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1 DaSciM, LIX, École Polytechnique, Institute Polytechnique de Paris, France
2 Noah’s Ark Lab, Huawei Technologies France
3 AUEB, Greece
{georgios.dasoulas, johannes.lutzeyer}@polytechnique.edu,
mvazirg@lix.polytechnique.fr

ABSTRACT

In many domains data is currently represented as graphs and therefore, the graph
representation of this data becomes increasingly important in machine learning.
Network data is, implicitly or explicitly, always represented using a graph shift op-
erator (GSO) with the most common choices being the adjacency, Laplacian ma-
trices and their normalisations. In this paper, a novel parametrised GSO (PGSO)
is proposed, where specific parameter values result in the most commonly used
GSOs and message-passing operators in graph neural network (GNN) frame-
works. The PGSO is suggested as a replacement of the standard GSOs that are
used in state-of-the-art GNN architectures and the optimisation of the PGSO pa-
rameters is seamlessly included in the model training. It is proved that the PGSO
has real eigenvalues and a set of real eigenvectors independent of the parameter
values and spectral bounds on the PGSO are derived. PGSO parameters are shown
to adapt to the sparsity of the graph structure in a study on stochastic blockmodel
networks, where they are found to automatically replicate the GSO regularisation
found in the literature. On several real-world datasets the accuracy of state-of-the-
art GNN architectures is improved by the inclusion of the PGSO in both node-
and graph-classification tasks.

1 INTRODUCTION

Real-world data and applications often involve significant structural complexity and as a conse-
quence graph representation learning attracts great research interest (Hamilton et al., 2017b; Wu
et al., 2020). The topology of the observations plays a central role when performing machine learn-
ing tasks on graph structured data. A variety of supervised, semi-supervised or unsupervised graph
learning algorithms employ different forms of operators that encode the topology of these observa-
tions. The most commonly used operators are the adjacency matrix, the Laplacian matrix and their
normalised variants. All of these matrices belong to a general set of linear operators, the Graph Shift
Operators (GSOs) (Sandryhaila & Moura, 2013; Mateos et al., 2019).

Graph Neural Networks (GNNs), the main application domain in this paper, are representative cases
of algorithms that use chosen GSOs to encode the graph structure, i.e., to encode neighbourhoods
used in the aggregation operators. Several GNN models (Kipf & Welling, 2017; Hamilton et al.,
2017a; Xu et al., 2019) choose different variants of normalised adjacency matrices as GSOs. In-
terestingly, in a variety of tasks and datasets, the incorporation of explicit structural information of
neighbourhoods into the model is found to improve results (Pei et al., 2020; Zhang & Chen, 2018;
You et al., 2019), leading us to conclude that the chosen GSO is not entirely capturing the informa-
tion of the data topology. In most of these approaches, the GSO is chosen without an analysis of the
impact of this choice of representation. From this observation arise our two research questions.

Question 1: Is there a single optimal representation to encode graph structures or is the optimal
representation task- and data-dependent?

∗Equal contribution.
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On different tasks and datasets, the choice between the different representations encoded by the
different graph shift operator matrices has shown to be a consequential decision. Due to the past
successful approaches that use different GSOs for different tasks and datasets, it is natural to assume
that there is no single optimal representation for all scenarios. Finding an optimal representation
of network data could contribute positively to a range of learning tasks such as node and graph
classification or community detection. Fundamental to this search is an answer to Question 1. In
addition, we pose the following second research question.

Question 2: Can we learn such an optimal representation to encode graph structure in a numerically
stable and computationally efficient way?

The utilisation of a GSO as a topology representation is currently a hand-engineered choice of nor-
malised variants of the adjacency matrix. Thus, the learnable representation of node interactions
is transferred into either convolutional filters (Kipf & Welling, 2017; Hamilton et al., 2017a) or
attention weights (Veličković et al., 2018), keeping the used GSO constant. In this work, we sug-
gest a parametrisation of the GSO. Specific parameter values in our proposed parametrised (and
differentiable) GSO result in the most commonly used GSOs, namely the adjacency, unnormalised
Laplacian and both normalised Laplacian matrices, and GNN aggregation functions, e.g., the aver-
aging and summation message passing operations. The beauty of this innovation is that it can be
seamlessly included in both message passing and convolutional GNN architectures. Optimising the
operator parameters will allow us to find answers to our two research questions.

The remainder of this paper is organised as follows. In Section 2, we give an overview of related
work in the literature. Then in Section 3, we define our parametrised graph shift operator (PGSO)
and discuss how it can be incorporated into many state-of-the-art GNN architectures. This is fol-
lowed by a spectral analysis of our PGSO in Section 4, where we observe good numerical stability
in practice. In Section 5, we analyse the performance of GNN architectures augmented by the PGSO
in a node classification task on a set of stochastic blockmodel graphs with varying sparsity and on
learning tasks performed on several real-world datasets.

2 RELATED WORK

GSOs emerge in different research fields such as in physics, network science, computer science
and mathematics, taking usually the form of either graph Laplacian normalisations or variants of
the adjacency matrix. In an abundant number of machine learning applications the expressivity
of GSOs is exploited, e.g., in unsupervised learning (von Luxburg, 2007; Kim et al., 2008), semi-
supervised node classification on graph-structured data (Kipf & Welling, 2017; Schlichtkrull et al.,
2018) and supervised learning on computer vision tasks (Chang & Yeung, 2006). The majority
of these works assumes a specified normalised version of the Laplacian that encodes the structural
information of the problem and usually these versions differ depending on the analysed dataset and
the end-user task. Recently, new findings on the impact of the chosen Laplacian representation
have emerged that highlight the contribution of Laplacian regularisation (Dall’Amico et al., 2020;
Saade et al., 2014; Dall’Amico et al., 2019). The different GSO choices in different tasks indicate a
data-dependent relation between the structure of the data and its optimal GSO representation. This
observation motivates us to investigate how beneficial a well-chosen GSO can be for a learning task
on structured data.

