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Abstract

The numerical approximation of the shallow-water equations, which support geophysical wave propagation,
namely the fast external Poincaré and Kelvin waves and the slow large-scale planetary Rossby waves, is a
delicate and difficult problem. Indeed, the coupling between the momentum and the continuity equations
may lead to the presence of erratic or spurious solutions for these waves, e.g. the spurious pressure and
inertial modes. In addition, the presence of spurious branches and the emergence of spectral gaps in the dis-
persion relation at specific wavenumbers may lead to anomalous dissipation/dispersion in the representation
of both fast and slow waves. The aim of the present study is to propose a class of possible discretization
schemes, via the discontinuous Galerkin method, that is not affected by the above-mentioned problems. A
Fourier/stability analysis of the 2D shallow-water model is performed by analysing the finite volume method
and the linear discontinuous (DG) and non conforming (NC) Galerkin discretizations. These are stabilized
by means of a family of numerical fluxes via the Polynomial Viscosity Matrix approach. A long time stability
result is proven for all schemes and fluxes examined here. Further, a super-convergent result is demonstrated
for the discrete frequencies of the NC method compared to the DG one, except for the slow mode in the Roe
flux case. Indeed, the Roe flux yields spurious frequencies and sub-optimal rates of convergence for the slow
mode for both the DG and NC methods. Finally, numerical solutions of linear and non-linear test problems
confirm the theoretical results and reveal the computational cost efficiency of the NC approach.

Keywords: Geophysical fluid dynamics, Shallow water equations, Discontinuous Galerkin methods,
Fourier/stability analysis, Inertia-gravity waves, Rossby waves

1. Introduction

The shallow-water (SW) equations have been extensively employed in environmental studies to model
hydrodynamics in estuaries, lakes, coastal regions, tides, atmospheric and oceanic motions. They are derived
from the Navier-Stokes system by vertical integration under Boussinesq and hydrostatic pressure assump-
tions. Although the SW system is simplified it is often used as a prototype of the primitive equations
and frequently employed as a benchmark for numerical schemes to be used in more complex oceanic or
atmospheric models. Indeed, it retains much of the dynamical complexity of three-dimensional flows on the
rotating Earth in representing waves that govern most of the atmospheric and oceanic circulations: the fast
external Poincaré and Kelvin waves, mainly driven by gravity, and the large-scale planetary Rossby waves
travelling much slower as they react on variations in the Coriolis force with the latitude. As for the primitive
system, attempts to apply numerical methods to the solution of the SW equations were confronted with a
number of difficulties arising out of inconsistencies in the discrete model relative to the continuous problem.
This is especially true on meshes made up of triangular elements, which are considered in this paper.

A first difficulty has been the occurrence of computational modes in the pressure (surface-elevation) field,
as is the case for the finite-difference (FD) A-grid. Indeed, the mixed Galerkin finite-element (FE) P1 ´ P1
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pair, where velocity components and surface-elevation are represented as piecewise-defined polynomials of
degree 1, is plagued by spurious pressure oscillations preventing the uniqueness of the discrete pressure
[3, 21, 25]. The appearance of such oscillations mainly results from an inappropriate placement of variables
on the mesh and/or a bad choice of approximation function spaces. This difficulty with mixed methods is
not specific to the SW problem alone but is also well known in the context of the Navier-Stokes system when
the so-called discrete inf-sup or LBB condition is not satisfied [3]. The spurious pressure oscillations reflect
the presence of erratic eigenvectors which correspond to physical eigenmodes of the system which have their
phase speed reduced to zero by the numerical method. These appear as stationary internode oscillations
and lead to an accumulation of energy in the smallest-resolvable scale [41]. Two main options have been
proposed to remove the troublesome spurious pressure modes in the FE community: firstly, using mixed-
order FE interpolation methods or equal-order elements with staggered variables and secondly, developing
stabilization procedures. Unfortunately, both options entail a number of difficulties.

For discrete velocities having two components per node, the first option [17, 19] implies much more
discrete vector momentum equations than discrete continuity equations, yielding the appearance of purely
inertial modes [7, 24, 26], for which the discrete velocity rotates with frequency f (the Coriolis parameter).
Such modes trigger noise in the discrete velocity field with suboptimal rates of convergence in the case
of inviscid flows [5]. Unfortunately, the attempt of filtering the spurious inertial solutions unacceptably
degrades the accuracy of the Rossby modes for long-term simulations [6, 26]. For FE pairs having normal
velocity components on element edges belonging to Hpdivq, e.g. the RT [33], BDM and BDFM [3] elements,
spurious inertial modes are not present. This class of FE methods can be seen as generalization of the
FD C-grid. However, as for the C-grid, the discrete Coriolis matrix is rank-deficient for these pairs due to
the required spatial averaging of the Coriolis terms [36], yielding the so-called spurious f -modes [35, 42].
As for the C-grid, a sufficiently fine mesh with respect to the deformation radius or suitable strategies
[11, 43] permit to attenuate the amplitude of the f -modes. The choice of the FE space for pressure is
crucial when the discrete velocities belong to the RT, BDM and BDFM spaces. Indeed, e.g. the RT0 ´ P1

and BDM1 ´ P1 pairs are plagued by spurious pressure oscillations [36]. In fact, the discrete method
should mimic fundamental properties of mathematical and physical systems including conservation laws,
exact mathematical identities of the vector and tensor calculus, symmetry and positivity of solutions etc.
Examples of mimetic properties for the SW equations was first proposed in [35] for classical FD grids and
FE pairs, and then precised in [7, 8] for FE methods that satisfy the conditions of FE exterior calculus,
summarized in [2], using the sequence of spaces and mappings, called the de Rham complex, for velocities
belonging to Hpdivq. Unfortunately, the desirable mimetic properties are not sufficient to ensure that
compatible Galerkin methods have good wave dispersion properties. In particular, two types of problems in
the discrete dispersion relation, relating the wavelength or wavenumber of a wave to its frequency, are known
to arise: spurious (extra) branches and spectral gaps. For example, the RTn´P

DG
n and BDMn´P

DG
n pairs

(n being a integer) have spurious inertia-gravity and Rossby branches, respectively, while the BDFM1´P
DG
1

pair having an exact 2 : 1 ratio of velocity degrees of freedom to pressure degrees of freedom is free of both
inertia-gravity and Rossby spurious branches [7]. Spectral gaps correspond to wavenumbers for which the
dispersion relation is multivalued, namely piecewise continuous, and the group velocity, which crucially
controls energy propagation, drops to zero [13, 27, 30]. When a wave packet has significant energy at the
wavenumbers approaching the spectral gaps, it will have anomalous dispersion and incorrect propagation.
The exact cause of spectral gaps is still lacking. Regrettably, the aforementioned three FE pairs lead to the
presence of spectral gaps in their 1-D representation [37], and since the discrete frequencies, solution of the
dispersion relations, are real there is no intrinsic numerical diffusion to control the gaps.

The second option regroup the generalized wave continuity equation formulations (GWCE), the use of
FE bubbles and stabilization techniques. The GWCE [22, 29] is formed by differentiating the continuity
equation in time, substituting from the momentum equations, and rearranging terms. However, conservation
properties, advection instabilities, lack of consistency with scalar transport schemes and poor accuracy using
implicit schemes are a potential challenge for the method. Further, the GWCE is mainly used for coastal
simulations since the method is not designed for the computation of slow large-scale planetary Rossby waves.
Alternatively, the use of bubles [1, 3] and stabilization techniques [20] aim to recover the information lost
by projecting the discrete pressure gradient in inadequate velocity spaces. This may permit to recover the

2



expected convergence order for the discrete variables but at the price of introducing an undesirable amount
of numerical viscosity, making questionable a sufficiently accurate computation of the slow Rossby modes.

Finally, the discontinuous Galerkin (DG) approach belongs to the group of stabilization techniques,
in the sens that a Riemann solver compute the numerical fluxes at element interfaces by upwinding the
characteristic variables. The DG method is thus based on a very different stabilization strategy from that
adopted in [20]. Due to the potential of the DG approach in geophysical fluid dynamics, there are reasons
to achieve a Fourier mode interpretation, via a Fourier analysis, in order to explore the properties of the
method. These include the ability to derive the dispersion relation and group velocity, investigate the
eventual presence of erratic higher frequency modes and study the long-time stability and accuracy of the
discrete frequencies, which is the main objective of the present work. The SW equations are discretized by
examining three schemes employing identical approximations for all variables: the low order finite-volume
(FV) and the linear discontinuous PDG1 and non conforming PNC1 finite elements. Moreover, the Rusanov,
Roe, FORCE and PVM ´ 4 fluxes are considered in the subsequent analyses via the Polynomial Viscosity
Matrix approach in order to stabilized the numerical solutions. The PNC1 FE was first used in a two-layer
model to approximate the discrete velocities while a P1 discretization of the surface-elevation was adopted
[19]. It was however demonstrated in [24] that such a pair support spurious inertial frequencies. The linear
SW model was later discretized by employing the PNC1 ´ PNC1 pair with an approximate Riemann solver
utilizing the Roe flux [5], but the numerical experiments where performed without analysis.

This work represents a starting point for the development of high order DG schemes for ocean modelling,
and as a first step it focuses on initial smooth solutions to compute the waves of interest (inertia-gravity
and Rossby). The continuous model is presented in Section 2 and the discretization of the model equations
is performed in Section 3 for the FV, PDG1 and PNC1 methods. The Fourier/dispersion analyses are then
conducted in Section 4, and the results are analysed. Numerical solutions of linear and non-linear test
problems are simulated and discussed in Section 5. Some concluding remarks complete the study in Section 6.

2. Non-linear and linear model problems

Let Ω be a bounded open subset of R2 and consider an inviscid layer of constant- and uniform- density
fluid. In this paper, attention is focused on the two-dimensional non-linear SW equations, which in Cartesian
coordinates are expressed as

Bq

Bt
`∇ ¨

´

qb
q

ξ

¯

` fkˆ q` gξ∇pξ ´Hq “ 0, (1)

Bξ

Bt
`∇ ¨ q “ 0, (2)

where upx, tq “ tpu, vq is the velocity field with x “ tpx, yq, q “ ξu “ tpqx, qyq, is the discharge, ξpx, tq and
Hpxq are the thickness of the fluid layer and the depth at rest, respectively, with ξ “ η `H, where ηpx, tq
is the surface elevation with respect to the reference level z “ 0, as shown in Fig. 1.

H

z = 0

ξ

η (x,y,t)

(x,y,t) (x,y)

Figure 1: Schematic illustration of the free surface ηpx, tq with respect to the reference level z “ 0, the total depth ξpx, tq and
the depth at rest or bathymetry Hpxq.

Further, g is the gravitational acceleration, k “ tp0, 0, 1q is a unit vector in the vertical direction leading
to kˆ q “ tp´qy, qxq. The coordinates x and y are oriented eastward and northward, respectively, and the
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latter is measured from a reference latitude ϕ0. The Coriolis parameter f is allowed to vary with latitude,
and the β-plane approximation f “ f0 ` βy is used [32], with f0 “ 2Ωe sinϕ0 and β “ 2pΩe{Req cosϕ0,
where Ωe is the angular frequency of the Earth’s rotation and Re is the Earth’s radius.

Let the flux tensor Fpwq, the source function Spwq and the vector of conserved variables w be

Fpwq “

¨

˚

˚

˚

˚

˝

pqxq2

ξ
`

1

2
gξ2 qxqy

ξ
qxqy

ξ

pqyq2

ξ
`

1

2
gξ2

qx qy

˛

‹

‹

‹

‹

‚

, Spwq “ t
´

´ fkˆ q` gξ∇H, 0
¯

, w “ tpq, ξq, (3)

respectively, where Fpwq “ pFx Fyq, Fx and Fy being the first and second columns of F, respectively, and
Spwq “ tpSx, Sy, 0q. Equations (1) and (2) are then rewritten in the so-called divergence form

Bw

Bt
px, tq `∇ ¨ Fpwpx, tqq “ Spwpx, tqq, (4)

and the conservative form (4) describes a first order hyperbolic system. Boundary and initial conditions
wpx, t “ 0q defined for all x P Ω, complete the mathematical statement of the problem.

