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We study the electromagnetic behavior of dense, spherical clusters made of hundreds of plasmonic nanopar-
ticles under illumination by a plane wave. Using high-precision T-matrix numerical calculations, we compute
the multipolar response of clusters up to 80 nm in radius and up to 44% in particle volume fraction. We then
investigate whether it is possible to obtain an effective-medium description for the clusters, taking into account
weak spatial dispersion in a fully consistent way. We find that the average scattered field as well as the average
inner field of the spherical cluster can be accurately reproduced by applying an extended Mie theory to an
equivalent homogeneous sphere characterized by three effective parameters: an electric permittivity εeff and a
magnetic permeability μeff , associated to transverse modes, and a wave vector kL, associated to a longitudinal
mode in the sphere. Our results show that artificial magnetism arises from interparticle couplings in the dense
cluster, despite inclusions not displaying any individual magnetic dipole. We also find that, although largely
overlooked in the literature on metamaterials, the presence of the longitudinal mode is essential to accurately
reproduce the fields of the cluster, on par with the role of artificial magnetism. Our paper therefore proves that,
even for high concentration in inclusions, it is possible empirically to treat a cluster of plasmonic particles as
a sphere made of a spatially dispersive homogeneous medium. This offers a practical solution facilitating the
computation of electromagnetic responses of such dense random media in diverse configurations of interest for
the design of metamaterials and metasurfaces.

DOI: 10.1103/PhysRevA.109.023507

I. INTRODUCTION

The absorption and scattering of light by a homogenous
sphere excited by a plane wave are exactly described by
Mie theory [1,2]. This powerful theory consists in decom-
posing the exciting and scattered fields on a vector spherical
harmonic basis and is widely used today to describe the ab-
sorption and scattering cross sections of a single sphere as
well as the related internal and external spatial field distribu-
tions. It is commonly used to describe light-matter interaction
not only of single spheres, but also materials composed of
such spheres in a variety of circumstances. In contrast, the
interaction of light with inhomogeneous spheres is very diffi-
cult to describe theoretically [3,4]. Densely packed spherical
colloidal clusters of metallic or dielectric inclusions—also
known as plasmonic or photonic balls—have garnered a lot
of interest recently, owing to their remarkable scattering be-
haviors and potential applications, including noniridescent
structural coloration [5–8], and Huygens meta-atoms [9–11].
Even when the inclusions behave as small resonant elec-
tric dipoles—say a subwavelength plasmonic particle—the
ensemble properties of the cluster are radically different to
those of the inclusion because of electromagnetic interactions.
Spatial correlations in the position of the inclusions, in par-
ticular, are expected to play a crucial role in dense systems
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[12]. Beyond being objects of mere theoretical interest, such
plasmonic clusters can nowadays be manufactured following
a variety of fabrication routes [11,13–19]. These systems are
of particular interest because they involve localized resonant
inclusions that are assembled into a Mie resonator. This multi-
scale resonant nature provides a lot of leverage experimentally
in the engineering of the spectral scattering characteristics of
the clusters. Going further, if the clusters come in the form
of a suspension or ink, they could be used to coat a surface
[8], or even be self-assembled into a hierarchical metamaterial
[20].

For all of the above applications, it appears essential to
obtain an accurate description of the electromagnetic response
of the clusters. This will for example help design some desired
properties for metamaterials made of large collections of clus-
ters, before putting any effort into actually fabricating them
experimentally.

To calculate the electromagnetic properties of such com-
plex objects, the most straightforward approach is to use
purely numerical calculations: one efficient and widely used
tool for this purpose is the T-matrix method [21,22], which
computes the matrix relating the components of the incident
field to those of the field scattered off the object. Such “brute
force” numerical methods are highly reliable but come with
limitations. First, calculations become highly resource con-
suming when the number of interacting particles reaches a few
hundred inside the cluster. Second, T matrices are intrinsically
dependent on the shape and size of the computed objects, so
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that they need to be recalculated for every new geometrical
configuration of the same physical material. Finally, in the
T-matrix method, the studied object is taken as a “black box,”
transferring fields from the incoming field configuration to the
outgoing one, while all processes occurring en route within
the cluster are ignored. This is a strong limitation to the
physical understanding of the system.

It is therefore desirable to find complementary approaches,
if they are possible. A rather classical approach consists in
employing a so-called effective-medium or homogenization
approximation, whereby it is attempted to capture the inner
composite medium’s response through the use of averaged,
physically meaningful parameters like the dielectric permittiv-
ity, magnetic permeability, and so on, which can then be used
with Maxwell’s equations to calculate both the inner and outer
fields. Effective-medium approaches as a means of describing
complex media like dense plasmonic clusters obviously bring
their lot of issues that will be discussed shortly. They do
have nonetheless a strong practical interest compared to other
methods like the T-matrix approach: most, if not all, full-
wave numerical packages available commercially make use of
effective material parameters to describe media; therefore, to
obtain such parameters for dense plasmonic clusters it makes
sense to help promote a practical use of this kind of engi-
neered materials by the more general scientific community,
beyond the specialized nano-optics community. Furthermore,
when legitimate, using effective media for field calculations
drastically cuts down computational costs.

The electromagnetic homogenization of disordered assem-
blies of particles (also known as particulate composites) has
indeed been a long-standing topic that started more than a
century ago [23,24] and has experienced many developments
over the years [25–32]. The properties of the effective medium
are traditionally obtained with the help of so-called mix-
ing laws which relate the relevant macroscopic parameters
of the ensemble to the knowledge of the properties of the
constituent materials making up the inclusions and the host
material. However, in practice, the range of validity of mixing
laws is very limited since their predictions quickly fail as
soon as the composite system becomes complex, under the
influence of one or several of the following (more or less re-
lated) circumstances: increased volume fraction in inclusions
f (above a few percent) [25], strongly resonant scatterers
[33], multiple scattering [34], interparticle couplings [35],
multipolar response of the inclusions [31,32,36,37], size dis-
tribution [38], finite system size [39], and so on. To extend
somewhat their range of applicability, advanced mixing laws
do exist [3,25,26,39], that are able to take one or the other of
the aforementioned phenomena into account, but they often
require specific knowledge of the composite that is difficult to
extract in realistic systems (such as precise statistics on par-
ticle positions for instance), and usually involve cumbersome
calculations.

Nonetheless, the nonexistence of an accurate mixing law
that predicts a system’s average electromagnetic parameters
does not mean that it cannot be homogenized in principle. In
fact, the current state of the theory does not offer a clear set of
criteria specifying when a particulate system can or cannot be
homogenized. Therefore, one often has to resort to empirical
approaches, trying to homogenize using various protocols and

FIG. 1. Equivalent description of a dense plasmonic cluster.
(a) The cluster of radius R is composed of a dense ensemble of gold
inclusions of radius r embedded in a medium of refractive index 1.4.
The entire cluster itself is embedded in a medium of refractive index
1.42. (b) Equivalent homogeneous sphere with effective parameters
εeff alone, or εeff , μeff , and kL together, that enable the computation
of the field scattered by the cluster using Mie theory.

then comparing predictions to numerical, full-wave solutions
of the fields.