GNNs use a variety of GSOs to encode neighbourhood topologies, either normalisations of the adja-
cency matrix (Xu et al., 2019; Hamilton et al., 2017a) or normalisations of the graph Laplacian (Kipf
& Welling, 2017; Wu et al., 2019). Due to the efficiency and the predictive performance of GNNs,
a research interest has recently emerged in their expressive power. One of the examined aspects is
that of the equivalence of the GNNs’ expressive power with that of the Weisfeiler-Lehman graph
isomorphism test (Dasoulas et al., 2020; Maron et al., 2019; Morris et al., 2019; Xu et al., 2019).
Another research direction is that of analysing the depth and the width of GNNs, moving one step
forward to the design of deep GNNs (Loukas, 2020; Li et al., 2018; Liu et al., 2020; Alon & Yahav,
2020). In this analysis, the authors study phenomena of Laplacian oversmoothing and combinatorial
oversquashing, that harm the expressiveness of GNNs. In most of these approaches, however, the
used GSO is fixed without a motivation of the choice. We hope that the parametrised GSO that is
presented in this work can contribute positively to the expressivity analysis of GNNs.
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We will now delineate our approach and that of a closely related work by Klicpera et al. (2019).
Klicpera et al. (2019) demonstrate that varying the choice of the GSO in the message passing step
of GNNs can lead to significant performance gains. In Klicpera et al. (2019) two fixed diffusion
operators with a much larger receptive field than the 1-hop neighbourhood convolutions, are inserted
into the architectures, leading to a significant improvement of the GNNs’ performance. In our work
here we replace the GSOs in GNN frameworks with the PGSO, which has a receptive field equal to
the 1-hop neighbourhood of the nodes. We find that parameter values of our PGSO can be trained in
a numerically stable fashion, which allows us to chose a parametric form unifying the most common
GSOs and aggregation functions. As with standard GNN architectures the receptive field of the
convolutions is increased in our architectures by stacking additional layers. Klicpera et al. (2019)
increase the size of the receptive field and keep the neighbourhood representation fixed, while we
keep the size of the receptive field fixed and learn the neighbourhood representation.

3 PARAMETRISED GRAPH SHIFT OPERATORS

We define notation and fundamental concepts in Section 3.1 and introduce our proposed
parametrised graph shift operator γ(A,S) in Section 3.2. In Section 3.3, we provide a detailed
discussion of how γ(A,S) can be applied to the message-passing operation in GNNs and we demon-
strate use cases of the incorporation of γ(A,S) in different GNN architectures.

3.1 PRELIMINARIES

Let a graph G be a tuple, G = (V,E), where V and E are the sets of nodes and edges and let
|V | = n. We assume the graph G to be attributed with attribute matrix X ∈ Rn×d, where the ith
row of X contains the d-dimensional attribute vector corresponding to node vi. We denote the n×n
identity matrix by In and the n-dimensional column vector of all ones by 1n. Given the node and
edge sets, one can define the adjacency matrix, denoted A ∈ [0, 1]n×n, where Aij 6= 0 if and only
if (i, j) ∈ E, and the degree matrix of A as D = Diag(A1n).

Recently the notion of a GSO has been defined as a general family of operators which enable the
propagation of signals over graph structures (Sandryhaila & Moura, 2013; Shuman et al., 2013).
Definition 1. Graph Shift Operator A matrix S ∈ Rn×n is called a Graph Shift Operator (GSO)
if it satisfies Sij = 0 for i 6= j and (i, j) /∈ E (Mateos et al., 2019; Gama et al., 2020).

This general definition includes the adjacency and Laplacian matrices as instances of its class.
Remark 1. According to Definition 1, the existence of an edge (i, j) ∈ E does not imply a nonzero
entry in the GSO, Sij 6= 0. Hence, the correspondence between a GSO and a graph is not bijective
in general.

3.2 PARAMETRISED GSO

We begin by defining our parametrised graph shift operator.
Definition 2. We define the parametrised graph shift operator (PGSO), denoted by γ(A,S) , as

γ(A,S) = m1D
e1
a +m2D

e2
a AaD

e3
a +m3In, (1)

where Aa = A+ aIn and Da = Diag(Aa1n) is the degree matrix of Aa. We denote the parameter
tuple corresponding the γ(A,S) by S = (m1,m2,m3, e1, e2, e3, a) consisting of scalar multiplica-
tive parameters m1,m2,m3, scalar exponential parameters e1, e2, e3 and an additive parameter a.

The main motivation of the parametrised form in Equation (1) is to span the space of commonly
used GSOs and indeed we are able to generate a wide range of different graph shift operators by
choosing different values for the parameter set S. In Table 1, we give examples of parameter values
in γ(A,S) which result in the most commonly used GSOs and message-passing operators in GNNs.
Unlike the GSO, the PGSO uniquely identifies the graph it corresponds to, i.e., the GSO and PGSO
do not share the property discussed in Remark 1.

Although we base the definition of γ(A,S) on the adjacency matrix, we can define the PGSO using
other graph representation matrices, such as the non-backtracking operator B, γ(B,S), (Krzakala
et al., 2013; Bordenave et al., 2015) or the diffusion matrix S, γ(S,S) (Klicpera et al., 2019).

3



Published as a conference paper at ICLR 2021

Table 1: Known Graph Shift Operators as parameter choices S in γ(A,S).