The discretization of (4) is mainly used in Section 5.2 to simulate the propagation of fast inertia-
gravity waves and slow Rossby modes in the non-linear case. However, for the purpose of performing the
Fourier/dispersion analysis in Section 4 and validate the theoretical results by conducting the numerical
simulations of Section 5.1, Eqs. (1) and (2) are linearized about a state of rest by assuming constant Coriolis
parameter f and bathymetry H, and we obtain [23]

Bu

Bt
` fkˆ u` g∇η “ 0, (5)

Bη

Bt
`H∇ ¨ u “ 0. (6)

Periodic boundary conditions are employed in Section 3 to derive the discretization of (5) and (6) and
in Section 4 to perform the subsequent Fourier analyses, while no-normal flow boundary conditions are used
in Section 5 to perform the numerical simulations. For the convenience of the subsequent analysis, we let
w“ pu, v, ηq, and (5) and (6) are rewritten on the divergence form

Bw

Bt
px, tq `∇ ¨Fpwpx, tqq “Spwpx, tqq, (7)

where Fpwq and Spwq are the flux matrix and the vector containing the source term, respectively, with

Fpwq “
´

F
x

F
y
¯

“

¨

˝

gη 0
0 gη
Hu Hv

˛

‚ and Spwq “

¨

˝

fv
´fu

0

˛

‚. (8)

The free modes of (5) and (6) are examined by perturbing about the zero basic state. Because the governing
equations are linear with constant coefficients and periodic boundary conditions are employed, the solution
may be examined by considering the behavior of one Fourier mode. We then seek solutions of (5) and (6)
of the form pu, v, ηq “ ppu, pv, pηq eipkx`ly´ωtq, where k and l are the wave numbers in the x- and y-directions,
respectively, and ω is the harmonic frequency. Substitution into (5) and (6) leads to the 3ˆ3 matrix system
for the amplitudes. A non trivial solution exists if the determinant of the matrix equals zero, and this yields
a relationship between the wave numbers k and l and the frequency ω, the so-called dispersion relation

ω
`

ω2 ´ f2 ´ g H p k2 ` l2 q
˘

“ 0. (9)

Solving (9) leads to three continuous (C) solutions for the frequency

ωC1,2 “ ˘
a

f2 ` g H p k2 ` l2 q and ωC3 “ 0. (10)
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The two first solutions, named ωC1,2, correspond to the free-surface gravitational modes with rotational cor-

rection, namely inertia-gravity or Poincaré waves, while ωC3 is the geostrophic mode, and it would correspond
to the slow Rossby mode on a β-plane. We point out that all modes are neutrally stable and neither amplify
nor decay since ω is purely real in (10).

3. Discretization of the non-linear and linear model equations

The DG and NC weak formulations and the FV scheme are first introduced. The general Polynomial
Viscosity Matrix method is then presented in order to derive the numerical flux or trace. Finally, the discrete
equations are computed at selected nodes for the FV, DG and NC schemes, for the purpose of performing
the Fourier analyses in Section 4.

3.1. The DG and NC weak formulations and the FV scheme

In order to describe the weak formulation, a few notations are first defined. Let tτhuhą0 denote a
partition of the domain Ω into a finite number Nel of disjoint open non degenerate elements or triangles Kel,

el “ 1, 2, ¨ ¨ ¨ , Nel, where h is the maximal element diameter. The closure of Ω satisfies Ω “ Y
Nel

el“1Kel and

for Kel` ,Kel´ P τh we have
˝

Kel` X
˝

Kel´ “ H if Kel` ‰ Kel´ , where
˝

Kel is the interior of Kel. In the case
Kel` XKel´ ‰ H, then Kel` XKel´ is either a common face or a common vertex of Kel` and Kel´ . Each

element Kel is supposed to have a Lipschitz boundary BKel. Let Γ be the finite ensemble of Mib interelement
boundaries Γed “ BK el` X BK el´ with el` ą el´ inside the domain, with all possible combinations

Γ “ Y
Mib

ed“1Γed and Γed` X Γed´ “ H if ed` ‰ ed´.

Each interelement boundary Γed P Γ is associated with a unique outward pointing unit normal vector denoted
by ned “ pn

x
ed, n

y
edq. Further, for any function χ P VKel

:“ H1pKelq, where χ represents the variables of the

model problem, and for each element Kel, the trace of χ on Γed is represented by χ˘, namely χL (L for left)
and χR (R for right). For x P Γed we have

χLpxq :“ χ´pxq “ lim
εÑ0´

χpx` εnedq, χRpxq :“ χ`pxq “ lim
εÑ0`

χpx` εnedq. (11)

The variational or weak formulation is obtained by multiplying (4) by an arbitrary test function ψpxq P VKel

and integrating the flux term by parts, using Green’s theorem, over each element Kel. A boundary term
appears which will allow the coupling between two neighbouring elements, yielding

ż

Kel

Bw

Bt
ψ dx ´

ż

Kel

Fpwq∇ψ dx `
ż

BKel

Fpwqnedψ ds “

ż

Kel

Spwqψ dx, @ψ P VKel
. (12)

Let PrpKelq be the space of polynomials of degree at most r ě 0, defined on Kel and consider the polyno-
mial space Vh,Kel

of piecewise smooth functions that are differentiable over an element, but which allows

discontinuities between elements. The space Vh,Kel
will be defined more precisely in Sections 3.3.2 and 3.3.3

for the DG and NC schemes, respectively. The components of w are approximated in Vh,Kel
and these are

denoted by wh. Further, we require ψ P Vh,Kel
. The approximate solution wh P Vh,Kel

, given by the spatial

discretization, is then obtained from (12) as the solution of

N
ÿ

el“1

ż

Kel

Bwh

Bt
ψ dx´

N
ÿ

el“1

ż

Kel

Fpwhq∇ψ dx`
N
ÿ

el“1

ż

BKel

Fpw˚qnedψ ds “
N
ÿ

el“1

ż

Kel

Spwhqψ dx, (13)

where w˚ “ pq˚, ξ˚q denotes the numerical trace of (q, ξ) on the boundary element BKel. Note that the FV
scheme is obtained from (13) when r “ 0, and hence the second term in the left hand side (LHS) of (13) is
zero as the test function belongs to P0pKelq.
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Following the same approach and letting w˚ “ pu˚, η˚q be the numerical trace of (u, η) on BKel with
wh “ puh, vh, ηhq, the variational formulation for the linearized system (7) reads

N
ÿ

el“1

ż

Kel

Bwh
Bt

ψ dx´
N
ÿ

el“1

ż

Kel

Fpwhq∇ψ dx`
N
ÿ

el“1

ż

BKel

Fpw˚qnedψ ds “
N
ÿ

el“1

ż

Kel

Spwhqψ dx. (14)

To complete the definition of wh and wh in (13) and (14), it remains to choose unique numerical fluxes

Fpw˚qned and Fpw˚qned on interelement boundaries Γed as to render the method consistent and stable,
which is the subject of the next section. The numerical flux is a single valued function defined on Γed and
it usually depends on the numerical values of the numerical solution from both sides of the interface.

3.2. Derivation of the numerical trace for the non-linear and linear model problems

Let us first derive the Roe flux in the context of the non-linear problem (4). Assuming the depth at rest
H is constant and the Coriolis term is disregarded, Eq. (4) is rewritten in the quasi-linear form

Bw

Bt
`
BFx

Bw

Bw

Bx
`
BFy

Bw

Bw

By
“ 0. (15)

The Jacobian matrix JFpwq of the normal flux Fpwqned then reads

JFpwq “
BpFpwqnedq

Bw
“
BFx

Bw
nxed `

BFy

Bw
nyed “

¨

˚

˝

unxed ` u ¨ ned unyed gξnxed ´ uu ¨ ned
vnxed vnyed ` u ¨ ned gξnyed ´ vu ¨ ned
nxed nyed 0

˛

‹

‚

, (16)

and we deduce from (16) that JFpwq has three distinct real eigenvalues named λj , j “ 1, 2, 3, with

λ1 “ u ¨ ned ´
a

gξ, λ2 “ u ¨ ned, λ3 “ u ¨ ned `
a

gξ. (17)

Assume that wR and wL are the values of w on the right and left sides of a given interelement boundary
Γed, respectively. A Roe matrix with constant coefficients depending on wR and wL, named JFpwR,wLq,
is then searched, in order to approximate the Jacobian matrix JFpwq. The linearized matrix JFpwR,wLq is
constructed such that the following properties are satisfied

(i) As wR Ñ w and wL Ñ w, then JFpwR,wLq Ñ JFpwq (consistency).

(ii) For any wR, wL, we have JFpwR,wLq pwR ´ wLq “
`

FpwRq ´ FpwLq
˘

ned (conservation across
discontinuities).

(iii) The matrix JFpwR,wLq is diagonalizable with real eigenvalues.

The Roe scheme then requires the resolution of a Riemann problem at each edge or interelement boundary
Γed P Γ. The Roe approximate Rieman solver was first devised for the Euler system [34], and later on
applied to the shallow-water model [15, 38]. Classical linearized Roe matrices are known for the most usual
systems [28] and JFpwR,wLq is obtained from JFpwq by replacing pu, v, ξq in (16) by pu‹, v‹, ξ‹q defined as

u‹ :“ pu‹, v‹q :“

˜

a

ξRuR `
a

ξLuL
a

ξR `
a

ξL
,

a

ξRvR `
a

ξLvL
a

ξR `
a

ξL

¸

, ξ‹ :“
ξR ` ξL

2
. (18)

By using the properties of the Roe matrix, the Roe flux is then defined as

Fpw˚qned “
1

2

`

FpwRq ` FpwLq
˘

ned ´
1

2
|JFpwR,wLq| pwR ´wLq, (19)

where the viscosity matrix |JFpwR,wLq| is written as follows

|JFpwR,wLq| “ RpwR,wLq |ΛpwR,wLq|R
´1pwR,wLq. (20)
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In (20), |ΛpwR,wLq| is the diagonal matrix whose coefficients are the absolute value of the eigenvalues of
JFpwR,wLq, namely λ‹j pwR,wLq, j “ 1, 2, 3, obtained from (17) by replacing pu, v, ξq by pu‹, v‹, ξ‹q, with

λ‹1 “ u‹ ¨ ned ´
a

gξ‹, λ‹2 “ u‹ ¨ ned, λ‹3 “ u‹ ¨ ned `
a

gξ‹, (21)

and RpwR,wLq is the matrix whose the j-th column is the eigenvector corresponding to the j-th eigenvalue
of JFpwR,wLq, j “ 1, 2, 3. In order to avoid the computation of the eigenvectors of JFpwR,wLq in (20) at
each side Γed P Γ, a class of methods, named PVM (Polynomial Viscosity Matrix), has been developed in
[4] following an idea proposed in [12], leading to a reduced computational cost compared to the evaluation
of (20). It is shown in [4] that a few well known schemes such as the Roe, Rusanov, Lax-Friedrichs, FORCE,
GFORCE and HLL solvers, can be rewritten on the form of a PVM method.

For m P N, the PVM method corresponding to the Roe flux in (19) defines the viscosity matrix through
a suitable polynomial evaluation of the Roe linearized matrix JFpwR,wLq on the form

|JFpwR,wLq| “

maxpmq
ÿ

m“0

αm
`

JFpwR,wLq
˘m
, (22)

with maxpmq “ 2. Equation (22) can be interpreted as an approximate Riemann solver based on a polyno-
mial that interpolates the absolute value function at the eigenvalues λ‹j , j “ 1, 2, 3, of JFpwR,wLq, yielding

¨

˚

˝

1 λ‹1 pλ‹1q
2

1 λ‹2 pλ‹2q
2

1 λ‹3 pλ‹3q
2

˛

‹

‚

¨

˚

˝

α0

α1

α2

˛

‹

‚

“

¨

˚

˝

|λ‹1|

|λ‹2|

|λ‹3|

˛

‹

‚

. (23)

Since the eigenvalues λ‹j , j “ 1, 2, 3, are all distinct, Eq. (23) has a unique solution and we obtain
¨

˚

˝

α0

α1

α2

˛

‹

‚

“
1

2gξ‹

¨

˚

˝

|λ‹1|λ
‹
2λ
‹
3 ´ 2λ‹1|λ

‹
2|λ

‹
3 ` λ

‹
1λ
‹
2|λ

‹
3|

´pλ‹2 ` λ
‹
3q|λ

‹
1| ` 2pλ‹1 ` λ

‹
3q|λ

‹
2| ´ pλ

‹
1 ` λ

‹
2q|λ

‹
3|

|λ‹1| ´ 2|λ‹2| ` |λ
‹
3|

˛

‹

‚

. (24)

The Roe flux employed to perform the numerical simulations of Section 5.2 in the non-linear case then yields

Fpw˚qned “
1

2

`

FpwRq ` FpwLq
˘

ned ´
1

2

maxpmq
ÿ

m“0

αm
`

JFpwR,wLq
˘m
pwR ´wLq, (25)

with maxpmq “ 2. The following Rusanov flux is also used in Section 5.2 for comparison purposes with

Fpw˚qned “
1

2

`

FpwRq ` FpwLq
˘

ned ´
1

2
max
j“1,2,3

|λ‹j | I3,3 pwR ´wLq, (26)

where max
j“1,2,3

|λ‹j | “ |u
‹ ¨ ned| `

a

gξ‹ and I3,3 is the 3ˆ 3 identity matrix.

