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Abstract

We introduce BERTweetFR, the first large-
scale pre-trained language model for French
tweets. Our model is initialized using
the general-domain French language model
CamemBERT (Martin et al., 2020) which fol-
lows the base architecture of BERT. Exper-
iments show that BERTweetFR outperforms
all previous general-domain French language
models on two downstream Twitter NLP tasks
of offensiveness identification and named en-
tity recognition. The dataset used in the of-
fensiveness detection task is first created and
annotated by our team, filling in the gap of
such analytic datasets in French. We make
our model publicly available in the transform-
ers library with the aim of promoting future
research in analytic tasks for French tweets.

1 Introduction

Vector representations of words have given rise
to the application of deep learning methods in
NLP. Traditional pre-training approaches, such as
word2vec (Mikolov et al., 2013) and GloVe (Pen-
nington et al., 2014) are static, learning a single
representation for every word regardless of con-
text. However, words are often polysemous with
different meanings depending on the context. More
recently, models are trained to integrate contextual
meaning : the output word embeddings depend
on the whole input sequence rather than only the
word itself. While the idea was initially imple-
mented with recurrent neural networks (Dai and
Le, 2015) (Ramachandran et al., 2017), recent mod-
els have predominantly been based on the trans-
formers architecture (Vaswani et al., 2017), with
BERT (Devlin et al., 2019) and RoBERTa (Liu

et al., 2019) among the most popular. These contex-
tualized word representation models have opened
new doors for researchers as they can be applied
to numerous downstream tasks by fine-tuning or
prompting. In fact, large-scale pre-trained language
models have become the go-to tool for building new
NLP applications, saving researchers from the enor-
mous amount of computational resource and data
required for training model weights from scratch.

In the past few years, human society has become
more digitally connected than ever before. People
use social media to report the latest news, but also
to express their opinions and feelings about real-
world events. As one of the most popular micro-
blogging platforms, Twitter has become a primary
source for social media user-generated data (Ghani
et al., 2019). However, tweets are more often writ-
ten in informal language compared to the carefully
edited texts that are published in traditional data
sources such as Wikipedia and printed media. They
have their own set of features such as the recurrent
use of irregular or abbreviated words, the large
quantity of spelling or grammatical mistakes, the
employment of improper sentence structures and
the occurrence of mixed languages (Farzindar and
Inkpen, 2020). This presents challenges to standard
NLP methods when applied to Twitter data.

Domain-adaptive pre-training has been revealed
to provide significant gains in helping models en-
code the complexity of specific textual domains
(Gururangan et al., 2020). While efforts on domain
adaptation of large-scale language models to Twit-
ter language have been made in English (Nguyen
et al., 2020), there has been no similar work in any
other language.

We start addressing this problem by releasing
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BERTweetFR, a pre-trained language model for
French tweets together with a manually labeled
dataset for offensiveness identification in French
tweets. We evaluate our model on two downstream
tasks : offensiveness identification and named en-
tity recognition.

We compare the performance of our model to
the best-performing transformer-based models pre-
trained on general domain French texts, namely
CamemBERT (Martin et al., 2020), FlauBERT (Le
et al., 2020) and BARThez (Eddine et al., 2020).
Experiments show that our model outperforms all
three of them on both of the downstream tasks.

In order to facilitate future research on French
tweets, we make our model publicly available on
Huggingface’s model hub 1 as well as on our team’s
website dedicated to French linguistic resources 2.
We will also release our offensiveness identification
dataset while respecting the limitations of Twitter’s
developper policy.

2 Building the Model

In this section, we describe the collection steps and
pre-procesing pipeline for our pre-training dataset,
present the model architecture and introduce the
training objective and optimization setup.

2.1 Pre-training Data

We use a 16GB dataset of 226M deduplicated
French tweets. The tweets are deduplicated using
open-source tool runiq3. In addition, we filter out
tweets with fewer than 5 tokens assuming they do
not contain substantial information. The average
length of a tweet is 30 tokens.

2.1.1 Data Collection

Our final dataset for pre-training is an aggregation
of three corpora from different sources. The ag-
gregation of these corpora makes this dataset the
largest one for French tweets up to this date. It
is also beneficial to aggregate different corpora in
order to cover tweets from different time periods
with diverse topics and styles.

The three sources we use are as follows :

• We start by downloading tweets from the gen-

1https://huggingface.co/Yanzhu/

bertweetfr-base
2http://master2-bigdata.polytechnique.

fr/FrenchLinguisticResources/bertweetFr
3https://github.com/whitfin/runiq

eral Twitter Stream4 grabbed by the Archive
Team, containing of tweets streamed from
January 2016 to December 2019. Selecting
only the French tweets with Twitter’s built-in
feature, we obtain a corpus of 34M unique
tweets.

• We also build a COVID-19 related corpus of
French tweets relevant to the COVID-19 pan-
demic posted between September 2020 and
April 2021. In this case, our filters are focused
on tweets that include the hashtags “covid19”
and “coronavirus”. Through Twitter’s pub-
lic streaming API, we extracted tweets in
French marked with either or both of the two
above hashtags. This corpora consists of 19M
unique tweets.

