness of the neural network architecture graph was linked – via the path-connectedness and
the graph Laplacian eigenvalues – to the performance of neural network architectures. Therefore,
for both the expressivity of the neural network and its performance, the connectedness, which is
optimised in expander graphs, is a parameter of interest.

Implementation of Expander Linear Layer The most straightforward way of implementing the
expander linear layer is to store the weight matrix W as a sparse matrix. Sparse matrix multiplications
can be accelerated on several processing units released in 2020 and 2021 such as the Sparse Linear
Algebra Compute (SLAC) cores used in the Cerebras WSE-2 (CEREBRAS SYSTEMS 2021), the
Intelligence Processing Unit (IPU) produced by Graphcore (Strategy 2020) and the NVIDIA A100
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Table 1: Model Equations of the Vanilla, Expander and Activation-Only GNNs.

Model Aggregation Update Remarks

GCN
Vanilla/Expander

m
(l)
i = 1√

di

∑
j∈N (i) h

(l)
j

1√
dj

h
(l+1)
i = σ(m

(l)
i M (l) �W (l)) 1. GCN: di denotes the degree of

node i.
2. GIN: ε is a learnable ratio added

explicitly to the central node’s
own representation.

3. PNA:
⊕

corresponds to an op-
erator formed by taking the ten-
sor product of a vector containing
three scalar functions and four ag-
gregator functions, resulting in a
tensor indexed by i, s, a, where
the index i corresponds to the cur-
rently considered node, s corre-
sponds to the scalar dimension
and a indexes the aggregator di-
mension. For more details see
Corso et al. (2020).

Activation-Only h
(l+1)
i = σ

(
m

(l)
i

)
GIN

Vanilla/Expander
m

(l)
i = (1 + ε)h

(l)
i +

∑
j∈N (i) h

(l)
j

h
(l+1)
i = σ(m

(l)
i M (l) �W (l))

Activation-Only h
(l+1)
i = σ

(
m

(l)
i

)
GraphSage

Vanilla/Expander m
(l)
i = CONCAT

(
h
(l)
i ,MAXj∈N (i)σ(h

(l)
j M

(l)
1 �W

(l)
1 )
)

h
(l+1)
i =

σ(m
(l)
i M

(l)
2 �W

(l)
2 )

‖σ(m(l)
i M

(l)
2 �W

(l)
2 )‖2

Activation-Only m
(l)
i = h

(l)
i + MAXj∈N (i)σ(h

(l)
j ) h

(l+1)
i =

σ(m
(l)
i )

‖σ(m(l)
i )‖2

PNA
Vanilla/Expander m

(l)
i = CONCATs,a

(⊕
j∈N (i) h

(l)
j

)
h
(l+1)
i = σ(m

(l)
i M (l) �W (l))

Activation-Only m
(l)
i = 1

12

∑
s,a

[⊕
j∈N (i) h

(l)
j

]
i,s,a

h
(l+1)
i = σ

(
m

(l)
i

)
MLP Vanilla/Expander m(l) = h

(l)
i h

(l+1)
i = σ(m

(l)
i M (l) �W (l))

Tensor Core GPU (NVIDIA 2020). However, since we ran experiments on a NVIDIA RTX 2060
GPU, we use masks in our implementation, similar to those of several existing pruning algorithms, to
achieve the sparsification. A mask M ∈ {0, 1}|S1|×|S2| is of the same dimension as weight matrix
and Mu,v = 1 if and only if (u, v) ∈ E′. An entrywise multiplication, denoted by �, is then applied
to the mask and the weight matrix so that undesired parameters in the weight matrix are removed, i.e.,
(1) can be rewritten as,

H(L) = σ
(
Â . . . σ

(
ÂH(1)M (1) �W (1)

)
. . .M (L) �W (L)

)
. (2)

3.3 An Extreme Case: Activation-Only GNN

In Gama et al. (2020) it is argued that the non-linearity present in GNNs, in form of the activation
functions, has the effect of frequency mixing in the sense that “part of the energy associated with large
eigenvalues” is brought “towards low eigenvalues where it can be discriminated by stable graph filters.”
The theoretical insight that activation functions help capture information stored in the high energy
part of graph signals is strong motivation to consider an alternative simplification to the one made in
the SGC. In this alternative simplification, which we refer to as the Activation-Only GNN models,
we remove linear transformations instead of activation functions such that each message-passing
step is immediately followed by a pointwise activation function. The resulting model can be seen
as a natural extension of the ExpanderGNN, where the linear transformation of the Update step is
completely forgone. Hence, in a Activation-Only GNN, (1) will be rewritten as,

H(L) = σ
(
Â . . . σ

(
ÂH(1)

))
. (3)

This proposed simplification is applicable to a wide variety of GNN models as we will demonstrate
in our extensive set of experiments in Section 4. For comparison we display the model equation of
the SGC (Wu et al. 2019),

H(L) = ÂLH(1)Θ,

where Θ = W (1) . . .W (L). Here the nonlinear activation functions have been removed and the
linear transformations have been collapsed into a single linear transformation layer. Interestingly, we
observe that the repeated application of the symmetric matrix Â to the input data X is equivalent to
an unnormalised version of the power method approximating the eigenvector corresponding to the
largest eigenvalue of Â. Hence, if sufficiently many layers L are used then inference is drawn in the
SGC model simply on the basis of the first eigenvector of Â.