In order to perform the Fourier analysis in Section 4, the flux Fpw˚qned in (14) needs to be derived for
the linear SW model. Let twu and rrwss denote the mean and the jump of the components ofw, respectively,

twu :“ ptuu, tηuq :“ ptuu, tvu, tηuq :“
1

2
puR ` uL, vR ` vL, ηR ` ηLq ,

rrwss :“ prruss, rrηssq :“ prruss, rrvss, rrηssq :“ puR ´ uL, vR ´ vL, ηR ´ ηLq .

By using the notation defined in (11) for w, the Jacobian matrix JFpwR,wLq of the normal flux Fpwqned is

computed from Fpwq in (8) and the eigenvalues λj , j “ 1, 2, 3, of JFpwR,wLq are then obtained, leading to

JFpwR,wLq “

¨

˚

˝

0 0 gnxed
0 0 gnyed

Hnxed Hnyed 0

˛

‹

‚

, and

¨

˚

˝

λ1

λ2

λ3

˛

‹

‚

“

¨

˚

˝

´
?
gH

0
?
gH

˛

‹

‚

. (27)
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By replacing λ‹j by λj , j “ 1, 2, 3, in (24) we obtain α0 “ α1 “ 0 and α2 “ 1{
?
gH for the Roe flux, with

ξ‹ “ H. In the context of the PVM approach, the Roe flux is then rewritten from (25) in the linear case as

Fpw˚qned “
1

2

`

FpwRq `FpwLq
˘

ned ´
1

2
?
gH

`

JFpwR,wLq
˘2
rrwss, (28)

and the Rusanov flux yields

Fpw˚qned “
1

2

`

FpwRq `FpwLq
˘

ned ´
1

2

a

gH I3,3rrwss. (29)

Thanks to the particular form of JFpwR,wLq in (27), the following properties hold

`

JFpwR,wLq
˘2m`1

“ pgHq
m
JFpwR,wLq, (30)

`

JFpwR,wLq
˘2m

“ pgHq
m´1 `

JFpwR,wLq
˘2
, (31)

for m “ 0, 1, 2, . . . ,maxpmq. By letting

rα0 “ α0, rα1 “

t
maxpmq`1

2 u
ÿ

m“1

α2m´1 pgHq
m´1

, rα2 “

t
maxpmq

2 u
ÿ

m“1

α2m pgHq
m´1

, (32)

a general PVM method is then rewritten using (25) for the purpose of the Fourier analysis in Section 4 as

maxpmq
ÿ

m“0

αm
`

JFpwR,wLq
˘m
“ rα0I3,3 ` rα1JFpwR,wLq ` rα2

`

JFpwR,wLq
˘2
. (33)

Equation (33) then permits the compact writing of a whole family of PVM fluxes on Γed, including the Roe
and Rusanov fluxes on the general form

Fpw˚qned “
1

2

`

FpwRq `FpwLq
˘

ned ´
1

2

´

rα0I3,3rrwss ` rα1JFpwR,wLqrrwss ` rα2

`

JFpwR,wLq
˘2
rrwss

¯

. (34)

In the remaining part of the paper we let rα1 “ 0. Indeed, the eigenvalues of JFpwR,wLq are symmetric, and
hence, the polynomials which defines the matrix of numerical dissipation should also be symmetric. Further,
we let rα0 “ p

?
gH and rα2 “ q{

?
gH, where p and q are positive parameters, and the general PVM flux on

Γed is finally rewritten from (34) in the following form that is used in Sections 3.3, 4 and 5.1

Fpw˚qned “

˜

gtηuned

Htuu ¨ ned

¸

looooooomooooooon

centered contribution

´
?
gH
2

˜

prruss ` q prruss ¨ nedqned

pp` qq rrηss

¸

.

loooooooooooooooooomoooooooooooooooooon

stabilization part

(35)

In (35) the PVM flux is naturally split into the sum of a centered part and a stabilizing or diffusive part.
The eigenvalues of the stabilization matrix appearing in the right hand side of (34), namely

2
ÿ

m“0

rαm
`

JFpwR,wLq
˘m
“ p

a

gHI3,3 `
q

?
gH

`

JFpwR,wLq
˘2
“
a

gH

¨

˚

˝

p` qpnxedq
2 qnxedn

y
ed 0

qnxedn
y
ed p` qpnyedq

2 0

0 0 p` q

˛

‹

‚

,

(36)
are p ` q (double) and p. Consequently, since p and q are real numbers, the choice p ` q ą 0 and p ą 0
makes the stabilization matrix definite positive and the jumps rrwss are expected to render the scheme
stable by acting as a source of numerical dissipation. The choices for pp, qq employed for the linear model
are summarized in Table 1. The Rusanov and Roe fluxes coincide with a PVM method with pp, qq “ p1, 0q
and pp, qq “ p0, 1q, respectively. The FORCE flux occurs for pp, qq “ p1{2, 1{2q, namely the PVM ´ 2 flux,
according to the nomenclature defined in [4], while the PVM ´ 4 flux, introduced in [4] by using a fourth
degree polynomial in (22), namely with maxpmq “ 4, is obtained for pp, qq “ p3{8, 5{8q.
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Table 1: The choices of (p,q) employed in the linear SW model leading to the centered, Rusanov, Roe, PVM-2 and PVM-4
fluxes.

Centered Rusanov Roe PVM´ 2 PVM´ 4

p 0 1 0 1{2 3{8

q 0 0 1 1{2 5{8

3.3. The discrete equations for the linear model problem

The discretized weak formulation (14) is now computed using the FV, DG and NC methods. For the
purpose of the subsequent Fourier analyses in Section 4, a uniform mesh made up of biased right triangles is
considered, denoted as Mesh 1, and the representative meshlength parameter h is thus taken as a constant
in the x- and y-directions. Further, only a few set of discrete equations have to be computed for the FV, DG
and NC methods at typical nodal locations, due to symmetry reasons and the needs of the Fourier analysis.
For the FV, DG and NC schemes, the discretized weak formulation may be expressed on the compact form

B

Bt

ˆ

Mpuq
Mpvq

˙

` f

ˆ

´Mpvq
Mpuq

˙

`
g

h

ˆ

G1pηq
G2pηq

˙

´

?
gH

h

˜

pp` qqD1puq ` pD2puq ` qD3pvq

pD1pvq ` pp` qqD2pvq ` qD3puq

¸

“ 0, (37)

B

Bt
Mpηq `

H

h

`

G1puq `G2pvq
˘

´

?
gH

h
pp` qq

`

D1pηq `D2pηq
˘

“ 0, (38)

where (37) and (38) are computed over triangles K1 and K2 on Fig. 2 (middle panel) for the FV method,
at nodes 1, 2, 3, 4, 5, 6, on Fig. 3 (middle panel) for the DG scheme, and finally at nodes 1, 2, 3, on Fig. 4
(middle panel) for the NC method. A selected number of scalar discrete equations are hence obtained and
written on the form of (37) and (38): 6 for the FV scheme, and 18 and 9, respectively, for the DG and NC
schemes. In (37) and (38) G1 and G2 denote the gradient operators in the -x and -y directions, respectively,
D1, D2 and D3 are dissipation operators originating from the jumps rruss and rrηss in (35) and M is the mass
operator. These operators are now computed in Sections 3.3.1 to 3.3.3 for the FV, DG and NC methods.

3.3.1. The FV discretization

The space of polynomials P0pKelq, with r “ 0, is first considered. The components puh, vh, ηhq of the
approximate solution wh are constant over each triangle Kel of τh, and we let wh “ puKel

, vKel
, ηKel

q, while
the basis function ψ is nothing else than the characteristic function over Kel which is defined to have the
value 1 on Kel and zero elsewhere, as shown in Fig. 2 (right panel).
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Figure 2: Nodes distribution displayed by the symbol ‚ (left and middle panels) and the constant test function ψ belonging
to P0pKelq (right panel) over a triangle Kel of τh, for the FV scheme.
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As an example, the equation for u in (14) is computed over triangle K1 in Fig. 2 (middle panel), yielding

BuK1

Bt
´ fvK1

`
2

h2

ż

BK1

´

gnxedtηhu ´

?
gH

2

`

prruhss ` q prruhss ¨ nedqn
x
ed

˘

¯

ds “ 0, (39)

since the area of K1 is h2{2 and ψK1
“ 1. The computation of the boundary integral along BK1 requires

its evaluation along the three boundaries of K1 , involving the neighbouring triangles K2,K5 and K6 due to
the computation of the mean of ηh and the jumps of uh and vh. Simple calculations lead to

BuK1

Bt
´ fvK1

`
g

h

`

ηK2
´ ηK5

˘

´

?
gH

h

´

p
´?

2puK2
´ uK1

q ´ 2uK1
` uK5

` uK6

¯

` q
´

1?
2
p´uK1

` uK2
´ vK1

` vK2
q ´ uK1

` uK5

¯¯

“ 0. (40)

In order to perform the Fourier analysis, Eq. (14) is computed similarly for the two remaining equations (v
and η) on K1 and for the three equations (u, v and η) on K2. Since χ stands for u, v or η, we obtain

G1pχq “

˜

χK2
´ χK5

´χK1
` χK3

¸

, D3pχq “
1
?

2

˜

´χK1
` χK2

χK1
´ χK2

¸

, D1pχq “ D3pχq ´

˜

χK1
´ χK5

χK2
´ χK3

¸

, (41)

G2pχq “

˜

χK2
´ χK6

´χK1
` χK4

¸

, Mpχq “

˜

χK1

χK2

¸

, D2pχq “ D3pχq ´

˜

χK1
´ χK6

χK2
´ χK4

¸

. (42)

3.3.2. The PDG1 discretization

The space Vh,Kel
Ă VKel

, defined as

Vh,Kel
:“ V DGh,Kel

“ tχ : χ|Kel
P P1pKelq for all Kel P τhu,

is now considered. The basis function ψ and the approximate solutionwh belong to the space of polynomials
P1pKelq, and hence the components uh, vh, ηh ofwh are approximated linearly inside each triangle Kel of τh.

For example, wh “
ř3
j“1wjptqψjpx, yq over triangle K1, shown in Fig. 3 (middle panel). The nodal values

wjptq exclusively belong to a given element Kel and hence such an approximation is completely discontinuous
between the triangles of τh. The degrees of freedomwjptq are values of the numerical solution at the vertices
of Kel and the linear basis function ψjpx, yq takes the value 1 at a given vertex j and the value 0 at the
remaining two vertices of Kel, as shown in Fig. 3 (right panel).

The equation for uh in (14) is computed at node 1 over K1 in Fig. 3 (middle panel) and we obtain

ż

K1

Buh
Bt

ψ1 dx´ f

ż

K1

vh ψ1 dx´ g

ż

K1

ηh
Bψ1

Bx
dx`

ż

BK1

gη˚nxed ψ1 ds “ 0. (43)
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Figure 3: As for Fig. 2 but for the DG scheme with ψ belonging to V DG
h,K

el
.
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The integrals in (43) are then computed by expanding uh, vh and ηh inside triangle K1 in terms of the linear
basis functions ψ1, ψ2 and ψ3. The evaluation of the three first terms in the LHS of (43) yields

ż

K1

Buh
Bt

ψ1 dx “
h2

24

B

Bt
p2u1 ` u2 ` u3q, ´f

ż

K1

vh ψ1 dx “ ´f
h2

24
p2v1 ` v2 ` v3q, (44)

´g

ż

K1

ηh
Bψ1

Bx
dx “ ´g

h

6
pη1 ` η2 ` η3q. (45)

For the computation of the integral along BK1 in (43), let Γi,j and ni,j be the edge connecting node i to
node j and the associated normal, respectively, such that BK1 “ Γ1,2 Y Γ2,3 Y Γ3,1. The integral along

Γ2,3 cancels as ψ1 is zero on Γ2,3 by construction. For the integral along Γ1,2 we have n1,2 “
1?
2
p1, 1q and

ψ1psq “ 1´ s, with 0 ď s ď 1, leading to

ż

Γ1,2

´

gnxedtηhu ´

?
gH

2

`

prruhss ` q prruhss ¨ nedqn
x
ed

˘

¯

ψ1 ds

“
h

2

ż 1

0

gpηΓ4,6
` ηΓ1,2

q p1´ sq ds´
h

2

c

gH

2

ż 1

0

´

p2p` qqpuΓ4,6
´ uΓ1,2

q ` qpvΓ4,6
´ vΓ1,2

q

¯

p1´ sq ds

“
h

12
gp2η1 ` η2 ` 2η4 ` η6q `

h

12

c

gH

2

´

p2p` qqp2u1 ` u2 ´ 2u4 ´ u6q ` qp2v1 ` v2 ´ 2v4 ´ v6q

¯

, (46)

since w|Γ1,2
“w1 ` pw2 ´w1qs, and w|Γ4,6

“w4 ` pw6 ´w4qs.