• Finally, we make use of a previous Twitter
dataset constructed for socioeconomic anal-
ysis (Abitbol et al., 2018). This corpus in-
cludes a collection of tweets in French be-
tween the years 2014 and 2018. We extract
173M unique tweets form this corpus.

2.1.2 Data Pre-Processing

We only implement minimal data cleaning before
inputting the sequences into the tokenizer. Follow-
ing (Nguyen et al., 2020), we normalize the Tweets
by converting user mentions and web/url links into
special tokens @USER and HTTPURL.

For tokenization, we apply the CamemBERT to-
kenizer (Martin et al., 2020). The CamemBERT
tokenizer segments input sequences into subword
units using the SentencePiece (Kudo and Richard-
son, 2018) algorithm. This algorithm is an exten-
sion of Byte-Pair encoding (BPE) (Shibata et al.,
1999) and WordPiece (Kudo, 2018) that eliminates
the pre-tokenization step, thus more generally appli-
cable. The vocabulary size is 32k subword tokens.

2.2 Model Architecture

BERTweetFR is initialized from the base version
of CamemBERT. We choose to further fine-tune
this model instead of starting from scratch because
domain-adaptive pre-training have been proven to
give very satisfying results in numerous down-
stream tasks spanning across a wide range of do-
mains (Gururangan et al., 2020). The choice to

4https://archive.org/details/

twitterstream

https://huggingface.co/Yanzhu/bertweetfr-base
https://huggingface.co/Yanzhu/bertweetfr-base
http://master2-bigdata.polytechnique.fr/FrenchLinguisticResources/bertweetFr
http://master2-bigdata.polytechnique.fr/FrenchLinguisticResources/bertweetFr
https://github.com/whitfin/runiq
https://archive.org/details/ twitterstream
https://archive.org/details/ twitterstream
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employ CamemBERT instead of other French lan-
guage models is based on its overall best perfor-
mance on downstream tasks experimented in previ-
ous works (Eddine et al., 2020).

CamemBERT applies the multi-layer bidirec-
tional Transformer architecture. The base version
uses the same architectures as the base version of
BERT with 12 layers, 768 hidden dimensions and
12 attention heads, adding up to a total of 110M
parameters. CamemBERT follows the same opti-
mized pre-training approach as RoBERTa, the only
difference is that it uses whole-word masking and
the SentencePiece tokenization instead of Word-
Piece.

2.3 Training Objective

Our model is trained on the Masked Language
Modeling (MLM) task. With any given input se-
quence, 15% of the tokens are chosen for pos-
sible replacement. Among the selected tokens,
80% are further selected to be replaced by the
special <MASK> token, 10% remain unchanged
and 10% are replaced by random tokens. Finally,
the model is trained to predict the tokens replaced
by <MASK> using cross-entropy loss. Following
RoBERTa, we do not fix the whole set of masked
tokens during pre-processing but select them dy-
namically during the training process. The data is
thus augmented when training for multiple epochs.

2.4 Optimization Setup

We employ the CamemBERT implementation
in the transformers library (Wolf et al., 2020).
The maximum sequence length is set to be 128,
generating approximately 226M × 30/128 ≈

53M sequence blocks. Following (Gururangan
et al., 2020), we optimize the model using Adam
(Kingma and Ba, 2015) with a batch size of 1280
across 8 V100 GPUs (32GB each) and a peak
learning rate of 0.0001. We pre-train the model
for 20 epochs in about 8 days with a total of
53M × 20/1280 ≈ 83K training steps.

3 Downstream Task Datasets

We evaluate the performance of BERTweetFR on
two downstream Twitter NLP tasks. The datasets
used in these downstream tasks are either con-
structed by ourselves or obtained from shared tasks
in past conferences.

3.1 Offensive Language Identification

Along with the outbreak of COVID-19 came severe
disruption in the French society. Effects include
the public holding the government accountable for
certain ways in which the pandemic was handled,
as well as a rise of hateful sentiment towards the
Asian community. In fact, ever since the explosion
of COVID-19 on a global scale, unrest has led to
an increase of violent incidents towards people of
Asian descent.

In response to this phenomenon, we have cre-
ated a human annotated dataset for general offen-
siveness detection in Tweets collected during the
COVID-19 pandemic. Our dataset contains 5786
French tweets among which 1301 have been la-
beled as offensive. Offensiveness is not straight-
forward and can be subjective. In our labeling pro-
cedure, we consider a tweet as offensive in cases
where personal attacks are detected. For example,
"The chinese virus is tiring" would not be consid-
ered offensive, while "I hate the chinese for bring-
ing us the chinese virus" would be. This is a binary
sequence classification task. We randomly sample
a 70/15/15 training/validation/test split with each
class proportionally represented in each part of the
split.

