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Abstract

Graph autoencoders (GAE) and variational graph autoencoders (VGAE) emerged as
powerful methods for link prediction. Their performances are less impressive on community
detection problems where, according to recent and concurring experimental evaluations,
they are often outperformed by simpler alternatives such as the Louvain method. It is
currently still unclear to which extent one can improve community detection with GAE
and VGAE, especially in the absence of node features. It is moreover uncertain whether
one could do so while simultaneously preserving good performances on link prediction. In
this paper, we show that jointly addressing these two tasks with high accuracy is possible.
For this purpose, we introduce and theoretically study a community-preserving message
passing scheme, doping our GAE and VGAE encoders by considering both the initial graph
structure and modularity-based prior communities when computing embedding spaces.
We also propose novel training and optimization strategies, including the introduction of a
modularity-inspired regularizer complementing the existing reconstruction losses for joint
link prediction and community detection. We demonstrate the empirical effectiveness
of our approach, referred to as Modularity-Aware GAE and VGAE, through in-depth
experimental validation on various real-world graphs.

Keywords: Graph Autoencoders, Node Embedding, Modularity, Graph Neural Networks,
Link Prediction, Community Detection

1. Introduction

Context and Motivation. Graph structures became ubiquitous in various fields ranging
from social networks and web mining to biology [1, 2], due to the proliferation of data
representing entities, also known as (a.k.a.) nodes, connected by links, a.k.a. edges.
Extracting relevant information from these nodes and edges is essential to tackle a wide
range of graph-based machine learning problems [1, 2, 3, 4], such as the challenging tasks of:
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• link prediction [5, 6], which consists in inferring the presence of new or unobserved
edges between some pairs of nodes, based on observable edges in the graph;

• community detection [7, 8], which consists in clustering nodes into similar subgroups,
according to a chosen similarity metric.

To effectively address such graph-based problems, significant research efforts were
recently devoted to the development of node embedding methods. In a nutshell, these
methods aim to learn vectorial representations of nodes, in an embedding space where node
positions should reflect and summarize the initial graph structure [1, 2, 9]. Then, they
assess the probability of a missing edge between two nodes, or their likelihood of belonging
to the same community, by evaluating the proximity of these nodes in the learned space
[10, 11, 12]. Node embedding methods are at the core of promising improvements in
real-world graph learning applications [2, 6], often outperforming more traditional graph
mining methods relying on hand-engineered indicators [5, 6].

In particular, graph autoencoders (GAE) and variational graph autoencoders (VGAE)
[10, 11, 13, 14] recently emerged as two powerful families of node embedding methods.
They both rely on an encoding-decoding strategy that, in a broad sense, consists in
encoding nodes into an embedding space from which decoding, i.e., reconstructing the
original graph should ideally be possible, by leveraging either a deterministic (for GAE)
or a probabilistic (for VGAE) approach. Originally mainly designed for link prediction (at
least in their modern formulation leveraging graph neural networks architectures [11]), the
overall effectiveness of GAE and VGAE and of their extensions on this specific task has
been widely experimentally confirmed over the past few years [15, 16, 17, 18, 19, 20, 21, 22].

On the other hand, several concurring studies [12, 17, 23, 24] have simultaneously
pointed out the limitations of these models on community detection. They emphasized that
standard GAE and VGAE are often outperformed by simpler node clustering alternatives,
such as the popular Louvain method [7]. While some recent studies worked on this
issue (see Section 2 for an overview), their solutions strongly relied on clustering-oriented
probabilistic priors that only fit the VGAE setting and can not be directly transposed
to GAE. They also benefited greatly from the presence of node features a.k.a. attributes
complementing the graph structure, but provided only little to no empirical gain on
featureless graphs that are nonetheless ubiquitous. Thirdly, they did not explicitly try to
preserve the good performances of GAE and VGAE on link prediction. In practice, as
we will argue in this work, learning node embedding spaces that jointly enable good link
prediction and community detection performances is often desirable, both for real-world
applications and in pursuit of learning accurate and general representations of a graph
structure.

Research Questions. In summary, the question of how to improve community detection
with GAE and VGAE remains incompletely addressed, especially in the absence of node
features, and it is still unclear to which extent one can improve community detection
with these models without simultaneously deteriorating link prediction. In this paper, we
propose to tackle these important problems by investigating the following two research
questions:

• Question 1: Can we improve community detection for both the GAE and VGAE
settings? And does this improvement persist for featureless graphs?
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• Question 2: Do improvements in the community detection task necessarily incur
a loss in the link prediction performance or can they be jointly addressed with high
accuracy?

Contributions. In this paper, we propose several novel contributions to both the GAE
and VGAE frameworks, which allow us to answer both of these research questions
positively. More precisely, our contributions are listed as follows.

1. We first diagnose the reasons why GAE and VGAE models tend to perform well on
link prediction but to underperform on community detection.

2. Then, based on insights from this diagnosis, we improve GAE and VGAE for
community detection while preserving their ability to identify missing edges. Our
strategy leverages concepts inspired by modularity-based clustering [7, 25, 26]:

(a) Specifically, we first present and theoretically study a novel community-
preserving message passing scheme, doping our GAE and VGAE encoders
by considering both the initial graph structure and modularity-based prior
communities when computing embedding spaces;

(b) We also introduce revised training and optimization strategies with respect to
(w.r.t.) current practices in the scientific literature, including the introduction
of modularity-inspired losses complementing the existing reconstruction losses
with the aim of jointly ensuring good performances on link prediction and
community detection.

3. Backed by in-depth experiments on several real-world graphs, including on industrial-
scale data provided by a global music streaming service, we demonstrate the empirical
effectiveness of our approach at addressing:

(a) Pure community detection problems;
(b) Joint community detection and link prediction problems.

4. Lastly, along with this paper, we publicly release our source code on GitHub, to
ensure the reproducibility of our results and to encourage future usage of our method.

Organization of this Paper. The remainder of this paper is organized as follows. In
Section 2, we recall key concepts related to GAE and VGAE models, as well as their
existing applications to link prediction and to community detection. We also point
out the limits of current GAE and VGAE models on community detection. In Section
3, we diagnose the reasons explaining these limits. We subsequently introduce and
theoretically study our proposed solution, referred to as Modularity-Aware GAE and
VGAE, to overcome these limitations. We report and discuss our experimental evaluation
in Section 4, and we conclude in Section 5.

2. Background and Related Work

We begin this section by providing a description of the GAE and VGAE models in
Sections 2.1 and 2.2, respectively. We then introduce the two learning tasks we address
in this work and previous solution approaches. Specifically, we discuss the link prediction
task in Section 2.3 and the community detection task in Section 2.4.

Throughout this paper, we consider an undirected graph G = (V, E) with |V| = n
nodes and |E| = m edges. We denote by A the n×n adjacency matrix of G, that is either:
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Table 1: Overview of frequently used notation.

Notation Domain Description

G = (V, E) – A graph composed of a node set V and an edge set E
n,m N+ Number of nodes and edges in G, respectively
f N+ Dimension of feature vectors describing nodes

xi Rf Feature vector describing node i ∈ V
X = [x1, . . . , xn]T Rn×f Node feature matrix, stacking up xi vectors of all nodes
A [0, 1]n×n Adjacency matrix of G
D = diag(A1n) Rn×n Degree matrix corresponding to the adjacency matrix A
FGCN (A) [0, 1]n×n Symmetric normalization of A defined in Equation (3), and

used as message passing operator in Graph Convolutional
Networks (GCN)

d N+ Dimension of the node embedding space learned by GAE
and VGAE models

zi Rd Node embedding vector of node i ∈ V
Z = [z1, . . . , zn]T Rn×d Node embedding matrix, stacking up zi vectors of all nodes

Â [0, 1]n×n Adjacency matrix reconstructed by the GAE or VGAE
LGAE R+ Reconstruction loss minimized in standard GAE
LVGAE R− Evidence lower bound maximized in standard VGAE

L̃GAE R Revised loss minimized in our Modularity-Aware GAE

L̃VGAE R Revised objective maximized in our Modularity-Aware
VGAE

C1, . . . , CK V A partition of V into K disjoint node clusters/communities
n1, . . . , nK {1, ..., n} Number of nodes in C1, . . . , CK respectively
Ac {0, 1}n×n Community membership matrix defined in Equation (14),

corresponding to the adjacency matrix of a graph defined
by the C1, . . . , CK partition

As {0, 1}n×n s-regular sparsification of Ac, in which each node in Cl is
only connected to s < nl randomly selected nodes in Cl

λ R+ Hyperparameter regulating the relative importance of As in
encoders of the Modularity-Aware GAE and VGAE

β, γ R+ Hyperparameters regulating the modularity component in
the revised losses of the Modularity-Aware GAE and VGAE

• binary, i.e., for all (i, j) ∈ V × V, we have Aij ∈ {0, 1};

• or weighted and normalized, i.e., for all (i, j) ∈ V × V, we have Aij ∈ [0, 1].

Each node i ∈ V is also equipped with an f -dimensional feature vector xi. In the following,
X denotes the n× f feature matrix stacking up all feature vectors. When dealing with
featureless graphs, we will simply set X = In, where In denotes the n×n identity matrix.
In Table 1 we provide an overview of our frequently used notation.

2.1. Graph Autoencoders

The term graph autoencoders (GAE) refers to a family of unsupervised models learning
node embedding spaces from graph data [9, 11, 13, 14, 27]. They involve the combination
of two components, an encoder and a decoder, that jointly learn low-dimensional vectorial
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representations of nodes from which one should be able to reconstruct the initial graph.
Intuitively, the ability to accurately reconstruct a graph from a node embedding space
indicates that this space preserves some important information about the graph structure.

Albeit under various formulations, this encoding-decoding strategy has been widely
adopted over the last years to learn node embedding spaces in the absence of node labels
[9, 10, 11, 13, 14]. In this section, we choose to mainly follow the formulation of Kipf and
Welling [11], as their work is explicitly mentioned as the seminal reference in the majority
of the most recent advances in GAE, including [12, 15, 17, 18, 19, 20, 21, 22, 23, 27, 28, 29].

2.1.1. Encoder

The first component of a GAE model is an encoder. In its most general formulation,
it is a parameterized function processing A and X, and aiming to map each node i ∈ V
from G to a low-dimensional embedding vector zi ∈ Rd, with d� n. Denoting by Z the
n× d matrix stacking up all vectors zi, we have:

Z = Encoder(A,X). (1)

In practice, a graph neural network architecture [2, 3] often acts as the encoder. In
particular, Kipf and Welling [11] leverage multi-layer graph convolutional network (GCN)
encoders [30]. In a L-layer GCN, with L ≥ 2, with input layer H(0) = X, and with output
layer H(L) = Z, we have:

H(0) = X,

H(l) = ReLU(FGCN (A)H(l−1)W (l−1)), for l ∈ {1, ..., L− 1},
H(L) = Z = FGCN (A)H(L−1)W (L−1),

(2)

where
FGCN (A) = (D + In)−

1
2 (A+ In)(D + In)−

1
2 (3)

is the symmetric normalization of the adjacency matrix A, and where D = diag(A1n)
(1n denotes the vector containing n entries all equal to 1) is the diagonal degree matrix
of A. At each layer l > 1, the GCN computes a vectorial representation for each node
i ∈ V, by computing a weighted average of the representations from layer l − 1 of i’s
direct neighbors and of i itself. This averaging operation is composed with a linear
transformation via trainable weight matrices W (0), . . . ,W (L−1) and a ReLU activation
function: ReLU(x) = max(x, 0). The tuning of these weight matrices, as proposed in [11],
will be detailed in Section 2.1.3.

To this day, GCNs remain popular encoders in GAE extensions [12, 15, 18, 19, 20,
21, 22, 28, 24] building upon Kipf and Welling [11]. This can be explained by the
recent successes of GCN-based models [2, 3, 30], as well as by the simplicity of GCNs
in comparison to other graph neural networks [3, 31] and their linear time complexity
w.r.t. the number of edges m in the graph [30]. Nonetheless, the choice of GCN encoders
is made without loss of generality, as they can be replaced by alternatives, including
by faster [32, 33, 34], by more sophisticated [31, 35, 36] or, on the contrary, by simpler
[23, 27] models.
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2.1.2. Decoder

The second component of a GAE is a decoder. This function aims to reconstruct an
n× n adjacency matrix Â, estimated from the embedding vectors:

Â = Decoder(Z). (4)

While another neural network could act as a decoder [14, 37, 38], Kipf and Welling [11]
and most of the aforementioned extensions rely on simpler inner product decoders:

Â = σ(ZZT ), (5)

where σ(·) denotes the sigmoid function σ(x) = 1/(1 + e−x). Therefore, for all node pairs
(i, j) ∈ V × V, we have Âij = σ(zTi zj) ∈ [0, 1]. In such a setting, a large and positive
inner product zTi zj in the node embedding space indicates the likely presence of an edge
between nodes i and j in G, according to the model. Again, the choice of inner product
decoders is made without loss of generality, and recent efforts considered replacing them
by alternatives verifying some desirable properties, such as the ability to reconstruct
directed edges [18], to capture triads structures [22] or to reconstruct biologically plausible
graphs in the case of autoencoders for molecular structures [39, 40].

2.1.3. Optimization

Recall that GAE models aim to learn node embedding spaces from which one can
accurately reconstruct graphs. They are trained to minimize reconstruction losses, that
evaluate the similarity between the decoded adjacency matrix Â and the original one
A. Specifically, Kipf and Welling [11] train weight matrices of their GCN encoders by
iteratively minimizing, using gradient descent [41], the following cross-entropy loss:

LGAE =
−1

n2

∑
(i,j)∈V×V

[
Aij log(Âij) + (1−Aij) log(1− Âij)

]
. (6)

In the case of sparse graphs where unconnected node pairs significantly outnumber the
connected ones, i.e., the graph’s edges, it is common to reweight the “positive terms” in
Equation (6) by a factor wpos > 1 [11, 24], or alternatively to subsample “negative terms”
[9, 42]. We also note that an exact evaluation of LGAE requires the reconstruction of the
entire matrix Â, which suffers from a quadratic O(dn2) time complexity. For scalability
concerns, recent works proposed faster training strategies [17, 24, 42]. This includes the
FastGAE method [24] that approximates LGAE by reconstructing stochastic subgraphs of
O(n) size, and that we will also use in Section 4 in our experiments on large graphs.