S=(m1,m2,m3, e1, e2, e3, a) Operator Description

(0, 1, 0, 0, 0, 0, 0) A
Adjacency matrix and Summation

Aggregation Operator of GNNs
(1,−1, 0, 1, 0, 0, 0) D −A Unnormalised Laplacian matrix L

(1, 1, 0, 1, 0, 0, 0) D +A
Signless Laplacian matrix Q
(Cvetković & Simić, 2010)

(0,−1, 1, 0,−1, 0, 0) In −D−1A Random-walk Normalised Laplacian Lrw

(0,−1, 1, 0,− 1
2 ,−

1
2 , 0) In −D−

1
2AD−

1
2 Symmetric Normalised Laplacian Lsym

(0, 1, 0, 0,− 1
2 ,−

1
2 , 1) D

− 1
2

1 A1D
− 1

2
1

Normalised Adjacency matrix of GCNs
(Kipf & Welling, 2017)

(0, 1, 0, 0,−1, 0, 0) D−1A
Mean Aggregation Operator of GNNs

(Xu et al., 2019)

3.3 SUGGESTED METHOD: GNN-PGSO AND GNN-mPGSO

Next, we formally discuss how γ(A,S) is incorporated in GNN models. Let a GNN model be
denoted by M(φ(A), X), taking as input a non-parametrised function of the adjacency matrix
φ(A) : [0, 1]n×n → Rn×n and an attribute matrix (in case of an attributed graph) X ∈ Rn×d. Fur-
ther, let K denote the number of aggregation layers thatM consists of. The Parametrised Graph
Shift Operator (PGSO) formulation transforms the GNN modelM(φ(A), X) into the GNN-PGSO
model M′(γ(A,S), X). Moreover, we define the GNN-mPGSO model M′′(γ[K](A,S [K]), X),
where γ[K](A,S [K]) = [γ(A,S1), ..., γ(A,SK)], i.e., we assign each GNN layer a different param-
eter tuple Sl for l ∈ {1, . . . ,K}.

Message-passing steps and convolutions In a spectral-based GNN (Wu et al., 2020), where the
GSO is explicitly multiplied by the model parameters, it is straightforward to replace the GSO with
γ(A,S). However, with some further analysis γ(A,S) can also be incorporated in spatial-based
GNNs, where the node update equation is defined as a message-passing step. Here we illustrate the
required analysis on the sum-based aggregation operator, where we sum the feature vectors hj ∈ Rd

in the neighborhood of a given node vi, denoted N (vi). The sum operator of the neighborhood
representations can be reexpressed as:

∑
j:vj∈N (vi)

hj =
∑n

j=1Aijhj . Using this observation we
can derive the application of γ(A,S) in a message-passing step to be,

(γ(A,S)h)i = m1 (Da)
e1
i hi +m2

n∑
j=1

(Da)
e2
i (Aa)ij (Da)

e3
j hj +m3hi. (2)

Examples The following examples highlight the usage of the γ(A,S) operator:

1. In the standard GCN (Kipf & Welling, 2017) the propagation rule of the node representation
H(l) ∈ Rn×d in a computation layer l is,

H(l+1) = σ
(
D
− 1

2
1 A1D

− 1
2

1 H(l)W (l)
)
,

where W (l) is the trainable weight matrix and σ denotes a non-linear activation function. The
GCN-PGSO and GCN-mPGSO models, respectively, perform the following propagation rules,

H(l+1) = σ
(
γ(A,S)H(l)W (l)

)
and H(l+1) = σ

(
γ(A,Sl)H(l)W (l)

)
.

2. The Graph Isomorphism Network (GIN) (Xu et al., 2019) consists of the following propagation
rule for a node representation h(l)i ∈ Rd of node vi in the computation layer l,

h
(l+1)
i = σ

(
h
(l)
i W (l) +

∑
j:vj∈N (vi)

h
(l)
j W (l)

)
.
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Using the Equation (2) the propagation rule is transformed into the GIN-PGSO formulation as,

h
(l+1)
i = σ

((
m1 (Da)

e1
i +m3

)
h
(l)
i W (l) +m2

∑
j:vj∈N (vi)

εijh
(l)
j W (l)

)
,

where εuv are edge weights defined as εij = (Da)
e2
i (Da)

e3
j . Analogously, we can construct the

GIN-mPGSO formulation by superscripting every parameter in S by (l).

Computational Cost Since in (1) the exponential parameters are applied only to diagonal matrices
the PGSO and mPGSO are efficiently computable and optimisable. γ(A,S) can be extended by
using vector instead of scalar parameters. Although this extension leads to better expressivity, the
computational cost is increased, as the number of parameters then depends on the size of the graph.

4 SPECTRAL ANALYSIS OF γ(A,S)

In this section, we study spectral properties of γ(A,S) in theoretical analysis in Section 4.1 and
through empirical observation in Section 4.2. The obtained theoretical results provide a founda-
tion for further analysis of methodology involving the PGSO and allow an efficient observation of
spectral support bounds of commonly used GSOs, that are instances of γ(A,S).

4.1 THEORETICAL ANALYSIS

Here we investigate the spectral properties of our γ(A,S). Throughout this section we assume that
we work on undirected graphs. In Theorem 1 we show that γ(A,S) has a real spectrum and eigen-
vectors independent of the parameters S. In Theorem 2 we study the spectral support of γ(A,S).

Theorem 1. γ(A,S) has real eigenvalues and a set of real eigenvectors.

The proof of Theorem 1 follows directly from noticing that γ(A,S), which is not symmetric in
general, is similar to a symmetric matrix and therefore shares eigenvalues with this symmetric matrix
(Horn & Johnson, 1985, pp. 45,60); the full proof can be found in Appendix A.1.

Being able to guarantee real eigenvalues and eigenvectors for all parameter values of γ(A,S) enables
practitioners to deploy our PGSO in spectral network analysis without having to replace elements
of the algorithms which assume a real spectrum. As a result of Theorem 1 eigenvalue computations
can be stabilised by working with the symmetric, similar PGSO used in the proof of Theorem 1.