The purpose of this paper is to empirically demonstrate
that an equivalent, effective-medium description for clusters
composed of plasmonic inclusions can be obtained indeed and
that both the external (or scattered) and internal fields can be
efficiently retrieved as those of an equivalent, homogeneous
sphere. We do not suppose the validity of any mixing law
in the process; instead, we use an appropriate generic elec-
tromagnetic formalism, namely, a generalized version of the
constitutive equations for the effective medium inclusive of
spatial dispersion, and we show that it is necessary for the
retrieval to be successful. Remarkably, this equivalence then
holds for volume fractions of inclusions as high as 0.44 in the
cluster. Whether this qualifies as a true homogenization of the
particulate medium will also be discussed.

To do so, we compute the Mie coefficients of the actual
particle cluster with the help of high-precision numerical
calculations and then carefully fit them with those of a homo-
geneous sphere. Though a single effective electric permittivity
(εeff ) is sufficient to describe the scattered field at low values
of f , we show that an additional effective magnetic permeabil-
ity μeff and longitudinal wave-vector quantity kL describing
longitudinal modes are required to accurately describe the
averaged field using Mie theory for large f .

II. PLASMONIC CLUSTER DEFINITION
AND NUMERICAL APPROACH

The system considered here is sketched in Fig. 1(a); it con-
sists of an ensemble of spherical gold nanoparticles of radius
r = 7 nm packed into a spherical cluster of radius R. Fixing
R and the volume fraction f sets the number of inclusions N
per cluster. A rough estimate of the number of inclusions is
N ≈ f (R/r)3. The cluster is embedded in an external medium
of refractive index nh = 1.42, while the inclusions within the
cluster are embedded in an internal host medium of refractive
index 1.4. This choice follows the experimental situation of
Elancheliyan et al. [11]. The dielectric function for gold is
interpolated from the experimental values of Johnson and
Christy [40]. We neglect corrections due to the small size of
the inclusions (see [41]). The equivalent, homogeneous sphere
is sketched in Fig. 1(b). For the purposes of our computations,
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the spherical cluster is numerically generated in a two-step
process. First a random distribution of inclusions is gener-
ated within a cubic box of length L larger than R using the
Lubachevsky-Stillinger algorithm [42]. The volume fraction
of inclusions is fb = N4πr3/(3L3). Then a spherical region
containing all particles closer than R − r to the box center is
carved. The final volume fraction within this spherical cluster
is thus f = fb(R − r)3/R3. The resulting cluster formed is
then simulated using the multiple sphere T-matrix software
developed by Mackowski (see [43,44]). The algorithm com-
putes the multiple scattering between all inclusions up to some
(high) prescribed accuracy, and returns the multipole Mie
coefficients (an and bn) of the cluster for several wavelengths
in the 450–1000-nm range. Since by construction, the clusters
have a random inner structure of inclusions, it is necessary to
repeat the entire procedure several times in order to construct a
set of many cluster realizations for each given volume fraction
f under study. We then perform averages over each set to
obtain converged averaged multipolar quantities (〈ac

n〉, 〈bc
n〉),

where the superscript c denotes the cluster coefficients and
where 〈·〉 denotes ensemble averaging. This amounts to aver-
aging the electric field scattered by the cluster, which is fully
determined by the Mie coefficients. Indeed, the field averaged
over P random realizations, 〈E〉P, can be expressed as the sum
of a mean coherent field 〈E〉 and the average over P realiza-
tions of a mean incoherent field 〈δE〉P (see Appendix A):

〈E〉P ≡ 〈E〉 + 〈δE〉P. (1)

For the composite medium to be homogenizable, one nec-
essary condition is that 〈δE〉P, which reflects fluctuations of
the field due to randomness in the system (e.g., in particle
positions), vanishes as the number of realizations P increases
(limP→∞〈δE〉P = 0). Then, the ensemble average 〈E〉P con-
verges to some value 〈E〉, which by definition is the field
calculated in the effective-medium approach. Note that this
convergence is not always guaranteed, in particular for com-
posites made of lossless resonant particles [33,36].

In our case involving lossy plasmonic inclusions, we do
observe this condition to be fulfilled: we find that P = 100
realizations are sufficient to obtain a convergence of all aver-
aged quantities for the external field with remaining standard
deviations well below 1%.

As another interesting result from our computations, we
find that, for all configurations and cluster sizes investigated,
all multipoles of order n larger than 2 are negligible. As a
consequence, in what follows, only dipoles and quadrupoles
shall be shown, with no significant loss of accuracy.

Now, to look for an equivalent effective medium, our
scheme consists in fitting every retained average Mie coef-
ficient 〈ac

1〉, 〈ac
2〉, 〈bc

1〉, and 〈bc
2〉 of the cluster with those of

a homogeneous sphere (ah
1, ah

2, bh
1, bh

2) of the same radius
R, for every wavelength considered, using the Levenberg-
Marquadt algorithm. As a first step, the equivalent medium
in the homogeneous sphere is simply described by a local,
frequency-dependent complex effective dielectric constant
εeff (ω) with its real and imaginary parts as the two fit param-
eters, while the effective permeability μeff (ω) = μ0 is kept to
the vacuum value (ω is the angular frequency).

Let us mention that, for reference purposes only, we will be
sometimes using the extended Maxwell-Garnett (MG) model

in the following: this is obtained as a variant of the classical
Maxwell-Garnett theory, whereby, to calculate the electric
permittivity εeff and magnetic permeability μeff of the ensem-
ble, rather than using static polarizabilities, one employs the
electric and magnetic dipole coefficients (respectively, a1 and
b1) of the Mie expansion of the field scattered by individual
inclusions [45,46].

The fitting procedure starts at high wavelengths and is
initiated with a test value given by the extended MG model.
Then, for every subsequent wavelength, the previously fitted
solution is used as an input. The algorithm stops when-
ever the match between the cluster and homogeneous sphere
coefficients is considered accurate enough, i.e., when η =∑

n=1,2 |〈ac
n〉 − ah

n|2 + |〈bc
n〉 − bh

n|2 < 10−4.

III. EQUIVALENT SPHERE WITH PERMITTIVITY ONLY

Unsurprisingly, for dilute clusters with values of f equal
to 0.01, 0.05, and 0.15, we find that an effective electric
permittivity εeff (ω) is sufficient indeed to accurately fit the
spectral variations of the multipole coefficients of the cluster
(as shown in Fig. 2). As should be the case, the effective elec-
tric permittivities we obtain (one for each f ) are continuous
functions of frequency, exhibiting a resonant behavior typi-
cal of a plasmonic system, with a gradual redshifting of the
resonance as f increases. We observe that the permittivities
retrieved are virtually independent of the cluster size. We note
in passing that the extended MG predictions are close to the
retrieved permittivity for f = 0.01 but that the comparison
worsens quickly as f increases.