2.2. Variational Graph Autoencoders

Kipf and Welling [11] also considered a probabilistic variant of GAEs, extending
variational autoencoders (VAE) from Kingma and Welling [43]. Besides constituting
generative models with promising recent applications to graph generation [39, 40, 44],
variants of variational graph autoencoders (VGAE) also turned out to be effective alterna-
tives to GAE in some link prediction or community detection tasks [11, 18, 21, 23, 24, 27].
Consequently, we see value in considering both GAE and VGAE in our work.
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2.2.1. Encoder

VGAE models provide an alternative strategy to learn a matrix Z, stacking up one
embedding vector zi for each node i of a graph G, by assuming that these vectors are
drawn from specific distributions. In particular, Kipf and Welling [11] assume that each
vector zi is a sample drawn from a d-dimensional Gaussian distribution, with mean vector
µi ∈ Rd and variance matrix diag(σ2

i ) ∈ Rd×d (with σi ∈ Rd). They rely on two encoders
to learn these parameters. Denoting the n× d matrices stacking up the d-dimensional
mean and (log)-variance vectors for each node by µ and by log σ, respectively, they set:

µ = Encoderµ(A,X) and log σ = Encoderσ(A,X). (7)

As is the case for GAE, multi-layer GCNs often act as encoders, i.e., µ = GCNµ(A,X)
and log σ = GCNσ(A,X). Then, they adopt a mean-field inference model for Z [11], i.e.,

q(Z | A,X) =

n∏
i=1

q(zi | A,X), with q(zi | A,X) = N (zi | µi,diag(σ2
i )), (8)

where N (·) denotes the normal distribution.

2.2.2. Decoder

In the VGAE setting, the actual embedding vectors zi are sampled from the afore-
mentioned normal distributions. From such embedding representations, VGAE models
then require a generative model p(A | Z,X), to act as a graph decoder. As for GAE, Kipf
and Welling [11] rely on inner products together with sigmoid activation functions to
reconstruct edges:

Âij = p(Aij = 1 | zi, zj) = σ(zTi zj), (9)

where the embeddings zi, zj are sampled from the distribution in Equation (8). Then,
the authors assume the following generative model which factorizes over the edges:

p(A | Z,X) =
n∏
i=1

n∏
j=1

p(Aij | zi, zj). (10)

2.2.3. Optimization

During training, and similarly to standard VAE models [43], Kipf and Welling [11]
iteratively maximize a tractable variational lower bound of the model’s likelihood, a.k.a.
the evidence lower bound (ELBO) [43], written as follows in the context of VGAE:

LVGAE = Eq(Z|A,X)

[
log p(A | Z,X)

]
−DKL

(
q(Z | A,X)||p(Z)

)
. (11)

This ELBO is iteratively maximized w.r.t. weights of the two GCN encoders, by gradient
descent and potentially using approximation strategies such as the strategies described
in Section 2.1.3. In the above Equation (11), DKL(·||·) denotes the Kullback-Leibler
divergence [45], and p(Z) corresponds to a unit Gaussian prior on the distribution of the
latent vectors, that can also be interpreted as a regularization term on the magnitude
of the embedding vectors. We refer to [9, 43, 46] for complete details and derivations of
such ELBO bounds in the context of VAE models.
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2.3. Evaluating GAE and VGAE: Link Prediction

The question of how to properly determine the quality of node embedding representa-
tions learned from GAE and VGAE models is crucial. While one could directly report
reconstruction losses [14], recent research work instead strives to apply the GAE and
VGAE models to downstream evaluation tasks, which permit reporting more insightful and
interpretable evaluation metrics [14, 13, 11]. In particular, Kipf and Welling [11] evaluate
their GAE and VGAE models on link prediction problems in citation networks [47].

2.3.1. The Link Prediction Task

Kipf and Welling [11] follow an evaluation methodology consisting of:

• Training their models on an incomplete version of an original graph, for which only
a certain percentage of randomly sampled edges (85% in their case) are visible;

• Constructing validation and test sets gathering:

– node pairs corresponding to missing edges (5% and 10%, respectively, in [11]);

– the same number of randomly picked unconnected node pairs in the graph;

• Evaluating the models’ abilities to distinguish edges from non-edges in these sets,
using node embedding representations learned on the incomplete graph.

Indeed, while all node pairs in the validation and test sets are observed to be unconnected
during training, half of them actually correspond to missing edges from the original graph.
Link prediction acts as a binary classification downstream task, evaluating to which extent
the decoder’s predictions Âij = σ(zTi zj) correctly locate and reconstruct these missing
edges despite their absence during training. Performance in the link prediction task is
evaluated using metrics such as the Area Under the ROC Curve (AUC) and Average
Precision (AP) scores [48].

2.3.2. Link Prediction with GAE, VGAE and Extensions

Kipf and Welling [11] show that their proposed GAE and VGAE reach competitive
link prediction scores w.r.t. some popular node embedding methods, such as DeepWalk
[49] and Laplacian eigenmaps [50]. They also emphasize an additional benefit of the
GCN-based GAE and VGAE over baseline methods such as DeepWalk and Laplacian
eigenmaps, which is the ability to leverage both the graph structure and node features
when learning embedding spaces.

Over the last few years, the overall effectiveness of the GAE and VGAE paradigms
at addressing link prediction has been widely confirmed experimentally [15, 16, 17, 18,
19, 20, 21, 22, 24, 27, 28, 51, 52, 53]. Numerous research efforts proposed and evaluated
variants of GAE and VGAE designed for this specific task, improving their performances by
considering more refined encoders [17, 21, 51, 54], decoders [18, 20, 21, 22] or regularization
techniques [15, 19, 28]. Other works also successfully addressed different downstream tasks
that are closely related to link prediction, such as edge classification [52] or graph-based
recommendation [51, 53, 55].
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2.4. Evaluating GAE and VGAE: Community Detection

While link prediction remains a prominent evaluation task for GAE and VGAE,
they have also shown promising results on (semi-supervised) node classification [16, 21],
canonical correlation analysis [56] and, in the case of VGAE, graph generation especially
in the context of molecular graph data [39, 40, 57]. However, their performances are less
impressive on community detection [12, 23], on which we focus in this section.

2.4.1. The Community Detection Task

Among the fundamental problems in graph-based machine learning, community detec-
tion (which we regard as a synonym of node clustering in this work, consistently with
Fortunato [58]) consists in identifying K < n clusters a.k.a. communities of nodes that,
in some sense, are more similar to each other than to the other nodes [8, 12, 58]. More
formally, we aim to obtain a partition of the node set V into K sets:

C1 ⊆ V, . . . , CK ⊆ V, (12)

with cardinality |Ck| = nk ≤ n for k ∈ {1, . . . ,K}. The quality of such a partition is
usually assessed through some predefined similarity metrics, e.g., unsupervised density-
based metrics1 calculated from the intra- and inter-cluster edge density [8], or scores such
as the normalized Mutual Information (MI) [12] that compares the partition to some
ground-truth node labels hidden during training.

Improving community detection on graphs has been the objective of significant efforts
over the last decades (see, e.g., [8, 58] for a review), and still constitutes an active area of
research [12, 59, 60, 61, 62] with numerous applications. This includes the segmentation
of websites in a web graph according to thematic categories, as well as the detection of
densely connected subgroups of users in online social networks [8].

2.4.2. Community Detection with GAE and VGAE

In the presence of node embedding representations, community detection boils down
to the more standard problem of clustering n vectors in a d-dimensional Euclidean space
into K groups [63]. With this goal in mind, several studies specifically tried to perform
community detection with GAE and VGAE by:

• learning an embedding vector zi for each i ∈ V , as described in Sections 2.1 and 2.2;

• clustering the resulting vectors zi into K groups, through one of the numerous
clustering methods for Euclidean data, such as the popular k-means algorithm [63].

However, concurring experimental evaluations [12, 17, 23, 24] recently pointed out the
limitations of such an approach. They emphasized its lower performance w.r.t. simpler
community detection alternatives, that sometimes even directly operate on the graph
structure without considering node features, such as the popular Louvain method [7].

1Such metrics usually rely on homophily assumptions. This term describes the tendency of nodes
to connect to “similar” nodes in the graph, which is observed in numerous real-world applications [6].
Under such assumptions, intuitively, nodes from the same community should be more densely connected,
and nodes from different communities should be more sparsely connected.
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For instance, Choong et al. [23] show that, on the (featureless) Cora citation net-
work [47], a VGAE+k-means strategy reaches a mean normalized MI score of 23.84%, way
below the Louvain method (43.36%). Salha et al. [24] show that, on the same graph, a
GAE+k-means also reaches an underwhelming 30.88% mean normalized MI score. These
authors obtain comparable conclusions on several other popular graph datasets, such
as the featureless versions [47] of Citeseer (9.85% MI for VGAE+k-means vs 16.39%
for Louvain, in [24]) and Pubmed (20.41% MI for VGAE+k-means in [23], which is
comparable to Louvain, but significantly below the 29.46% MI score obtained by running
a k-means on node embedding vectors learned via DeepWalk [49]).

2.4.3. Community Detection with Extensions of GAE and VGAE

Several studies have worked on the issue of the underwhelming performance of GAE
and VGAE in the community detection task [12, 23, 29]. Choong et al. [12] introduced
VGAECD, a VGAE for Community Detection (CD) model that replaces Gaussian priors
by learnable Gaussian mixtures. Such a choice permits recovering communities from
node embedding spaces without relying on an additional k-means step. In a subsequent
study [23], the same authors proposed VGAECD-OPT, an improved version of VGAECD.
Specifically, VGAECD-OPT replaces GCN encoders with simpler linear models [64], as
proposed in Salha et al. [27]. It also adopts a different optimization procedure based on
neural expectation-maximization [65], which guarantees that communities do not collapse
during training [23] and experimentally leads to better performances.

More recently, Li et al. [29] introduced Dirichlet Graph Variational Autoencoder
(DGVAE), another extension of VGAE which uses Dirichlet distributions as priors
on latent vectors, acting as indicators of community memberships. The Marginalized
GAE (MGAE) model from Wang et al. [10] is also evaluated on community detection.
However, the MGAE model does not explicitly leverage embedding representations for
this task; instead the spectral clustering [50] is applied to the decoded graphs. Lastly,
while community detection was not the main focus in [15, 19, 22, 37, 28], these works all
proposed various encoding-decoding methods that, to different extents, seem to outperform
standard GAE and VGAE on the community detection task, in the reported evaluations.
They consider alternatives encoder or training choices, which we further discuss and
investigate in Section 3.

2.4.4. Limitations

While the models discussed in Section 2.4.3 will constitute relevant baselines in our
experiments (see Section 4), they still suffer from several fundamental limitations that
motivate our work.

• Firstly, all extensions explicitly designed for community detection [12, 23, 29] rely
on clustering-oriented probabilistic priors. They are only applicable in the VGAE
paradigm, and cannot be directly transposed to the deterministic GAE setting. The
question of how to design clustering-efficient GAE models thus remains widely open.

• More importantly, a closer look at these models reveals that their empirical gains
often mostly stem from the addition of node features to the graph. As an illustration,
Table 2 displays the reported performances of VGAECD and VGAECD-OPT on
the featureless versions of two graphs [23]. We observe that they offer little to no
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Table 2: Normalized mutual information scores (in %) for community detection on the Cora and Pubmed
citation networks, with and without node features. Results are directly taken from the evaluation of
Choong et al. [23]. This table emphasizes that, in the absence of node features, VGAECD and VGAECD-
OPT bring little (to no) advantage w.r.t. standard VGAE, and remain below the Deepwalk and/or
Louvain baselines. Scores of VGAECD and VGAECD-OPT significantly increase when adding features
to the graph. Recall: in this table, Deepwalk and Louvain both ignore node features.

Dataset VGAE VGAECD VGAECD-OPT DeepWalk Louvain

Cora without node features 23.84 28.22 37.35 37.96 43.36
Pubmed without node features 20.41 16.42 25.05 29.46 19.83

Cora with node features 31.73 50.72 54.37 37.96 43.36
Pubmed with node features 19.81 32.53 35.52 29.46 19.83

empirical advantage when features are absent. This draws into question the extent
to which these models are able to capture communities from (only) graph data.

The important role of node features has subsequently been confirmed (e.g., Park et
al. [37] show that, on the Pubmed dataset, a straightforward k-means on the node
features alone reaches comparable MI scores w.r.t. VGAE and MGAE). On the
other hand, most of the aforementioned other studies with empirical improvements
[15, 19, 22, 37, 28] only reported results on graphs equipped with node features.
This motivates the need for a proper investigation of the featureless case where
models cannot rely on the additional node feature information.

• Lastly, previous studies centered around community detection [10, 12, 23, 29] did not
explicitly try to preserve the good performances of GAE and VGAE on link prediction.
Overall, most of the aforementioned existing works learn node representations specific
to a particular learning task. Therefore, it is still unclear whether one can improve
community detection with GAE or VGAE without simultaneously deteriorating
link prediction.

With the general aim of learning high-quality node embeddings, one can wonder to
which extent these models can learn representations that are jointly useful for several
tasks. Besides providing a more accurate summary of the graph structure under
consideration, such representations could also lead to significant resource savings in
real-world applications. As an illustration, our experiments in Section 4 will consider
industrial-scale graph data obtained from the music streaming service Deezer,
providing a concrete example of an application for which learning representations
jointly effective at link prediction and community detection is desirable.

In conclusion to this section, the question of how to effectively improve community
detection with GAE and VGAE remains incompletely addressed.