Especially the theoretical analysis of the PGSO and algorithms involving the PGSO is aided by The-
orem 1. There are several publications, where the complications and lack of results for complex
valued graph spectra are discussed in the case of directed graphs (Guo & Mohar, 2017; Brualdi,
2010; Li et al., 2015). To remain within the real domain independent of the parameter choice (for
undirected graphs) enables analysts to access a wide variety of spectral results, which only hold for
real symmetric matrices. An example of such a theorem is Cauchy’s interlacing theorem (Bernstein,
2009, p. 709), which can be used to relate the adjacency matrix spectra of a graph and its subgraphs.
Hall et al. (2009) and Porto & Allem (2017) have been able to prove interlacing theorems for unnor-
malised, signless and normalised Laplacians. The fact that the PGSO has a real spectrum presents a
first step to extend their work to potentially apply to the PGSO independent of the parameter values.
However, this is only one example of a powerful theoretical result, which relies on a real spectrum
and is accessible to our PGSO formulation due to the result shown in Theorem 1.

Now that the spectrum of γ(A,S) has been shown to be real we study the spectral support of
γ(A,S). A common way to prove bounds on the spectral support of a matrix is via direct appli-
cation of the Gershgorin Theorem (Bernstein, 2009, p. 293) as done in Theorem 2.
Theorem 2. Let Ci = m1(di + a)e1 + m2(di + a)e2+e3a + m3 and Ri = |m2|(di + a)e2+e3di,
where di denotes the degree of node vi. Furthermore, we denote eigenvalues of γ(A,S) by λ1 ≤
λ2 ≤ . . . ≤ λn. Then, for all j ∈ {1, . . . , n},

λj ∈
[

min
i∈{1,...,n}

(Ci −Ri) , max
i∈{1,...,n}

(Ci +Ri)

]
. (3)

The proof of Theorem 2 is shown in Appendix A.2.
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Figure 1: (a) bounds on the spectral support and (b) parameter values of γ(A,S) plotted against the
training epochs of a GCN-PGSO applied to a node classification task on the Cora graph. Note that
the optimal values of e2 and e3 lie close together and hence appear as a single line in (b).

Examples For the parametrisation of γ(A,S) corresponding to the adjacency matrix, we obtain
Ci = 0 and Ri = di. Ri is clearly maximised by the maximum degree and therefore, from (3)
the spectral support of A is equal to [−dmax, dmax], as required. Similarly, the spectral supports of
L, Lsym and Lrw, can be deduced by plugging in the corresponding parameters into the result in
(3). For the operator used in the message passing of the GCN (Kipf & Welling, 2017) a Gershgorin
bound such as the one in Theorem 2 has not been calculated yet as far as we are aware. We obtain
Ci = 1/(di + 1) and Ri = di/(di + 1). Therefore, from (3) the spectral support of the Kipf and
Welling operator is restricted to lie within [−(dmax − 1)/(dmax + 1), 1], the lower bound of this
interval tends to -1 as dmax →∞. So only in the limit is their spectral support symmetric around 0.

The bounds proven in Theorem 2 allow the observation of the spectral bounds for the many GSOs
which can be obtained via specific parameter choices made in our PGSO formulation. In the con-
text of GNNs such bounds are of value since they allow statements about numerical stability and
vanishing/exploding gradients to be made. For example in Kipf & Welling (2017) the observation
that the spectrum of the symmetric normalised Laplacian is contained in the interval [0, 2] motivated
them to make use of the “renormalisation trick” to stabilise their computations. Since the PGSO
is learned its spectral support varies throughout training. The bounds in Theorem 2 enable us to
monitor bounds on the spectral support in a numerically efficient manner, avoiding the computation
of eigenvalues at each iteration, as is showcased in the empirical observation in Section 4.2.

Since the majority of the commonly used graph shift operators correspond to specific parametri-
sations of γ(A,S) the spectral properties of γ(A,S) are general themselves, in the sense that we
cannot establish spectral results for γ(A,S), which have already been shown to not be present for
one of its parametrisations. This generality and lack of specific spectral features, which hold for all
parametrisations is precisely one of the strengths of utilising γ(A,S), since it allows the graph shift
operator to manifest different spectral properties in different tasks, when they are of benefit.

4.2 EMPIRICAL OBSERVATION

In this section, we observe bounds on the spectral support, proven in Theorem 2 (Figure 1(a)) and
optimal parameters (Figure 1(b)) of the PGSO incorporated in the GCN during training on a node-
classification task on the Cora dataset. More details on the task will be provided in Section 5.3.

Surprisingly, the spectral support of the PGSO remains centered at 0 throughout training in Figure
1(a) without this being enforced by the design of the PGSO. Recall that the centre of the spectral
support intervals has the following parametric form Ci = m1(di+a)e1 +m2(di+a)e2+e3a+m3. It
is nice to observe that this desirable property of the “renormalised” operator used by Kipf & Welling
(2017) is preserved throughout training. We also observe that the spectral bounds smoothly increase
throughout training. The increasing support is a direct result of the learned PGSO parameters.

As we expected from our analysis of Figure 1(a), we observe the parameters of the PGSO to be
smoothly varying throughout training in Figure 1(b). The parameters in Figure 1(b) can be seen
to have been initialised at the values corresponding to the chosen GSO in the GCN and from there
they smoothly vary towards new optimal values within the first 40 training epochs, which are then
stable throughout the remainder of the training, ruling out exploding gradients. It is nice to note that
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in Section 5 Figure 4(b) we observe the accuracy of the GCN using the trained PGSO parameters,
displayed in Figure 1(b), to slightly outperform the standard GCN.

5 EXPERIMENTS

We evaluate the performance of the PGSO in a simulation study and on 8 real-world datasets.
In Section 5.1, we show the ability of γ(A,S) to adapt to varying sparsity scenarios through a
stochastic blockmodel study, in Section 5.2 we study the sensitivity of the GNN-PGSO’s perfor-
mance to different γ(A,S) initialisations and in Section 5.3 we evaluate the contribution of PGSO
and mPGSO to the GNN performance in real-world datasets. Our code is publicly available at
https://github.com/gdasoulas/PGSO.