Similarly, along Γ3,1 we have n3,1 “ p0,´1q and ψ1psq “ s, with 0 ď s ď 1, and

ż

Γ3,1

´

gnxedtηhu ´

?
gH

2

`

prruhss ` q prruhss ¨ nedqn
x
ed

˘

¯

ψ1 ds

“ ´p
a

gH
h

2

ż 1

0

puΓ13,14
´ uΓ3,1

q s ds “ p
a

gH
h

12
p2u1 ` u3 ´ u13 ´ 2u14q, (47)

using w|Γ3,1
“w3 ` pw1 ´w3qs and w|Γ13,14

“w13 ` pw14 ´w13qs. This completes the computation of the

equation for uh in (14) at node 1 and we finally obtain

B

Bt
p2u1 ` u2 ` u3q ´ fp2v1 ` v2 ` v3q `

2g

h
p´η2 ´ 2η3 ` 2η4 ` η6q

`

?
2gH

h

´

p2p` qqp2u1 ` u2 ´ 2u4 ´ u6q ` qp2v1 ` v2 ´ 2v4 ´ v6q ` p
?

2p2u1 ` u3 ´ u13 ´ 2u14q

¯

“ 0.

(48)

For the purpose of the Fourier analysis, the equation for uh is computed similarly in (14) at nodes 2, 3, ¨ ¨ ¨ , 6,
of Fig. 3, as well as the equations for vh and ηh in (14) at nodes 1, 2, 3, ¨ ¨ ¨ , 6, leading to a set of 18 discrete
equations written on the compact form (37) and (38) with

G1pχq “

¨

˚

˚

˚

˚

˚

˚

˝

´χ2 ´ 2χ3 ` 2χ4 ` χ6

χ1 ´ χ3 ` χ4 ` 2χ6 ´ 2χ11 ´ χ12

2χ1 ` χ2 ´ χ11 ´ 2χ12

´2χ1 ´ χ2 ` χ5 ´ χ6 ` 2χ7 ` χ8

´χ4 ´ 2χ6 ` χ7 ` 2χ8

´χ1 ´ 2χ2 ` χ4 ` 2χ5

˛

‹

‹

‹

‹

‹

‹

‚

, D3pχq “
1
?

2

¨

˚

˚

˚

˚

˚

˚

˝

´2χ1 ´ χ2 ` 2χ4 ` χ6

´χ1 ´ 2χ2 ` χ4 ` 2χ6

0
2χ1 ` χ2 ´ 2χ4 ´ χ6

0
χ1 ` 2χ2 ´ χ4 ´ 2χ6

˛

‹

‹

‹

‹

‹

‹

‚

, (49)
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G2pχq “

¨

˚

˚

˚

˚

˚

˚

˝

χ2 ´ χ3 ` 2χ4 ` χ6 ´ χ13 ´ 2χ14

´χ1 ´ 2χ3 ` χ4 ` 2χ6

χ1 ` 2χ2 ´ 2χ13 ´ χ14

´2χ1 ´ χ2 ` 2χ5 ` χ6

´2χ4 ´ χ6 ` 2χ9 ` χ10

´χ1 ´ 2χ2 ´ χ4 ` χ5 ` χ9 ` 2χ10

˛

‹

‹

‹

‹

‹

‹

‚

, D1pχq “ D3pχq ´

¨

˚

˚

˚

˚

˚

˚

˝

0
2χ2 ` χ3 ´ 2χ11 ´ χ12

χ2 ` 2χ3 ´ χ11 ´ 2χ12

2χ4 ` χ5 ´ 2χ7 ´ χ8

χ4 ` 2χ5 ´ χ7 ´ 2χ8

0

˛

‹

‹

‹

‹

‹

‹

‚

, (50)

Mpχq “
1

2

¨

˚

˚

˚

˚

˚

˚

˝

2χ1 ` χ2 ` χ3

χ1 ` 2χ2 ` χ3

χ1 ` χ2 ` 2χ3

2χ4 ` χ5 ` χ6

χ4 ` 2χ5 ` χ6

χ4 ` χ5 ` 2χ6

˛

‹

‹

‹

‹

‹

‹

‚

, D2pχq “ D3pχq ´

¨

˚

˚

˚

˚

˚

˚

˝

2χ1 ` χ3 ´ χ13 ´ 2χ14

0
χ1 ` 2χ3 ´ 2χ13 ´ χ14

0
2χ5 ` χ6 ´ 2χ9 ´ χ10

χ5 ` 2χ6 ´ χ9 ´ 2χ10

˛

‹

‹

‹

‹

‹

‹

‚

. (51)

3.3.3. The PNC1 discretization

The polynomial space Vh,Kel
is finally considered with

Vh,Kel
:“ V NCh,Kel

“ tχ :χ|Kel
P P1pKelq for all Kel P τh, χ is continuous at the midpoints of Γedu,

As for the PDG1 case, the basis function ψ and the discrete solution wh belong to the space of polynomials
P1pKelq, and hence the components of wh are approximated linearly over triangles Kel of τh. However, the
nodal valueswj of the PNC1 element are located at midpoints of edges of Kel [9], as shown in Fig. 4 (left and
middle panels), and two adjacent triangles share the same nodal value at the mipoint of their common edge.
The shape of the PNC1 linear basis function ψ that is used to approximate the components of wh on the
element’s two-triangle support is represented in grey in Fig. 4 (right panel). The basis function has the value
1 at the mipoint and along the common edge of the two adjacent triangles and 0 at the midpoints of the
remaining four edges, represented by the symbol ‚ in Fig. 4 (right panel). Since such a representation is only
continuous across triangle boundaries at midpoint of the edges, and discontinuous everywhere else around
a triangle boundary, this element is termed nonconforming (NC) in the FE literature. A useful property of
the PNC1 element is that the mass matrix is diagonal since the PNC1 basis functions are orthogonal [39].
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Figure 4: As for Fig. 2 but for the NC scheme with ψ belonging to V NC
h,K

el
.

The equation for uh in (14) is computed at node 1 of Fig. 4 (middle panel), and the compact support of
the NC basis function ψ1 at node 1 is now made up of triangles K1 and K2, namely K1 YK2, leading to

ż

K1YK2

Buh
Bt

ψ1 dx´ f

ż

K1YK2

vh ψ1 dx´ g

ż

K1YK2

ηh
Bψ1

Bx
dx`

ż

BK1YBK2

gη˚nxedψ1 ds “ 0. (52)
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The integrals in (52) are computed by expanding uh, vh and ηh over triangles K1 and K2 in terms of the
NC basis functions ψ1, ψ2, ψ3, ψ8 and ψ9. Due to the orthogonality property of the NC basis functions and

because
Bψ1

Bx |K1
“
Bψ1

Bx |K2
“ 0, we obtain

ż

K1YK2

Buh
Bt

ψ1 dx “
h2

3

Bu1

Bt
, ´f

ż

K1YK2

vh ψ1 dx “ ´f
h2

3
v1, ´g

ż

K1YK2

ηh
Bψ1

Bx
dx “ 0. (53)

Let Γj and nj be the edge corresponding to midpoind j and the associated normal, respectively, and let
wΓi

|Kj
denote the evaluation of w along Γi on Kj . We have BK1 “ Γ1 Y Γ2 Y Γ3 and BK2 “ Γ1 Y Γ8 Y Γ9.

The contribution of K1 and K2 in the last integral in the LHS of (52) cancels along Γ1 due to the unique
normal vector n1 on Γ1. Along Γ8 we have n8 “

´1?
2
p1, 1q and ψ1psq “ 1´ 2s, with 0 ď s ď 1, yielding

ż

Γ8

´

gnxedtηhu ´

?
gH

2

`

prruhss ` q prruhss ¨ nedqn
x
ed

˘

¯

ψ1 ds

“
h

2

ż 1

0

gpηΓ8
|K3
`ηΓ8

|K2
q p2s´1q ds´

h

2

c

gH

2

ż 1

0

´

p2p`qqpuΓ8
|K3
´uΓ8

|K2
q`qpvΓ8

|K3
´vΓ8

|K2
q

¯

p1´2sq ds

“
h

6
gp´η1 ` η9 ´ η18 ` η19q `

h

6

c

gH

2

´

p2p` qqpu1 ´ u9 ´ u18 ` u19q ` qpv1 ´ v9 ´ v18 ` v19q

¯

, (54)

since w|Γ8 on K2
“ w8 ´w9 `w1 ` 2spw9 ´w1q and w|Γ8 on K3

“ w8 ´w19 `w18 ` 2spw19 ´w18q. The

computations of the last integral in the LHS of (52) are conducted similarly on Γ9, Γ2 and Γ3, and (52)
finally reads as

Bu1

Bt
´ fv1`

g

2h
pη2 ´ η3 ` η4 ´ η5 ` η6 ´ η7 ´ η8 ` η9 ´ η18 ` η19 ´ η20 ` η21q

`

?
gH

2
?

2h

´

p2p` qq p2u1 ´ u3 ´ u4 ` u5 ´ u9 ´ u18 ` u19q ` q p2v1 ´ v3 ´ v4 ` v5

´v9 ´ v18 ` v19q `
?

2pp` qq p2u1 ´ u2 ` u6 ´ u7 ´ u8 ` u20 ´ u21q

¯

“ 0. (55)

In order to perform the Fourier analysis, the equation for uh in (14) is computed similarly at nodes 2 and
3 of Fig. 4, as well as the equations for vh and ηh in (14) at nodes 1, 2 and 3, leading to a set of 9 discrete
equations written on the compact form (37) and (38) with

G1pχq “

¨

˝

χ2 ´ χ3 ` χ4 ´ χ5 ` χ6 ´ χ7 ´ χ8 ` χ9 ´ χ18 ` χ19 ´ χ20 ` χ21

´χ1 ´ 2χ3 ` 2χ4 ` χ5 ´ χ6 ` χ7 ` χ10 ´ χ11

χ1 ` 2χ2 ´ χ4 ` χ5 ´ χ6 ´ 2χ7 ` χ16 ´ χ17

˛

‚, (56)

G2pχq “

¨

˝

2χ2 ` χ3 ` χ4 ´ χ5 ´ 2χ8 ´ χ9 ´ χ18 ` χ19

´2χ1 ´ χ3 ` χ4 ` 2χ5 ` χ8 ´ χ9 ´ χ12 ` χ13

´χ1 ` χ2 ´ χ4 ` χ5 ` χ6 ´ χ7 ´ χ8 ` χ9 ` χ14 ´ χ15 ` χ16 ´ χ17

˛

‚, (57)

D3pχq “
1
?

2

¨

˝

´2χ1 ` χ3 ` χ4 ´ χ5 ` χ9 ` χ18 ´ χ19

0
χ1 ´ 2χ3 ´ χ4 ` χ5 ` χ6 ´ χ16 ` χ17

˛

‚, (58)

D1pχq “ D3pχq ´

¨

˝

2χ1 ´ χ2 ` χ6 ´ χ7 ´ χ8 ` χ20 ´ χ21

´χ1 ` 2χ2 ´ χ5 ´ χ6 ` χ7 ´ χ10 ` χ11

0

˛

‚, (59)

D2pχq “ D3pχq ´

¨

˝

0
2χ2 ´ χ3 ´ χ4 ` χ8 ´ χ9 ` χ12 ´ χ13

´χ2 ` 2χ3 ´ χ7 ´ χ8 ` χ9 ´ χ14 ` χ15

˛

‚, Mpχq “ 2

¨

˝

χ1

χ2

χ3

˛

‚. (60)
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4. Fourier/Dispersion analyses of the linear model problem

4.1. The generalized eigenvalue system

The Fourier / dispersion analysis has proven practical and beneficial to detect dispersion and dissipation
problems as well as the presence of spurious modes in a few discretization schemes [6, 24, 25, 26]. It is adopted
in this study to analyse the stability and accuracy of the FV, DG and NC discrete schemes examined earlier
in Section 3. Note that the meshlength parameter h remains constant in the present section.

When continuous linear finite elements are employed, the Fourier analysis is straightforward since all
the discrete unknowns are located at only one type of mesh nodes, namely vertices. It is hence sufficient to
consider one discrete equation for uh, vh and ηh at such a typical node to compute the dispersion relation,
due to symmetry reasons. As for the continuous case, a polynomial of degree three for the frequency is then
obtained, but spurious pressure oscillations prevent the uniqueness of the solution, as mentioned in Section 1.

In this study, such a simple case does not occur since the nodal unknowns appearing in (37) and (38) are
located at the barycenter of triangles for the FV method, local vertices per triangle for the DG scheme and
midpoints of edges for the NC method. Further, due to symmetry reasons, two possible types of triangles
need to be considered for the FV and DG schemes: the lower left and upper right triangles, namely K1 and
K2 in Figs. 2 and 3. Consequently, we need to compute the discrete equations for uh, vh and ηh at the:

• two types of barycenters corresponding to upward and downward pointing triangles for the FV scheme,

• six types of vertices for the DG scheme, namely three vertices per triangle for the upward and downward
pointing triangles,

• three types of faces: namely, horizontal, vertical and diagonal faces for the NC scheme.