3. Modularity-Aware (Variational) Graph Autoencoders

We now introduce our approach, referred to as Modularity-Aware GAE and VGAE in
the following, to address the aforementioned limitations. In Section 3.1, we first provide
a general overview of the key components of our solution. They transpose concepts
from modularity-based clustering [7, 25, 26] to GAEs and VGAEs, and are illustrated in
Figure 1. We subsequently detail these solution components in Sections 3.2 and 3.3.
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Figure 1: Overview of our proposed Modularity-Aware GAE/VGAE model. Firstly, input graph data
A and X are combined with the s-regular sparsified prior community membership matrix As, derived
through iterative modularity maximization via the Louvain algorithm, as described in Section 3.2. Then,
they are processed by our revised community-preserving (Linear or GCN) encoders, encoding each node
i as an embedding vector zi of dimension d � n. Neural weights of encoders are optimized through
a procedure combining reconstruction and modularity-inspired losses, and described in Section 3.3.1.
Furthermore, other hyperparameters from this model are tuned via the method described in Section 3.3.2
and designed for joint link prediction and community detection applications.

3.1. Diagnosis and Overview of our Proposed Solution

Based on our literature review, we diagnose three main reasons that can explain why
previous GAE and VGAE models still suffer from the limitations described in Section 2.4.4.

• Firstly, they leveraged encoders that were not specifically designed to preserve the
intrinsic communities from the graph structure under consideration in the node
embedding space. This includes the popular GCN, as well as refined neural models
that rather aimed to preserve clusters from node features (but not necessarily the
actual communities from the graph under consideration).

In Modularity-Aware GAE and VGAE, we overcome this issue by incorporating a
novel encoding scheme for graph community-preserving representation learning. It
consists in an improvement of the GCN message passing operator, boosting both
GAE and VGAE models by simultaneously considering the initial graph structure
and modularity-based node communities when computing node embedding spaces.
We present and theoretically study this encoder in Section 3.2.

• Besides the encoder’s architecture, previous models were often optimized in a fashion
that, by design, favors link prediction over community detection. In particular,
the standard cross-entropy (Equation (6)) and ELBO (Equation (11)) losses, used
to learn neural weight matrices, directly involve the reconstruction of node pairs
from the embedding space2. However, as we will detail, a good reconstruction of

2In the case of the probabilistic VGAE paradigm, another limitation of the ELBO loss - and of the
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local pairwise connections does not necessarily imply a good reconstruction of the
global community structure.

In Modularity-Aware GAE and VGAE, we instead optimize an alternative loss
inspired by the modularity [7]. Such a loss acts as a simple yet effective global
regularization over pairwise reconstruction losses, with desirable properties for
joint link prediction and community detection. It will empirically enable a refined
optimization of the weight matrices from our encoders. We present this aspect in
more details in Section 3.3.1.

• Lastly, in addition to these weight matrices, GAE and VGAE models involve
several other hyperparameters, ranging from the number of training iterations
to the learning rate [11]. While they also impact the model performance, the
selection procedure for such hyperparameters was sometimes omitted in previous
works [23] or based on link prediction validation sets [17, 24] (while, intuitively,
the best hyperparameters for community detection might differ from those for link
prediction).

For the Modularity-Aware GAE and VGAE we adopt an alternative graph-based
model selection procedure. It completes the previous two aspects, by providing the
most relevant GAE/VGAE hyperparameters for joint link prediction and community
selection. We present and discuss this procedure in Section 3.3.2.

3.2. Community-Preserving Encoders for GAE and VGAE

Following this diagnosis and overview, we now provide more detail on the first of the
three bullet points in Section 3.1, i.e., our proposed revised encoding strategy. We recall
that our proposed solution aims to encode nodes as embedding vectors zi more suitable for
community detection. Essentially, intrinsic communities in the graph under consideration
should be easily retrievable from these representations, e.g., from their L2 distances via
a straightforward k-means clustering. These vectors should also simultaneously remain
relevant for link prediction, i.e., as for existing GAE and VGAE, the likelihood of a
missing edge between two nodes should also be inferred from the learned representations
zi. In the following, for consistency with previous work (see Section 2), we continue using
the inner product Âij = σ(zTi zj) ∈ [0, 1] as the probability of an edge between nodes i
and j.

3.2.1. Revising the Message Passing Operator

Existing graph encoders usually involve normalized versions of the adjacency matrix A,
or some generalized message passing operator matrix that also captures each node’s direct
connections in the graph under consideration [66]. For instance, in the popular multi-layer
GCN in Equation (2), the symmetric normalization FGCN (A) from Equation (3) is used
such that at each layer l a vectorial representation for each node is computed by taking

underlying generative decoder - lies in the use of standard Gaussian priors. Replacing these priors by
for example Gaussian mixtures as in [12, 23], appears to be an intuitive approach for community-based
learning. However, as this approach 1) does not extend to deterministic GAE, and 2) has been extensively
studied in [12, 23], we do not further develop it in this work. We will nonetheless compare to [12, 23]
in experiments, and will argue in Section 3.3.1 that Gaussian mixtures could straightforwardly be
incorporated in our proposed Modularity-Aware VGAE.
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a weighted average of the representations from layer l − 1 of its direct neighbors and
of itself. In this work, we adopt an alternative strategy that consists in computing the
weighted average of, at each layer:

• representations from the direct neighbors of each node, as above;

• but also representations from other unconnected nodes that, according to some prior
available knowledge and criteria, belong to the same graph community.

More precisely, let us assume that we have, at our disposal, a preprocessing graph
mining technique that, based on the graph structure and on some fixed criteria, learns
an initial prior partition of the node set V into K sets C1, . . . , CK , with |Ck| = nk for
k ∈ {1, . . . ,K}. Here, K acts as a hyperparameter, that can differ from the actual number
of communities eventually used for the community detection downstream evaluation task
(i.e., the number of clusters in the k-means operated on the final vectors zi). A concrete
example of such a technique will be provided in Section 3.2.3 (together with explanations
on how to select K). We simply assume its availability throughout these paragraphs.

We propose to leverage such an initial partition as a prior node clustering signal from
which the GAE/VGAE encoder should benefit, but also have the ability to deviate during
training, when learning the embedding space. Specifically, we propose to replace the
standard input adjacency matrix A by:

A+ λAc, (13)

where λ ≥ 0 is a scalar hyperparameter, and where Ac is the community membership
matrix defined as follows:

Definition 1. Let us consider a partition of the node set V into K sets C1, . . . , CK . The
corresponding community membership matrix is defined as:

Ac = MMT − In, (14)

with M ∈ {0, 1}n×K denoting the n×K matrix where elements Mik = 1 if and only if
i ∈ Ck according to the prior clustering.

We interpret Ac as the adjacency matrix of an alternative graph in which each cluster
of our prior partition is represented by a fully connected graph, without self-loops. Since
nodes are only allocated to one cluster, there exists a node ordering such that the matrix
Ac is block-diagonal. In essence, A+ λAc aims to capture refined node similarities, by
simultaneously considering some local information from direct neighborhoods, and some
global information from prior node communities. The hyperparameter λ helps to balance
these two aspects. In particular, setting λ = 0 results in the standard adjacency matrix.

3.2.2. From Message Passing Operators to Encoding Schemes

At first glance, A+ λAc could straightforwardly be incorporated as a refined message
passing operator in popular GAE and VGAE encoders. For instance, one could consider
its direct incorporation in:

• variants of 2-layer GCN encoders, initially proposed by Kipf and Welling [11], as
this neural architecture remains the most popular GAE/VGAE encoder in the
literature [12, 15, 18, 19, 20, 21, 22, 24, 28]. Specifically, one could consider:
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– a version incorporating A+ λAc in both layers. Then, for example the GAE
formulation3 in Equation (2) becomes, Z = GCN(1)(A+λAc, X) = FGCN (A+
λAc)ReLU(FGCN (A+ λAc)XW

(0))W (1).

– a version incorporating the prior communities only on the first layer, i.e.,
Z = GCN(2)(A+ λAc, X) = FGCN (A)ReLU(FGCN (A+ λAc)XW

(0))W (1).

• or, a variant of the linear encoder4 proposed by Salha et al. [27]. Indeed, this
simplified one-hop model without activation reached competitive performances w.r.t.
multi-layer GCNs for GAE/VGAE-based community detection in recent studies
[23, 27]. In this case: Z = Linear(A+ λAc, X) = FGCN (A+ λAc)XW

(0).

However, the computational cost of evaluating each layer of a GCN or a linear encoder
depends linearly on the number of edges |E| = m in the message passing operator [27, 30].

As the graph represented by A + λAc contains at least
∑K
k=1 n

2
k edges, such a direct

incorporation of A+ λAc in encoders could incur a large computational expense.
To alleviate this cost, we will instead consider a s-regular sparsification of Ac, denoted

by As in the following. In As, each node i ∈ Ck is only connected to s < nk randomly
selected nodes in Ck (instead of all other nodes in Ck). Therefore, the A+ λAs message
passing operator still contains some of the prior clustering information without necessarily
incurring the cost implied by the use of Ac. In particular, selecting s ≈ m

n ensures that
A+ λAs has O(2m) non-null elements, preserving the linear complexity w.r.t. m of the
aforementioned encoders (in our experiments, the optimal value of s will be selected for
each graph as described in Section 4.1.3). Note that we only sample As once at the
beginning of the model training and then keep it fixed throughout training and testing. To
sum up, in our upcoming experiments in Section 4 we will instead consider the following
two5 encoding schemes:

• Z = GCN(2)(A+ λAs, X) = FGCN (A)ReLU(FGCN (A+ λAs)XW
(0))W (1).

• Z = Linear(A+ λAs, X) = FGCN (A+ λAs)XW
(0).

In these encoders, our altered message passing scheme allows practitioners to incorpo-
rate information from prior communities in the resulting node embedding space. A given
node i ∈ Ck ⊂ V, for k ∈ {1, ...,K}, will aggregate information from its direct neighbors
and from some nodes in Ck. By design, i will thus have an embedding vector zi more
similar to the embedding vectors of the other nodes in Ck than would be the case for the
standard encoders based on FGCN (A). We recall that the choice of linear and 2-layer
GCN encoders is made without loss of generality. A+ λAs could be incorporated into
other encoders including deeper GCNs, ChebNets [35] or Graph Attention Networks [36].

3For clarity of exposition we discuss the deterministic GAE framework (Section 2.1). However, the
changes are equally applicable to the VGAE framework (Section 2.2), for which Z has to be replaced by
µ and log σ as in Equation (7).

4A “linear encoder” is actually a particular case of GCN with a single layer and without activation
function. For consistency with previous works [27, 67, 68, 69], we nonetheless adopt the “linear encoder”
naming in this work, and use “GCN ” to refer to the above multi-layer graph convolutional networks.

5We will favor GCN(2) over GCN(1) in the remainder of this work, as the former outperformed the
latter in our experiments. To simplify the notation GCN(2) will be referred to as GCN in experiments.
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The remainder of this Section 3.2 on encoders is organized as follows. In Section 3.2.3,
we now detail how we derive the matrix Ac (that has loosely been assumed to be “available”
so far) in our work. Then, in Section 3.2.4, we provide a theoretical analysis of our novel
encoding strategy. It notably aims to better understand our newly introduced operators
Ac and As in terms of the spectral filtering they induce, as well as to assess the impact of
the s-regular sparsification of Ac.

3.2.3. Learning Ac and As with Modularity-Based Clustering

So far, for pedagogical purposes, we loosely assumed the availability of the Ac and As
prior community membership matrices. In practice, how these matrices are learned plays
an important role, as the empirical performance of our strategy will directly depend on
the quality of the underlying prior node clusters. Throughout this paper, we will rely on
modularity concepts to learn Ac – hence the name Modularity-Aware GAE and VGAE.
More specifically, we will leverage the popular Louvain algorithm [7].

In the absence of node feature information, the Louvain greedy algorithm remains
a popular and powerful approach for community detection [7]. It iteratively aims to
maximize the modularity value [70], defined as follows:

Definition 2. Let us consider a graph G = (V, E) with adjacency matrix A and nodes
i ∈ V of degree di =

∑n
j=1Aij . We denote a partition of these nodes into K ≤ |V|

communities by {C1, ..., CK}. Then, the modularity associated to this partition is:

Q =
1

2m

n∑
i,j=1

[
Aij −

didj
2m

]
δ(i, j), (15)

where m is the sum of all edge weights in the graph (i.e., the number of edges for
unweighted graphs), and where δ(i, j) = 1 if nodes i and j belong to the same community
and 0 otherwise.

In essence, the modularity compares the density of connections inside communities
to connections between communities. More specifically, Equation (15) returns a scalar
Q in the range [− 1

2 , 1], that measures the difference between the observed fraction of
(potentially weighted) edges that occur within the same community and the expected
fraction of edges in a configuration model graph, which matches our observed degree
distribution but allocates edges randomly without any specified community structure.

In the Louvain greedy algorithm, aiming to maximize the modularity of a graph over
the set of possible cluster assignments, each node is initialized in its own community.
Then, the algorithm iteratively completes two phases:

• In phase 1, for each node i ∈ V, one computes the change in modularity resulting
from the allocation of node i to the community of each of its neighbors. Then, i is
either placed into the community leading to the greatest modularity increase, or
remains in its original group if no increase is possible;

• In phase 2, a new graph is constructed. Nodes correspond to communities obtained
in phase 1, and edges are formed by summing edge weights occurring between
communities. Edges within a community are represented by self-loops in this
new graph. One repeats phase 1 on this new graph until no further modularity
improvement is possible.
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Why using the Louvain method? . Our justification for the use of this method to
derive Ac is threefold.

• First and foremost, it automatically selects the relevant number of prior communities
K, by iteratively maximizing the modularity value.

• Secondly, it runs in O(n log n) time [7], with n = |V|. Therefore, it scales to large
graphs with millions of nodes, such as those in our experiments in Section 4.

• Thirdly, such a modularity criterion complements the encoding-decoding paradigm
of standard GAE and VGAE. We argue that learning node embedding spaces from
complementary criteria is beneficial. Our experiments will confirm that leveraging
prior modularity-based node clusters in the GAE/VGAE outperforms the individual
use of the Louvain or of the GAE/VGAE alone.

Note that, the use of the Louvain method is made without loss of generality as our
framework remains valid for alternative graph mining methods deriving Ac and As.