We can finally conclude that a homogeneous sphere made
of a simple dielectric material featuring these εeff (ω) permit-
tivities is a fully satisfying equivalent for dilute plasmonic
clusters up to f = 0.15. However, for denser clusters, the
fitting approach fails as evidenced by Fig. 3 that shows the
evolution of η when increasing f for a cluster of radius
R = 60 nm. We see that the criterion η < 10−4 is satisfied for
f = 0.15 but starts being violated near λ ≈ 560 nm when f =
0.19, corresponding to the wavelength where the plasmonic
resonance of the gold nanoparticles making up the cluster
is excited. At this wavelength, electromagnetic fields are en-
hanced, and so are spatial dispersion effects. For f = 0.44, the
criterion is violated over a wide range of wavelengths from
400 to almost 800 nm, indicating a complete failure of the
procedure.

Therefore, we turn to this more challenging case, for which
f = 0.44 and where a permittivity εeff alone is insufficient to
describe the scattering behavior. The reason for this is that
the multipole coefficients all have resonances that cannot be
simultaneously fitted with a single complex coefficient. We
emphasize that this fitting failure is intrinsic, and not a mere
numerical accident; it is therefore physically meaningful. To
demonstrate this fact, we fit each dipolar coefficient 〈ac

1〉
and 〈bc

1〉 independently. We explore all values of εeff in the
complex plane (restricted to positive imaginary parts), such
that the homogeneous sphere has ah

1 = 〈ac
1〉. The procedure is

repeated to find the values of εeff that satisfy bh
1 = 〈bc

1〉. For
these two fits to be physically compatible, there must exist
at least one common solution εeff (ω), or equivalently εeff (λ)
(with λ the wavelength in vacuum) that works for both of
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FIG. 2. Spectral variations of εeff for clusters of varying volume fractions and radii. The top (bottom) panels represent the real (imaginary)
parts of εeff . f is equal to (a), (d) 0.01, (b), (e) 0.05, and (c), (f) 0.15. The clusters are composed of gold inclusions of radius r = 7 nm in a
sphere of radius R. The spectra of εeff predicted by the extended Maxwell-Garnett theory are plotted as dotted black curves for every volume
fraction considered.

them. While this was true for the dilute cases considered
before, here however, for most of the entire spectral range
considered, the two sets of solutions are disjoint. This is
illustrated in Fig. 4, where the spectral variations of the two
solutions of smaller modulus for εeff are shown for a cluster
of radius R = 60 nm. Here, two possible solutions (1 and
2) are found for each of the fitted dipole coefficients. But
none of these solutions obtained from fitting a1 superimposes
over the entire spectral range with those obtained from fit-
ting b1. Indeed superposition is either restricted to low or
high wavelengths, and is even nonexistent at intermediate
wavelengths (from 600 to 900 nm). This demonstrates that, in-

FIG. 3. η plotted as a function of wavelength for various volume
fractions f for a cluster of radius R = 60 nm.

trinsically, no homogeneous sphere with a single permittivity
(or refractive index) can account for the scattering behavior
of the cluster. As explained in the Introduction, the reason
for this failure is that, as the clusters become denser, strong
and intricate couplings take place between the inclusions, gen-
erating a complex response which cannot be encoded using
only an effective dielectric function εeff (ω). Several physical
mechanisms are expected to take over. In particular, when
the plasmonic particles come closer together than their ra-
dius, local couplings will excite their multipolar modes. In
effective-medium theories, multipolarity at the level of inclu-
sions is known to result in the emergence of so-called spatial
dispersion [31,32,47], or spatial nonlocality. Furthermore, in-
terparticle couplings will also trigger collective effects, i.e.,
the appearance of modes that are spread over several particles:
this by nature is a source of nonlocality in the medium as well.

FIG. 4. Solutions of εeff to the dipolar Mie coefficients for a
cluster of radius R = 60 nm and a volume fraction f = 0.44 of
inclusions of radius r = 7 nm. (a) Spectral variations of the (a) real
and (b) imaginary parts of εeff . For both a1 and b1, the two solutions
of smallest modulus are shown.

023507-4



EFFECTIVE-MEDIUM DESCRIPTION OF DENSE … PHYSICAL REVIEW A 109, 023507 (2024)

IV. EQUIVALENT SPHERE WITH SPATIAL DISPERSION

To be able to take such phenomena into account, it is there-
fore necessary to seek as a next step a generalized, spatially
nonlocal description of the material [30–32,48–51]. A gen-
eralized effective dielectric function tensor ε(r, r′, ω) is now
defined such that the ensemble-averaged displacement field is
nonlocally related to the averaged electric field: 〈D(r, ω)〉 ≡∫

ε(ω, r, r′)〈E(r′)〉dr′. From this assumption, all further steps
are detailed for reference in Appendix A and can also be
found in [30–32,50]; we will here provide an outline of the
procedure. In Fourier space, the spatially nonlocal permittivity
transforms into a generalized permittivity ε(ω, k) dependent
not only on the frequency ω as before, but also on the wave
vector k (ω and k being treated as independent variables).
To make the problem tractable, we will assume the spatial
dispersion to be weak. As a result, we expand ε(ω, k) in
powers of k and classically keep only terms up to second order
[30,31,48]. Note that this is enough to take into account (up
to second order in k) the effect of multipolar polarizability at
the level of the plasmonic inclusions, including electric and
magnetic dipoles and quadrupoles [30,47], and even electric
octupoles [31]. The zeroth-order term of the k expansion is
found to correspond to the standard (scalar) effective per-
mittivity εeff (ω) used before. First-order terms correspond to
bianisotropy, i.e., magnetodielectric couplings linking E and
B together, responsible for, e.g., chirality and girotropy [48].
Due to the symmetries of the problem (spherical inclusions in
a random arrangement, forming a spherical cluster), we can
safely discard such effects in the effective medium (see [52]).

Finally, second-order terms in k bring about two contri-
butions [30,31]: first, the emergence of artificial magnetism,
providing a new electromagnetic parameter, namely, the effec-
tive permeability μeff ; second, the appearance of longitudinal
waves in the effective medium, characterized by a wave-vector
modulus kL. Therefore, two types of plane waves exist in such
a medium and are solutions of Helmholtz equations:

∇2E⊥ = −εeffμeffk
2
0E⊥, (2)

∇2E‖ = −kL
2E‖, (3)

where k0 = ω/c, and all fields are implicitly assumed to be
ensemble averages so that brackets 〈·〉 have been dropped

off. The first equation applies to transverse waves (fields
perpendicular to k), with E⊥ the average transverse field,
and with the (transverse) effective dielectric permittivity εeff

and the magnetic permeability μeff as the relevant equiv-
alent material parameters. The second equation applies to
longitudinal waves (fields parallel to k) with E‖ the average
longitudinal field and the parameter kL as the corresponding
wave-vector modulus, as introduced above. Since the longi-
tudinal permittivity is necessarily always null (as D cannot
include a longitudinal component in accordance with the
Maxwell-Gauss equation) [30,30,48], it cannot be used as a
material parameter: this is why we use instead the wave-vector
modulus of the longitudinal mode kL for this purpose (see
Appendix A for more details).