4 Experiments and Discussion

In order to study the influence of the Update step in GNNs, we proposed a series of models in Section
3, where its linear transform is gradually sparsified. By observing the trend of model performance
change (on downstream tasks) with respect to the sparsity of the linear transform layer, we measure
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Table 2: Properties of all datasets used in experiments.

Dataset #Graphs #Nodes (avg.) #Edges (avg.) Task

TU datasets

ENZYMES 600 32.63 62.14

Graph Classification
DD 1178 284.32 715.66

PROTEINS 1113 39.06 72.82
IMDB-BINARY 1000 19.77 193.06

Computer Vision MNIST 70000 70.57 282.27
CIFAR10 60000 117.63 470.53

ZINC 12000 23.16 24.92 Graph Regression

Citations

CORA 1 2708 5278

Node ClassificationCITESEER 1 3327 4552
PUBMED 1 19717 44324
ogbn-arxiv 1 169343 1166243

the impact of the Update step. We have made our experimentation code publicly available online1.
In Section 4.1 we provide an overview of our experimentation setup. Then, in Sections 4.2, 4.3
and 4.4, we observe the performance of the proposed benchmark models on the tasks of graph
classification, graph regression and node classification, respectively. The full set of results can be
found in Appendix A. In Section 4.5, we compare the performance of ExpanderGNNs and vanilla
GNNs when they have equally many parameters and in Section 4.6 we compare the convergence
behaviour of the studied models.

4.1 General Settings and Baselines

Considered GNNs Throughout this section we refer to the standard, already published, archi-
tectures as “vanilla” architectures. We compare the performance of the vanilla GNN models, the
ExpanderGNN models with different densities (10%, 50%, 90%), the Activation-Only GNN models
with different activation functions (ReLU, PReLU, Tanh), as well as the SGC for the GCN models.
To ensure that our inference is not specific to a certain GNN architecture only, we evaluate the
performance across 4 representative GNN models of the literature state-of-the-art. The considered
models are the Graph Convolutional Network (GCN, Kipf & Welling (2017)), the Graph Isomorphism
Network (GIN, Xu et al. (2019)), the GraphSage Network Hamilton et al. (2017), and the Principle
Neighborhood Aggregation (PNA, Corso et al. (2020)), along with a MLP baseline that only takes
the node features into account while ignoring the graph structure. The precise model equations of our
proposed architectures applied to these GNNs can be found in Table 1. The Activation-Only model
class is defined in the context of a GNN architecture and cannot be sensibly extrapolated to the MLP.
Therefore, we consider only the vanilla and Expander variants for the MLP benchmark.

Datasets We experiment on eleven datasets from areas such as chemistry, social networks, computer
vision and academic citation, for three major graph learning tasks. For graph classification, we have
four TU datasets Kersting et al. (2016) which are either chemical or social network graphs, and two
Image datasets (MNIST/CIFAR10) that are constructed from original images following the procedure
in Knyazev et al. (2019). To perform this conversion they first extract small regions of homogeneous
intensity from the images, named “Superpixels” Dwivedi et al. (2020a), and construct a K-nearest
neighbour graph from these superpixels. The technique we implemented to extract superpixels,
the choice of K and distance kernel for constructing a nearest neighbour graph are the same as in
Knyazev et al. (2019) and Dwivedi et al. (2020a). For graph regression, we consider molecule graphs
from the ZINC dataset Irwin et al. (2012). And for node classification, we use four citation datasets
Sen et al. (2008), Wang, Shen, Huang, Wu, Dong & Kanakia (2020), Hu et al. (2020a), where the
nodes are academic articles linked by citations. Details of the used datasets can be found in Table 2,
where in the number of nodes and edges column we display average values if the dataset contains
multiple graphs.

Experimentation Details Since we aim to observe the performance of our benchmark models
independent of the GNN choice we use the model hyperparameters found to yield a fair comparison
of GNN models in Dwivedi et al. (2020a). Specifically, we follow the same training procedure,

1https://github.com/ChangminWu/ExpanderGNN
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such as train/valid/test dataset splits, choice of optimiser, learning rate decay scheme, as well as the
same hyper-parameters, such as initial learning rate, hidden feature dimensions and number of GNN
layers. We also implement the same normalisation tricks such as adding batch normalisation after
non-linearity of each Update step. Their setting files (training procedure/hyperparameters) are made
public and can be found in Dwivedi et al. (2020b). For the node classification task on citation datasets,
we follow the settings from Wu et al. (2019). Our experiments found that the node classification task
on citation graphs of small to medium size can be easily overfit and model performances heavily
depend on the choice of hyperparameters. Using the same parameters with Wu et al. (2019), such
as learning rate, number of training epochs and number of GNN layers, helps us achieve similar
results with the paper on the same model, which allows a fair comparison between the proposed
Activation-Only models and the SGC.