This explain why we have conputed (37) and (38) over triangles K1 and K2 on Fig. 2 for the FV method, at
nodes 1, 2, 3, 4, 5, 6, on Fig. 3 for the DG scheme, and finally at nodes 1, 2, 3, on Fig. 4 for the NC method.
Note that the nodal unknowns belonging to the same set are distributed on a regular grid of size h, as
shown in Fig. 5 for the FV, DG and NC schemes. The numbering of the typical nodal unknowns in Fig. 5
corresponds to that employed in Figs. 2 to 4 for the three schemes.

FV DG NC

1
1 3

5
1 3

2 2 4 6
2

Figure 5: The sets of nodal unknowns for the FV, DG and NC schemes. The nodal unknowns belonging to the same set are
distributed on a regular grid of size h.

In order to obtain the dispersion relations at the discrete level and to found the discrete geostrophic
and inertia-gravity frequencies, we follow the same procedure as in Section 2 for the continuous case. The
discrete solutions corresponding to puj , vj , ηjq “ ppuj0 , pvj0 , pηj0q e

ipkxj`lyj´ωtq are sought, where puj , vj , ηjq are

the nodal unknowns that appear in the selected discrete equations (37) and (38) and ppuj0 , pvj0 , pηj0q are the

Fourier amplitudes (for the FV scheme j is written as Kj). The pxj , yjq coordinates are expressed in terms
of a distance to a reference node. By letting In “ t1, 2, ..., nu, where n is a positive integer, j0 belongs to
the set of nodal unknowns for the discrete schemes shown in Fig. 5, with j0 P I2 for the FV method, j0 P I6
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for the DG scheme and j0 P I3 for the NC discretization. Indeed, j0 is intimately associated with each type
of node for which (37) and (38) have been computed, as illustrated in Sections 4.2 to 4.4. Let

rω “
hω
?
gH

, Rd “

?
gH

f
, λ “

Rd
h
, (61)

be the normalized frequency, the Rossby radius of deformation and the λ parameter, a dimensionless quantity
measuring resolution, with e.g. λ “ 2 and λ “ 1{10 corresponding to fine and coarse meshes, respectively.

Substitution of puj , vj , ηjq in the selected discrete equations (37) and (38) leads to a matrix system for
the amplitudes on the form of the following generalized eigenvalue problem

pA3n,3nX “ i rω pB3n,3nX, (62)

with X “

´

tpujujPIn
, tpvjujPIn

, tpηjujPIn
,
¯

and

pA3n,3n “

¨

˚

˚

˚

˝

pp` qq pD1 ` p
pD2 ´

1

λ
xM ` q pD3

a

g
H

pG1

1

λ
xM ` q pD3 p pD1 ` pp` qq

pD2

a

g
H

pG2
b

H
g
pG1

b

H
g
pG2 pp` qq p pD1 `

pD2q

˛

‹

‹

‹

‚

, pB3n,3n “

¨

˚

˝

xM O O

O xM O

O O xM

˛

‹

‚

, (63)

where O is the nˆ n null matrix. The matrices xM, pG1,
pG2,

pD1,
pD2 and pD3 of size nˆ n in (63) are defined

in Sections 4.2 to 4.4 for the FV (n “ 2), DG (n “ 6) and NC (n “ 3) schemes, respectively.

4.2. The FV scheme

Inserting puKj
, vKj

, ηKj
q “ ppuj0 , pvj0 , pηj0q e

ipkxj`lyj´ωtq in the three first terms in the LHS of Eq. (40),

with j0 P I2, yields

BuK1

Bt
´ fvK1

`
g

h

`

ηK2
´ ηK5

˘

“ ´iω pu1e
ipkxK1

`lyK1
q
´ fpv1e

ipkxK1
`lyK1

q
`
g

h

`

pη2e
ipkxK2

`lyK2
q
´ pη2e

ipkxK5
`lyK5

q˘

“ e
ipkxK1

`lyK1
q
´

´iω pu1 ´ fpv1 `
g

h
pη2

`

eipk`lq
h
3 ´ eip´2k`lqh3

˘

¯

, (64)

since node K5 in Fig. 2 (middle) belongs to the set of amplitudes of type 2 in Fig. 5. By treating the
stabilizing term in a similar manner, Eq. (40) finally leads to

´ iω pu1 ´ fpv1 `
g

h
pη2e

ilh3

´

eik
h
3 ´ e´2ik h

3

¯

`

?
gH

h

´

1?
2
p2p` qq

`

pu1 ´ pu2e
ipk`lqh3

˘

` 1?
2
q
`

pv1 ´ pv2e
ipk`lqh3

˘

` pp` qq
`

pu1 ´ pu2e
ipl´2kqh3

˘

` p
`

pu1 ´ pu2e
ipk´2lqh3

˘

¯

“ 0. (65)

By using the normalized frequency rω and the parameter λ, letting a1 “ e
ikh
3 and a2 “ e

ilh
3 , anf for

X “ ppu1, pu2, pv1, pv2, pη1, pη2q in (62), we obtain from (41) and (42)

pG1 “ pa31 ´ 1q

¨

˝

0
a2
a21

1

a1a2
0

˛

‚, pD1 “

¨

˚

˝

1`
1
?

2

´a1a2?
2

´
a2
a21

´1
?

2a1a2
´
a21
a2

1`
1
?

2

˛

‹

‚

, pD3 “
´1
?

2

˜

´1 a1a2
1

a1a2
´1

¸

, (66)

pG2 “ pa32 ´ 1q

¨

˝

0
a1
a22

1

a1a2
0

˛

‚. pD2 “

¨

˚

˝

1`
1
?

2

´a1a2?
2

´
a1
a22

´1
?

2a1a2
´
a22
a1

1`
1
?

2

˛

‹

‚

, xM “ I2,2. (67)
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4.3. The PDG1 scheme
The Fourier expansion puj , vj , ηjq “ ppuj0 , pvj0 , pηj0q e

ipkxj`lyj´ωtq is now inserted in (48). By following the
same procedure than in Section 4.2, but employing the set of six possible amplitudes of Fig. 5, with j0 P I6,
we obtain at node 1

´ iωp2pu1 ` pu2e
ip´k`lqh ` pu3e

´ikhq ´ fp2pv1 ` pv2e
ip´k`lqh ` pv3e

´ikhq

`
2g

h
p´pη2e

ip´k`lqh´2pη3e
´ikh`2pη4`pη6e

ip´k`lqhq`

?
2gH

h

´

p2p` qqp2pu1 ` pu2e
ip´k`lqh ´ 2pu4 ´ pu6e

ip´k`lqhq

`qp2pv1 ` pv2e
ip´k`lqh ´ 2pv4 ´ pv6e

ip´k`lqhq ` p
?

2p2pu1 ` pu3e
´ikh ´ 2pu5 ´ pu6e

´ikhq

¯

“ 0. (68)

For X “ ppu1, pu2, pu3, pu6, pu4, pu5, pv1, pv2, pv3, pv6, pv4, pv5, pη1, pη2, pη3, pη6, pη4, pη5, q in (62), we let

b1 “ eikh, b2 “ eilh, b3 “ b1 ´ 1, b4 “ b2 ´ 1, b5 “
b1?
2b2

`
1

b2
, b6 “

b2?
2b1

`
1

b1
,

and after long et tedious algebra, Eqs. (49) to (51) yields

pDj “

˜

pDj1pb1, b2q
pDj2pb1, b2q

pDj2p
1
b1
, 1
b2
q pDj1p

1
b1
, 1
b2
q

¸

, pGj “

˜

pGj1pb1, b2q
pGj2pb1, b2q

´ pGj2p
1
b1
, 1
b2
q ´ pGj1p

1
b1
, 1
b2
q

¸

, xM “

˜

xM1pb1, b2q O3,3

O3,3
xM1p

1
b1
, 1
b2
q

¸

,

with j “ 1, 2, 3, for pDj , and j “ 1, 2, for pGj , where the submatrices read as

pD11pb1, b2q “

¨

˚

˚

˚

˝

?
2

b2?
2b1

0

b1?
2b2

2`
?

2
1

b2
0 b2 2

˛

‹

‹

‹

‚

, pD21pb1, b2q “

¨

˚

˚

˚

˝

2`
?

2
b2?
2b1

1

b1
b1?
2b2

?
2 0

b1 0 2

˛

‹

‹

‹

‚

, pD31pb1, b2q “
1?
2

¨

˚

˚

˚

˝

2
b2
b1

0

b1
b2

2 0

0 0 0

˛

‹

‹

‹

‚

,

pD12pb1, b2q “ ´

¨

˚

˚

˝

b2?
2b1

?
2 0

?
2 b5 2

0 2 b2

˛

‹

‹

‚

, pD22pb1, b2q “ ´

¨

˚

˚

˝

b6
?

2 2

?
2

b1?
2b2

0

2 0 b1

˛

‹

‹

‚

, pD32pb1, b2q “ ´
1?
2

¨

˚

˚

˚

˝

b2
b1

2 0

2
b1
b2

0

0 0 0

˛

‹

‹

‹

‚

,

pG11pb1, b2q “

¨

˚

˚

˚

˝

0
´b2
b1

´2

b1
b1
b2

0
´1

b2
2b1 b2 0

˛

‹

‹

‹

‚

, pG12pb1, b2q “

¨

˚

˚

˚

˝

b2
b1

2 0

2
b3
b2

´2

0 ´2 ´b2

˛

‹

‹

‹

‚

,

pG21 “

¨

˚

˚

˚

˝

0
b2
b1

´1

b1
´b1
b2

0
´2

b2
b1 2b2 0

˛

‹

‹

‹

‚

, pG22 “

¨

˚

˚

˚

˝

b4
b1

2 ´2

2
b1
b2

0

´2 0 ´b1

˛

‹

‹

‹

‚

. xM1pb1, b2q “
1
2

¨

˚

˚

˚

˝

2
b2
b1

1

b1
b1
b2

2
1

b2
b1 b2 2

˛

‹

‹

‹

‚

.

4.4. The PNC1 scheme
The expansion puj , vj , ηjq “ ppuj0 , pvj0 , pηj0q e

ipkxj`lyj´ωtq is finally inserted in (55), and using the set of
three possible amplitudes of Fig. 5, with j0 P I3, leads to

´ iω pu1 ´ fpv1 ` 2i sin kh
2

g

h

´

´pη1 cos pk´2lqh
2 ` pη2 cos pk´lqh2 ` pη3 cos lh2

¯

(69)

`

?
gH

h

´?
2p2p` qq

`

pu1 cos2 lh
2 ´ pu3 cos kh2 cos lh2

˘

`
?

2q
`

pv1 cos2 lh
2 ´ pv3 cos kh2 cos lh2

˘

` 2pp` qq
`

pu1 cos2 pk´lqh
2 ´ pu2 cos kh2 cos pk´lqh2

˘

¯

“ 0.
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By letting

c1 “ cos kh2 , c3 “ sin kh
2 , c5 “ cos pk´lqh2 , c7 “ cos pk´2lqh

2 ,

c2 “ cos lh2 , c4 “ sin lh
2 , c6 “ cos p2k´lqh2 .

and for X “ ppu1, pu2, pu3, pv1, pv2, pv3, pη1, pη2, pη3q in (62), we obtain from Eqs. (56) to (60)

pD1 “
?

2

¨

˚

˝

c22 `
?

2c25 ´
?

2c1c5 ´c1c2

´
?

2c1c5
?

2c21 0

´c1c2 0 c21

˛

‹

‚

, pD2 “
?

2

¨

˚

˝

c22 0 ´c1c2

0
?

2c22 ´
?

2c2c5

´c1c2 ´
?

2c2c5 c21 `
?

2c25

˛

‹

‚

, xM “ I3,3

pD3 “
?

2

¨

˚

˝

c22 0 ´c1c2

0 0 0

´c1c2 0 c21

˛

‹

‚

, pG1 “ 2ic3

¨

˚

˝

´c7 c5 c2

c5 ´c1 1

c2 1 ´c1

˛

‹

‚

, pG2 “ 2ic4

¨

˚

˝

´c2 1 c1

1 ´c2 c5

c1 c5 ´c6

˛

‹

‚

.

4.5. The dispersion relations

The dispersion relation or characteristic polynomial P3nprωq is computed from (62) by setting

P3nprωq :“ det
´

pA3n,3n ´ i rω
pB3n,3n

¯

“ 0. (70)

A polynomial of degree 3n in rω is then obtained, namely a polynomial of degree 6, 18 and 9, for the FV
(n “ 2), DG (n “ 6) and NC (n “ 3) schemes, respectively, whose coefficients depend on the parameters
p, q, k, l, h, g and H. On the other hand, the continuous frequencies are rewritten from (10) by using the
definition of rω and the parameter λ in (61), and this leads to

rωC1,2 “ ˘
a

λ´2 ` pkhq2 ` plhq2 and rωC3 “ 0. (71)

The purpose of the subsequent analyses is to compare the 3n discrete frequencies rω solution of (70) with
their 3 continuous counterparts in (71).