Although the existence of longitudinal waves associated to
second-order spatial dispersion has been a long-known fact,
even from classical textbooks [48], they have been consis-
tently ignored in the literature devoted to the homogenization
of metamaterials, resulting in the neglect of the kL parameter
(or equivalent parameters), while keeping only the parameter
for artificial magnetism μeff . Based on rigorous theoretical
derivations, this has been sternly criticized by several authors
as unjustified and faulty in general [30–32,50], both terms
being of the same order in the k expansion. In accordance, we
will seek to describe the scattering of the dense clusters by that
of an equivalent homogeneous sphere carved in such a weakly
spatially dispersive medium with all three parameters εeff ,
μeff , and kL. This paper is an attempt at retrieving in a fully
consistent way this triplet of electromagnetic parameters in a
plasmonic composite medium. Mie theory describes the scat-
tering of light by such a material, provided some additional
boundary conditions (ABCs) are given for the longitudinal
waves. What the correct ABCs are for longitudinal waves in
homogenous media, such as metals for instance, is a matter
of debate, which lies outside our considerations. We have
chosen to use the extended Mie theory provided by Ruppin
[53], which he originally applied to the optical properties of
small metal spheres. The specifics of this theory are detailed in
Appendix B. This model assumes the continuity of the normal
displacement current. (Variations of this extended model for
other ABCs have also been exposed [54].) The expressions we
use for the an and bn coefficients of the equivalent sphere are

an = (m2 − μeff )κn jn(x) + j′n(xL){μeff [mx jn(mx)]′ jn(x) − m2[x jn(x)]′ jn(mx)}
(m2 − μeff )κnhn(x) + j′n(xL){μeff [mx jn(mx)]′hn(x) − m2[xhn(x)]′ jn(mx)} , (4)

bn = μeff jn(mx)[x jn(x)]′ − jn(x)[mx jn(mx)]′

μeff jn(mx)[xhn(x)]′ − hn(x)[mx jn(mx)]′
(5)

where m = (εeffμeff )1/2/nh, x = nhk0R, xL = kLR, and jn and
hn are respectively the spherical Bessel and Hankel functions
of the first kind. Here, κn = n(n + 1)[ jn(xL)/xL] jn(mx), nh is
the refractive index of the host medium, n is the multipole
order, and k0 is the free-space wave vector. Primes denote dif-
ferentiation with respect to x. Note that the expression for bn

is identical to the classical case with no longitudinal mode [2].
Using this three complex parameter description for the

homogeneous material, we could reapply our fitting procedure

to the dense clusters with f = 0.44, for various cluster sizes.
This time, we were able to find unique solutions εeff , μeff , and
kL successfully fitting all cluster multipoles simultaneously.
As can be seen in Fig. 5, the fits are excellent. Importantly,
we underscore that if we tried to use only εeff and μeff for the
equivalent material (thus neglecting kL), we could not find any
acceptable fit.

The electric dipole and quadrupole, as well as the mag-
netic dipole, are extremely well fitted. Only the magnetic

023507-5



RANJEET DWIVEDI et al. PHYSICAL REVIEW A 109, 023507 (2024)

FIG. 5. Comparison between the average Mie coefficients over 100 cluster realizations computed using the multiple scattering T-matrix
approach and those computed from a homogeneous sphere with the effective parameters εeff , μeff , and kL retrieved from the fit. The clusters
are composed of gold nanospheres of radius r = 7 nm. The volume fill fraction is f = 0.44. Each line corresponds to a different cluster radius:
(a)–(d) R = 50 nm, (e)–(h) R = 60 nm, (i)–(l) R = 70 nm, and (m)–(p) R = 80 nm. Each column shows the average of a different multipole
coefficient: (a), (e), (i), (m) a1, (b), (f), (j), (n) b1, (c), (g), (k), (o) a2, and (d), (h), (l), (p) b2. The red (light gray) dots are the real parts, while
the blue (dark gray) dots are the imaginary parts. The same applies for the lines.

quadrupole is poorly fitted at low wavelengths (below
600 nm). This is not a problem as it contributes very little

to the scattered field and remains small compared to the other
multipoles. Figure 6 shows the spectra of all three effective

FIG. 6. Spectral variations of εeff , μeff , and kL for clusters varying in radius and a volume fraction of inclusions f = 0.44. The top (bottom)
panels represent the real (imaginary) parts of each parameter. The extended MG predictions are shown as black continuous lines. These
predictions fail most notably because μeff = 1 for the entire spectral interval since, taken separately, gold inclusions act as almost pure electric
dipoles, unable to generate a magnetic activity, which in our case results from complex interactions between particles.
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parameters to which the fitting algorithm converged. All solu-
tions are continuous. We see that εeff and μeff again exhibit a
resonant behavior.

V. DISCUSSION: ARTIFICIAL MAGNETISM
AND LONGITUDINAL MODE

Our results show that the homogeneous sphere has a mag-
netic permeability that significantly deviates from 1 even
though the inclusions, taken individually, exhibit no mag-
netic dipole. This confirms that artificial magnetism emerges
from the multiple scattering and complex couplings occurring
within the cluster, as explained above. The electric permittiv-
ity reaches values as high as 40 near resonance at λ = 800
nm, corresponding to an effective index close to 6.3. These
values are remarkable as there are no natural materials ex-
hibiting such large values of the dielectric constant at optical
frequencies.

We observe that μeff has a so-called antiresonant behavior
with a negative imaginary part. This type of behavior is com-
monplace in metamaterials (see [55] and references therein)
and generally ascribed to the presence of spatial dispersion.
It has in particular been observed in an experimental system
made of clusters bearing similarities with ours [56]. It may
seem worrisome that Im(μeff ) < 0, as this may indicate that
the passivity of the system is violated. It should be kept in
mind, however, that all electromagnetic effects in our system
arise from the electric field and its spatial derivatives solely,
due to spatial dispersion, including artificial magnetism. As
a result, the total electromagnetic power density dissipated
w ∝ ε0Im(εeff )‖E‖2 + μ0Im(μeff )‖H‖2 should be integrated
over volumes that are large enough for the spatial dispersion
to produce its effect. Passivity of the system actually requires
that the volume integral of w remain positive, not its separate
electric and magnetic terms [56]. The overall positivity of w

occurs because the electrical term in the sum is positive and,
when integrated over the particle volume, always dominates
largely over the magnetic, negative term, in any physically
realistic field distribution. The interested reader may refer to
Appendix C where we prove this assertion to hold even in an
adverse situation where it could be expected that the impact
of a negative value of Im(μeff ) would be maximal, namely by
placing the equivalent particle in a location of space where
‖E‖ ∼ 0 and ‖H‖ is maximal.