5.1 SPARSITY INTERPRETATION OF γ(A,S)

The choice of a graph shift operator depends on the structural information of a dataset and on the
end task. For example, in graph classification tasks the datasets usually contain small and sparse
graphs (Wu et al., 2018), while in node classification tasks the graphs are larger and denser. In this
section, we highlight the ability of γ(A,S) to adapt to different sparsity regimes.

Stochastic Blockmodels In order to simulate graphs with varying sparsity levels, we utilise the
parametrisation of stochastic blockmodel generation. Stochastic blockmodels (SBMs) are well-
studied generative models for random graphs, that tend to contain community, i.e., block, structure
(Holland et al., 1983; Karrer & Newman, 2011). Let k be the number of communities, {C1, ..., Ck}
be the k disjoint communities and pij be the probability of an edge occuring between a node u ∈ Ci

and a node v ∈ Cj . SBMs offer a flexible tool for random graph generation with specific properties,
such as the detectability of the community structure (Decelle et al., 2011) and the sparsity level of
the graph by choosing appropriate edge probabilities pij . Here, we focus on a restricted stochastic
blockmodel parametrisation where the probabilities of an edge occurring between nodes within the
same community are all equal to p, i.e., pii = p ∀i ∈ {1, ..., k}, and the probabilities of an edge
between nodes in different communities are all equal to q, i.e., pij = q ∀i 6= j, i, j ∈ {1, ..., k}.
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Figure 2: Mean and standard deviation
of the PGSO parameters on SBM

Dataset and experimentation setup In this experiment,
we consider 15 p, q parameter combinations (p, q) ∈
{(0.5, 0.25), (0.48, 0.24), ..., (0.22, 0.11)}, where by de-
creasing the parameters p and q we increase the sparsity
of the sampled networks. For each parameter set we sam-
ple 25 graphs with 3 communities containing 200 nodes
each. Figure 5 in Appendix B.1 contains plots of adja-
cency matrices sampled from these 15 parameter combi-
nations. The learning task performed by a GCN will be to
assign community membership labels to each node. For
all parameter choices the ratio p/q, i.e., the community
detectability, is equal to 2, so that the theoretical diffi-
culty the task remains constant across the different spar-
sity levels. As in Dwivedi et al. (2020), all of the nodes have uninformative attributes, except for
one node per community that carries its community membership as its node attribute. We set the
train/validation/test splits equal to 80%, 10%, 10% of nodes, respectively, for each community. We
use a 3-layer Graph Convolutional Network (Kipf & Welling, 2017) with hidden size 64 and with
our PGSO incorporated as the message passing operator and initialised to the GCN configuration.
We, then, observe the learned parameter values of γ(A,S) after 200 epochs.

Parameter Values Figure 2 shows the average optimal parameter values of γ(A,S) found for
each one of the 15 node classification datasets. We observe that all parameters remain close to
constant as the sparsity of the SBM samples increases, except for the additive parameter a, which
can be observed to clearly increase with increasing sparsity levels. The parameter a in the PGSO
parametrisation plays a very similar role to the regularisation parameter of the normalised adjacency
matrix, which is observed to significantly improve the performance of the spectral clustering algo-
rithm in the task of community detection in the challenging sparse case in Dall’Amico et al. (2020)
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Figure 3: Parameter evolution of γ(A,S) for 150 epochs, when applied on GCN-PGSO model for
the node classification task on Cora.

and Qin & Rohe (2013). It is very nice to see that the PGSO automatically varies this regularisation
parameter, replicating the beneficial regularisation observed in the literature, without this behaviour
being incentivised in any way by the model design or the parametrisation. In Figure 2 we can fur-
thermore observe that the e2 and e3 values are closely aligned for all sparsity levels indicating that a
symmetric normalisation of the adjacency matrix seems to be beneficial in this task.

5.2 SENSITIVITY ANALYSIS OF γ(A,S) TO DIFFERENT INITIALISATIONS

In Section 5.1, we initialised a 3-layer GCN-PGSO model with the original GCN parameter config-
uration, as shown in Table 1. In this section, we observe how sensitive the optimal parameters of
γ(A,S) and the final model accuracy are to different GSO initialisations.

Experimentation setup: We use the GCN-PGSO model, described in Section 3.3, for the node
classification task on the Cora dataset (McCallum et al., 2000). We consider 5 different initialisa-
tions of γ(A,S) that correspond to 1) the GCN operator D−1/21 A1D

−1/2
1 , 2) the adjacency matrix

A, 3) the random-walk normalised Laplacian Lrw = I − D−1A, 4) the symmetric normalised
Laplacian Lsym = I − D−1/2AD−1/2 and 5) a naive all-zeros initialisation, where all γ(A,S)
parameters are set to 0.

In Figure 3, we observe the parameter evolution of γ(A,S) over 150 epochs for the different initiali-
sations. The parameter values obtained from the GCN, adjacency matrix and all-zeros initialisations
exhibit a great amount of similarity; while the normalised Laplacian initilisations lead to similar
optimal values for five of the seven parameters. For all initialisations we observe that parameters
m1,m3, e1, e2, e3 monotonically increase until they converge. Parameters m2 and a initially in-
crease for the GCN, adjacency and all-zeros initialisations, while they initially decrease for the two
normalised Laplacians. The achieved accuracy of the five initialisations is plotted in Appendix B.4,
where it can be observed that the resulting accuracy from the two normalised Laplacian initiali-
sations is slightly lower than the one achieved by the remaining three initialisations. Overall, the
accuracy is not very sensitive to the different initialisations.

5.3 REAL-WORLD SCENARIOS

In this section, we evaluate the contribution of the parametrised GSO, when we apply it to a variety
of graph learning tasks. In order to highlight the flexibility of γ(A,S), we perform both node
classification and graph classification tasks.