Remark 1. By letting p “ q “ 0 and multiplying the two first lines of (62) by
a

H{g and the last line

of (62) by
a

g{H, the matrix in the LHS of (62) is found to be a skew-Hermitian matrix. Indeed, the mass

matrix xM is symmetric and the gradient matrices pG1 and pG1 are skew-Hermitian. Further, xM is positive

definite and hence pB is also a symmetric and positive definite matrix. Consequently, the eigenvalues rω
of (62) are real. However, the frequencies rω are complex numbers as soon as p ‰ 0 or q ‰ 0.

4.5.1. The centered case with pp, qq “ p0, 0q

In the case pp, qq “ p0, 0q, the solutions of (70) yield the following 3n real roots in the absence of numerical
stabilization: n roots equal to zero corresponding to rωC3 , and n positive and n negative roots corresponding
to rωC1,2. For the FV scheme, when n “ 2, the inertia-gravity frequency is a double root. The normalized
positive non zero roots rω are displayed as a function of kh in Fig. 6 in the case f “ 0 and l “ 0 for simplicity,
and each root is given its own color. The dotted black line indicates the analytical frequency rωC1,2 “ kh.

As expected for the three schemes, rω is folding back to zero at least once, at kh “ π or/and at the end of the
spectrum, namely kh “ 2π. Indeed, the unknownwh and the test function ψ both belong to Vh,Kel

, and hence

the LBB or inf-sup stability condition [3, 26] is no longer satisfied. For kh ‰ 0, the eigenvectors associated
with zero frequency do not propagate. These stationary modes correspond to physical eigenmodes of the
system which have their phase speed reduced to zero because of the deficiency of the numerical method and
appear as stationary internode oscillations. If such erratic eigenmodes are left undamped, without resorting
to stabilization procedures, they usually cause an accumulation of energy in the smallest-resolvable scale,
leading to noisy/unstable approximations of the discrete elevation field ηh.
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rωFV1,2 rωDG1,2,3,¨¨¨ ,6 rωNC1,2,3
r

rωNC1,2,3

Figure 6: The positive normalized frequencies rω corresponding to the inertia-gravity waves for the FV, DG and NC schemes, in
the case p “ q “ 0 (centered flux) and for f “ 0 and l “ 0. The dotted black line indicates the analytical frequency rωC

1,2 “ kh.

Apart from the presence of zero frequencies, the results of Fig. 6 are difficult to interpret for rωDG1,2,3,¨¨¨ ,6

and rωNC1,2,3 due to the appearance of n positive solutions rω representing the n Fourier modes present in each
eigenmode solution of the discrete equations. This fact has caused some confusion in the literature, with
several works associating the single solution with n different solutions, one physical and n ´ 1 unphysical
spurious modes [16, 18]. This interpretation would result in a multiple valued dispersion relation. Another
approach, followed in [27, 31] in the case of the one-dimensional first-order advection equation for high-order
FE and DG methods, considers each of the n solutions valid over only a limited wavenumber range, termed
a branch. The physical solution is obtained by inspecting the spatial structure of the discrete solution for
each branch, using the eigenvectors. The union of all branches then gives the complete dispersion relation
named r

rω. Each eigenmode is then associated with a single kh rather than treated as n different solutions
with n different values of kh. In fact, such a procedure aim to eliminate the mathematical artifacts arising
from symmetries in the Fourier analysis. It works well in the centered case for the NC scheme and r

rωNC1,2,3

is shown in the last column of Fig. 6. However, the DG case is more complex to solve and the procedure
described above does not seem appropriate.

4.5.2. The stabilized case with pp, qq ‰ p0, 0q

When the stabilization procedure described in Section 3 is employed, namely with pp, qq ‰ p0, 0q, the
asymptotic expansion of the complex frequencies solutions of P3nprωq “ 0 in (70), for infinitesimal mesh
spacing h are computed by using the MAPLE software for the FV, DG and NC schemes. After long and
tedious algebraic manipulations, a super-convergent result is obtain for the discrete frequencies of the NC
scheme compared to the DG one. When the Roe fux is employed with q “ 1, however, the discrete frequencies
of both schemes (ωDG3 and ωNC3 ) exhibit sub-optimal rates of convergence for the slow mode.

Theorem 4.1. Let Ej, j “ 1, 2, 3, . . . , 12, and Fj and Gj, j “ 1, 2, 3, 4, be polynomial functions depending
on k, l, p, q, except G3 and G4, which only depend on k, l and not p, q, with

pEj “
Ej `

f2

gH Ej`1

f2

gH ` k
2 ` l2

, pF “

ř4
j“1

´

f2

gH

¯j´1

Fj
´

f2

gH ` k
2 ` l2

¯5{2
, pGj “

Gj `
f2

gH Gj`1
b

f2

gH ` k
2 ` l2

.

satisfying pE2j´1 ą 0, j “ 1, 2, 3, . . . , 6, pF ą 0, and pG2j´1 ą 0, j “ 1, 2, for all k, l, p and q.
In the limit as mesh spacing hÑ 0 the following asymptotic results are obtained for the non normalized

inertia-gravity (ω1,2) and geostrophic (ω3) frequencies solutions of P3nprωq “ 0 in (70) in the case of:

‚ The FV scheme:

ωFV1,2 “ ωC1,2 ´
pE1ih˘

pFh2 `Oph3q, for pp, qq ‰ p0, 0q,

ωFV3 “ ωC3 ´
pE3ih`Oph

3q, for pp, qq ‰ p0, 0q.
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‚ The DG scheme:

ωDG1,2 “ ωC1,2 ´
pE5ih

3 ˘ pG1h
4 `Oph5q, for pp, qq ‰ p0, 0q,

ωDG3 “ ωC3 ´
pE7ih

3 `Oph5q, for p ‰ 0,

ωDG3 “ ωC3 and ωDG3 “ ωC3 ´
p2
?

2´1q
18

f2

?
gH

ih`Oph2q triple root, for q “ 1.

‚ The NC scheme:

ωNC1,2 “ ωC1,2 ˘
pG3h

4 ´ pE9ih
5 `Oph6q, for pp, qq ‰ p0, 0q,

ωNC3 “ ωC3 ´
pE11ih

5 `Oph7q, for p ‰ 0,

ωNC3 “ ωC3 ´
?
gH

´

p9
?

2´1q
84 pk ´ lq2 ` 1

6kl `
p
?

2`2q
48

f2

gH

¯

ih`Oph2q double root, for q “ 1.

There are 3n frequencies, solutions of P3nprωq “ 0 in (70), and hence at most 3pn´1q remaining frequencies
need to be considered in addition to those mentioned in Theorem 4.1. This is the purpose of Theorem 4.2.

Theorem 4.2. In the limit as mesh spacing hÑ 0 with f “ 0 (for simplicity) and q “ 1´p (as in Table 1),
the 3pn´ 1q remaining frequencies of P3nprωq “ 0 in (70) behave as high-frequency modes of the form

ωFVj “ i
?
gH

αjppq

h
` i Ophq, j “ 4, 5, 6, with ´ 2p

?
2` 2q ď αj ď ´2,

ωDGj “
?
gH

βjppq ` i γjppq

h
` i Ophq, j “ 4, 5, 6, . . . , 18, with |βj | ď 7.617 and ´ 6

?
2 ď γj ď 0,

ωNCj “ i
?
gH

δjppq

h
` i Ophq, j “ 4, 5, 6, . . . , 9, with ´ 2p2

?
2` 1q ď δj ď 0.

The values of αjppq, j “ 4, 5, 6, γjppq, j “ 4, 5, 6, . . . , 18, and δjppq, j “ 4, 5, 6, . . . , 9, are graphed in Fig. 7
for the FV, DG and NC schemes, respectively, when p P r0, 1s.

αjppq, j “ 4, 5, 6 γjppq, j “ 4, 5, 6, . . . , 18 δjppq, j “ 4, 5, 6, . . . , 9

Figure 7: The values of αjppq, j “ 4, 5, 6, γjppq, j “ 4, 5, 6, . . . , 18, and δjppq, j “ 4, 5, 6, . . . , 9, for the FV, DG and NC schemes,

respectively, when p P r0, 1s.

For the DG method, among the 15 values for γjppq, j “ 4, 5, 6, . . . , 18, we obtain γ4,5ppq “ ´6p (double

root) and γ6ppq “ ´6p
?

2, corresponding to the red (double) and magenta curves in Figure 7, respectively.
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When q “ 1 (in the case of the Roe flux) we have β4,5,6ppq “ γ4,5,6ppq “ 0 and hence ωDG4,5,6 “ i Ophq. Such

three frequencies coincide with the triple root ´ p2
?

2´1q
18

f2

?
gH

ih`Oph2q in Theorem 4.1 when f ‰ 0.

For the NC scheme we obtain δ4ppq “ ´2pp1`
?

2q ´ 2` 2
b

p3´
?

2qp2 ´ p1`
?

2qp` 1, corresponding

to the red curve in Figure 7. The Roe flux then yields δ4ppq “ 0 when pp, qq “ p0, 1q, and the resulting
frequency ωNC4 “ i Ophq coincides, along with the degenerated geostrophic frequency ωNC3 , with the double
root mentioned in Theorem 4.1.

As shown in Figure 7, αjppq ‰ 0, j “ 4, 5, 6, for p P r0, 1s, and that explains why the FV scheme gives
rise to exactly two inertia-gravity and one geostrophic frequencies in Theorem 4.1, without being polluted
by the presence of double or triple roots, contrary to the DG and NC methods.

Corollary 1. The results of Theorems 4.1 to 4.2 and Fig. 7, demonstrate that the 3n discrete frequencies
ω1,2,3,...,3n solutions of P3nprωq “ 0 in (70) are stable at leading order for the FV, DG and NC methods, at
least when q “ 1 ´ p with p P r0, 1s. Further, it is observed graphically that the assumption f “ 0 has no
effect on the stability constraint of the high-frequency modes.

Im prωFV1,2,3q Im prωDG1,2,3q Im prωNC1,2,3q

Figure 8: Im prω1,2,3q corresponding to the inertia-gravity and geostrophic frequencies for the FV, DG and NC methods using

the Rusanov flux when 0 ď kh, lh ď π{10. The minimum (Min) values of the normalized frequencies are specified in Table 2.

To highlight the results of Theorem 4.1, the frequencies Im prω1,2,3q corresponding to the FV, DG and
NC methods, are shown in Fig. 8 for the Rusanov flux with 0 ď kh, lh ď π{10. The minimum (Min) values
of the frequencies are specified in Table 2 for f “ 0 and λ “ 2. For both values of the Coriolis parameter, we
observe a better accuracy for the NC scheme compared with the DG method due to less numerical diffusion.

Table 2: Minimum values, corresponding to Min in Fig. 8, of Im prω1,2,3q at pkh, lhq “ pπ{10, π{10q for the FV, DG and NC

schemes employing the Rusanov flux (Rus).

Rus Im prωFV1,2 q Im prωFV3 q Im prωDG1,2 q Im prωDG3 q Im prωNC1,2 q Im prωNC3 q

f “ 0 ´4.08ˆ 10´2 ´4.08ˆ 10´2 ´1.07ˆ 10´4 0 ´4.34ˆ 10´6 0

λ “ 2 ´4.08ˆ 10´2 ´4.08ˆ 10´2 ´7.57ˆ 10´5 ´6.29ˆ
�� ��10´5 ´3.08ˆ 10´6 ´2.48ˆ

�� ��10´6

We also computed Im prω1,2,3q for the Roe flux and the three methods (not shown) and the minimum
values of the frequencies are specified in Table 3. While the results for the inertia-gravity modes Im prω1,2q

compare well with those of the Rusanov flux, this is not the case for the geostrophic modes Im prωDG3 q and
Im prωNC3 q. Indeed, the values of Im prωDG3 q and Im prωNC3 q are close to those of Im prωFV3 q and such a low
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accuracy is reflected in Theorem 4.1 by the presence of the double and triple roots when q “ 1, yielding a
poor accuracy for Im prωDG3 q and Im prωNC3 q in the case of the Roe flux. The problematic values of Im prωDG3 q

and Im prωNC3 q are framed in Table 3 to facilitate comparison with the corresponding values of Table 2.

Table 3: As for Table 2, but in the case of the Roe flux.