Turning now to the results for the longitudinal wave vector,
we observe a main peak in both Re(kL) and Im(kL), roughly
correlated with the resonance of εeff and μeff . Values for
|Re(kL)| are in the range 0–0.2, which corresponds to wave-
lengths λL = 2π/|Re(kL)| � 2π/0.1 � 60 nm, i.e., typically
of the same order as the size of the clusters. Looking at the
penetration of this longitudinal mode, for λ � 900 nm (below
and near resonance), the skin depth for the 80-nm cluster is
equal to or smaller than δmax = 1/[2Im(kL)] � 1/(2 × 0.1) �
5 nm, meaning that the wave penetrates the cluster over a
depth of a few particles only. Above resonance (λ � 900
nm), we find that Im(kL) � |Re(kL)|, making the longitudinal
mode a purely evanescent wave. We conclude that the longitu-
dinal mode is essentially confined at the surface of the cluster.
It should be noted that both kL and its opposite are mathe-
matically valid solutions permitting an accurate fitting of the

FIG. 7. Comparison between the total (exciting + scattered)
fields of the homogeneous, equivalent sphere and the cluster at
λ = 800 nm. The cluster considered has R = 60 nm and f = 0.44.
Plots show the magnitude of the x component of the electric field,
with the incoming field incident along the z direction and polarized
along x. (a) Ensemble-averaged field of the cluster. (b) Field of the
homogeneous sphere. (c) Field of the transverse wave. (d) Field of
the longitudinal wave.

multipoles. Therefore the choice between the two solutions
is arbitrary and we decided to keep the solution for which
Im(kL) > 0.

Importantly, we note that all parameters are dependent on
the cluster size R, which means that the equivalence between
the scattering properties of the cluster and the homogeneous
sphere is numerically valid only if the equivalent parameters
are used with respect to the corresponding cluster size. This
comes along with the limitation that the equivalent sphere
cannot be considered to be composed of a truly homogenized
medium per se, for which parameters should be independent
of size. This may be ascribed to the fact that our system is
not large enough and remains under the influence of finite-
size effects [39]. Due to computational limitations, we were
not able to check whether the equivalent parameters would
converge for larger cluster sizes, and this is left as an open
question of this paper. In spite of this, it can be seen that both
εeff and μeff exhibit consistent trends and shapes that remain
remarkably similar as R increases, with changes mainly in
amplitude, but not so much in spectral position. By contrast,
kL displays more variability, with an increased magnitude as
the radius is increased.

To further characterize our findings, in the color plots of
Fig. 7, we compare the magnitudes of the x component of the
average electric field of the cluster and of the electric field
of the homogeneous medium for R = 60 nm, after averaging
over P = 104 realizations (the maximum number of iterations
we were able to compute). In both situations the impinging
plane wave has its electric field polarized along the x axis
and is incident along the z axis. As expected, the external
fields are identical, because they are composed of the exciting
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field and the scattered field, which was successfully fitted. We
find that although the external field is very well converged
to its average value after averaging over a small amount of
realizations (typically P ≈ 100), the convergence inside the
cluster is much slower and many more realizations are needed
to reduce the incoherent part of the internal field. As a matter
of fact, we observed the gradual and slow decrease of the
internal average field fluctuations as a function of P. As can be
seen in Fig. 7(a), even for P = 104, the averaged internal field
still exhibits some faint remaining incoherent fluctuations, or
series of hot spots. Notwithstanding these fluctuations, we
observe in Figs. 7(a) and 7(b) that the internal fields of the
cluster and the equivalent sphere are strikingly similar both in
symmetry and magnitude. We regard this fact as an important
achievement of our effective-medium retrieval method: only
the external field was fitted with the help of the equivalent
sphere during the procedure, yet the internal field is remark-
ably well reproduced as well. This brings some reassurance
about the correct physical content of our findings. It fur-
thermore hints at validating the choice of ABC made earlier
as a physically plausible one, since the internal field of the
homogeneous medium has been calculated from the external
field through this ABC. A complete validation of this specific
ABC (or other closely related ones) would however require a
separate body of work on many spatially dispersive cases.

A close inspection of Figs. 7(c) and 7(d) brings even more
information. Figure 7(d) illustrates the confinement of the lon-
gitudinal wave to the surface of the equivalent sphere, which
shows up in the form of a corona in the plot. Figure 7(c), in
contrast, illustrates that the transverse mode does not display
such a corona. Comparing now with the actual cluster field
in Fig. 7(a), we observe the presence of a corona, which can
be brought on only by the longitudinal mode. This corona is
not attributable to the electric or magnetic dipole moments
(see Appendix D). This offers an indirect confirmation that
the longitudinal mode we found through our fitting procedure
has a physical existence.

Interestingly, the fact that a longitudinal mode would
mostly play a role at the surface of the homogeneous sphere
is known to other systems [57], including plasmonic systems
such as near the boundaries of metallic nanospheres [58,59].
In these systems, spatial dispersion appears due to quantum-
mechanical effects within the atomic layers closest to the
interface. This is a different mechanism altogether to our case,
but the equations with respect to the longitudinal mode are
formally identical.

From the fact that the longitudinal mode is confined only
to the surface of the effective medium, one could be tempted
to hastily infer that its wide neglect in the literature has been
legitimate. But we emphasize that it is essential to consistently
transfer fields from one medium to the other: as explained
above, in our paper, taking it into account proved necessary
for an accurate description of the cluster’s scattered and in-
ternal fields, while keeping only the electric permittivity and
magnetic permeability was unsuccessful.

VI. CONCLUSION

In conclusion, we have shown that the scattering from
a dense spherical plasmonic cluster, composed of gold

nanospheres that separately act as pure electric dipoles, is
well described by the scattering of a spatially dispersive ho-
mogeneous sphere with an electric permittivity, a magnetic
permeability, and a longitudinal wave vector. Our paper is an
attempt at retrieving effective-medium parameters for plas-
monic composites, fully consistent with the theory of weakly
spatially dispersive media, i.e., inclusive of both transverse
and longitudinal modes.

This set of three parameters in the extended Mie theory
provides a compact formalism, which considerably reduces
the complexity of describing the many-particle cluster prob-
lem while describing the scattered field with a high accuracy.
Although it does not provide a full-fledged homogenization of
the cluster medium, we believe that the main interest of this
equivalent sphere model lies in the fact that it could be used
to facilitate the prediction of the properties of metamaterials,
metasurfaces, or metafluids, in particular when their super-
structure is composed of many such clusters: the clusters can
be effectively substituted with homogeneous spheres that may
be easily implemented in commercial full-wave numerical
packages for instance.

APPENDIX A: SPATIAL DISPERSION THEORY

In this Appendix, we look for the expression of the con-
stitutive equations and associated electromagnetic parameters
for an infinite effective medium in presence of spatial dis-
persion. In Appendix B, we will consider a spherical particle
made of the effective medium and apply additional boundary
conditions in order to extend Mie theory to the case of a finite
spatially dispersive sphere.

1. Generalized permittivity

We start by expressing the average displacement vector
〈D(r)〉 as a function of the average electric field 〈E(r)〉. Av-
erages are supposed to be taken over all possible positional
configurations of the random plasmonic inclusions making
up the composite medium. All fields are implicitly taken as
time-harmonic functions proportional to e−iωt , where ω is the
angular frequency.