3.2.4. Theoretical Analysis of the Encoder’s Message Passing Operator

We now conduct a theoretical analysis of our newly introduced message passing
operator, which we begin by motivating the spectral analysis of the matrices involved.
Recall, from Equation (2), that the computations performed by a GCN at a given layer
are the following,

ReLU(FGCN (A)H(l−1)W (l−1)). (16)

If we consider the spectral decomposition of the message passing operator that is used
in Equation (16), FGCN (A) = UΘUT , where U = [u1, . . . , un]T denotes the matrix
containing the eigenvectors ui of FGCN (A) and Θ is a diagonal matrix containing the
eigenvalues θi of FGCN (A). Then, the computation performed in Equation (16) can be
reformulated to be,

ReLU(UΘUTH(l−1)W (l−1)) = ReLU

(
n∑
i=1

θiuiu
T
i H

(l−1)W (l−1)

)
. (17)

Therefore, performing one message passing step of the hidden states H on a graph given
by FGCN (A), i.e., FGCN (A)H(l−1), can be interpreted as a Fourier transform of H, called
graph Fourier transform [71], where the eigenvectors of FGCN (A) act as a Fourier basis
and the eigenvalues of FGCN (A) define the Fourier coefficients.

When trying to perform a theoretical analysis of the message passing step in Equa-
tion (16) it often turns out to be more insightful to consider Equation (17) instead and
analyze the eigenvalues and eigenvectors of the used message passing operator. Such
a spectral perspective has given rise to a variety of architectures proposing learnable
functions applied to the diagonal terms of Θ [72, 35, 73]. Historically, the study of spectral
graph theory [74, 75], and in particular the area of graph signal processing [76, 77], has
yielded much insight in the study of graphs and therefore it is somewhat unsurprising that
also in the study of the GNNs the spectral analysis of these architectures is a promising
avenue of analysis [78, 79, 66].

We, therefore, now provide spectral results allowing us to gain a better understanding
of our proposed message passing operator and compare our proposed message passing
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operator to the standard message passing operators. To characterize the eigenvectors of
our newly introduced FGCN (Ac) we rely on the concept of 2-sparse eigenvectors.

Definition 3. [80] The entries of 2-sparse eigenvectors are all equal to 0 except for the
ith and jth entry which equal to 1 and −1, where i and j denote two nodes which share
all their neighbors, i.e., Aih = Ajh for h ∈ {1, . . . , n}\{i, j}.

An extended discussion of the literature related to such 2-sparse eigenvectors and their
corresponding vertices, which are sometimes referred to as twin vertices, can be found in
Lutzeyer [81, p.48-9]. We are now able to characterize the spectrum and eigenvectors of
FGCN (Ac).

Proposition 4. The matrix FGCN (Ac) has eigenvalues {{1}K , {0}n−K}, where we denote
the multiset containing a given element x, y times, by {x}y. Each non-zero eigenvalue has
an associated eigenvector vk, with k ∈ {1, . . . ,K}, with entries (vk)i = 1 for i ∈ Ck and
(vk)i = 0 for i 6∈ Ck. The eigenspace corresponding to the zero eigenvalue has dimension
n −K and is spanned by, for example, a set of two-sparse eigenvectors on each of the
connected components in the graph.

The proof of Proposition 4 can be found in Appendix A.1. The informal take-
away from Proposition 4 is that the cluster membership of nodes is encoded clearly and
compactly in the spectrum and eigenvectors of FGCN (Ac). More formally, in Proposition
4 we observe that in the spectral domain the operator FGCN (Ac), which we introduce to
the encoder’s message passing scheme, directly encodes the cluster membership of the
different nodes and all other signals are filtered out by the 0 eigenvalues. Also in the graph
domain the matrix FGCN (Ac) clearly encodes the cluster structure by representing each
cluster by a fully connected component of the graph. Therefore, the matrix FGCN (Ac) is
an appropriate choice to introduce cluster information into the message passing scheme
and does so clearly in both the graph and spectral domains.

In general, the spectral filtering performed by our message passing operator, FGCN (A+
λAc), and the standard message passing operator, FGCN (A), are different. FGCN (A+λAc)
accounts for the clustering information which we introduce. In the following theorem we
provide a result that allows us to establish under which conditions the spectral filtering
performed by FGCN (A) and FGCN (A+ λAc) are equal, to gain a better understanding
of the action of FGCN (A+ λAc).

Proposition 5. If G is composed of regular connected components, i.e., connected
components containing only vertices of equal degree, and the partition of the node set
defining these regular components equals the partition defining Ac, then the matrices
FGCN (Ac) and FGCN (A + λAc) have a shared set of eigenvectors and the spectrum
of FGCN (A + λAc), denoted by S(FGCN (A + λAc)), can be expressed in terms of the
eigenvalues of FGCN (A) and FGCN (Ac), denoted by θ and η, respectively, as follows,

S(FGCN (A+ λAc)) = {g1(θ1) + g2(ηs(1)), . . . , g1(θn) + g2(ηs(n))},

for affine functions g1, g2 parametrised by the node degrees and some permutation s(·)
defined on the set {1, . . . , n}.

The proof of Proposition 5 can be found in Appendix A.2. Hence, we observe that
for graphs consisting of regular connected components the spectral filtering performed by
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our proposed message passing operator FGCN (A+ λAc) is equal to that of the standard
operator FGCN (A). For graphs consisting of regular connected components the clustering
information is already contained in the spectrum of FGCN (A) and therefore its further
addition does not affect the eigenvectors of our proposed message passing operator.

Note that, in general, the spectrum of the sum of two matrices cannot be characterized
by the individual spectra of the two matrices, meaning that, in general, there does not exist
an exact relation between the spectra of FGCN (A) and FGCN (Ac) to FGCN (A+ λAc).
We can however, make direct use of existing results such as Weyl’s inequality [82, 83] and
the extended Davis–Kahan theorem [84], which, respectively, upper bound the distance
of the eigenvalues and spaces spanned by the eigenvectors of the sum of matrices and the
individual matrices.

s-regular sparsification of our message passing operator. We now turn to the
analysis of our sparsified message passing operator As, which, as we will see now, still
contains the external cluster information without incurring the large computation cost
implied by the use of Ac.

Proposition 6. If the partition defining the connected components of As is a refinement
of the partition defining the components of Ac, then the multiplicity of the largest
eigenvalue of FGCN (As) is greater or equal to the multiplicity of the largest eigenvalue of
FGCN (Ac). Further, the largest eigenvalue of both FGCN (As) and FGCN (Ac) equals 1
and the eigenvectors corresponding to the eigenvalue 1 of FGCN (Ac) are also eigenvectors
corresponding to the eigenvalue 1 of FGCN (As).

The proof of Proposition 6 can be found in Appendix A.3. Informally, Proposition 6
can be interpreted to show that the sparsification of Ac producing As does not impact the

“informative” part of the spectrum. Recall, that the eigenvectors corresponding to the
largest eigenvalue of FGCN (Ac) and FGCN (As) are indicator vectors of our introduced
cluster membership. Since the remaining eigenvectors are orthogonal to these indicator
vectors we know that none of them encode our cluster membership as compactly as the
eigenvectors corresponding to the largest eigenvalue.

For FGCN (As) the eigenvalues corresponding to the less informative eigenvectors
correspond to nonzero eigenvalues in general and we expect the choice of s to influence
the impact of this uninformative part of the spectrum. This uninformative part of the
spectrum can be upper bounded by adapting the bound in Friedman [85] to our message
passing operator. However, in our work we choose a more practice-oriented approach
by treating s as a hyperparameter of our model and find its optimal values using the
procedure which is described in the upcoming Section 3.3.

3.3. Decoding and Training Strategies

So far, our work mainly considered improvements of the encoder’s architecture. While
this aspect is crucial, we also argue that previously proposed models were often optimized
in a fashion that, by design, favors link prediction over community detection. With this in
mind, this Section 3.3 now complements our contributions from Section 3.2 with revised
training and optimization strategies.
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3.3.1. Modularity-Inspired Losses for GAE and VGAE

As explained in Section 2, neural weight matrices of previous GAE and VGAE encoders
were tuned by optimizing reconstruction losses, capturing the similarity between the
decoded graph and the original one. Usually, these losses directly evaluate the quality of
reconstructed node pairs Âij w.r.t. their ground-truth counterpart Aij . This includes the
cross-entropy loss LGAE from Equation (6) and the ELBO loss LVGAE from Equation (11).
We argue that this optimization strategy also contributes to explaining the underwhelming
performance of some GAE and VGAE models on community detection tasks.

• By design, existing optimization strategies favor good performances on link predic-
tion tasks, that precisely consist in accurately reconstructing connected/unconnected
node pairs. However, some recent studies emphasized that a good reconstruction of
local pairwise connections does not always imply a good reconstruction of the global
community structure from the graph under consideration [86, 87]. This motivates
the need for a revised loss function capturing some global community information.

• Besides, GAE/VGAE-based community detection experiments often consisted in
running k-means algorithms in the final node embedding space (and, as stated at
the beginning of Section 3.2, we also adopt this strategy). However, this results in
clustering embedding vectors based on their L2 distances ‖zi − zj‖2, whereas the

aforementioned reconstruction losses instead often involve inner products (Âij =
σ(zTi zj)). There is thus a discrepancy between the criterion ultimately used for
k-means clustering, and the one used during training to assess node similarities.

To address these issues, we propose to complement standard GAE and VGAE losses
with an additional loss term, involving L2 distances and inspired by the modularity6 in
Equation (15). In the case of the GAE, we will iteratively minimize by gradient descent:

L̃GAE = LGAE −
β

2m

n∑
i,j=1

[
Aij −

didj
2m

]
e−γ‖zi−zj‖

2
2 , (18)

with hyperparameters β ≥ 0, γ ≥ 0. Also, for VGAE we will maximize7:

L̃VGAE = LVGAE +
β

2m

n∑
i,j=1

[
Aij −

didj
2m

]
e−γ‖zi−zj‖

2
2 . (19)

We note that L̃GAE and L̃VGAE are independent of the ground-truth community
information. Consistently with previous efforts on community detection using GAE and
VGAE (see Section 2.4), we only use ground-truth communities for the final evaluation
of embedding vectors – not to learn these vectors.

In Equations (18) and (19), the exponential term (taking values in [0, 1]) acts as a
soft counterpart of the common community indicator δ(i, j) ∈ {0, 1} in Equation (15). It
tends to 1 when nodes i and j get closer in the embedding space, and tends to 0 when
they move apart.

6We emphasize that this new term does not involve the prior Louvain clusters used in Ac.
7We recall that LGAE is minimized while LVGAE is maximized, hence the occurrence of a minus

term in Equation (18) but a plus term in Equation (19).

20



In essence, we expect the addition of such a global regularizer to LGAE and LVGAE to
encourage closer embedding vectors (in the L2 distance) of densely connected parts of the
original graph, and therefore to permit a k-means-based detection of communities with
higher modularity values. On the other hand, the remaining presence of the original LGAE

or LVGAE term8 in the loss aims to preserve good performances on link prediction. The
hyperparameter β balances the relative importance of the modularity regularizer w.r.t.
the pairwise node pairs reconstruction loss, while the hyperparameter γ regulates the
magnitude of ‖zi − zj‖22 in the exponential term. Our experiments will show that proper
tuning of β and γ permits us to improve community detection while jointly preserving
performances on link prediction.

The use of a modularity-inspired regularizer in the loss of the Modularity-Aware
GAE and VGAE builds upon several studies, which were not studying the GAE/VGAE
frameworks but emphasized the benefits of various modularity-inspired losses for learning
community-preserving node embedding representations [86, 88, 89]. In our setting, we
favor the use of a soft modularity instead of the term in Equation (15), as it permits 1) to
obtain a differentiable loss, and 2) to avoid the actual reconstruction of node communities
at each training iteration, which would incur a larger computational expense.

To conclude we note that, as for a complete evaluation of LGAE and LVGAE, computing
the modularity-inspired terms in Equations (18) and (19) on the entire graph would be of
quadratic complexity w.r.t. the number of nodes in the graph. In some of our experiments
where such a complexity would be unaffordable (roughly, when n ≥ 50 000), we will rely
on the FastGAE method [24] to approximate modularity-inspired terms. This method
was already mentioned in Section 2.1.3, to approximate LGAE and LVGAE losses on large
graphs by computing them only on strategically-selected random sampled subgraphs of
O(n) size, drawn at each training iteration. We will subsequently approximate modularity-
inspired terms on the same subgraphs. This ensures a linear complexity for each evaluation
of our proposed L̃GAE and L̃VGAE losses in Equations (18) and (19), respectively. As our
revised encoders from Section 3.2 also exhibit a linear complexity w.r.t. n, our whole
Modularity-Aware GAE and VGAE are scalable to graphs with hundreds of thousands to
millions of nodes.

3.3.2. On the Selection of Hyperparameters

We expect our modularity-inspired losses to improve the training of our linear/GCN
encoders for community detection, i.e., the tuning of their weight matrices. However,
in addition to these weight matrices, our Modularity-Aware GAE and VGAE involve
several other hyperparameters, that also play a key role. This includes the standard
hyperparameters of GAE and VGAE models (e.g., the number of training iterations, the
learning rate, the dimensions of encoding layers and, potentially, the dropout rate [90]),
but also our newly introduced hyperparameters: λ and s from our encoders, as well as β
and γ from our losses.

In previous research, the selection procedure for such important hyperparameters
was sometimes solely based on the optimization of AUC or AP scores on link prediction

8Our experiments will consider the original LGAE or LVGAE from Equations (6) and (11) and
originally formulated by Kipf and Welling [11]. Nonetheless, one can observe that our modularity-inspired
global regularizer term could be optimized in conjunction with other reconstruction losses. For instance,
modularity-inspired terms could be added to the variant formulation of ELBO loss from Choong et al.
[12], that incorporates Gaussian mixtures in the Kullback-Leibler divergence.
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validation sets [17, 24], following the train/validation/test splitting procedure initially
adopted by Kipf and Welling [11] and previously described in Section 2.3.1. However,
intuitively, the best hyperparameters for community detection might differ from the best
ones for link prediction. Such a selection procedure might therefore be suboptimal for
community detection problems.