3.2 Named Entity Recognition

For the NER task, we take data from the CAp 2017
challenge (Lopez et al., 2017). This challenge pro-
poses a new benchmark for the problem of NER
for tweets written in French. The tweets were col-
lected using the publicly available Twitter API and
annotated with 13 types of entities : person, musi-
cArtist, organisation, geoLoc, product, transport-
Line, media, sportsTeam, event, tvShow, movie,
facility and other. Overall, the dataset comprises
6685 annotated tweets split into two parts: a train-
ing set consisting of 3000 tweets and a test set with
3685 tweets. For compatibility with previous re-
search, the data were released tokenized using the
CoNLL format and the BIO encoding.

4 Baselines

As our BERTweetFR model is the first pre-trained
language model for French tweets, we compare it
with the following general-domain language mod-
els for French.

CamemBERT As mentioned in 2.2, CaemBERT
(Martin et al., 2020) is the model from which we
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Table 1: Offensive Identification scores on the best model selected.

CamemBERT FlauBERT BARThez BERTweetFR

Accuracy 86.47 86.87 84.35 88.07
F1 Score 68.89 65.20 67.51 71.27

Table 2: NER score on the best model selected.

CamemBERT FlauBERT BERTweetFR

Accuracy 94.78 94.73 94.99
F1 Score 61.01 60.57 62.77

started our fine-tuning for domain adaptation. It
therefore serves as a natural baseline. Its architec-
ture is already introduced in 2.2.

FlauBERT FlauBERT (Le et al., 2020) is an-
other transfomer-based model trained on a very
large and heterogeneous French corpus. It basically
follows the same architecture as CamemBERT and
is shown to outperform CamemBERT on some of
the downstream tasks.

BARThez BARThez (Eddine et al., 2020) is the
first French sequence-to-sequence model based on
the base version of the BART architecture (Lewis
et al., 2020). It has 6 encoder and 6 decoder layers
with 768 hidden dimensions and 12 attention heads
in both the encoder and the decoder. It is shown to
be competitive in comparison with CamemBERT
and FlauBERT.

5 Experiments and Results

In this section, we first describe our fine-tuning
approaches. The baseline models follow the same
fine-tuning procedures as BERTweetFR. We then
report our results and compare with the baselines.
As a result, our model substantially outperforms all
baselines.

5.1 Offensive Language Identification

The offensive language identification task is a su-
pervised sequence classification task. Following
(Devlin et al., 2019), we append a linear prediction
layer on top of the pooled output.

For fine-tuning, we employ transformers library
to train BERTweetFR on the training set for 15
epochs. We use AdamW (Loshchilov and Hutter,
2019) with a fixed learning rate of 2.e-5 and a batch
size of 32 following (Liu et al., 2019). We compute
the classification accuracy and F1 score after each
training epoch on the validation set, applying early

stopping if their is no improvement after 3 con-
secutive epochs. We eventually select the model
checkpoint with the highest F1 score to predict the
final labels on the test set. Our results are listed in
Table 1.

5.2 Named Entity Recognition

The NER task is a supervised token classification
task. Following (Devlin et al., 2019), we append
a linear prediction layer on top of the last Trans-
former layer with regards to the first subword of
each word token.

For fine-tuning, we again employ transformers
library to train for 30 epochs. We use AdamW
(Loshchilov and Hutter, 2019) with a fixed learn-
ing rate of 2.e-5 and a batch size of 32, adding in
weight decay. We compute performance scores for
each entity class as well the overall F1 Micro score.
We eventually select the model checkpoint with the
highest F1 Micro score to predict the final labels
on the test set. Our results are listed in Table 2. We
do not compare with BARThez in this task because
the original model is not implemented for sequence
classification tasks.

6 Conclusion

In this work, we investigated the effectiveness of
applying domain adaptation to the Twitter domain
for large-scale pre-trained French language mod-
els. We demonstrate the value of our model show-
ing that it outperforms all previous general-domain
French language models on two downstream Twit-
ter NLP tasks of offensiveness identification and
named entity recognition.

Our contributions are as follows :

• We train and release the first large-scale pre-
trained language model for French tweets :
BERTweetFR. We make it publicly available
in the transformers library and hope that it
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can facilitate and promote future research in
analytic tasks for French tweets.

• We create and annotate the first dataset for
offensiveness identification in French tweets.
Such datasets already exist in several other
languages and our effort fills in the gap for the
French language.

• We create a framework and baseline for eval-
uating language models for French tweets.
Datasets for Twitter tasks in French is very
scarce and no previous work has ever com-
bined different analytic tasks together in a
unified framework.

With around 70% of all Twitter posts being in
non-English languages, the lack of corresponding
language models strongly hinders the community
from exploiting the information contained in these
valuable resources. For future work, we plan to
train and release a series of such pre-trained lan-
guage models for tweets in other low resource lan-
guages. We also call upon researchers from all over
the world involved in natural language processing
for social media to adapt language models in their
respective languages and make them publicly avail-
able.
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