In classical electromagnetism, it is assumed that the rela-
tion between 〈D(r)〉 and 〈E(r)〉 is local in space, i.e., 〈D(r)〉 =
ε0εeff (ω, r)〈E(r)〉. The quantity εeff is the effective permit-
tivity and the dependence on ω is often called “frequency
dispersion.”

As explained in the main text, this is not enough to describe
complex systems like dense plasmonic clusters, and one needs
to consider the generalized form where the response of the
medium becomes nonlocal, a situation usually referred to as
“spatial dispersion” [30–32,48–51].

For this, we use a generalized dielectric function
ε(ω, r, r′), defined such that [48]

〈D(r)〉 ≡ ε0

∫
ε(ω, r, r′)〈E(r′)〉dr′. (A1)

ε(ω, r, r′) is a spatially nonlocal quantity that takes into ac-
count all electromagnetic interactions in a system to relate
the average field 〈E(r′)〉 at point r′ to the average dis-
placement 〈D(r)〉 at point r. Assuming that the medium is
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spatially homogeneous and translationally invariant, we have
ε(ω, r, r′) = ε(ω, r − r′), and hence Eq. (A1) becomes a con-
volution:

〈D(r)〉 = ε0

∫
ε(ω, r − r′)〈E(r′)〉dr′. (A2)

In Fourier space, this last equation reduces to the following
simple form:

〈D(k)〉 = ε0ε(ω, k)〈E(k)〉 (A3)

(Fourier transforms and their direct space counterparts are
written here using the same notation).

The spatially dispersive, generalized permittivity ε(ω, k)
is now a second-rank tensor, even for an isotropic system,
dependent on both frequency and wave vector (ω and k being
here understood as independent variables).

2. Weak dispersion and second-order expansion

To make the problem tractable, we now assume that the
spatial dispersion is weak, so that we can perform a Taylor
expansion up to second order in k of every component of the
generalized permittivity tensor ε(k) ≡ ε(ω, k) (from now on,
we take the ω dependence as implicit):

εi j (k) ≈ εi j (0) + ∇k(εi j ) · k + 1
2 kTH(εi j )k (A4)

where H(εi j ) is the 3 × 3 Hessian matrix of the εi j tensor
component. As explained in the main text and in [52], due
to symmetries of the random cluster system, the averaged
medium should be nongyrotropic and nonchiral, so that the
first-order term in k (known as the bianisotropic term) is null.

Setting hi jlm as the coefficients of the fourth-rank Hessian
tensor [which is built from the set of matrices H(εi j ), when
running over all indices i j], plugging them into the expression
of εi j , and using Eq. (A3), we can express the expansion of
each component of D:

Di(k) ≈ ε0εi j (0)Ej (k) + ε0hi jlmkl kmEj (k) (A5)

where Dj and Ej are the jth component of 〈E(k)〉 and 〈D(k)〉,
and where the implicit Einstein notation for summations has
been used.

Again due to symmetries of the problem, we assume the
average medium to be isotropic, so that components εi j reduce
to a single value, which is the local, scalar component εeff of
the generalized permittivity

εi j (0) = εeffδi j, (A6)

where δ is the Kronecker unit tensor. This εeff is the usual
effective permittivity appearing in nonspatially dispersive
effective-medium theories, as was successfully applied in the
main text for dilute clusters.

Also following from the isotropy assumption, the fourth-
rank tensor must contain only two independent parameters
(α, β ), and its components can be classically expressed in the
form

hi jlm = αδi jδlm + β

2
(δilδ jm + δimδ jl ). (A7)

Substituting this last relation into Eq. (A5), we find that in
the end, only three coefficients are required to describe the

constitutive relation of an isotropic medium with second-order
spatial dispersion:

Di(k) = ε0εeff Ei(k) + ε0αk2Ei(k) + ε0βkik jE j (k), (A8)

where k = ‖k‖. Grouping all components Di together, we
obtain the vectorial constitutive relation for 〈D(k)〉:

〈D(k)〉 = ε0(εeff + αk2)〈E(k)〉 + ε0β[k · 〈E(k)〉] k. (A9)

3. Equivalent formalisms and artificial magnetism

From this point on, for the sake of notational simplicity, we
shall implicitly assume all fields to be averages over all config-
urations of the random cluster medium, i.e., E(k) ≡ 〈E(k)〉,
D(k) ≡ 〈D(k)〉, etc.

With the help of the vectorial identity ∇ × ∇ × E =
∇ (∇ · E) − ∇2E, or in Fourier space, k × k × E = (k ·
E)k − k2E, the constitutive Eq. (A9) can be equivalently
written as

D(k) = ε0εeffE(k) − ε0αk × k × E(k) − ε0γ [k · E(k)]k,

(A10)

or, in direct space,

D(r) = ε0εeffE(r) + ε0α∇ × ∇ × E(r) + ε0γ∇[∇ · E(r)],

(A11)

where we have introduced

γ = −(α + β ). (A12)

Using the same vectorial identity, one can also rewrite
Eq. (A9) in a second equivalent form:

D(k) = ε0(εeff + ak2)E(k) − ε0b k × k × E(k) (A13)

where a = −γ and b = −β. We observe that this last equa-
tion is the same as Eq. (23) in Agranovich and Gartstein [30],
confirming our approach to be consistent with theirs.

The materials making up the composite medium have no
natural magnetism (H = B/μ0), therefore no microscopic
currents of quantum magnetic origin exist. All currents de-
rive from the displacement current ∂D/∂t = −iωD and are
encoded in Eq. (A11). Artificial magnetic effects will then
arise from vortex-type contributions in D (current loops). Us-
ing an appropriate field transformation that keeps Maxwell’s
equations invariant, it can be shown [30–32,50,60] that the
rotational part ∇ × ∇ × E in Eq. (A11) can be rigorously
absorbed into an effective permeability μeff , yielding the fol-
lowing set of equivalent material equations:

D(r) = ε0εeffE(r) + ε0γ∇[∇ · E(r)], (A14)

H(r) = B(r)

μ0μeff
(A15)

with

μeff (ω) = 1

1 + ω2

c2 α(ω)
. (A16)

As stated in the main text, this formulation of the material
equations proves that artificial magnetism is intrinsically a
second-order spatial dispersion effect, ensuing from the dou-
ble curl term in Eq. (A11). It is, however, not the only spatially
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dispersive term and it should be considered on par with the
term proportional to γ in D [Eq. (A11) or Eq. (A14)], which
has been widely ignored in the metamaterials literature.

We note that, in this form, Eqs. (A14) and (A15) are shown
to be consistent with the approach of Simovski and Tretyakov
as well [see Eqs. (2.69) and (2.70) in [31] and also [60]].

Let us now consider the consequences of formulation of
Eqs. (A14) and (A15), which we will use from now on, on the
propagation of waves in the effective medium.