To tackle this issue, and to complement our novel encoders (Section 3.2) and losses
(Section 3.3.1), we propose an alternative hyperparameter selection procedure w.r.t.
previous practices. As community detection is an unsupervised downstream task, we
cannot rely on train/validation/test splits as for the supervised link prediction binary
classification task9. Consistent with our already described contributions, we rather propose
to rely on modularity scores, as it is an unsupervised criterion computed independently of
the unobserved ground-truth clusters. More precisely, to select relevant hyperparameters,
we will:

• firstly, construct link prediction train/validation/test sets, as in Section 2.3.1;

• then, select hyperparameters that maximize the average of:

– the AUC score obtained for link prediction on the validation set;

– the modularity score Q defined in Equation (15). This score is obtained from
the communities extracted by running a k-means on the final vectors zi, learned
from the train graph (all nodes are visible but some edges - the validation and
test ones - are masked).

We expect this dual criterion to facilitate the identification of hyperparameters that will
be jointly relevant for link prediction and community detection downstream applications.

4. Experimental Evaluation

We now present an in-depth experimental evaluation of our proposed Modularity-Aware
GAE and VGAE models together with relevant baselines. In Section 4.1 we first describe
our experimental setting. Then in Section 4.2, we report and discuss our results.

4.1. Experimental Setting

4.1.1. Datasets

In the following, we provide an experimental evaluation on seven graphs of various
origins, characteristics, and sizes. Their statistics are summarized in Table 3.

First and foremost, we consider the Cora, Citeseer and Pubmed citation networks [30].
We study two versions of each of these datasets, with and without node features that
correspond to bag-of-words vectors of dimensions f = 1433, 3703 and 500, respectively.
In these datasets, nodes are clustered in 6, 7 and 3 topic classes, respectively, that will
act as the communities to be detected in our experiments. These three citations networks
are by far the most commonly used graph datasets to evaluate GAE and VGAE models

9We recall that the ground-truth communities of each node will be unavailable during training. They
will only be ultimately revealed for model evaluation, to compare the agreement of the node partition
proposed by our GAE or VGAE model to the ground-truth partition.
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Table 3: Statistics of graph datasets

Dataset Number of nodes Number of edges Number of communities

Blogs 1 224 19 025 2
Cora 2 708 5 429 6

Citeseer 3 327 4 732 7
Pubmed 19 717 44 338 3

Cora-Large 23 166 91 500 70
SBM 100 000 1 498 844 100

Deezer-Album 2 503 985 25 039 155 20

[10, 11, 12, 16, 17, 19, 20, 21, 22, 23, 28, 29]. We therefore see value in studying them as
well, especially in their featureless version where, as explained in Section 2.4.4, previous
GAE and VGAE extensions fall short on community detection.

We complete our experimental evaluation with four other datasets. Firstly, we consider
the ten times larger version of Cora used in [27] for community detection, and referred
to as Cora-Large in the following. Nodes are documents clustered in 70 topic-related
communities. Additionally, we consider the Blogs web graph also used in [27], where
nodes correspond to webpages of political blogs connected through hyperlinks. The blogs
are clustered in two communities corresponding to politically left-leaning or right-leaning
blogs. Thirdly, as in Salha et al. [24], we examine a graph generated from a stochastic
block model, which is a generative model for community-based random graphs [91]. We
follow the parameterization of Salha et al. [24] and generate this graph, which we refer to
as SBM, as follows. Nodes are clustered in 100 ground-truth communities of 1000 nodes
each. Nodes from the same community are connected with probability p = 2 × 10−2,
while nodes from different communities are connected with probability q = 2× 10−4 < p.
Albeit being synthetic, this graph includes actual node communities by design, and is,
therefore, relevant to evaluate community detection methods.

Lastly, we consider an industrial-scale private graph provided by the global music
streaming service Deezer10. Graph-based methods are at the core of Deezer’s recommender
systems [55]. In the graph under consideration in this study, nodes correspond to
2.5 million music albums available on the service. They are connected through an
undirected edge when they are regularly co-listened by Deezer users (as assessed by
internal usage metrics computed from millions of users, but undisclosed in this work for
privacy reasons). Deezer is jointly interested in 1) predicting new connections in the graph
corresponding to new albums pairs that users would enjoy listening to together, which is
achieved by performing the link prediction task; and 2) learning groups of similar albums,
with the aim of providing usage-based recommendations (i.e., if users listen to several
albums from a community, other unlistened albums from this same community could
be recommended to them), which is achieved by performing the community detection
task. In such an industrial application, learning high-quality album representations that
would jointly enable effective link prediction and community detection would therefore
be desirable. For evaluation, node communities will be compared to a ground-truth
clustering of albums in 20 groups defined by their main music genre, allowing us to assess
the musical homogeneity of the node communities proposed by each model.

10https://www.deezer.com/ (accessed October 13, 2021).
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4.1.2. Tasks

For each of these seven graphs, we assess the performance of our models on two
downstream tasks.

• Task 1: We first consider a pure community detection task, consisting in the
extraction of a partition of the node set V which ideally agrees with the ground-truth
communities of each graph. Communities will be retrieved by running the k-means
algorithm (with k-means++ initialization [92]) in the final embedding space of each
model to cluster the vectors zi (with k matching the known number of communities
from Table 3); except for some baseline methods that explicitly incorporate another
strategy to partition nodes (see Section 4.1.3). We compare the obtained partitions
to the ground-truth using the popular Adjusted Mutual Information (AMI) and
Adjusted Rand Index (ARI) scores11 for clustering evaluation.

• Task 2: We also consider a joint link prediction and community detection task. In
such a setting, we learn all node embedding spaces from incomplete versions of the
seven graphs, where 15% of edges were randomly masked. We create a validation
and a test set from these masked edges (from 5% and 10% of edges, respectively, as
in Kipf and Welling [11]) and the same number of randomly picked unconnected
node pairs acting as “non-edge” negative pairs. Then, using decoder predictions Âij
computed from vectors zi and zj , we evaluate each model’s ability to distinguish
edges from non-edges, i.e., link prediction, from the embedding space, using the
Area Under the ROC Curve (AUC) and Average Precision (AP) scores11 on the
test sets. Jointly, we also evaluate the community detection performance obtained
from such incomplete graphs, using the same methodology and AMI/ARI scores as
in Task 1.

In the case of Task 2, we expect AMI and ARI scores to slightly decrease w.r.t. Task 1,
as models will only observe incomplete versions of the graphs when learning embedding
spaces. Task 2 will further assess whether empirically improving community detection
inevitably leads to deteriorating the original good performances of GAE and VGAE
models on link prediction. As our proposed Modularity-Inspired GAE and VGAE are
designed for joint link prediction and community detection, we expect them to 1) reach
comparable (or, ideally, identical) AUC/AP link prediction scores w.r.t. standard GAE
and VGAE, while 2) reaching better community detection scores.

4.1.3. Details on Models

For the aforementioned evaluation tasks and graphs, we will compare the performances
of our proposed Modularity-Aware GAE and VGAE models to standard GAE and VGAE
and to several other baselines. All results reported below will verify d = 16, i.e., all
node embedding models will learn embedding vectors zi of dimension 16. We also tested
models with d ∈ {32, 64} by including them in our grid search space and reached similar
conclusions to the d = 16 setting (we report and further discuss the impact of d in
Section 4.2. Note, the dimension d is a selectable parameter in our public implementation,
permitting direct model training on any node embedding dimension).

11 Scores are computed via scikit-learn [48], using formulas provided here: https://scikit-
learn.org/stable/modules/classes.html?highlight=metrics#module-sklearn.metrics (accessed October
13, 2021).
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Table 4: Complete list of optimal hyperparameters of Modularity-Aware GAE and VGAE models

Dataset Learning Number of Dropout Use of FastGAE [24] λ β γ s
rate iterations rate (if yes: subgraphs size)

Blogs 0.01 200 0.0 No 0.5 0.75 2 10
Cora (featureless) 0.01 500 0.0 No 0.25 1.0 0.25 1

Cora (with features) 0.01 300 0.0 No 0.001 0.01 1 1
Citeseer (featureless) 0.01 500 0.0 No 0.75 0.5 0.5 2

Citeseer (with features) 0.01 500 0.0 No 0.75 0.5 0.5 2
Pubmed (featureless) 0.01 500 0.0 No 0.1 0.5 0.1 5

Pubmed (with features) 0.01 700 0.0 No 0.1 0.5 10 2
Cora-Large 0.01 500 0.0 No 0.001 0.1 0.1 10

SBM 0.01 300 0.0 Yes (10 000) 0.5 0.1 2 10
Deezer-Album 0.005 600 0.0 Yes (10 000) 0.25 0.25 1 5

Modularity-Aware GAE and VGAE. We trained two versions of our Modularity-
Aware GAE and VGAE: one with the linear encoder described in Section 3.2.2, and one
with the 2-layer GCN encoder (GCN(2)). The latter encoder includes a 32-dimensional
hidden layer. We recall that link prediction is performed from inner product decoding
Âij = σ(zTi zj), and that community detection is performed via a k-means on the final
vectors zi learned by each model.

During training, we used the Adam optimizer [93], without dropout (but we tested mod-
els with dropout values in {0, 0.1, 0.2} in our grid search optimization). All hyperparame-
ters were carefully tuned following the procedure described in Section 3.3.2. For each graph,
we tested learning rates from the grid {0.001, 0.005, 0.01, 0.05, 0.1, 0.2}, number of train-
ing iterations in {100, 200, 300, ..., 800}, with λ ∈ {0, 0.01, 0.05, 0.1, 0.2, 0.3, ..., 1.0}, β ∈
{0, 0.01, 0.05, 0.1, 0.25, 0.5, 1.0, 1.5, 2.0}, γ ∈ {0.1, 0.2, 0.5, 1.0, 2, 5, 10} and s ∈ {1, 2, 5, 10}.
The best hyperparameters for each graph are reported in Table 4. We adopted the same
optimal hyperparameters for GAE and VGAE variants (a result which is consistent with
the literature [11]). Lastly, as exact loss computation was computationally unaffordable for
our two largest graphs, SBM and Deezer-Album, their corresponding models were trained
by using the FastGAE method [24], approximating losses by reconstructing degree-based
sampled subgraphs of n = 10 000 nodes (a different one at each training iteration).

We used Tensorflow [94], training our models (as well as GAE/VGAE baselines
described below) on an NVIDIA GTX 1080 GPU, and running other operations on a
double Intel Xeon Gold 6134 CPU12. Along with this paper, we will publicly release our
source code on GitHub for reproducibility and to encourage future usage of our method13.

Standard GAE and VGAE. We compare the above Modularity-Aware GAE and
VGAE to two variants of the standard GAE and VGAE: one with 2-layer GCN encoders
with 32-dimensional hidden layer (which is equal to the seminal GAE and VGAE from Kipf
and Welling [11]) and one with a linear encoder (which equals the linear GAE and VGAE

12On our machines, running times of the Modularity-Aware GAE and VGAE models were comparable
to running times of their standard GAE and VGAE counterparts. For example, training each variant of
VGAE on the Pubmed graph for 500 training iterations and with s = 5 approximately takes 25 minutes
on a single GPU (without the FastGAE method, which significantly speeds up training [24]). This is
consistent with our claims on the comparable complexity of Modularity-Aware and standard models.

13https://github.com/GuillaumeSalhaGalvan/modularity aware gae
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from Salha et al. [27]). We note that these are particular cases of our Modularity-Aware
GAE/VGAE with GCN or linear encoder and with λ = 0 and β = 0.

As for our Modularity-Aware models, link prediction is performed from inner product
decoding, and community detection via a k-means on vectors zi. We also adopt a
similar model selection procedure as for our Modularity-Aware GAE and VGAE to select
hyperparameters (see Section 3.3.2). We selected similar learning rates and number of
iterations to the values reported in Table 4.

Other baselines. For completeness, we also compare the standard and Modularity-
Aware GAE/VGAE to several other relevant baselines. First and foremost, we report
experiments on the VGAECD [12] and VGAECD-OPT [23] models, designed for commu-
nity detection and discussed in Section 2.4.3. We use our own Tensorflow reimplementation
of these models14. We set similar hyperparameters to the above other GAE/VGAE-based
models. In all models, the number of Gaussian mixtures matches the ground-truth number
of communities of each graph. Besides, we also report experiments on the DGVAE [29]
model also discussed in Section 2.4.3, setting similar learning rates and layer dimensions
to the above GAE/VGAE-based models, and using the authors’ public implementation.
In the case of DGVAE, we use 2-layer GCN encoders for consistency with other models
of our experiments; we nonetheless acknowledge that Li et al. [29] also proposed another
encoding scheme, denoted Heatts in their paper (but unavailable in their public code at
the time of writing) that could replace GCNs both in DGVAE and in Modularity-Aware
GAE and VGAE. We also report experiments on the ARGA and ARVGA models from
Pan et al. [15] that incorporate an adversarial regularization scheme, with similar hy-
perparameters and using the authors’ implementation. ARGA and ARVGA emerged
as some of the most cited GAE/VGAE extensions and, while they were not specifically
introduced for community detection, Pan et al. [15] reported empirical gains on this task
w.r.t. standard GAE/VGAE (on graphs with node features).

We furthermore consider three additional baselines not utilizing the autoencoder
paradigm. Firstly, we report results obtained from the popular node embedding methods
node2vec [95] and DeepWalk [49]. We used the authors’ respective implementations,
training models from 10 random walks with length 80 per node, window size of 5 and on
a single epoch. For node2vec, we further set p = q = 1. We use a similar strategy to our
aforementioned GAE/VGAE models (k-means/inner products) for community detection
and link prediction from embedding spaces. Lastly, we also compare to the Louvain
community detection method, using the authors’ implementation [7]. We see value in
comparing our methods to a direct use of Louvain, as this method 1) often emerged
as a simple but competitive alternative to GAE/VGAE for community detection (see
Section 2.4.2), and 2) is directly leveraged in our proposed Modularity-Aware GAE/VGAE
as a pre-processing step for the computation of Ac and As (see Section 3.2).