Loss functions After L message-passing iterations, we obtain

H(L) =
[
h
(L)
1 , . . . ,h(L)

n

]T
∈ Rn×p,

as the final node embedding, where we denote p as its feature dimension. Depending on the
downstream task, we either keep working with H(L) or construct a graph-level representation g from
H(L),

g =
1

n

∑
i∈V

h
(L)
i ,

which we referred to as the Readout step in Section 3. g or H(L) is then fed into a fully-connected
network (MLP) to be transformed into the desired form of output for further assessment, e.g., a
scalar value as a prediction score in graph regression. We denote this network as f(·), which, in our
experiments, is fixed to be a three-layer MLP of the form

f(x) = σ(σ(xW1)W2)W3,

where W1 ∈ Rp×(p/2), W2 ∈ R(p/2)×(p/4), W3 ∈ R(p/4)×k with k being the desired output
dimension. The final output, either f(g) or f(H(L)), is compared to the ground-truth by a task-
specific loss function. For graph classification and node classification, we choose cross-entropy loss
and for graph regression, we use mean absolute error.

4.2 Graph Classification

Figure 2(a), (b), (c) and (d) show the experiment results of the GCN, GIN and MLP models and their
Expander and Activation-Only variants on the ENZYMES, DD, PROTEINS and IMDB-BINARY
datasets for graph classification. The evaluation metric is classification accuracy, where the average
accuracy, obtained from a 10-folder cross validation, is used.

One direct observation from Figure 2(a), (b), (c) and (d) is that the ExpanderGNN models, even at
10% density, perform on par with the vanilla models. Surprisingly, the same is true for the Activation-
Only model on the ENZYMES, DD and PROTEINS datasets. IMDB-BINARY is our only graph
classification dataset where the node attributes are initialised to all be equal. This uninformative
initialisation seems to lead to an increased performance if the linear Update step is present, visible
in the performance gap of the Activation-Only models and the ExpanderGCN models. The SGC
performs either on par or worse than the Activation-Only model.

It is known that the simple MLP can achieve better performance than GNNs (Luzhnica et al. 2019)
on the several of the TU datasets. This effect is visible in Figure 2(a) and (b). Dwivedi et al. (2020a)
show that more complex GNN models can outperform the MLP on these datasets. This known
shortcoming has no impact on our conclusion, where we compare model performance within a GNN
model class rather than between GNN model classes.

Figure 2(e) and (f) show the graph classification results for the MNIST and CIFAR10 datasets. The
GCN Activation-Only model outperforms the SGC by a larger margin than we observed on the
TU datasets. It seems that especially for these computer vision datasets the presence of activation
functions in the GCN architecture has a large positive impact on model performance in the graph
classification task.
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Figure 2: (a,b,c,d): Accuracy of different model types for GCN, GIN and MLP on
ENZYMES/DD/PROTEINS/IMDB-BINARY; (e,f): Accuracy of different model types for GCN,
GIN and MLP on MNIST/CIFAR10; (g): Mean Absolute Error of different model types for GC-
N/GIN/GraphSage/PNA/MLP on ZINC dataset; (h,i,j,k): Accuracy of different model types for
GCN/GIN/MLP on CORA/CITESEER/PUBMED/ogbn-arxiv datasets.

4.3 Graph Regression

In Figure 2(g) the Mean Absolute Error (MAE) of our studied and proposed models on the ZINC
dataset for graph regression is displayed. Similar to the graph classification task, the ExpanderGCN
and ExpanderGraphSage models are on the same level with their corresponding vanilla models,
regardless of their densities. The performance of the ExpanderGIN and ExpanderPNA models
exhibits greater variance across the different densities, especially in the case of the PNA models the
performance is increasing as the network gets denser indicating that the density of the Update step
does positively contribute to the model performance of the PNA for the task of graph regression
on the ZINC dataset. The Activation-Only models perform worse than their Expander counterparts
on this task, again confirming the insight from the results of the ExpanderGNNs that the linear
transform in the Update step does improve performance in this graph regression task. Again we see
that Activation-Only GCNs outperform the SGC benchmark in this set of experiments.

Hence, for the task of graph regression we observe that both the linear transformation and non-linear
activation function in the Update step have a positive impact on model performance. We might have
been able to expect that the addition of the transformation performed in the Update step is of greater
impact in a regression task, which is evaluated on a continuous scale, than in a classification task,
where only a discrete label needs to be inferred.

4.4 Node Classification

Results from the node classification experiments on four citation graphs (CORA, CITESEER,
PUBMED and ogbn-arxiv) can be found in Figure 2(h), (i), (j) and (k), respectively. For medium-sized
datasets such as CORA, CITESEER and PUBMED, we have the same observation as for the graph
classification and graph regression tasks discussed in Sections 4.2 and 4.3, the Expander models,
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Figure 4: Training loss (cross-entropy) con-
vergence behaviour of the different model
types for the GCN used for graph classifi-
cation on the PROTEINS dataset.

regardless of their sparsity, are performing on par with the vanilla ones. Only on the CITESEER
dataset, we observe that the ExpanderGIN model with 10% density shows a small but non-negligible
drop in performance compared to the vanilla model; while the 50% and 90% dense Expander models
remain comparable to the vanilla one. The Activation-Only models also perform as well as or even
better than (on CITESEER) the vanilla model. The performance of GCN Activation-Only model and
SGC is equally good across all three datasets.

These conclusions remain true for large-scale datasets like ogbn-arxiv with 169,343 nodes and
1,166,243 edges. The ExpanderGCNs are on par with the vanilla GCN while the Activation-Only
model and SGC perform slightly worse. However, the training time of Activation-Only model and
SGC is five times faster than that of the Expander and vanilla models. The PReLU Activation-Only
model performs better than the SGC, while the other two Activation-Only models do worse.