4. Transverse and longitudinal wave modes

It is useful to decompose the field in its transverse and
longitudinal components, E = E⊥ + E‖, with, by definition,

k · E⊥ = 0, (A17)

k × E‖ = 0, (A18)

and similarly for D. Writing Eq. (A14) in Fourier space,

D = ε0εeffE − ε0γ (k · E)k, (A19)

we find the expressions for the transverse and longitudinal
fields, respectively:

D⊥(k) = ε0εeff E⊥(k), (A20)

D‖(k) = ε0εeffE‖(k) − ε0γ [k · E‖(k)]k. (A21)

Let us now investigate the propagation of plane waves
inside this spatially dispersive material. Combining
Eqs. (A19) and (A15) with Maxwell’s equations to find
the wave equation, then separating E into transverse and
parallel components, we find that these obey Helmholtz
equations (as is suitable for plane waves), as follows.

For transverse plane waves, we have

∇2E⊥(r) + εeffμeff k
2
0E⊥(r) = 0 (A22)

with k0 = ω/c. This equation gives the transverse mode dis-
persion relation

kT(ω) = neff (ω)
ω

c
= k0neff (ω), (A23)

where neff = ±√
εeffμeff is the effective index of the medium.

This shows that for transverse waves, the spatially dispersive
medium acts as a medium exhibiting an effective electric
permittivity εeff and a magnetic permeability μeff .

For longitudinal plane waves, we have

∇2E‖(r) + kL
2E‖(r) = 0, (A24)

where kL is the longitudinal mode wave-vector modulus. We
find the following dispersion relation for kL:

kL(ω) = ±
√

εeff (ω)

γ (ω)
. (A25)

This shows that the existence of the longitudinal mode in the
medium is directly due to the presence of the γ term in the
material equation (A14).

Note that Eqs. (A22) and (A24) correspond to Eqs. (2) and
(3) of the main text.

As a side note, it is possible to define from Eqs. (A20) and
(A21), transverse and longitudinal permittivities as

D⊥ = ε0ε⊥E⊥, (A26)

D‖ = ε0ε‖E‖. (A27)

We find immediately that ε⊥ = εeff is the standard permit-
tivity. After some rearrangement, we also find ε‖ = εeff −
γ kL

2 = 0 due to the longitudinal dispersion relation (A25).
Therefore, as stated in the main text, the longitudinal per-
mittivity is always null, and cannot be used as a material
parameter alongside εeff and μeff . This is why another pa-
rameter characterizing the longitudinal mode has to be used
instead. Possible choices are explained in the next section.

5. Choices for effective parameters

As the above considerations show, a medium made of a
second-order spatially dispersive material supports both trans-
verse and longitudinal modes, and is characterized by a set
of three (independent) material parameters. Several exactly
equivalent choices are possible.

(a) From the constitutive Eq. (A11), we may use εeff , α,
and γ .

(b) From the formalism of Eqs. (A14) and (A15), we may
use εeff , μeff , and γ .

(c) From Eq. (A25), we may use εeff , μeff , and kL.
In this paper, we took choice (c), using μeff because of its

physical meaning as artificial magnetism, and kL because as a
wave-vector modulus for longitudinal waves it brings a more
intuitive picture than the related parameter γ .

APPENDIX B: MIE THEORY WITH A SPATIALLY
DISPERSIVE SPHERE

We are now interested in extending Mie theory to the case
of a spherical particle of electric permittivity εeff , magnetic
permeability μeff , and longitudinal wave vector kL, immersed
in a homogenous medium of dielectric constant εh. Most of the
formalism presented here is adapted from Bohren and Huff-
mann for transverse waves [2], and Ruppin for longitudinal
waves [53]. We first introduce the spherical vector harmonics,
in terms of the solutions to Eqs. (A22) and (A24). There are
the two transverse functions

Mpmn(r) = ∇ × (rψpmn), (B1)

Npmn(r) = ∇ × Mpmn

k
(B2)

and the following longitudinal function:

Lpmn(r) = ∇(ψpmn). (B3)

The parity subscript stands for e (even) or o (odd). The gener-
ating functions are

ψemn = cos(mφ)Pm
n (cos θ )zn(kr), (B4)

ψomn = sin(mφ)Pm
n (cos θ )zn(kr) (B5)

where Pm
n (cos θ ) are the associated Legendre polynomials and

zn(kr) is equal to (1) the spherical Bessel function jn(kTr) for
transverse waves inside the sphere, (2) jn(kLr) for longitudinal
modes inside the sphere, (3) the spherical Hankel function
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hn(nhk0r) for the scattered wave outside the sphere, and (4)
jn(nhk0r) for the incident wave outside the sphere, where
k0 = ω/c is the free-space wave vector and nh is the index
of refraction of the surrounding host medium in which the
particle sphere is immersed.

The incident wave expands as follows using the vector
spherical harmonic functions:

Ei =
∞∑

n=1

En
(
M(i)

o1n − iN(i)
e1n

)
, (B6)

Hi = −nh

c

∞∑
n=1

En
(
M(i)

e1n + iN(i)
o1n

)
(B7)

where En = inE0(2n + 1)/n/(n + 1). The scattered wave has
the following expansion:

Es =
∞∑

n=1

En
(
ianN(s)

e1n − bnM(s)
o1n

)
, (B8)

Hs = nh

c

∞∑
n=1

En
(
ibnN(s)

o1n + anM(s)
e1n

)
. (B9)

The transverse wave inside the sphere is expanded as follows:

ET =
∞∑

n=1

En
(
cnM(T)

o1n − idnN(T)
e1n

)
, (B10)

HT = −1

c

√
εeff

μeff

∞∑
n=1

En
(
dnM(T)

e1n + icnN(T)
o1n

)
. (B11)

Finally, the longitudinal wave inside the sphere has the fol-
lowing expansion:

EL = i
∞∑

n=1

En fnLe1n (B12)

and no magnetic field is associated with the longitudinal wave
as a direct consequence of the fact that the longitudinal elec-
tric field is curl free (∇ × EL = ik × EL = 0).

It is useful at this stage to make explicit the spherical vector
functions used in these last equations:

Mo1n = cos φπn(cos θ )zn(kr)êθ − sin φτn(cos θ )zn(kr)êφ,

(B13)

Me1n = − sin φπn(cos θ )zn(kr)êθ − cos φτn(cos θ )zn(kr)êφ,

(B14)

No1n = sin φn(n + 1) sin θπn(cos θ )
zn(kr)

kr
êr (B15)

+ sin φτn(cos θ )
[krzn(kr)]′

kr
êθ

+ cos φπn(cos θ )
[krzn(kr)]′

kr
êφ, (B16)

Ne1n = cos φn(n + 1) sin θπn(cos θ )
zn(kr)

kr
êr (B17)

+ cos φτn(cos θ )
[krzn(kr)]′

kr
êθ

− sin φπn(cos θ )
[krzn(kr)]′

kr
êφ, (B18)

Le1n = cos φ sin θπn
[kr jn(kr)]′

kr
êr (B19)

+ cos φτn
zn(kr)

r
êθ − sin φπn

zn(kr)

r
êφ (B20)

where πn = P1
n / sin θ and τn = dP1

n /dθ .
All the Mie coefficients an, bn, cn, dn, and fn are obtained

from the boundary conditions at r = R, where R is the radius
of the sphere. The tangential components of the electric and
magnetic fields should be continuous, which implies

êr × (Ei + Es) = êr × (ET + EL), (B21)

êr × (Hi + Hs) = êr × HT (B22)

where êr is a unit radial vector. For media in which longitu-
dinal polarization waves can propagate, we need an ABC to
complete this set and fully determine all the coefficients. Rup-
pin [53] used Melnyk and Harrison’s ABC [61], which states
that the normal displacement current should be continuous,
and as a result that

êr · (Ei + Es) = êr · (ET + EL) (B23)

(the reader is referred to the main text for a brief discussion
on possible ABCs).