14Authors of VGAECD/VGAECD-OPT did not release any public implementation of their models,
and we were unable to reach them by e-mail. We note that we obtained some inconsistent results w.r.t.
their original performances (specifically, we reached better performances on featureless graphs, and lower
performances on graphs with node features), even when adopting their set of hyperparameters. For the
sake of transparency, we will thereafter 1) report scores obtained through our own re-implementation,
and 2) also specify scores reported in their original work, when they were significantly different. Authors
followed an experimental setting and pure community detection task similar to ours.
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Figure 2: Identification of the required number of training iterations, for Modularity-Aware VGAE
with linear encoders trained on the featureless (a) Cora, and (b) Pubmed graphs. The plots report the
evolution of the modularity Q (dark blue) and AUC link prediction scores on validation sets (red) w.r.t.
the number of model training iterations in gradient descent. By looking at the red curves only, one
might choose to stop training models after 200 iterations as in [11], as the AUC validation scores have
almost stabilized. However, the dark blue curves emphasize that Q still increases up to 400-500 training
iterations for both graphs. By also using Q for hyperparameter selection (as we proposed), one will
therefore continue training VGAE models up to 400-500 iterations. The light blue curves confirm that
such a strategy eventually leads to better AMI final scores w.r.t. ground-truth communities. Note, that
the light blue curves could not be directly used for tuning, as ground-truth communities are assumed to
be unavailable at training time.

4.2. Results

We now present our experimental results. In Section 4.2.1 we analyze the impact of
our proposed hyperparameter selection procedure. In Section 4.2.2 and 4.2.3, we discuss
results on Task 1 and Task 2, respectively. Finally, we mention limitations and possible
extensions of our approach in Section 4.2.4.

4.2.1. On the Selection of Hyperparameters

In Section 3.3.2, we proposed an alternative hyperparameter selection procedure w.r.t.
previous practices in the literature. Based on the joint maximization of AUC validation
scores for link prediction and modularity scores Q, it aims to identify more relevant
GAE/VGAE hyperparameters for joint link prediction and community detection. Recall,
that the resulting optimal parameters are displayed in Table 4.

In our experiments, this procedure did not modify our choices of learning rates and
dropout rates for the different GAE/VGAE models under consideration, w.r.t. a standard
selection solely relying on AUC validation scores. It had a more noticeable impact
on the choices of clustering-related hyperparameters in Modularity-Aware GAE and
VGAE (i.e., λ, β, γ, and s) as well as on the required number of training iterations
in the gradient descent.

Figure 2 provides an example of this phenomenon, for the number of training iterations
required to train Modularity-Aware VGAE models on the featureless Cora and Pubmed
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Table 5: Results for Task 1 and Task 2 on the featureless Cora graph, using Modularity-Aware GAE and
VGAE with Linear and GCN encoders, their standard GAE and VGAE counterparts, and other baselines.
All node embedding models learn embedding vectors of dimension d = 16, with other hyperparameters
set as described in Section 4.1.3. Scores are averaged over 100 runs. For Task 2, link prediction results
are reported from test sets (edges masked for the original graph in addition to the same number of
randomly picked unconnected node pairs). Bold numbers correspond to the best performance for each
score. Scores in italic are within one standard deviation range from the best score.

Models Task 1: Community Detection Task 2: Joint Link Prediction and Community Detection
(Dimension d = 16) on complete graph on graph with 15% of edges being masked

AMI (in %) ARI (in %) AMI (in %) ARI (in %) AUC (in %) AP (in %)

Modularity-Aware GAE/VGAE Models

Linear Modularity-Aware VGAE 46.65 ± 0.94 39.43 ± 1.15 42.86 ± 1.65 34.53 ± 1.97 85.96 ± 1.24 87.21 ± 1.39
Linear Modularity-Aware GAE 46.58 ± 0.40 39.71 ± 0.41 43.48 ± 1.12 35.51 ± 1.20 87.18 ± 1.05 88.53 ± 1.33

GCN-based Modularity-Aware VGAE 43.25 ± 1.62 35.08 ± 1.88 41.03 ± 1.55 33.43 ± 2.17 84.87 ± 1.14 85.16 ± 1.23
GCN-based Modularity-Aware GAE 44.39 ± 0.85 38.70 ± 0.94 41.13 ± 1.35 35.01 ± 1.58 86.90 ± 1.16 87.55 ± 1.26

Standard GAE/VGAE Models

Linear VGAE 37.12 ± 1.46 26.83 ± 1.68 32.22 ± 1.76 21.82 ± 1.80 85.69 ± 1.17 89.12 ± 0.82
Linear GAE 35.05 ± 2.55 24.32 ± 2.99 28.41 ± 1.68 19.45 ± 1.75 84.46 ± 1.64 88.42 ± 1.07

GCN-based VGAE 34.36 ± 3.66 23.98 ± 5.01 28.62 ± 2.76 19.70 ± 3.71 85.47 ± 1.18 88.90 ± 1.11
GCN-based GAE 35.64 ± 3.67 25.33 ± 4.06 31.30 ± 2.07 19.89 ± 3.07 85.31 ± 1.35 88.67 ± 1.24

Other Baselines
Louvain 42.70 ± 0.65 24.01 ± 1.70 39.09 ± 0.73 20.19 ± 1.73 – –

VGAECD 36.11 ± 1.07 27.15 ± 2.05 33.54 ± 1.46 24.32 ± 2.25 83.12 ± 1.11 84.68 ± 0.98
VGAECD-OPT 38.93 ± 1.21 27.61 ± 1.82 34.41 ± 1.62 24.66 ± 1.98 82.89 ± 1.20 83.70 ± 1.16

ARGVA 34.97 ± 3.01 23.29 ± 3.21 28.96 ± 2.64 19.74 ± 3.02 85.85 ± 0.87 88.94 ± 0.72
ARGA 35.91 ± 3.11 25.88 ± 2.89 31.61 ± 2.05 20.18 ± 2.92 85.95 ± 0.85 89.07 ± 0.70

DVGAE 35.02 ± 2.73 25.03 ± 4.32 30.46 ± 4.12 21.06 ± 5.06 85.58 ± 1.31 88.77 ± 1.29
DeepWalk 36.58 ± 1.69 27.92 ± 2.93 30.26 ± 2.32 20.24 ± 3.91 80.67 ± 1.50 80.48 ± 1.28
node2vec 41.64 ± 1.25 34.30 ± 1.92 36.25 ± 1.38 29.43 ± 2.21 82.43 ± 1.23 81.60 ± 0.91

graphs. The figure shows that, unlike our proposed procedure jointly based on AUC and Q,
a hyperparameter selection based solely on AUC validation scores leads to earlier stopping
of the model training and suboptimal performances on community detection. This reaffirms
the empirical relevance of our proposed procedure, and that optimal hyperparameters for
joint link prediction and community detection might differ from those for link prediction
only. Moreover, we note that, while Figure 2 focuses on Modularity-Aware VGAE, our
procedure also leads to the selection of a larger number of training iterations for the other
GAE/VGAE-based methods under consideration in this work (values are similar to those
in Table 4), which explains why, on some occasions, we will report slightly improved
results w.r.t. those obtained in the original papers.

4.2.2. Results for Community Detection on Original Graphs (Task 1)

We now focus on the “pure” community detection task (Task 1), performed by models
trained on graphs, where no edges are removed for model training as previously introduced
in Section 4.1.2. The second and third column of Table 5 reports mean AMI and ARI scores
on Cora for this task along with standard deviations over 100 runs, for Modularity-Aware
GAE and VGAE models (with linear or GCN encoders), their standard counterparts
and other baselines.

We draw several conclusions from Table 5. Foremost, previous conclusions [12, 17,
23, 24] on the limitations of standard GAE and VGAE for community detection are
confirmed: in Table 5, these methods are notably outperformed by a direct use of the
Louvain method (e.g., 42.70% vs 34.36% mean AMI scores for Louvain vs GCN-based
VGAE). We also observe that previous GAE/VGAE extensions, reported as baselines,
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(b) Linear Modularity-Aware VGAE

Figure 3: Visualization of node embedding representations for the featureless Cora graph, learned by
(a) Standard VGAE, and (b) Modularity-Aware VGAE, with linear encoders. The plots were obtained
using the t-SNE method for high-dimensional data visualization. Colors denote ground-truth communities,
that were not available during training. Although community detection is not perfect (both methods
return AMI scores < 50% in Table 5), node embedding representations from (b) provide a more visible
separation of these communities. Specifically, in Table 5, using Linear Modularity-Aware VGAE for
community detection leads to an increase of 9 AMI points (Task 1) to 10 AMI points (Task 2) for
community detection w.r.t. Linear Standard VGAE, while preserving comparable performances on link
prediction (Task 2).

actually provide few empirical benefits w.r.t. standard GAE and VGAE for this featureless
graph (e.g., only +1.81 AMI points for VGAECD-OPT15 vs Linear VGAE). Such a result,
in conjunction with the improved performances of these same baselines on graphs with
features (see thereafter), tends to confirm our initial diagnosis that various GAE/VGAE
extensions for community detection mainly benefit from the presence of node features.

On the contrary, our proposed Modularity-Aware GAE and VGAE models, incorpo-
rating Louvain clusters as a prior signal in the GAE’s and VGAE’s encoders, significantly
outperform both the use of the Louvain method alone, and the use of GAE and VGAE
alone (e.g., with a top 46.65% mean AMI for Modularity-Aware VGAE with linear
encoders, and a top 39.71% mean ARI score for Modularity-Aware GAE with linear
encoders). Modularity-Aware models also compare favorably to the baselines under
consideration (e.g., with +12.1 ARI points for Linear Modularity-Aware GAE w.r.t.
VGAECD-OPT), while also providing less volatile results w.r.t. standard GAE/VGAE.
Furthermore, we note that Modularity-Aware models with linear encoders tend to out-
perform their GCN-based counterparts (consistently with previous findings from [27, 23]
on Cora) and that GAE and VGAE reach comparable scores. In addition to these results,
Figure 3 visualizes the node embeddings learned by our models using t-SNE16 [96].

Overall, we obtain similar conclusions on the other graph datasets. Following the
format of Table 5, columns two and three of Table 6 present detailed community detection

15The increase is even smaller when replacing AMI scores obtained via our re-implementation of
VGAECD and VGAECD-OPT (i.e., 36.11% and 38.93%, respectively) by AMI scores originally reported
in [23] for these methods (i.e., 28.22% and 37.35%, respectively), which are lower than ours.

16We used the scikit-learn [48] implementation of this data visualization method: https://scikit-
learn.org/stable/modules/generated/sklearn.manifold.TSNE.html (accessed October 13, 2021).
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Table 6: Results for Task 1 and Task 2 on the featureless Pubmed graph, using Modularity-Aware
GAE and VGAE with Linear and GCN encoders, their standard GAE and VGAE counterparts, and
other baselines. All node embedding models learn embedding vectors of dimension d = 16, with other
hyperparameters set as described in Section 4.1.3. Scores are averaged over 100 runs. For Task 2, link
prediction results are reported from test sets (edges masked during training + same number of randomly
picked unconnected node pairs). Bold numbers correspond to the best performance for each score. Scores
in italic are within one standard deviation range from the best score.

Models Task 1: Community Detection Task 2: Joint Link Prediction and Community Detection
(Dimension d = 16) on complete graph on graph with 15% of edges being masked

AMI (in %) ARI (in %) AMI (in %) ARI (in %) AUC (in %) AP (in %)

Modularity-Aware GAE/VGAE Models

Linear Modularity-Aware VGAE 28.12 ± 0.29 29.01 ± 0.51 25.93 ± 0.65 23.76 ± 0.49 85.76 ± 0.37 87.77 ± 0.31
Linear Modularity-Aware GAE 28.54 ± 0.24 26.36 ± 0.34 26.38 ± 0.43 21.30 ± 0.59 84.39 ± 0.32 87.92 ± 0.40

GCN-based Modularity-Aware VGAE 28.08 ± 0.27 28.14 ± 0.33 25.70 ± 0.86 22.65 ± 0.80 84.70 ± 0.24 86.64 ± 0.15
GCN-based Modularity-Aware GAE 28.74 ± 0.28 26.71 ± 0.47 25.52 ± 0.45 20.52 ± 0.31 85.07 ± 0.35 88.27 ± 0.39

Standard GAE/VGAE Models

Linear VGAE 22.16 ± 2.02 13.90 ± 3.47 21.78 ± 2.57 13.81 ± 3.17 84.57 ± 0.51 88.31 ± 0.44
Linear GAE 12.61 ± 4.61 6.37 ± 3.86 12.60 ± 4.67 6.21 ± 1.75 82.03 ± 0.32 87.71 ± 0.24

GCN-based VGAE 20.11 ± 3.05 13.12 ± 3.10 17.34 ± 2.99 8.71 ± 3.05 82.19 ± 0.88 87.51 ± 0.55
GCN-based GAE 20.12 ± 2.89 14.21 ± 2.78 16.75 ± 3.36 9.18 ± 2.71 82.33 ± 1.32 87.20 ± 0.58

Other Baselines
Louvain 20.06 ± 0.27 10.34 ± 0.99 16.71 ± 0.46 8.32 ± 0.79 – –

VGAECD 20.32 ± 2.95 13.54 ± 2.98 17.39 ± 3.04 9.21 ± 3.12 82.05 ± 0.90 87.30 ± 0.53
VGAECD-OPT 22.50 ± 1.99 14.58 ± 2.86 21.98 ± 2.46 15.22 ± 2.92 82.03 ± 0.82 87.41 ± 0.53

ARGVA 20.73 ± 3.10 13.94 ± 3.12 17.63 ± 3.19 9.19 ± 3.09 84.07 ± 0.55 87.73 ± 0.49
ARGA 20.98 ± 2.90 14.79 ± 2.80 17.21 ± 3.01 9.59 ± 2.76 83.73 ± 0.53 87.90 ± 0.45

DVGAE 23.15 ± 2.52 15.02 ± 3.33 22.10 ± 2.50 14.62 ± 2.96 83.21 ± 0.92 88.17 ± 0.49
DeepWalk 28.53 ± 0.43 29.61 ± 0.33 15.80 ± 1.05 16.16 ± 1.75 80.63 ± 0.42 81.03 ± 0.54
node2vec 28.52 ± 1.12 30.63 ± 1.14 23.88 ± 0.54 25.90 ± 0.65 81.03 ± 0.30 82.33 ± 0.41

results for the featureless Pubmed graph. Table 7 reports more summarized results for
all other graph datasets under consideration, with and without node features (when
available). While Louvain outperforms standard GAE/VGAE in 5 featureless graphs out
of 7 in Table 7 (e.g., 19.81% vs 15.79% mean AMI scores for Louvain vs GCN-based VGAE
on Deezer-Album), our Modularity-Aware models manage to achieve either comparable
or better performances w.r.t. standard models, Louvain and other baselines in the
wide majority of experiments. Furthermore, throughout Table 7, we observe that linear
encoders outperform their GCN-based counterparts in 8/10 experiments, and that VGAE
models outperform GAE models in 8/10 experiments (even though performances are often
relatively close, as for Cora). Moreover we emphasize that, while all tables report results
for fixed embedding dimensions of d = 16, we reached similar conclusions for d ∈ {32, 64}.
Although performances sometimes improved by increasing d, the ranking of methods
under consideration remained similar: for instance, by setting d = 64, Deepwalk’s mean
AMI score increased from 36.58% to roughly 41% on the featureless Cora graph, while the
mean AMI score from our Linear Modularity-Aware GAE simultaneously increased from
46.58% to 47.80%. Lastly, while we observed that our results were quite sensitive to our
choice of hyperparameters λ, β, and γ, no direct link with the number of nodes, of edges,
or of ground-truth communities in the graph seems to emerge from our experiments.