We observe that in the node classification task both the linear transformation and the non-linear
activation function offer no benefit for the medium scale datasets. For the large-scale dataset we find
that the linear transformation can be sparsified heavily without a loss in performance, but deleting it
entirely does worsen model performance.

4.5 Expander Sparsification

In Figure 3(a) we compare the results from an ExpanderGCN to those achieved by a GCN model,
where the expander linear layer, presented in Definition 1, is replaced by a deterministic sparsification
construction from Bourely et al. (2017) the “Regular Rotating Edge Construction” (RREC). Bourely
et al. (2017) observe that sparsifiers obtained from the RREC sampler have a significantly lower
algebraic connectivity than the Expander Linear Layer sampler which we chose to utilise in the
ExpanderGNNs. We observe that ExpanderGCNs outperform the RREC sampled GCN for almost all
parameter budgets. Therefore, we confirm that the Expander Linear Layer is an appropriate choice
for the ExpanderGNN model class.

The experiments in Sections 4.2, 4.3 and 4.4 show that the linear transform layer in the Update step
of GNNs can often be sparsified to an arbitrary level without loss of performance. From this a natural
question then arises: Will a shrunk model, i.e., a model with a smaller hidden dimension used in the
Update step, matching the number of parameters of the sparsified ExpanderGNN, perform on par
with its ExpanderGNN counterpart?

To study this question we compare the performance of vanilla GCNs to ExpanderGCNs with equally
many parameters, but doubling the size of the hidden dimension of the vanilla GCN. Figure 3(b)
shows the experiment results on the three citation datasets. We observe that for most parameter values
the ExpanderGCN outperforms the vanilla GCN. This phenomenon becomes more evident when the
number of parameter is small. In conclusion, it seems to be beneficial to choose a sparsified large
model rather than a compact model with equally many parameters.
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4.6 Convergence Behaviour

In Figure 4 we observe the training loss convergence of the vanilla GCN, ExpanderGCNs, Activation-
Only GCNs and the SGC. When training these models we have implemented a learning rate decay
scheme, where the training process is terminated if the learning rate drops below 10−6. We are able to
observe, that the number of epochs required for convergence is roughly equal for the Activation-Only
GCN and SGC, as well as the ExpanderGCN and the vanilla GCN. For both pairwise comparisons we
are able to observe, that our proposed models converge to a lower training loss than their counterparts.

5 Conclusion

With extensive experiments across different GNN models and graph learning tasks, we are able to
confirm that the Update step can be sparsified heavily without a significant performance cost. In fact
for seven of the eleven tested datasets across a variety of tasks we found that the linear transform can
be removed entirely without a loss in performance, i.e., the Activation-Only models performed on par
with their vanilla counterparts. The Activation-Only GCN model consistently outperformed the SGC
model and especially in the computer vision datasets we witnessed that the activation functions seem
to be crucial for good model performance accounting for an accuracy difference of up to 59%. These
findings partially support the hypothesis by Wu et al. (2019) that the Update step can be simplified
significantly without a loss in performance. Contrary to Wu et al. (2019) we find that the nonlinear
activation functions result in a significant accuracy boost and the linear transformation in the Update
step can be removed or heavily sparsified.

The Activation-Only GNN is an effective and simple benchmark model framework for any message
passing neural network. It enables practitioners to test whether they can cut the large amount of model
parameters used in the linear transform of the Update steps. If the linear transform does contribute
positively to the model’s performance then the ExpanderGNNs provide a model class of tuneable
sparsity which allows efficient parameter usage.
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aggregation for graph nets’, arXiv:2004.05718 .

Duvenaud, D. K., Maclaurin, D., Iparraguirre, J., Bombarell, R., Hirzel, T., Aspuru-Guzik, A. &
Adams, R. P. (2015), Convolutional networks on graphs for learning molecular fingerprints, in
‘Advances in neural information processing systems’, pp. 2224 – 2232.

Dwivedi, V. P., Joshi, C. K., Laurent, T., Bengio, Y. & Bresson, X. (2020a), ‘Benchmarking graph
neural networks’, arXiv:2003.00982 .

Dwivedi, V. P., Joshi, C. K., Laurent, T., Bengio, Y. & Bresson, X. (2020b), ‘Benchmarking graph neu-
ral networks’, https://github.com/graphdeeplearning/benchmarking-gnns. accessed
May 2020.

11

https://cerebras.net/wp-content/uploads/2021/04/Cerebras-CS-2-Whitepaper.pdf
https://cerebras.net/wp-content/uploads/2021/04/Cerebras-CS-2-Whitepaper.pdf
https://github.com/graphdeeplearning/benchmarking-gnns


Frankle, J. & Carbin, M. (2019), The lottery ticket hypothesis: Finding sparse, trainable neural
networks, in ‘7th International Conference on Learning Representations (ICLR)’.

Frankle, J., Dziugaite, G. K., Roy, D. M. & Carbin, M. (2021), Pruning neural networks at initializa-
tion: Why are we missing the mark?, in ‘9th International Conference on Learning Representations
(ICLR)’.

Gama, F., Ribeiro, A. & Bruna, J. (2020), Stability of graph neural networks to relative perturbations,
in ‘International Conference on Acoustics, Speech, and Signal Processing (ICASSP)’, IEEE,
pp. 9070 – 9074.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O. & Dahl, G. E. (2017), Neural message passing
for quantum chemistry, in ‘Proceedings of the 34th International Conference on Machine Learning
(ICML)’, pp. 1263 – 1272.