Datasets: For node classification, we have used the well-examined datasets Cora and Cite-
Seer (McCallum et al., 2000; Giles et al., 1998) and ogbn-arxiv, that is a citation network from a
recently popular collection of graph benchmarks, the Open Graph Benchmark (Hu et al., 2020). For
graph classification, we have used the extensively-studied TU datasets MUTAG, PTC-MR, IMDB-
BINARY and IMDB-MULTI (Kersting et al., 2016) and OGBG-MOLHIV dataset from OGB (Hu
et al., 2020). Details and statistics of the datasets can be found in Appendix B.2.1.

Experimentation Setup: For the node classification datasets Cora and CiteSeer, we performed
cross validation with the train/validation/test splits being the same as in Kipf & Welling (2017),
while for Ogbn-arxiv, we used the same splitting method used in Hu et al. (2020), according to

8
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Figure 4: Classification accuracy results for both node and graph classification tasks (Validation
ROC-AUC for OGBG-MOLHIV). Lower case letters denote a node classification task, while capital
letters a graph classification task.

the publication dates. For the TU datasets, we performed 10-fold cross validation with grid search
hyper-parameter optimisation and for OGBG-MOLHIV, following Hu et al. (2020) we used a scaf-
fold splitting approach and measured the validation ROC-AUC. We compared the contribution of
PGSO and mPGSO on 4 standard GNN baselines: 1) GCN: Graph Convolutional Network (Kipf
& Welling, 2017), 2) GAT: Graph Attention Network (Veličković et al., 2018), 3) SGC: Simplified
Graph Convolution (Wu et al., 2019) and 4) GIN: Graph Isomorphism Network (Xu et al., 2019). A
full description of the experimentation details for each task can be found in Appendix B.2.2.

In Figure 4, we show the contribution of the PGSO and the mPGSO methods, when applied to
standard GNNs. For all datasets and GNN architectures, the inclusion of the PGSO or the mPGSO
improves the model performance. In the graph classification tasks the performance improvement is
higher than the node classification tasks. Specifically, on MUTAG, PTC-MR and IMDB-BINARY,
we observe a significant improvement of the classification accuracy for all GNNs. In the comparison
between PGSO and mPGSO we do not find a clear winner. For this reason, we prefer the PGSO
variant, as it is more efficient and never harms the model’s performance. In Appendix B.5 we
study the convergence of optimal accuracy and loss values of the GNN-PGSO model in a node-
classification and a graph classifcation dataset. In both experiments we observe the PGSO model to
converge slightly faster and to better accuracy and loss values than its conventional counterpart.

6 CONCLUSION

In this work, a parametrised graph shift operator (PGSO) is proposed, that encodes graph struc-
tures and can be included in any graph representation learning scenario. Focusing on graph neural
networks (GNNs), we demonstrate that the PGSO can be integrated in the GNN model training.
We proved that the PGSO has real eigenvalues and a set of real eigenvectors and derived its spec-
tral bounds, which when observed in practice show that our learned PGSO leads to numerical stable
computations. A study on stochastic blockmodel graphs demonstrated the ability of the PGSO to au-
tomatically adapt to networks with varying sparsity, independently confirming the positive impact of
GSO regularisation which was found in the literature. Experiments on 8 real-world datasets, where
both node and graph classification was performed, demonstrate that the accuracy of a representative
sample of the current state-of-the-art GNNs can be improved by the incorporation of our PGSO.
In answer to our two research questions posed in Section 1, our experimental results have shown
that the optimal representation of graph structures is task and data dependent. We have furthermore
found that PGSO parameters can be incorporated in the training of GNNs and lead to numerically
stable learning and message passing operators.
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APPENDIX

A PROOFS

A.1 PROOF OF THEOREM 1

In this appendix we prove that γ(A,S) has real eigenvalues and a set of real eigenvectors. For this
proof the definition of similar matrices is fundamental.
Definition 3. Two matrices Φ,Ψ ∈ Cn×n are similar via a nonsingular similarity matrix S ∈ Cn×n

if
Ψ = S−1ΦS. C

Next we note that γ(A,S) is similar to the symmetric matrix D−(e2−e3)/2a γ(A,S)D
(e2−e3)/2
a .

Real, symmetric matrices have a set of real eigenvalues and furthermore, possess a set of real eigen-
vectors. It is a known property of similar matrices that they share eigenvalues and that for a given
eigenvector w of Φ, Sw is an eigenvector of Ψ (Horn & Johnson, 1985, pp. 45,60). Therefore, by
the similarity relationship to a real symmetric matrix via a real similarity matrix, γ(A,S) has real
eigenvalues and a set of real eigenvectors.
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Figure 5: List of adjacency matrices generated by stochastic blockmodels for varying sparsity by
decreasing the probability tuple (p, q).

A.2 PROOF OF THEOREM 2

In this proof we will again be utilising the property that similar matrices share eigenvalues by con-
sidering the matrix De3

a γ(A,S)D−e3a , which is similar to γ(A,S) . The Gershgorin Theorem states
that all eigenvalues of a matrix are contained in circles centred at the matrix’s diagonal elements
with radii equal to the corresponding off-diagonal row-sums of the matrix elements in absolute
value (Bernstein, 2009, p. 293). In Theorem 1 we showed that γ(A,S) has a real spectrum and
therefore the circles in the Gershgorin Theorem are in fact intervals on the real line in the case of
γ(A,S) . The parametrised form of De3

a γ(A,S)D−e3a is as follows,

De3
a γ(A,S)D−e3a = m1D

e1
a +m2D

e2+e3
a Aa +m3In. (4)

From (4) we can simply read off that the diagonal elements, denoted Ci, and off-diagonal row-sums
of the matrix elements in absolute value, denoted Ri, of De3

a γ(A,S)D−e3a take the following form,

Ri = m1(di + a)e1 +m2(di + a)e2+e3a+m3,

Ci = |m2|(di + a)e2+e3di.

Hence, via the similarity relationship of De3
a γ(A,S)D−e3a and γ(A,S) and a direct application of

the Gershgorin Theorem applied to De3
a γ(A,S)D−e3a we obtain the required result.