Interestingly, we also observe that combining the Louvain method and GAE/VGAE
in our Modularity-Aware models might be empirically beneficial even when standard
GAE/VGAE initially outperform the Louvain method. For instance in Table 6, our Linear
Modularity-Aware VGAE outperforms Linear Standard VGAE (e.g., with 28.12% vs
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Figure 4: Comparison of two “complete” Modularity-Aware VGAE, trained on (a) featureless Cora and
(b) Deezer-Album with variants of these models only leveraging the new encoder from Section 3.2, or
the new loss from Section 3.3. We observe that incorporating any of these two components improves
community detection on these two graphs w.r.t. Standard VGAE. Moreover, using both components
simultaneously leads to the best results. Note, the optimal pair (λ, β) for complete models might differ
from the optimal λ (resp. β) when incorporating the new encoder (resp. loss) only.

22.16% mean AMI scores), despite the fact that this standard model initially outperformed
the Louvain method (20.06% mean AMI score). This tends to confirm that modularity-
based clustering à la Louvain complements the encoding-decoding paradigm of GAE
and VGAE, and that learning node embedding spaces from complementary criteria is
empirically beneficial. On a more negative note, we nonetheless acknowledge that, on
Cora, Citeseer and Pubmed in Table 7, empirical gains of Modularity-Aware models are
less visible on graphs equipped with node features than on featureless graphs, which we
will further discuss in our limitation section.

As our Modularity-Aware models include two main novel components (namely our
community-preserving encoders from Section 3.2 and our revised loss from Section 3.3),
one might wonder what the contribution of each of these components to the performance
gains is. To study this question, we report in Figure 4 the results of an ablation study, that
consisted in training variant versions of our models leveraging one of these components
only17 (i.e., the encoder but not the loss, or the loss but not the encoder). Figure 4
shows that incorporating any of these two individual components into the model improves
community detection. The gain is larger for the loss in the Cora example from Figure 4(a),
while it is larger for the encoder in the Deezer-Album example from Figure 4(b). A
simultaneous use of the encoder and of the loss leads to the best results in both examples,
which we also confirmed on the other graphs under consideration.

17A Modularity-Aware GAE or VGAE model that leverages the novel encoder only (respectively, the
novel loss only) corresponds to a particular case of a “complete” Modularity-Aware GAE or VGAE
model, where the hyperparameter β (respectively, the hyperparameter λ) is set to 0.

18 We note that authors of VGAECD-OPT [23] reported larger AMI scores w.r.t. those we managed to
obtain from our re-implementation on Cora and Pubmed with features: 54.37% and 35.52%, respectively.
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4.2.3. Results for Joint Link Prediction and Community Detection (Task 2)

We now study results for Task 2, the joint link prediction and community detection
task described in Section 4.1.2, and performed on incomplete versions of the graph datasets
where 15% of edges are randomly masked. Results for this task (i.e., AMI and ARI scores
from community detection on incomplete graphs, and AUC and AP scores from link
prediction on test sets) are reported in the four rightmost columns of Tables 5, 6 and 7.
AMI and ARI scores from this task are also included in the ablation study in Figure 4.

We draw several conclusions from these additional experiments. First of all, we confirm
that AMI and ARI scores decrease slightly w.r.t. Task 1, which was expected due to the
absence of part of the graph structure during the training phase (e.g., from 46.65% to
42.86% mean AMI, for Linear Modularity-Aware VGAE on Cora in Table 5). Nonetheless,
the ranking of the different methods under consideration remains consistent with Task 1.
In particular, our Modularity-Aware models still outperform baselines in cases where
they were already outperforming in Task 1 (e.g., with a top 43.48% mean AMI for Linear
Modularity-Aware GAE on Cora in Table 5, vs 28.41% for the standard Linear GAE and
39.09% for the Louvain method).

Besides these confirmations, the main goal of Task 2 was to address our second
research question stated in Section 1: Do improvements on the community detection task
necessarily incur a loss in the link prediction performance or can they be jointly addressed
with high accuracy? Indeed, as GAE and VGAE were originally recognized as effective link
prediction methods (see Section 2), improving community detection while deteriorating
link prediction might be undesirable, especially in problems requiring effective node
embeddings for multitask applications (see the Deezer example from Section 4.1.1). By
design, our proposed encoders, losses, and selection procedure specifically aimed to avoid
such a deterioration.

Empirical results confirm the ability of Modularity-Aware models to preserve com-
parable link prediction performances w.r.t standard GAE and VGAE. For instance, in
Table 5, our Linear Modularity-Aware GAE reaches mean AUC and AP scores of 87.18%
and 88.53%, respectively, which is comparable (or even slightly better in the case of AUC)
to Linear Standard GAE (84.46% and 88.42%, respectively). We reach similar results for
the three other Modularity-Aware models in Table 5, while scores of several baselines
deteriorate by a few points. Overall, all other Modularity-Aware models reported in the
complete Table 7 achieve comparable (either better, identical, or only a few points below)
AUC and AP scores w.r.t. their GAE or VGAE counterparts.

4.2.4. Limitations and Possible Extensions

As observed in Section 4.2.2, empirical gains of Modularity-Aware models are less
pronounced on graphs equipped with node features (although non-null in 2/3 cases).
In Table 7, for Cora with features, we “only” report increases in Task 1 AMI scores of
+2.63 points w.r.t. the corresponding standard VGAE model. For comparison, in the
featureless case, we reported increases in Task 1 AMI scores of +11.53 points. Furthermore,
our Modularity-Aware VGAE does not surpass the standard VGAE at all on Pubmed
with features. We hypothesize that the incorporation of Louvain-based prior clusters in
Modularity-Aware models might be less relevant for these attributed graphs. Indeed,
while Louvain only leverages the graph structure for node clustering, node features seem
to play a strong role in the identification of ground-truth communities for these graphs.
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Nevertheless, we recall that the use of the Louvain method was made without loss
of generality. As explained in Section 3.2, our revised message passing operators would
remain valid for other methods that alternatively derive a prior clustering signal. Future
experiments on such alternatives (e.g., methods processing node features) could therefore
improve community detection performances on these three attributed graphs. Overall, the
empirical performance of our method directly depends on the quality of the underlying prior
clustering method used to compute Ac and As, which should therefore be carefully selected.

More broadly, our framework could also straightforwardly incorporate alternative en-
coders (besides linear and multi-layer GCN encoders), alternative decoders (e.g., decoders
replacing inner products by more refined graph reconstruction methods [18, 22]) and alter-
native losses (for instance, as explained in Section 3.3.1, our modularity-inspired regularizer
could be optimized in conjunction with the ELBO loss from VGAECD/VGAECD-OPT
[12, 23] involving Gaussian mixtures). One could also replace our k-means step, to cluster
vectors zi, by another method such as k-medoids [97] or spectral clustering [50] (although
our preliminary experiments in this direction did not reach significantly better results).
Future work considering such alternative architectures for Modularity-Aware GAE and
VGAE could definitely lead to the improvement of our models.

Lastly, we also plan to extend Modularity-Aware GAE and VGAE to dynamic graphs.
Indeed, while our work considered fixed graph structures, real-world graphs often evolve
over time. For instance, on the Deezer service, new albums should regularly appear in the
musical catalog. New nodes will therefore appear in the Deezer-Album graph. Capturing
such changes, e.g., through dynamic graph embedding methods [2], might permit learning
more refined representations and providing effective dynamic community detection.

4.2.5. Towards More Comparisons to Non-GAE/VGAE Methods

Our experiments mainly aim to compare our proposed Modularity-Aware GAE and
VGAE models to the Louvain method and to other autoencoders, i.e., 1) the standard
GAE and VGAE models, and 2) alternative methods that improve community detection
with GAE and VGAE. Giving us a total of 12 baseline models that we compare against.
Nonetheless, while our scope is limited to autoencoders, we acknowledge that Modularity-
Aware GAE and VGAE could also be seen as multi-task models, as we train them to
perform community detection and link prediction simultaneously. As a consequence,
in future research, it would be interesting to further study these models through the
lens of the multi-task learning framework and thus compare them to other graph-based
multi-task learning methods [98, 99].

In addition, there are also interesting parallels between our proposed method and
pre-training methods for self-supervised learning (SSL) [100, 101, 102], that might deserve
further investigations in future research. There are, however, also several fundamental
differences to be pointed out. More specifically, our proposed loss, as is common in
the “joint learning” methods in the SSL literature, is also a combination of two loss
terms stemming from different learning tasks. However, our method does not involve the
distinction between a self-supervised or auxiliary and a downstream or main task; both
tasks performed by our method are equally relevant and important. Specifically, with
regards to the paradigm of pre-training an encoder on a self-supervised task and then
fine-tuning it on a downstream task, our method is trained in a single-stage and does
not involve pre-training of any kind. Also, in spirit, our effort in the Modularity-Aware
GAE/VGAE is similar to the works of Hu et al. [103] incorporating clustering information
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in their cluster-preserving models, the self-supervised graph partition GCN by You et al.
[104] and the models predicting degree, local node importance, and local clustering
coefficient in Jin et al. [105]. Also, the works addressing label scarcity problems by
generating “pseudo-labels” are conceptually similar to our approach since pseudo-labeling
often relies on clustering [100, 106, 107]. However, unlike these works, we do not use the
community labels in the loss function, but rather optimize the modularity of a clustering
obtained from our embedding vectors. In addition, our models do not aim to predict the
community membership of a node from its embedding vector, or any other node-level
centrality measure such as the degree. Instead, they aim to estimate the likelihood of an
edge between two nodes from their two embedding vectors. A more in-depth comparison
of our method with this related literature has the potential to yield further improvements
of the Modularity-Aware GAE and VGAE that we propose here.

5. Conclusion

In this paper, we introduce a well-performing approach for simultaneous link prediction
and community detection compatible with both the GAE and VGAE frameworks. This
approach is based on a rigorous diagnosis of the shortcomings of existing approaches to
this problem. Our approach takes advantage of two elements: A theoretically grounded
variant of message passing operator in the GAE and VGAE encoders, that incorporates
prior cluster information, and the addition of a modularity-based loss component to
the usual existing loss functions. Both elements were experimentally shown to have an
individual impact on the community detection performances. We furthermore introduce a
revised hyperparameter selection procedure specifically designed for joint link prediction
and community detection. We experimentally demonstrated the effectiveness of the
approach on multiple datasets, including common benchmark graphs and large scale
real-world ones, both with node features and, crucially featureless graphs: The results
are consistently on par or better than the state-of-the-art for both link prediction and
community detection. This overcomes the common pitfall of most state-of-the-art methods
that usually show high accuracy for either link prediction or community detection but
not for both simultaneously. Future research directions include the in-depth analysis
of the utilization of the two loss terms and the relationship among them. Specifically,
combining a dot-product similarity as a metric for the link prediction term and the
Euclidean distance for the modularity-inspired term exhibited strong performance and a
study on their behavior appears to be insightful.
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Table 7: Summarized results for Task 1 and Task 2 on all graphs. For each graph, for brevity, we only
report the best Modularity-Inspired model (best on Task 2, among GCN or Linear encoder, and GAE
or VGAE), its standard counterpart, and a comparison to the Louvain baseline as well as the best other
baseline (among VGAECD, VGAECD-OPT, ARGA, ARGVA, DVGAE, DeepWalk and node2vec). All
node embedding models learn embedding vectors of dimension d = 16, with other hyperparameters set as
described in Section 4.1.3. Scores are averaged over 100 runs except for the larger SBM and Deezer-Album
graphs (10 runs). Bold numbers correspond to the best performance for each score. Scores in italic are
within one standard deviation range from the best score.