Griffa, A., Ricaud, B., Benzi, K., Bresson, X., Daducci, A., Vandergheynst, P., Thiran, J.-P. &
Hagmann, P. (2017), ‘Transient networks of spatio-temporal connectivity map communication
pathways in brain functional systems’, NeuroImage pp. 490 – 502.

Hamilton, W. L., Ying, R. & Leskovec, J. (2017), Inductive representation learning on large graphs,
in ‘Proceedings of the 31st International Conference on Neural Information Processing Systems
(NIPS)’, Curran Associates Inc., pp. 1025 – 1035.

Han, S., Pool, J., Tran, J. & Dally, W. (2015), Learning both weights and connections for efficient
neural network, in ‘Advances in neural information processing systems’, pp. 1135–1143.

He, X., Deng, K., Wang, X., Li, Y., Zhang, Y. & Wang, M. (2020), ‘Lightgcn: Simplifying and
powering graph convolution network for recommendation’, arXiv preprint arXiv:2002.02126 .

Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N. & Peste, A. (2021), ‘Sparsity in deep learn-
ing: Pruning and growth for efficient inference and training in neural networks’, arXiv preprint
arXiv:2102.00554 .

Hoory, S., Linial, N. & Wigderson, A. (2006), ‘Expander graphs and their applications’, Bulletin of
the American Mathematical Society pp. 439 – 561.

Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B., Catasta, M. & Leskovec, J. (2020a), ‘Open
graph benchmark: Datasets for machine learning on graphs’, arXiv preprint arXiv:2005.00687 .

Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B., Catasta, M. & Leskovec, J. (2020b),
‘Open graph benchmark: Datasets for machine learning on graphs’, https://github.com/
snap-stanford/ogb. accessed October 2020.

Irwin, J. J., Sterling, T., Mysinger, M. M., Bolstad, E. S. & Coleman, R. G. (2012), ‘Zinc: a free
tool to discover chemistry for biology’, Journal of chemical information and modeling pp. 1757 –
1768.

Kepner, J. & Robinett, R. (2019), Radix-net: Structured sparse matrices for deep neural networks, in
‘2019 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)’,
IEEE, pp. 268 – 274.

Kersting, K., Kriege, N. M., Morris, C., Mutzel, P. & Neumann, M. (2016), ‘Benchmark data sets for
graph kernels’. http://graphkernels.cs.tu-dortmund.de.

Kipf, T. N. & Welling, M. (2017), Semi-supervised classification with graph convolutional networks,
in ‘5th International Conference on Learning Representations (ICLR)’.

Knyazev, B., Taylor, G. W. & Amer, M. (2019), Understanding attention and generalization in graph
neural networks, in ‘Advances in Neural Information Processing Systems 32’, Curran Associates,
Inc., pp. 4202 – 4212.

Lee, N., Ajanthan, T. & Torr, P. H. (2019), SNIP: Single-shot network pruning based on connection
sensitivity, in ‘7th International Conference on Learning Representations (ICLR)’.

12

https://github.com/snap-stanford/ogb
https://github.com/snap-stanford/ogb
http://graphkernels.cs.tu-dortmund.de


Lubotzky, A. (2012), ‘Expander graphs in pure and applied mathematics’, Bulletin of the American
Mathematical Society pp. 113 – 162.

Luzhnica, E., Day, B. & Liò, P. (2019), On graph classification networks, datasets and baselines, in
‘Workshop on Learning and Reasoning with Graph-Structured Data (ICML)’.

McDonald, A. W. & Shokoufandeh, A. (2019), Sparse super-regular networks, in ‘18th IEEE
International Conference On Machine Learning And Applications (ICMLA)’, IEEE, pp. 1764 –
1770.

Monti, F., Frasca, F., Eynard, D., Mannion, D. & Bronstein, M. M. (2019), ‘Fake news detection on
social media using geometric deep learning’, arXiv:1902.06673 .

NVIDIA (2020), ‘Nvidia white paper: Nvidia a100 tensor core gpu architec-
ture’, https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/
nvidia-ampere-architecture-whitepaper.pdf. accessed May 2021.

Prabhu, A., Varma, G. & Namboodiri, A. (2018), Deep expander networks: Efficient deep networks
from graph theory, in ‘Proceedings of the European Conference on Computer Vision (ECCV)’,
pp. 20 – 35.

Salha, G., Hennequin, R. & Vazirgiannis, M. (2019), Keep it simple: Graph autoencoders without
graph convolutional networks, in ‘Advances in Neural Information Processing Systems (NeurIPS)’.

Salha, G., Hennequin, R. & Vazirgiannis, M. (2020), Simple and effective graph autoencoders with
one-hop linear models, in ‘European Conference on Machine Learning and Principles and Practice
of Knowledge Discovery in Databases (ECML-PKDD)’.

Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B. & Eliassi-Rad, T. (2008), ‘Collective
classification in network data’, AI magazine pp. 93 – 93.

Strategy, M. I. . (2020), ‘Graphcore white paper: The graphcore second generation ipu’,
https://www.graphcore.ai/hubfs/MK2-%20The%20Graphcore%202nd%20Generation%
20IPU%20Final%20v7.14.2020.pdf?hsLang=en. accessed May 2021.