B EXPERIMENTS

B.1 STOCHASTIC BLOCK MODELS

In this section, we present a visualisation of graphs generated from stochastic blockmodels (SBMs)
with varying sparsity. Specifically, in Figure 5 we display 15 adjacency matrices of graphs generated
from SBMs with edge probabilities (p, q) = {(0.50, 0.25), ..., (0.22, 0.11)}. The format of this
adjacency matrix visualisation is taken from Dwivedi et al. (2020). The ordering of the node labels
in Figure 5 corresponds to their block membership in order to highlight the block structure in the
adjacency matrix plots.
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B.2 EXPERIMENTATION SETUP ON REAL-WORLD DATASETS

In this section, we present the dataset information and statistics and the experimentation details for
the experiments in Section 5.3.

B.2.1 DATASETS

The datasets used in the experimentation setup cover both node and graph classification tasks.

• Cora and CiteSeer are citation networks (Kipf & Welling, 2017), where nodes correspond
to documents and edges encode citation links. Both datasets contain node attributes, that
are sparse bag-of-words representations of the documents.

• Ogbn-arxiv is a citation network with directed edges, where each node corresponds to an
arXiv paper and the edges denote citations from one paper to another (Hu et al., 2020). The
dataset contains node attributes, that are averaged word embeddings of the titles and the
abstracts of dimensionality 128. The label of each node is the subject area of the paper and
can take 40 values.

• MUTAG and PTC-MR are a collection of bio-informatics networks (Kersting et al., 2016),
where the label of each graph correspond to a chemical property of the compound.

• IMDB-BINARY and IMDB-MULTI are datasets containing collaborations between ac-
tors/actresses, where each graph is an ego-graph an actor/actress and edges occur when two
actors/actresses are playing in the same movie (Kersting et al., 2016). These datasets do
not contain node attributes, thus following the literature, we create node features by using
one-hot encodings of the node degrees.

• OGBG-MOLHIV is a collection of graphs, that represent molecules (Wu et al., 2018).
Nodes are atoms and the edges correspond to chemical bonds between atoms. The graphs
contain node features, that are processed as in Hu et al. (2020).

In Table 2 the dataset statistics of both node and graph classification tasks are displayed.

Table 2: Datasets statistics

Dataset # graphs # avg.nodes/graph # avg.edges/graph # classes
Cora 1 2,708 5,429 2

CiteSeer 1 3,327 4,732 2
Ogbn-arxiv 1 169,343 1,166,243 40

MUTAG 188 17.93 19.81 2
PTC-MR 344 14.29 14.32 2

IMDB-BINARY 1000 19.77 96.52 2
IMDB-MULTI 1500 13.00 76.34 3

OGBG-MOLHIV 41,127 25.5 27.50 2

B.2.2 EXPERIMENTATION DETAILS

In this section, we initially report the experimental setting that is common to all experiments and,
then, separately provide the details which are specific to the different tasks (node classification and
graph classification).

In our experiments, we use the Adam optimizer (Kingma & Ba, 2015) with a weight decay on the
parameters of 5 ∗ 10−4 and an initial learning rate of 0.005 for the exponential parameters and an
initial learning rate of 0.01 for all other model parameters. The differentiation between the two
learning rates is crucial for the model training, as the fluctuation of the exponential parameters has a
higher impact on the model behavior than the rest of the model parameters. We, also, used a learning
rate scheduler that decayed both the learning rates by 0.5 every 50 epochs.

14



Published as a conference paper at ICLR 2021

Node Classification Tasks We report below the experimental details used in the node classifica-
tion datasets, regarding model selection, metrics and model design. The Cora and CiteSeer datasets
are formulated as binary class classification problems, while the Ogbn-arxiv is formulated as a 40-
class classification problem.

• Model Selection: We perform cross-validation for all GNN, GNN-PGSO and GNN-
mPGSO models with predefined dataset splits. For Cora and CiteSeer, we use the same
train/validation/test splits as in Kipf & Welling (2017) for the sake of comparison with
other methods that use the same splits. For Ogbn-arxiv, we use the splitting method, de-
scribed in Hu et al. (2020), that splits the data into the train split, containing all papers until
2017, the validation split, containing all papers published in 2018 and test split with the
published papers since 2019.

• Hyper-parameter Tuning: We use grid search to tune the hyper-parameters of the models
(dimensionality of hidden units, number of GNN layers, number of epochs and the batch
size).

• Evaluation Metric: For all node classification datasets (Cora, CiteSeer, Ogbn-arxiv), we
use as evaluation metric the validation accuracy.

• Model Design: The number of hidden units that was grid-searched was within {16, 32, 64}.
The number of GNN layers that were used were within {1, 2, 3, 4}.

• Experiment Design: The number of epochs for the model training was {50, 100, 200},
batch size within {16, 32, 64} and a dropout ratio of 0.5.

Graph Classification Tasks In the same fashion we report below the details of the experimenta-
tion setup of the graph classification tasks. The MUTAG, PTC-MR, IMDB-BINARY and OGBG-
MOLHIV are formulated as binary class classification problems, while IMDB-MULTI is formulated
as a 3-class classification problem.

• Model Selection: We perform 10-fold cross-validation for all GNN,GNN-PGSO, GNN-
mPGSO models. For MUTAG, PTC-MR, IMDB-BINARY and IMDB-MULTI, we have
used k random and stratified splits to provide balanced train/validation/test sets. For
OGBG-MOLHIV we use the scaffold splitting as in Hu et al. (2020), that seperates the
graphs based on their 2D structural representations.

• Hyper-parameter Tuning: We use grid search to tune the hyper-parameters of the models
(dimensionality of hidden units, number of GNN layers, number of epochs and the batch
size).

• Evaluation Metric: For the MUTAG, PTC-MR, IMDB-BINARY, IMDB-MULTI datasets,
we use as evaluation metric the standard classification accuracy, while for the OGBG-
MOLHIV we use as Hu et al. (2020) the validation ROC-AUC.