Roe Im prωFV1,2 q Im prωFV3 q Im prωDG1,2 q Im prωDG3 q Im prωNC1,2 q Im prωNC3 q

f “ 0 ´3.48ˆ 10´2 0 ´9.50ˆ 10´5 0 ´2.97ˆ 10´6 ´3.27ˆ
�� ��10´2

λ “ 2 ´2.40ˆ 10´2 ´2.30ˆ 10´2 ´6.46ˆ 10´5 ´3.94ˆ
�� ��10´2 ´2.43ˆ 10´6 ´6.88ˆ

�� ��10´2

Finally, in the case of the Rusanov flux, positive values of Re prωq, corresponding to rωC1 , and Im prωq are
displayed in Fig. 9 for the DG method (with l “ 0) and the NC scheme (with k “ l) when f “ 0.

Re prωDGq Im prωDGq Re prωNCq Im prωNCq

Figure 9: Positive values of Re prωq, corresponding to rωC
1 , and Im prωq for the DG (when l “ 0) and NC (when k “ l) schemes

in the case of the Rusanov flux when f “ 0. Several frequencies are double roots of P3nprωq in (70). The dotted black line
indicates the real analytical frequency rωC

1 .

Each root is given its own color and several frequencies are double roots. The graphs of Re prωDGq and
Re prωNCq are close to the results obtained in Fig. 6. However, the non zero imaginary parts Im prωDGq and
Im prωNCq now prevent the presence of an erratic stationary mode both at the end of the spectrum and at
kh “ π for the NC scheme. For f ‰ 0 and other choices for k and l than those considered above, particularly
in the 2D case, the graph of the dispersion relation is too complicated to be solved and analyzed, and as
for the DG scheme in Section 4.5.1 (the five high-frequency modes in Fig. 6), the question of whether the
high-frequency modes are mathematical artifacts or not remains, to our knowledge, open. Nevertheless, the
high-frequency modes observed in Fig. 9 for Re prωDGq are severely damped due to the presence of Im prωDGq.

Remark 2. We emphasize that the results obtained for the PVM´2 and PVM´4 methods in Section 4.5.2
give very similar results compared to those obtained with the Rusanov flux, and hence they are not shown.

To try to understand why the Roe flux leads to a loss of convergence for the geostrophic modes ωDG3

and ωNC3 , the stabilization term in (35), corresponding to the momentum equations, is rewritten in the case
pp, qq “ p0, 1q. This yields prruss ¨ nedqned, namely prruss, 0q on vertical faces and p0, rrvssq on horizontal faces.
The presence of such zero values for the flux is reflected, via the discrete equations obtained in Section 3.3,
into the zero value entries of the stabilization matrices pDj , j “ 1, 2, 3, computed in Section 4 for the DG and

NC schemes. For the DG scheme, pD3 has two rows (3 and 6) and two columns (3 and 6) of zero elements
(corresponding to nodes 3 and 6 of Fig. 5), and hence the Coriolis matrix in (63) is not stabilized for pu3,

pv3, pu6 and pv6. Similar conclusions can be drawn for pD3 in the case of the NC method at node 2 of Fig. 5,
while the FV method is clearly not concerned with such problems. These observations may reveal why the
Roe flux leads to a loss of convergence for the geostrophic modes ωDG3 and ωNC3 .

21



5. Numerical simulations for the linear and non-linear model problems

In order to validate the results obtained in Theorem 4.1, three numerical tests are proposed in Section 5.1
using the linear variational formulation (14). The non-linear variational formulation (13) is then employed
in Section 5.2. In both sections, the third-order Runge-Kutta time stepping scheme (RK3) is used with a
Courant–Friedrichs–Lewy (CFL) stability criterion such that CFL :“

?
gH∆t{h “ 0.1. Let CFLNC and

CFLDG denote the CFL criteria permitting the maximum allowable time step for the NC and DG schemes,
respectively. For all the numerical simulations performed in Section 5 we observed that

CFLNC » 0.30 and CFLDG » 0.18, namely CFLNC »
5

3
CFLDG, (72)

regardless of the choice of the numerical flux. A fifth order strong-stability preserving Runge-Kutta scheme
(SSPRK p5, 5q) [44] was also employed and it led to almost indistinguishable graphics compared to those
obtained with the use of the RK3 scheme. Further, mass is conserved up to machine precision for all
numerical experiments conducted in Section 5, and hence the results are not shown.

The domain extent is an idealized L1 ˆ L2 rectangular ocean basin discretized on Mesh 1 and Mesh 2,
made up of biased right isoceles and unstructured triangles with smoothing, respectively, as shown in Fig. 10.
Remember that Mesh 1 is used in Section 4 for the computation of the dispersion relations. Further, the
no-normal flow boundary condition u ¨ n “ 0 is employed on the domain boundary BΩ in Section 5.

Mesh 1 Mesh 2

Figure 10: A window of Mesh 1 and Mesh 2, made up of biased right isoceles and unstructured triangles with smoothing,
respectively.

5.1. The linear case

5.1.1. The propagation of pure gravity waves

The first experiment examines the ability of the numerical schemes to reproduce the damping effect
induces by pE1, pE5 and pE9 on the solution via ω1,2 in Theorem 4.1. To do so, the propagation and dispersion
of pure gravity waves are simulated with L1 “ L2 “ 10 000 km and the Coriolis parameter is set to zero.
The discrete SW equations are solved with a Gaussian distribution of the surface elevation prescribed at
initial time and initially centered in the domain. That is,

ηpt “ 0q :“ η0 “ Ae´px
2
`y2q{B2

, (73)

and the initial velocity field is set to zero. The Gaussian distribution parameters that define η0 are set to
A “ 1 m and B “ 130 km. A flat bottom is assumed and the mean depth is H “ 1 000 m, yielding a phase
speed of the surface gravity waves

?
gH “ 100 m s´1 by assuming g “ 10 m s´2. The initial perturbation

amplitude thus represents 0.1% of the total depth. Further, the e-folding radius of the initial Gaussian,
namely the distance

a

x2 ` y2 “ B from the origin for which η “ Ae´1, is resolved by at least six velocity
nodes with a node spacing of approximately 20 km for the triangulation τh{2.

In the absence of shocks, as is the case in this paper, the integral of total energy, named El in the
linear case, with El :“ 1

2

ş

Ω

`

Hpu2 ` v2q ` gη2
˘

dΩ (up to an additive constant), should be preserved over

time for smooth solutions, namely
dEl

dt “ 0. However, due to the dissipative nature of the numerical fluxes
employed in this study to stabilize the computed solutions, El is expected to decrease over time, particularly
for simulations involving large time scales. The purpose of the present section is to examine this issue.
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The damping effect induces by pE1, pE5 and pE9 on the solution via ω1,2 in Theorem 4.1 is first investigated.

Let pE5|Roe (the coefficient of ´ih3) denote the function pE5 in the Roe flux case. The ratios graphed in Fig. 11
are then a measure of the damping introduced by the fluxes, compared to each other, for the DG scheme.

pE5|Roe {
pE5|PVM´4

pE5|Roe {
pE5|PVM´2

pE5|Roe {
pE5|Rus

Figure 11: Three ratios (using the nomenclature defined in Theorem 4.1) measuring the damping introduced by the fluxes,
compared to each other, for the DG scheme.

The ratios are graphed for pkh, lhq P r0, π{10s but identical curves and numerical values are observed if

pkh, lhq P r0, πs for example. By employing pE1 (the coefficient of ´ih) instead of pE5 to match the case of the
FV scheme, curves of similar shape and values to that of Fig. 11 were obtained (not shown). For the NC

scheme, pG3 (the coefficient of ˘h4 ) only depends on k and l and not p and q, as mentioned in Theorem 4.1,

and thus the damping term corresponding to ´pE9ih
5 is not expected to be discriminatory for the fluxes.

The numerical experiment described at the beginning of the section is now performed and El, normalized
by its initial value at t “ 0, is computed on Mesh 1 and Mesh 2. The results are graphed in Fig. 12 with
h “ 40 km and in Fig. 13 with h “ 20 km for the DG and NC schemes and the four fluxes up to 13 hours and
20 mn, namely the time it takes for the solution to propagate over 4 800 km, roughly 30 mn before reaching
the domain boundary. The results for the FV method are not shown since the energy lost half and two
thirds of its initial value, after only one and two hours of simulation, repectively.

Mesh 1 Mesh 2

Figure 12: The decrease of the total energy El, normalized by its initial value at t “ 0, on Mesh 1 and Mesh 2 with a resolution
of h “ 40 km, in the case of the DG and NC schemes by using the Rusanov, Roe, PVM´ 2 and PVM´ 4 fluxes examined in
this paper during 13 hours and 20 mn, namely the time it takes for the solution to propagate over 4 800 km.
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Mesh 1 Mesh 2

Figure 13: As for Fig. 12, but in the case h “ 20 km.

The curves of Figs. 12 and 13 are in precise agreement with the results of Fig. 11. Indeed, we have
pE5|Roe ă

pE5|PVM´4 ă
pE5|PVM´2 ă

pE5|Roe for all pkh, lhq P r0, π{10s in Fig. 11, with

pE5|Roe {
pE5|PVM´4 P r0.822, 0.945s, pE5|Roe {

pE5|Rus P r0.732, 0.886s,

pE5|Roe {
pE5|PVM´2 P r0.794, 0.931s,

and this remains true for all pkh, lhq P r0, πs. Consequently, as long as the DG method is concerned in

the case of the propagation of pure gravity waves, the dissipation term being of the form e´
pE5h

3t at leading
order (see ωDG1,2 in Theorem 4.1), we can expect the dissipation to be greater for the Rusanov flux than for
the PVM ´ 2 flux, itself greater than for the PVM ´ 4 flux, itself greater than for the Roe flux. This is
exactly what is observed in Figs. 12 and 13 on both Mesh 1 and Mesh 2.

We now examine the eventual numerical dispersion during the propagation of the initial Gaussian over
5 000 km, at the time it is being reflected by the basin wall. Time sequences for η are displayed in Fig. 14
for the NC scheme and the Rusanov flux on Mesh 2 with h “ 40 km. Each sequence is colored according to
its own max (red) and min (blue). Similar results are obtained on Mesh 1 and also for the DG scheme. The
radial symmetry of η and the wave speed (100 m s´1) are very well respected, and no numerical dispersion
is observed. Similar conclusions hold for u and v. For long-term simulations, even after the initial Gaussian
is being reflected several times by the basin wall, the radial symmetry of the wave is very well preserved.

Figure 14: Time sequences for η at different stages of gravity wave propagation and dispersion: at initial time (left panel),
after the wave has propagated over 2 500 km (middle panel) and 5 000 km (right panel) i.e. at the time it is being reflected by
the basin wall. The computations are performed on Mesh 2 with h “ 40 km by using the NC scheme and the Rusanov flux.
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5.1.2. An almost-balanced flow

The second test examines the evolution of an almost-balanced flow in the case of the evolution of a vortex
at midlatitudes with L1 “ 2 000 km and L2 “ 1 200 km. At initial time, an anticyclonic velocity field is in
geostrophic equilibrium with the prescribed Gaussian distribution of the surface-elevation defined in (73),
now centered at the point p1 400 km, 600 kmq, namely

η0 “ Ae´px
2
`y2q{B2

, upx, t “ 0q “ pg{fqkˆ∇η0 “ ´pg{fq rot η0, (74)

Both η and u are evaluated pointwise at initial time by sampling the exact expressions in (73) and (74).
Although η and u are in exact analytic balance, such that their tendencies are identically zero, the initial
conditions are not in exact discrete geostrophic balance and a non-zero time tendency of the order of the
spatial truncation error is obtained. This leads to small-amplitude temporal oscillations being generated
and we examine here how initial discrete imbalances propagate in time. Indeed, in most numerical models,
initial conditions obtained from observations and interpolated to the model grid, are usually out-of-balance.

The coordinates x and y are oriented eastward and northward, respectively, and the latter is measured
from a reference latitude ϕ0 “ 28.6o N. The Coriolis parameter f is evaluated at ϕ0 and it is held constant
with f “ f0 “ 2Ωe sinϕ0, where Ωe “ 7.2921ˆ10´5 rad s´1 is the angular frequency of the Earth’s rotation,
leading to f0 “ 6.9813 ˆ 10´5 s´1. The choice H “ 100 m results in a phase speed for gravity waves of
4 m s´1 by using the reduced gravity g1 “ 0.16 m s´2 instead of g “ 9.81 m s´2. The radius of deformation
is then Rd “

?
g1H{f0 » 57.3 km. By setting A “ 58.25 m and B “ 130 km in (73), the initial maximum

surface azimuthal velocity is 0.9 m s´1. These values are representative of the oceanic eddy circulation at
mid-latitude. The adopted configuration corresponds to that of a reduced-gravity model with a single active
upper layer overlying a second passive layer, implicitly assumed, that is infinitely deep and at rest [10]. Let
θ “ η ´ φ, where φpx, y, tq is the interface displacement. The thickness of the single moving layer above
a motionless abyss is thus H ` θ. The resulting governing equations are identical to that of (5) and (6),
and (14) is employed with the initial condition (74), provided that we replace g by g1 and η by θ.