Tanaka, H., Kunin, D., Yamins, D. L. & Ganguli, S. (2020), ‘Pruning neural networks without any
data by iteratively conserving synaptic flow’, arXiv:2006.05467 .

Wang, C., Zhang, G. & Grosse, R. (2020), Picking winning tickets before training by preserving
gradient flow, in ‘8th International Conference on Learning Representations (ICLR)’.

Wang, K., Shen, Z., Huang, C., Wu, C.-H., Dong, Y. & Kanakia, A. (2020), ‘Microsoft academic
graph: When experts are not enough’, Quantitative Science Studies 1(1), 396–413.

Wang, M., Zheng, D., Ye, Z., Gan, Q., Li, M., Song, X., Zhou, J., Ma, C., Yu, L., Gai, Y., Xiao, T., He,
T., Karypis, G., Li, J. & Zhang, Z. (2019), ‘Deep graph library: A graph-centric, highly-performant
package for graph neural networks’, https://www.dgl.ai/. accessed April 2020.

Waradpande, V., Kudenko, D. & Khosla, M. (2020), ‘Deep reinforcement learning with graph-based
state representations’, arXiv preprint arXiv:2004.13965 .

Wu, F., Souza Jr, A. H., Zhang, T., Fifty, C., Yu, T. & Weinberger, K. Q. (2019), Simplifying graph
convolutional networks, in ‘Proceedings of the 36th International Conference on Machine Learning
(ICML)’.

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C. & Philip, S. Y. (2020), ‘A comprehensive survey on
graph neural networks’, IEEE Transactions on Neural Networks and Learning Systems pp. 1 – 21.

Xu, K., Hu, W., Leskovec, J. & Jegelka, S. (2019), How powerful are graph neural networks?, in ‘7th
International Conference on Learning Representations (ICLR)’.

Yao, L., Mao, C. & Luo, Y. (2019), Graph convolutional networks for text classification, in ‘Proceed-
ings of the AAAI Conference on Artificial Intelligence’, pp. 7370 – 7377.

A Full Experiment Results

13

https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://www.graphcore.ai/hubfs/MK2-%20The%20Graphcore%202nd%20Generation%20IPU%20Final%20v7.14.2020.pdf?hsLang=en
https://www.graphcore.ai/hubfs/MK2-%20The%20Graphcore%202nd%20Generation%20IPU%20Final%20v7.14.2020.pdf?hsLang=en
https://www.dgl.ai/


Table A1: Results of the considered GNN models on different datasets

ENZYMES DD PROTEINS IMDB-BINARY

ACC Time per Epoch(s) #Parameters ACC Time per Epoch(s) #Parameters ACC Time per Epoch(s) #Parameters ACC Time per Epoch(s) #Parameters

Simple GCN — 63.67 ± 8.06 0.2004 37853 75.90 ± 3.93 1.3841 43643 67.65 ± 2.21 0.3374 39311 61.30 ± 3.61 0.3297 31499

Activations

GCN

lelu 66.67 ± 6.24 0.2073

37853

74.79 ± 3.46 1.3979

43643

75.20 ± 5.19 0.3464

39311

61.30 ± 4.05 0.3418

31499

prelu 66.67 ± 6.71 0.2486 75.39 ± 3.98 1.4643 75.29 ± 4.85 0.3654 61.00 ± 3.92 0.388

relu 66.33 ± 5.31 0.2132 74.88 ± 3.41 1.3915 74.48 ± 4.61 0.348 61.90 ± 4.01 0.3497

selu 66.17 ± 6.99 0.206 75.64 ± 4.54 1.3948 75.92 ± 2.88 0.3469 62.70 ± 3.32 0.3479

tanh 65.67 ± 7.04 0.2154 76.57 ± 5.20 1.391 70.89 ± 2.70 0.3452 61.20 ± 4.56 0.3522

GIN

lelu 52.17 ± 5.78 0.3219

5420

70.12 ± 4.30 1.6544

10610

67.74 ± 4.82 0.4978

4410

68.10 ± 4.50 0.5292

1282

prelu 55.17 ± 7.94 0.3531 69.19 ± 3.02 1.7253 70.34 ± 4.78 0.5144 69.50 ± 3.88 0.577

relu 51.00 ± 5.88 0.3122 70.03 ± 3.27 1.6424 68.82 ± 5.97 0.4897 67.90 ± 3.96 0.5262

selu 53.83 ± 7.34 0.3201 72.49 ± 4.30 1.6772 72.40 ± 5.03 0.4989 69.00 ± 6.03 0.5345

tanh 62.83 ± 7.15 0.3073 71.32 ± 5.29 1.6443 71.96 ± 4.26 0.494 67.30 ± 5.62 0.5233

Expander

GCN

10% 66.33 ± 6.78 0.2863 22775 74.53 ± 3.50 1.5731 21064 76.55 ± 1.90 0.4524 22781 71.60 ± 5.50 0.4673 19920

50% 64.83 ± 8.64 0.285 58293 74.28 ± 2.52 1.5856 56960 76.36 ± 3.43 0.448 58948 72.40 ± 5.70 0.4779 50888