Datasets Models Task 1: Community Detection Task 2: Joint Link Prediction and Community Detection
(Dimension d = 16) on complete graph on graph with 15% of edges being masked

AMI (in %) ARI (in %) AMI (in %) ARI (in %) AUC (in %) AP (in %)

GCN-based Modularity-Aware VGAE 73.74 ± 1.32 82.78 ± 1.27 70.42 ± 1.28 79.80 ± 1.12 91.67 ± 0.39 92.37 ± 0.41
GCN-based Standard VGAE 73.42 ± 0.95 82.58 ± 0.93 66.90 ± 3.32 77.23 ± 3.89 91.64 ± 0.42 92.52 ± 0.51

Blogs Louvain 63.43 ± 0.86 76.66 ± 0.70 57.25 ± 1.67 73.00 ± 1.56 – –
Best other baseline:

node2vec 72.88 ± 0.87 82.08 ± 0.73 67.64 ± 1.23 77.03 ± 1.85 83.63 ± 0.34 79.60 ± 0.61

Linear Modularity-Aware GAE 46.58 ± 0.40 39.71 ± 0.41 43.48 ± 1.12 35.51 ± 1.20 87.18 ± 1.05 88.53 ± 1.33
Linear Standard GAE 35.05 ± 2.55 24.32 ± 2.99 28.41 ± 1.68 19.45 ± 1.75 84.46 ± 1.64 88.42 ± 1.07

Cora Louvain 42.70 ± 0.65 24.01 ± 1.70 39.09 ± 0.73 20.19 ± 1.73 – –
Best other baseline:

node2vec 41.64 ± 1.25 34.30 ± 1.92 36.25 ± 1.38 29.43 ± 2.21 82.43 ± 1.23 81.60 ± 0.91

Linear Modularity-Aware VGAE 52.43 ± 1.87 44.82 ± 3.12 49.48 ± 2.15 43.05 ± 3.51 93.10 ± 0.88 94.06 ± 0.75
Cora Linear Standard VGAE 49.98 ± 2.40 43.15 ± 4.35 46.90 ± 1.43 38.24 ± 3.56 93.04 ± 0.80 94.04 ± 0.75
with Louvain 42.70 ± 0.65 24.01 ± 1.70 39.09 ± 0.73 20.19 ± 1.73 – –

features Best other baseline:
VGAECD-OPT 50.3218 ± 1.95 43.54 ± 3.23 47.83 ± 1.64 39.45 ± 3.53 92.25 ± 1.07 92.60 ± 0.91

Linear Modularity-Aware VGAE 21.28 ± 1.03 15.39 ± 1.06 19.05 ± 1.47 12.19 ± 1.38 80.84 ± 1.64 84.21 ± 1.21
Linear Standard VGAE 13.83 ± 1.00 8.31 ± 0.89 11.11 ± 1.10 5.87 ± 0.87 78.26 ± 1.55 82.93 ± 1.39

Citeseer Louvain 24.72 ± 0.27 9.21 ± 0.75 22.71 ± 0.47 7.70 ± 0.67 – –
Best other baseline:

node2vec 18.68 ± 1.13 14.93 ± 1.15 14.40 ± 1.18 12.13 ± 1.53 76.05 ± 2.12 79.46 ± 1.65

Linear Modularity-Aware VGAE 25.11 ± 0.94 15.55 ± 0.60 22.21 ± 1.24 12.59 ± 1.25 86.54 ± 1.20 88.07 ± 1.22
Citeseer Linear Standard VGAE 17.80 ± 1.61 6.01 ± 1.46 17.38 ± 1.43 6.10 ± 1.51 89.08 ± 1.19 91.19 ± 0.98
with Louvain 24.72 ± 0.27 9.21 ± 0.75 22.71 ± 0.47 7.70 ± 0.67 – –

features Best other baseline:
DVGAE 20.09 ± 2.84 12.16 ± 2.74 16.02 ± 3.32 10.03 ± 4.48 86.85 ± 1.48 88.43 ± 1.23

Linear Modularity-Aware GAE 28.54 ± 0.24 26.36 ± 0.34 26.38 ± 0.43 21.30 ± 0.59 84.39 ± 0.32 87.92 ± 0.40
Linear Standard GAE 12.61 ± 4.61 6.37 ± 3.86 12.60 ± 4.67 6.21 ± 1.75 82.03 ± 0.32 87.71 ± 0.24

Pubmed Louvain 20.06 ± 0.27 10.34 ± 0.99 16.71 ± 0.46 8.32 ± 0.79 – –
Best other baseline:

node2vec 28.52 ± 1.12 30.63 ± 1.14 23.88 ± 0.54 25.90 ± 0.65 81.03 ± 0.30 82.33 ± 0.41

Linear Modularity-Aware VGAE 30.09 ± 0.63 29.11 ± 0.65 29.60 ± 0.70 28.54 ± 0.74 97.10 ± 0.21 97.21 ± 0.18
Pubmed Linear Standard VGAE 29.98 ± 0.41 29.05 ± 0.20 29.51 ± 0.52 28.50 ± 0.36 97.12 ± 0.20 97.20 ± 0.17

with Louvain 20.06 ± 0.27 10.34 ± 0.99 16.71 ± 0.46 8.32 ± 0.79 – –
features Best other baseline:

VGAECD-OPT 32.4718 ± 0.45 29.09 ± 0.42 29.46 ± 0.52 28.43 ± 0.61 94.27 ± 0.33 94.53 ± 0.36

Linear Modularity-Aware VGAE 48.55 ± 0.18 22.21 ± 0.39 46.10 ± 0.29 20.24 ± 0.41 95.76 ± 0.17 96.31 ± 0.12
Linear Standard VGAE 46.07 ± 0.54 20.01 ± 0.90 43.38 ± 0.37 18.02 ± 0.66 95.55 ± 0.22 96.30 ± 0.18

Cora-Larger Louvain 44.72 ± 0.50 19.46 ± 0.66 43.41 ± 0.52 19.29 ± 0.68 – –
Best other baseline:

DVGAE 46.63 ± 0.56 20.72 ± 0.96 43.48 ± 0.61 18.45 ± 0.67 94.97 ± 0.23 95.98 ± 0.21

Linear Modularity-Aware VGAE 36.02 ± 0.13 8.12 ± 0.06 35.85 ± 0.20 8.06 ± 0.11 82.34 ± 0.38 86.76 ± 0.41
Linear Standard VGAE 35.01 ± 0.21 7.88 ± 0.15 30.79 ± 0.21 6.50 ± 0.13 80.11 ± 0.35 83.40 ± 0.36

SBM Louvain 36.00 ± 0.15 8.10 ± 0.15 35.84 ± 0.18 8.03 ± 0.09 – –
Best other baseline:

DVGAE 35.90 ± 0.18 8.07 ± 0.15 35.53 ± 0.23 7.95 ± 0.19 82.59 ± 0.36 87.08 ± 0.40

GCN-Based Modularity-Aware VGAE 21.64 ± 0.18 13.19 ± 0.09 19.10 ± 0.21 12.00 ± 0.17 85.40 ± 0.14 86.38 ± 0.15
GCN-Based Standard VGAE 15.79 ± 0.32 9.75 ± 0.21 13.98 ± 0.35 8.81 ± 0.32 85.37 ± 0.12 86.41 ± 0.11

Deezer-Album Louvain 19.81 ± 0.19 12.21 ± 0.09 17.68 ± 0.20 11.02 ± 0.13 – –
Best other baseline:

node2vec 20.03 ± 0.24 12.20 ± 0.19 18.34 ± 0.29 11.27 ± 0.28 83.51 ± 0.17 84.12 ± 0.15
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Appendix A. Proofs of the Propositions in Section 3.2.4

We begin by introducing several theoretical results which we will use in the majority
of our proofs. The specific formulations of the results in this section, i.e., Definition 7
and Propositions 8, 9 and 10, are adapted from Lutzeyer [81].

When considering regular graphs, i.e., graphs containing only nodes of equal degree,
their different graph representation matrices, such as the adjacency matrix, Laplacian
matrices, and the GCN’s message passing operator, are related via polynomial matrix
transformations. These are now defined.

Definition 7. Horn and Johnson [108, p. 36] define the evaluation of a polynomial
p(x) = clx

l + cl−1x
l−1 + . . .+ c1x+ c0 at a matrix Φ as

p(Φ) = clΦ
l + cl−1Φl−1 + . . .+ c1Φ + c0I.

Horn and Johnson [108] further discuss the influence of a polynomial matrix transfor-
mation on the matrices’ eigenvalues and eigenvectors, which we reproduce below.

Proposition 8. [108] Let p(·) be a given polynomial. If φ is an eigenvalue of Φ ∈ Rn×n,
while u is an associated eigenvector, then p(φ) is an eigenvalue of the matrix p(Φ) and u
is an eigenvector of p(Φ) associated with p(φ).

Since we consider graphs consisting of several connected components in a multitude of
our propositions, we now provide a theorem which relates the eigenvalues and eigenvectors
of the whole graph to those of its connected components.

Proposition 9. Let G be a graph with corresponding adjacency matrix A and assume
G to consist of K connected components each with corresponding adjacency matrix Ak
for k ∈ {1, . . . ,K}. Then, the eigenvalues of FGCN (A) are equal to the union of the
eigenvalues of FGCN (Ak) over k ∈ {1, . . . ,K}. Further, a set of eigenvectors of FGCN (A)
can be constructed from the eigenvector sets of FGCN (Ak) for k ∈ {1, . . . ,K}.

Proof. For a graph G consisting of several connected components there exists a node
ordering such that its corresponding adjacency matrix A is block diagonal. Since, the
addition of the identity matrix In and the multiplication by a diagonal matrix (D+ In)−

1
2

does not affect the block diagonal property of a matrix, the matrix FGCN (A) is also block
diagonal.

Now, the characteristic equation of block diagonal matrices factorizes into polynomials
corresponding to the different blocks [109, p. 291]. Therefore, the set of eigenvalues of any
block diagonal matrix is equal to the union of the set of eigenvalues of matrices containing
only the blocks. Consequently, the eigenvalues of FGCN (A) are equal to the union of the
eigenvalues of FGCN (Ak) over k ∈ {1, . . . ,K}.

Furthermore, any eigenvector of a given connected component, described by FGCN (Ak),
can be modified to be an eigenvector of FGCN (A) by the insertion of zero values in all
entries corresponding to nodes not contained in the connected component described by
FGCN (Ak).

To allow us to relate the spectra and eigenvectors of the well studied adjacency matrix
A to the more novel GCN message passing operator FGCN (A) we frequently make use of
the matrix similarity relationship. The consequences of a matrix similarity relationship
between matrices on their eigenvalues and eigenvectors is discussed in Proposition 10.
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Proposition 10. [108, pp. 45,60] If two matrices Φ and Ψ are related via a nonsingular
matrix S as follows, Φ = S−1ΨS. Then, Φ and Ψ have the same multiset of eigenvalues.
Further, for eigenvector v with corresponding eigenvalue φ of Φ gives rise to an eigenvector
Sv of Ψ with equal corresponding eigenvalue φ.

We can now begin to prove the propositions discussed in Section 3.2.4.

Appendix A.1. Proof of Proposition 4

Proof. Teke and Vaidyanathan [80], among many others, state that the unnormalised
Laplacian matrix L = D −A corresponding to a complete graph has eigenvalue 0 with
multiplicity 1 and eigenvalue n with multiplicity n − 1. Furthermore, the eigenspace
corresponding to the eigenvalue n is spanned by a 2-sparse set of orthogonal eigenvectors
[80]. In addition, the eigenvector corresponding to the eigenvalue 0 of the unnormalised
graph Laplacian describing a connected graph is well known to be the constant eigenvector
[50]. Since the complete graph is regular, its degree matrix is a multiple of the identity
matrix, i.e., D = (n − 1)In. Therefore, for complete graphs the following relationship
holds FGCN (A) = In − 1

nL. Hence, from Proposition 8 the eigenvectors of FGCN (A) and
L are equal and FGCN (A) has the eigenvalue 1 with multiplicity 1 and eigenvalue 0 with
multiplicity n− 1.

Now, since Ac corresponds to a graph composed of several complete graphs, we can
invoke Proposition 9 to construct the spectrum and eigenvectors of FGCN (Ac) from the
the spectrum and eigenvectors of FGCN (A) corresponding to a complete graph, which
we just derived. Consequently, FGCN (Ac) has eigenvalues {{1}K , {0}n−K} and a set of
eigenvectors as described in the statement of Proposition 4.

Appendix A.2. Proof of Proposition 5

Proof. Proposition 9 can be used to extend the required result from one connected
component of G to the full graph. Therefore, we consider only one connected component
on the graph from now on. Let A′ denote the adjacency matrix of this connected
component, containing nodes of degree b, and A′c denote the corresponding complete
component of Ac, containing nodes of degree n′ − 1. Then, the adjacency matrix of our
connected component under consideration A′ + λA′c is related to FGCN (A′ + λA′c) as
follows,

FGCN (A′ + λA′c) =
1

b+ λ(n′ − 1) + 1
(A′ + λA′c + I) .

Therefore, from Proposition 8 it follows that A′ + λA′c and FGCN (A′ + λA′c) share
eigenvectors. Similarly, the relations FGCN (A′) = 1

b+1 (A′+I) and FGCN (A′c) = 1
n′ (A

′
c+I)

together with Proposition 8 allow us to establish that both FGCN (A′) and A′ as well as
FGCN (A′c) and A′c each have a common set of eigenvectors.

We now make use of a result by Godsil [110, p. 25], which states that the adjacency
matrix of a graph commutes with the matrix of all ones, i.e., Ac + In, if and only if the
graph under consideration is regular. Further, a family of matrices is a commuting family
if and only if they are simultaneously diagonalizable, i.e., they share a set of eigenvectors
[108, p. 52]. Hence, A′ and A′c share a set of eigenvectors. Furthermore, this shared set
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of eigenvectors is also a valid set of eigenvectors for A′ + λA′c, which, in conjunction with
the above polynomial relationships, establishes the needed eigenvector relation.

In addition the eigenvalues of the sum of two simultaneously diagonalizable matrices
Φ,Ψ with eigenvalues denoted by φ and ψ, respectively, are related [108, p. 54] as follows

S(Φ + Ψ) = {φ1 + ψs(1), . . . , φn + ψs(n)}, (A.1)

for some permutation s(·) defined on the set {1, . . . , n}. Since A′ and A′c + In are
simultaneously diagonalizable their eigenvalues follow the relation in Equation (A.1).
Now the above polynomial relationships of the GCN message passing operators to the
corresponding adjacency matrices gives us the desired eigenvalue result and establish that

g1(µ) = b+1
b+λ(n′−1)+1 (µ− 1) and g2(η) = λ(n′−1)+1

b+λ(n′−1)+1 (η − 1) + 1.

Appendix A.3. Proof of Proposition 6

Proof. Hoory et al. [111, p. 453] state that for s-regular graphs the largest eigenvalue
of the corresponding adjacency matrix A′ equals s and the corresponding eigenvector is
constant. Now the relation FGCN (A′) = 1

o+1 (A′ + In) in conjunction with Proposition 8
establish that the largest eigenvalue of FGCN (A′) equals 1 with a corresponding constant
eigenvector. This spectrum and eigenvectors can be extended to the matrix FGCN (As)
corresponding to a graph of several s-regular connected components using Proposition 9.
The comparison of the derived spectrum and eigenvectors to those derived in Proposition
4 completes this proof.
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