• Model Design: The number of hidden units that was grid-searched was within {16, 32, 64}.
The number of GNN layers that were used were {1, 2, 3, 4, 5}.

• Experiment Design: The number of epochs for the model training was {100, 200, 300},
the batch size within {16, 32, 64} and the dropout ratio of 0.5.

B.3 TABLES

Next, we present Tables 3 and 4 containing the detailed experimentation results. In Table 3, the
average accuracies with their corresponding standard deviations for the node classification tasks
are presented, in particular for the datasets Cora, CiteSeer and Ogbn-arxiv. In Table 4, the results
for the graph classification tasks are presented, specifically MUTAG, PTC-MR, IMDB-BINARY,
IMDB-MULTI and OGBG-MOLHIV. We note that for the first 4 graph classification datasets we
compute the classification accuracy, while for OGBG-MOLHIV we use the validation ROC-AUC,
following Hu et al. (2020).

B.4 MODEL PERFORMANCE FOR DIFFERENT INITIALISATIONS

In Figure 6, we show the train and validation accuracy achieved by the PGSO model discussed
in Section 5.2 using the 5 different initialisation configurations: GCN operator, adjacency matrix,
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Table 3: Classification accuracies for Cora and CiteSeer and validation ROC-AUC for Ogbn-arxiv.

Cora CiteSeer Ogbn-arxiv
GCN 81.4 ± 0.4 70.9 ± 0.5 71.74 ± 0.29
SGC 81.0 ± 0.1 71.9 ± 0.2 70.91 ± 0.31
GAT 83.0 ± 0.7 72.5 ± 0.6 71.82 ± 0.22
GIN 77.6 ± 1.5 69.6 ± 0.9 71.49 ± 0.27

GCN-PGSO 82.0 ± 0.1 71.5 ± 0.4 72.66 ± 0.32
GCN-mPGSO 82.6 ± 0.2 71.6 ± 0.3 72.12 ± 0.31
SGC-PGSO 81.4 ± 0.2 73.1 ± 0.5 70.99 ± 0.28

SGC-mPGSO 81.6 ± 0.3 72.8 ± 0.2 71.12 ± 0.27
GAT-PGSO 84.3 ± 0.4 73.0 ± 0.3 72.15 ± 0.18

GAT-mPGSO 83.8 ± 0.5 72.9 ± 0.4 72.21 ± 0.17
GIN-PGSO 77.8 ± 0.8 69.9 ± 0.8 71.68 ± 0.22

GIN-mPGSO 78.1 ± 1.3 70.2 ± 1.5 71.72 ± 0.28

Table 4: Classification accuracies for 5 graph classification datasets.

MUTAG PTC-MR IMDB-BINARY IMDB-MULTI OGBG-MOLHIV
GCN 85.8 ± 3.1 64.3 ± 2.1 71.4 ± 2.4 50.3 ± 1.8 76.06 ± 0.97
SGC 84.4 ± 1.7 64.1 ± 1.2 71.6 ± 1.4 50.9 ± 2.0 75.72 ± 0.87
GAT 86.1 ± 2.3 63.8 ± 1.5 70.8 ± 1.5 50.1 ± 1.1 74.12 ± 0.99
GIN 89.4 ± 5.6 64.4 ± 1.9 75.1 ± 5.1 52.3 ± 2.8 75.58 ± 1.41

GCN-PGSO 90.7 ± 3.5 67.1 ± 2.2 72.7 ± 3.2 51.0 ± 1.5 76.75 ± 1.12
GCN-mPGSO 90.2 ± 2.8 69.0 ± 1.9 72.4 ± 1.8 50.8 ± 1.2 76.21 ± 1.01
SGC-PGSO 88.9 ± 1.8 68.1 ± 1.5 73.2 ± 3.5 51.9 ± 1.4 75.77 ± 0.65

SGC-mPGSO 86.1 ± 3.1 67.6 ± 1.3 73.4 ± 1.3 51.5 ± 1.2 75.81 ± 0.72
GAT-PGSO 87.2 ± 3.9 64.2 ± 0.7 71.2 ± 0.7 50.6 ± 0.7 75.43 ± 0.91

GAT-mPGSO 86.8 ± 4.3 64.4 ± 1.1 70.4 ± 1.1 50.1 ± 1.3 74.23 ± 1.11
GIN-PGSO 91.9 ± 3.1 66.1 ± 2.1 76.4 ± 2.8 53.3 ± 2.1 76.32 ± 1.37

GIN-mPGSO 90.8 ± 3.2 64.7 ± 2.2 77.1 ± 3.2 53.8 ± 2.7 76.22 ± 1.65
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Figure 6: Train and Validation Accuracy on Cora using 5 different initialisation configurations for
PGSO

all-zeros, symmetric normalised Laplacian and random-walk Normalised Laplacian. For all experi-
ments, we used the same configuration of the hyper-parameters for a fair comparison.
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B.5 CONVERGENCE STUDY

In this appendix, we empirically analyse the contribution of the PGSO in a node classification and
a graph classification task regarding the accuracy and loss convergence. For the node classification
task, we have used the Cora dataset and a GCN model. Both for the standard GCN and the GCN-
PGSO models, we used the same experimentation configuration for a fair comparison. For the graph
classification task, we have used PTC-MR dataset and a GIN model. Both for the standard GIN and
the GIN-PGSO models, we used the same configuration for a fair comparison. In Figures 7 and 8,
we show the accuracy and loss convergence using the standard model and the PGSO model. As
we can see, for both the node classification and graph classification task, the PGSO incorporation
into the model has a positive impact on the achieved accuracy and the loss minimization throughout
training. Specifically, we observe a slightly faster convergence of accuracy and loss in better values
using the GCN-PGSO and GIN-PGSO models.
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Figure 7: Accuracy and Loss convergence for the node classification task on Cora
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Figure 8: Accuracy and Loss convergence for the graph classification task on PTC-MR
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