90% 64.83 ± 9.44 0.2917 93209 75.13 ± 4.69 1.5763 92215 75.38 ± 4.01 0.4476 94502 72.30 ± 6.65 0.4835 81303

GIN

10% 65.83 ± 7.75 0.3798 8918 68.59 ± 2.70 1.6605 6730 70.53 ± 3.96 0.5481 6819 72.00 ± 6.16 0.6368 5850

50% 67.00 ± 6.05 0.3822 29070 70.03 ± 4.20 1.6427 28789 70.08 ± 2.69 0.5483 27455 68.80 ± 5.90 0.6268 24125

90% 67.50 ± 5.74 0.3729 49222 68.93 ± 3.26 1.637 50335 70.71 ± 2.55 0.5455 48091 70.30 ± 7.39 0.6127 41975

MLP

10% 71.50 ± 5.13 0.1653 26001 77.00 ± 3.39 1.0672 23858 69.00 ± 4.99 0.2856 25453 50.00 ± 0.00 0.287 22538

50% 74.67 ± 5.72 0.1783 59661 76.66 ± 2.69 1.07 58020 64.15 ± 4.32 0.2852 58928 50.00 ± 0.00 0.2896 51244

90% 73.17 ± 7.65 0.1772 92811 76.24 ± 3.80 1.0621 91631 63.61 ± 2.40 0.2831 91888 50.00 ± 0.00 0.2967 79487

Vanilla

GCN — 66.50 ± 8.71 0.2557 102239 75.13 ± 3.44 1.5782 101189 76.73 ± 3.85 0.4388 103697 72.70 ± 5.68 0.4433 89045

GIN — 67.67 ± 7.68 0.3692 54260 68.76 ± 5.55 1.6572 55978 72.51 ± 2.39 0.5309 53250 69.00 ± 6.23 0.6135 46650

MLP — 74.17 ± 6.34 0.1646 101481 77.43 ± 3.98 1.0523 100447 64.33 ± 4.93 0.2769 100643 50.00 ± 0.00 0.2725 86895

CORA CITESEER PUBMED ogbn-arxiv

ACC Time per Epoch(s) #Parameters ACC Time per Epoch(s) #Parameters ACC Time per Epoch(s) #Parameters ACC Time per Epoch(s) #Parameters

Simple GCN — 80.40 ± 0.00 0.0088 10038 72.70 ± 0.00 0.0116 22224 78.90 ± 0.00 0.0148 1503 66.53 ± 0.07 0.0501 5160

Activations

GCN

prelu 80.40 ± 0.00 0.0112

10038

72.70 ± 0.00 0.0159

22224

78.90 ± 0.00 0.0201

1503

68.29 ± 0.13 0.0603

5160relu 80.40 ± 0.00 0.0088 72.70 ± 0.00 0.0124 78.90 ± 0.00 0.0156 63.97 ± 0.09 0.0519

tanh 80.40 ± 0.00 0.0086 72.70 ± 0.00 0.0125 78.83 ± 0.05 0.0157 65.51 ± 0.12 0.0518

GIN

prelu 75.42 ± 0.97 0.0124

30114

66.70 ± 0.65 0.0211

66672

76.38 ± 1.06 0.0245

4509

54.45 ± 3.20 0.0732

15480relu 75.42 ± 0.97 0.0117 66.70 ± 0.65 0.0202 76.46 ± 1.12 0.0235 52.21 ± 3.47 0.071

tanh 78.65 ± 0.36 0.0121 65.45 ± 0.63 0.0202 77.46 ± 0.67 0.0236 64.10 ± 0.32 0.0711

Expander

GCN

10% 80.59 ± 0.64 0.021 38663 68.68 ± 0.73 0.0244 96518 78.95 ± 0.63 0.0237 13827 70.70 ± 0.42 0.2733 20392

50% 80.42 ± 0.28 0.0228 185351 69.43 ± 0.34 0.0278 475654 79.34 ± 0.28 0.0246 65027 71.42 ± 0.55 0.2681 59944

90% 80.82 ± 0.23 0.0213 332039 69.42 ± 0.26 0.0259 854790 79.17 ± 0.23 0.0236 116227 71.22 ± 0.71 0.2732 99112

GIN

10% 77.08 ± 0.96 0.0163 57156 64.83 ± 0.49 0.022 126940 76.91 ± 0.51 0.0235 22757 68.78 ± 0.31 0.2742 52768

50% 77.06 ± 0.81 0.017 230212 67.24 ± 0.49 0.0253 532444 76.06 ± 1.14 0.024 100325 69.11 ± 0.86 0.2742 118688

90% 77.36 ± 1.40 0.0167 403012 68.31 ± 0.70 0.0229 937692 76.50 ± 0.73 0.0236 177637 67.54 ± 3.91 0.274 183968

MLP

10% 49.91 ± 1.34 0.0096 38663 49.34 ± 1.43 0.0143 96518 69.43 ± 0.94 0.0142 13827 51.77 ± 0.30 0.1109 20392

50% 53.57 ± 0.53 0.0111 185351 52.53 ± 1.25 0.0175 475654 69.34 ± 1.24 0.0151 65027 54.83 ± 0.20 0.1106 59944

90% 54.06 ± 0.88 0.0102 332039 52.34 ± 1.64 0.0154 854790 68.78 ± 1.56 0.0145 116227 55.55 ± 0.08 0.1107 99112