Exploiting Eqs. (B21)–(B23), we find the following inde-
pendent relations:

jn(x) − bnhn(x) − cn jn(xT) = 0, (B24)

[x jn(x)]′ − an[xhn(x)]′ − dn

m
[xT jn(xT)]′ + fnnhk0 jn(xL) = 0,

(B25)

jn(x) − anhn(x) − m

μeff
dn jn(xT) = 0, (B26)

[x jn(x)]′ − bn[xhn(x)]′ − cn

μeff
[xT jn(xT)]′ = 0, (B27)

n(n + 1) jn(x) − ann(n + 1)hn(x) − dnn(n + 1)
jn(xT)

m

+ fnkLx j′n(xL) = 0 (B28)

where we have introduced the refractive index contrast m =
kT/k0 = neff/nh and the following reduced frequencies: x =
nhk0R, xT = kTR, and xL = kLR. Noticing that xT = mx, we
find

an = (m2 − μeff )κn jn(x) + j′n(xL){μeff [mx jn(mx)]′ jn(x) − m2[x jn(x)]′ jn(mx)}
(m2 − μeff )κnhn(x) + j′n(xL){μeff [mx jn(mx)]′hn(x) − m2[xhn(x)]′ jn(mx)} , (B29)

bn = μeff jn(mx)[x jn(x)]′ − jn(x)[mx jn(mx)]′

μeff jn(mx)[xhn(x)]′ − hn(x)[mx jn(mx)]′
. (B30)
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FIG. 8. Total absorption Qa with electric and magnetic contributions Qe and Qm for effective particles placed in a stationary wave, with
radii 50 to 80 nm. Particles are placed at a node of the electric field E, which is also a maximum of field H. Top-left inset: The larger sphere
represents the COMSOL simulation domain with perfectly matched layers (PMLs), the smaller sphere is the effective particle, and colors code
for the magnitude of the electric field of the exciting stationary wave).

It should be noted that Eq. (5) is identical to that in the
classical Mie theory [62] in the absence of longitudinal modes
[2]. So the influence of the longitudinal mode is only seen
on the an coefficient through the κn coefficient and the j′n(xL)
function.

APPENDIX C: PASSIVITY OF THE EQUIVALENT SPHERE

In this section, we evaluate the power balance of the
equivalent, homogeneous particles with material parameters
as shown in Fig. 6, and prove that it remains dissipative. We
neglect the contribution of kL, since the longitudinal mode
is confined to a very small region of the particle’s volume,
and we consider the electromagnetic power density dissipated
w = ω/2[ε0Im(εeff )‖E‖2 + μ0Im(μeff )‖H‖2]. In the conven-
tion used here, w is positive when the system is dissipative and
negative when it is active.

To make our point, we study a “worst-case” scenario by
placing the equivalent particle in a location of space where
the exciting field satisfies ‖Eex‖ ∼ 0 and ‖Hex‖ is maximal:
this is expected to maximize the impact of having a negative
value of Im(μeff ). Such a situation arises by positioning the
particle on a node of a stationary electric field formed from
the superposition of two counterpropagating plane waves. For
particles of radius 50, 60, 70, and 80 nm, the fields were
computed over the whole range of wavelengths using the fi-
nite element commercial solver COMSOL MULTIPHYSICS, using
the values of εeff (λ) and μeff (λ) as shown in Fig. 6. Due
to the size of the particles, it is necessary to integrate the
power density over their entire volume V to assess whether
they are dissipative or not. So we numerically compute the
total absorption cross section efficiency for each particle Qa =
Qe + Qm, which is the sum of the efficiencies of the electric
(Qe) and magnetic (Qm) contributions defined by

Qe = ω

2I0πa2

∫
V

ε0Im(εeff )‖E‖2dV, (C1)

Qm = ω

2I0πa2

∫
V

μ0Im(μeff )‖H‖2dV (C2)

where I0 is the intensity of the field and a is the radius of the
particle.

The result is displayed in Fig. 8: it can be seen that because
Im(μeff ) < 0 almost always, Qm < 0 also almost everywhere.
However, Qe is always positive and its magnitude is much
larger than Qm as well. As a result, Qa (the total absorption
efficiency) is always positive in all cases (all particle radii and
all wavelengths).

One may wonder how Qe can be substantially larger than
Qm when the particle is placed in a point of space where
the exciting field satisfies ‖Eex‖ ∼ 0. The reason for this is
that the effective particles are not pointlike with respect to
the wavelength λ of the fields (and cannot be, as explained
below). The E field is bound to vary over their volume and
increase away from zero; hence, the positive integral Qe does
not remain small, and easily overcomes the negative Qm be-
cause the imaginary part of εeff is much larger than that of
μeff . It must be emphasized that this argument is generically
related to the very nature of spatial dispersion, which arises
as the result of the spatial variations of the electric field
over the nanostructure making up the clusters; therefore, the
clusters and their related effective particle need to be made
large enough that such effects can take place. Reducing the
size of the effective particles arbitrarily would in fact can-
cel out spatial dispersion altogether, and with it, artificial
magnetism.

APPENDIX D: SYMMETRIES OF DIPOLAR
AND CORONA MODES

Figure 9 shows the magnitude of the total electric field
for the electric and magnetic dipole fields. The electric dipole
moment is polarized along the x direction and is parallel to the
polarization of the incident electric field [see Fig. 9(a)]. The
magnetic dipole moment in Fig. 9(b) is polarized along the y
axis (orthogonal to the xz plane shown in the figure). This is
evidenced by a clear zero in the center of the spherical effec-
tive medium and a circulating electric field around the center.
The longitudinal mode is shown in Fig. 9(c) and exhibits a
zero along the x = 0 line. The field is also strongly localized
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FIG. 9. Color plots of the magnitude of the total electric field for the (a) electric dipole mode, (b) magnetic dipole mode, and (c) longitudinal
mode in the xz plane of the effective-medium sphere at λ = 800 nm and computed using the effective-medium parameters fitted from the
scattered field of the cluster medium averaged over 104 realizations. The incident field is polarized along the x axis and incident along the
z axis.

near the top and bottom interface. This strong localization is
visible on the average field plots of the cluster medium as
well, and as can be seen from the symmetries just described,

it cannot be attributed to, or confused with, the electric dipole
nor the magnetic dipole. Hence, the corona mode is an inde-
pendent mode, associated to the longitudinal wave.
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