Since β “ 0, the Coriolis parameter is held constant and this yields ωC3 “ 0 in (10). Consequently, the
solution does not propagate in space and the numerical solution should preserve the steady state. However,
because the initial conditions are not in exact discrete geostrophic balance, the evolution of an almost-
balanced flow in the presence of small-amplitude gravitational oscillations is examined.

At selected time steps n, a convergence analysis is performed by computing the ratio

Rςpt
n “ n∆tq “

} ς pt0q ´ ςh pt
nq }L2

} ς pt0q ´ ςh{2 pt
nq }L2

, n “ 1, 2, 3, ...

where ς is equal to either θ or the flow-speed field
a

u2 ` v2. The quantity lnRς{ ln 2 is represented in Fig. 15
for the NC, DG and FV methods by using the Roe and Rusanov fluxes up to 15 weeks of simulation. The
calculations are performed on Mesh 1, and two uniform meshes are used, a 50ˆ 30 grid with h “ 40 km and
a 100ˆ 60 grid with h “ 20 km, to compute ςh and ςh{2, respectively, namely for h{2 “ 20 km.

The convergence rates observed in Fig. 15 for Rς , when ς “ θ and ς “
a

u2 ` v2, faithfully reproduce the
results of Theorem 4.1 obtained on Mesh 1. Indeed, the results of Fig. 15 for the Rusanov flux on Mesh 1
clearly exibit, after only a few days of simulation, the influence of the fourth-order accuracy obtained for the
NC frequency in Theorem 4.1, while the DG scheme does not show such a super-convergence rate. However,
when the Roe scheme is employed, the NC methods exhibits a second-order rate of accuracy for both θ and
a

u2 ` v2, while the DG method yields only a first-order convergence rate for
a

u2 ` v2. Such behaviors
can likely be attributed to the presence of i Ophq spurious solutions for the geostrophic modes ωDG3 and
ωNC3 in Theorem 4.1. Consequently, the results obtained with the Roe scheme will not be considered in the
following. We also point out the poor convergence rate of the FV method, as expected. Further, the graphics
for ς “ u and ς “ v are almost indistinguishable from those of ς “

a

u2 ` v2 and hence they are not shown.
Likewise, the graphs corresponding to the PVM ´ 2 and PVM ´ 4 fluxes led to almost indistinguishable
results from those of the Rusanov flux for both the DG and NC schemes.

The normalized total energy Elptq “
1
2

ş

Ω

`

Hpu2 ` v2q ` g1θ2
˘

dΩ and maximum values of θ (i.e. }θ}L8)
have been computed on Mesh 1 and Mesh 2 for h “ 40 km and h “ 20 km. These are graphed in Fig. 16
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ς “ θ ς “
a

u2 ` v2

Figure 15: The quantity lnRς{ ln 2 with h{2 “ 20 km, for ς “ θ and ς “
a

u2 ` v2, in the case of the NC, DG and FV methods
using the Roe and Rusanov fluxes up to 15 weeks of simulation on Mesh 1.

h “ 40 km h “ 20 km
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Figure 16: The normalized quantities El and }θ}L8 in the case f “ f0 up to 15 weeks of simulation on Mesh 1 and Mesh 2,
with h “ 40 km and h “ 20 km, for the DG and NC methods using the Rusanov flux.

for the DG and NC schemes in the case of the Rusanov flux during 15 weeks of simulation. The numerical
results are supposed to reflect the steady state. Clearly, El and }θ}L8 are much better conserved (less
damped) with the NC method than with the DG one. Indeed, on Mesh 1 with h “ 20 km, El and }θ}L8

only lose 0.42% and 0.56% of their initial values, respectively, after 15 weeks of simulation. On Mesh 2 these
values are 2.4% and 2.5%, respectively. The graphics of the normalized values of }

a

u2 ` v2}L8 (not shown)
are similar to those of }θ}L8 . Finally, the numerical solutions computed with the PVM ´ 2 and PVM ´ 4
fluxes are similar to those obtained using the Rusanov flux for both the DG and NC methods.
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5.1.3. Simulation of an anticyclonic eddy at midlatitudes

The third experiment reproduces the numerical test of Section 5.1.2, with the same initial conditions,
except that the Coriolis parameter f is no longer constant and instead it varies with latitude. The β-
plane approximation f “ f0 ` βy is used [32], where β “ 2pΩe{Rq cosϕ0 is the so-called β-parameter and
R “ 6 371 km is the Earth’s radius, leading to β “ 2.0098ˆ 10´11 m´1 s´1. Thanks to the slowing down of
fast-moving surface gravity waves via the choice

?
gH “ 4 m s´1, the slowly-propagating Rossby modes are

simulated in the case of the evolution of a typical anticyclonic eddy at mid-latitude. During the first inertial
period (2π{f0 » 25 h) the initial condition adjusts to the β-plane balance of the model. After this initial
adjustment, the eddy evolves purely westward at an average translation speed of β Rd

2
» 5.7 km day´1.

Contrary to the test of Section 5.1.2, }θ}L8 is now supposed to decrease as the Rossby mode propagates
and evolves in time.

As in Section 5.1.2, the normalized quantities El and }θ}L8 have been computed, for h “ 40 km and
h “ 20 km, on Mesh 1 and Mesh 2, up to 15 weeks of simulation for the DG and NC schemes using the
Rusanov flux. On both Mesh 1 and Mesh 2, the graphs of El (not displayed) are almost indistinguishable
from those of Fig. 16. The results of }θ}L8 are shown in Fig. 17. In addition, }θ}L8 has been computed for
h “ 10 km (not displayed) and on such a high-resolution mesh the four curves representing }θ}L8 appear
superimposed on each other, suggesting that the numerical solutions have converged. Further, these are
almost indistinguishable from the curve of }θ}L8 obtained in the NC case when h “ 20 km on Mesh 1, itself
close to the case h “ 40 km. From the results of Fig. 17, we deduce that the NC method has already almost
converged on Mesh 1 when h “ 40 km, reflecting the high order of convergence of the NC method. Again,
the graphs obtained with the PVM´ 2 and PVM´ 4 fluxes are very similar to those of Fig. 17. Finally, no
numerical dispersion was detected in the graphs of θ, u and v during the 15-week simulation period.
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Figure 17: As for Fig. 16 for }θ}L8 , but in the case f “ f0 ` β y, when the eddy propagates.

5.2. The non-linear case: Simulation of an anticyclonic eddy at midlatitudes

The test of Section 5.1.3 is now reproduced with the same initial conditions, but in the non-linear case.
The governing equations are identical to that of (1) and (2) and the variational formulation (13) is employed,
provided that g is replaced by g1 and η by θ, as for the linear formulation in Sections 5.1.2 and 5.1.3. The
total energy, named Enl in the non-linear case, is defined as Enl :“ 1

2

ş

Ω

`

pH ` θqpu2 ` v2q ` g1θ2
˘

dΩ (up
to an additive constant). As in Section 5.1, the total energy is examined to quantify the dissipative nature
of the numerical fluxes. The quantities Enl, }θ}L8 are computed for two different resolutions, h “ 20 km
and h “ 40 km, on Mesh 1 and Mesh 2 using the Rusanov flux (26) suitable for the non-linear case. The
normalized results are graphed in Fig. 18 after 15 weeks of simulation for the DG and NC schemes. Clearly,
El and }θ}L8 are much better conserved (less damped) with the NC method than with the DG one.

The curves of Enl are quite similar to that of El in Fig. 16 (the linear case) when f “ f0. On Mesh 1
with h “ 20 km, Enl loses 0.64% and 12.5% of its initial values, for the NC and DG methods, respectively,
after 15 weeks of simulation. On Mesh 2 these values are 2.7% and 9.5%, respectively.
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Figure 18: The normalized quantities Enl and }θ}L8 in the non-linear case with f “ f0 ` β y up to 15 weeks of simulation on
Mesh 1 and Mesh 2, with h “ 40 km and h “ 20 km, for the DG and NC methods using the Rusanov flux.

Since u and v are initially in geostrophic balance, shortly after initialization, there will be a readjustment
of the flow toward a gradient wind balance on the β-plane. During this time (the inertial period 2π{f0 »

25 h), θ loses approximately 8% of its initial amplitude. However, the slight imbalance in the initial conditions
does not affect the long-term evolution of the eddy. This initial 8% reduction in θ is followed by a further
reduction in its amplitude, partly reflecting the dissipative nature of the numerical scheme. On Mesh 1 with
h “ 20 km, after the inertial period and up to 15 weeks of simulation, }θ}L8 loses 3.1% and 13.5% of its
value, for the NC and DG methods, respectively. On Mesh 2 these values are 4.9% and 10.3%, respectively.

The graphics for
a

u2 ` v2 are first displayed in Fig. 19 after 15 weeks of propagation on Mesh 1, with
h “ 40 km and h “ 20 km, for the NC and DG methods using the Rusanov flux. The legend at t “ 0 is
kept unchanged after 15 weeks of simulation. As predicted by Rossby wave dynamics, the eddy migrates
westward and its westerly course exhibits a southwesterly drift that is due to non-linear effects. The average
translation is in good agreement with that predicted by theory (β Rd

2
» 5.7 km day´1) and the cyclonic eddy

formed by the wake progressively intensifies. The damping is quite severe for the DG method. Indeed, when
h “ 20 km, we obtain }

a

u2 ` v2}L8 “ 0.95 m s´1 and 0.75 m s´1 for the NC and DG methods, respectively,
after 15 weeks of propagation on Mesh 1. These values are 0.92 m s´1 and 0.80 m s´1, respectively, on Mesh 2.
The test continued up to 42 weeks, after the eddy interacts with the western boundary and coastally trapped
waves propagated around the entire basin. The graphs of

a

u2 ` v2 on Mesh 1 with h “ 20 km are displayed
in Fig. 20 for the DG and NC methods. Again the DG solution exhibits a severe damping. At this stage of
the propagation, a finer mesh would be needed close to the boundary, to capture the recirculation regions.

Finally, the non-linear Roe flux (25) is employed and
a

u2 ` v2 is shown in Fig. 20 for the NC method

(right panel) after 15 weeks of propagation on Mesh 1, with h “ 40 km. We obtain }
a

u2 ` v2}L8 “

0.55 m s´1, instead of 0.71 m s´1 for the Rusanov scheme in Fig. 19 (first line, middle panel). Such values
reflect the asymptotic result obtained for ωNC3 (and also ωDG3 ) in Theorem 4.1 when q “ 1 (the Roe flux),
suggesting, at least, a pronounced damping of the geostrophic frequency in the linear case with f “ f0.
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Figure 19: The flow-speed field
a

u2 ` v2 at initial time (right panel) and after 15 weeks of propagation on Mesh 1, with h “ 40
km and h “ 20 km, for the NC (middle panel) and DG (left panel) methods using the Rusanov flux. The legend at t “ 0 is
kept unchanged after 15 weeks of simulation. The dimensionalized values of

a

u2 ` v2 at t “ 0 are recovered by multiplying

those of the legend by
?
gH “ 4 m s´1 leading to }

a

u2 ` v2}L8 “ 0.91 m s´1.

DG Rus (after 42 weeks) NC Rus (after 42 weeks) NC Roe (after 15 weeks)

Figure 20: The flow-speed field
a

u2 ` v2 after 42 weeks of propagation on Mesh 1, with h “ 20 km, for the NC (middle panel)

and DG (left panel) methods using the Rusanov flux. The flow-speed field
a

u2 ` v2 after 15 weeks of propagation on Mesh 1,
with h “ 40 km, for the NC (right panel) method using the Roe flux. The legend of Fig. 19 is kept unchanged.

6. Conclusions

This paper appears to be the first study of the Fourier/stability analysis of the 2D shallow-water model for
the linear discontinuous (DG) and non conforming (NC) Galerkin discretizations. The discrete formulations
are stabilized by means of a family of numerical fluxes and the dispersion relations of the DG and NC schemes
are constructed. A long time stability result is proven for all schemes and fluxes examined here by inspecting
the discrete frequencies, solutions of the dispersion relations. A super-convergent result is also demonstrated
for the discrete frequencies of the NC method compared to the DG ones, except for the slow mode in the
Roe flux case. Indeed, the Roe flux yields spurious frequencies in Ophq, and hence sub-optimal rates of
convergence are expected for the slow mode for both the DG and NC methods. The numerical simulation
of pure gravity waves and an anticyclonic eddy at midlatitudes, using linear and non-linear model problems,
confirm the theoretical results. Further, the computational cost efficiency of the NC approach is enhenced
due to the fact that the CFL number of the NC method is 5{3 larger than that of the DG method. These
encouraging results suggest undertaking further experiments with a realistic bathymetry and wind forcing as
a further step toward the possible construction of an ocean model based on the NC method described herein.
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