Vanilla

GCN — 80.54 ± 0.44 0.0172 368903 69.50 ± 0.19 0.0194 949766 79.04 ± 0.12 0.0215 129027 71.22 ± 0.76 0.2713 109096

GIN — 76.57 ± 1.36 0.0126 446532 68.33 ± 0.56 0.0154 1039324 76.55 ± 0.84 0.022 197093 69.37 ± 0.34 0.2737 200608

MLP — 53.21 ± 1.69 0.0061 368903 52.44 ± 1.71 0.0086 949766 68.87 ± 1.78 0.0129 129027 55.63 ± 0.11 0.1098 109096

MNIST CIFAR10 ZINC
Remarks

ACC Time per Epoch(s) #Parameters ACC Time per Epoch(s) #Parameters MAE Time per Epoch(s) #Parameters

Simple GCN — 24.48 100.098 35811 27.90 143.721 36103 0.6963 1.9847 34347 1. We report in this table the full set of experiment results (ac-
curacy/mean absolute error, training time per epoch and
number of model parameters) we have performed, includ-
ing TU datasets (ENZYMES, DD, PROTEINS and IMDB-
BINARY), Citation Networks datasets (CORA, CITE-
SEER, PUBMED and Arxiv), MNIST and CIFAR10, as
well as ZINC.

2. All datasets can be downloaded from (and are processed
following) Benchmarking Graph Neural Networks reposi-
tory Dwivedi et al. (2020b), except the ogbn-arxiv dataset,
which is downloadable from Open Graph Benchmark
repository Hu et al. (2020b), as well as three other cita-
tions datasets downloadable from Deep Graph Library
Wang et al. (2019).

3. We implement 10-fold cross validation on TU datasets
and repeat the experiments 10 times for Citation Networks
datasets, in order to eliminate impacts of randomness. We
report their means and standard deviations in the form of
µ± σ.

4. In light of computational time and their considerably large
sizes, we experiment only once on MNIST, CIFAR10 and
ZINC.

5. Apart from the three choices of activation functions we
report in the main paper (prelu, relu and tanh), we have
also experimented on other activation functions. They are
omitted in the main paper as their performances are very
similar to those we choose. We keep their results in this
table for reference.

6. Considering the computational cost of PNA and Graph-
Sage, we only include them in experiments on ZINC.
The results are summarized in the bottom table, where
softsh stands for ”softshrink“ activation and GSage for
”GraphSage“.

Activations

GCN

lelu 83.52 101.554

14349

48.31 39.6657

14641

0.5947 1.8624

13177
prelu 83.84 103.11 47.90 41.3494 0.5855 1.9273

relu 83.16 102.443 48.27 40.2591 0.5967 1.8407

tanh 77.67 102.975 43.89 40.6699 0.6086 1.8639

GIN

lelu 75.68 119.803

5990

37.90 44.6216

6210

0.5368 2.8046

555
prelu 71.60 115.862 36.48 46.0211 0.5743 2.8826

relu 75.73 119.081 38.67 45.0776 0.5524 2.8009

tanh 79.49 119.729 39.71 45.0382 0.5354 2.8263

Expander

GCN

10% 89.00 124.411 22713 50.27 45.0057 22741 0.3958 2.5833 21877

50% 90.75 124.075 57346 50.69 45.1236 57492 0.3856 2.5793 55517

90% 90.87 124.166 91392 51.68 44.769 91654 0.3845 2.5578 89157

GIN

10% 88.73 120.735 10973 35.93 44.4764 10995 0.4888 3.0905 5835

50% 92.31 119.554 30465 40.35 44.537 30575 0.5274 3.1125 25195

90% 90.24 116.378 49957 42.25 44.401 50155 0.4456 3.0852 44555

MLP

10% 94.97 67.2461 26980 57.96 31.6988 27012 0.6931 2.1455 23775

50% 96.04 66.9236 61456 58.12 31.6178 61624 0.6898 2.1426 59775

90% 96.17 66.7391 95425 58.85 31.6307 95727 0.6873 2.1542 95775

Vanilla

GCN — 90.77 124.091 100197 52.04 44.337 100489 0.3823 2.5538 97857

GIN — 90.33 120.191 54830 42.46 45.2386 55050 0.4939 3.0569 49395

MLP — 96.17 66.125 104044 58.66 31.5435 104380 0.6916 2.1085 104775

Activations Expander Vanilla

GCN GIN GSage PNA GSage PNA GSage PNA

selu softsh selu softsh lelu prelu relu selu softsh tanh lelu prelu relu selu softsh tanh 10% 50% 90% 10% 50% 90% — —

ZINC (Extra results)

MAE 0.6128 0.6549 0.5424 0.5221 0.4937 0.494 0.4907 0.5365 1.5508 0.5665 0.5181 0.5038 0.4972 0.5285 0.5374 0.4493 0.4721 0.4584 0.4579 0.3798 0.3384 0.2946 0.4526 0.3184

Time per Epoch(s) 1.8581 1.8574 2.8144 2.821 4.1406 4.3778 4.1238 4.1293 4.1428 4.121 27.9922 28.1269 28.0074 27.9645 28.0993 27.9598 4.461 4.4495 4.4581 32.0922 32.148 32.0666 4.4149 31.6077

#Parameters 13177 555 5130 3515 11970 37890 63810 23735 102495 181255 70290 201205
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