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Abstract. Typically network structures are represented by one of three
different graph shift operator matrices: the adjacency matrix and unnor-
malised and normalised Laplacian matrices. To enable a sensible com-
parison of their spectral (eigenvalue) properties, an affine transform is
first applied to one of them, which preserves eigengaps. Bounds, which
depend on the minimum and maximum degree of the network, are given
on the resulting eigenvalue differences. The monotonicity of the bounds
and the structure of networks are related. Bounds, which again depend
on the minimum and maximum degree of the network, are also given for
normalised eigengap differences, used in spectral clustering. Results are
illustrated on the karate dataset and a stochastic block model. If the de-
gree extreme difference is large, different choices of graph shift operator
matrix may give rise to disparate inference drawn from network analy-
sis; contrariwise, smaller degree extreme difference results in consistent
inference.

Keywords: graph shift operator matrix, spectrum, clustering

1 Introduction

Networks can be represented in multiple ways via different graph shift operator
matrices (GSOMs), typically by the adjacency matrix or normalised or unnor-
malised Laplacians. The degree di of the ith vertex is defined to be the sum
of the weights of all edges connecting this vertex with others and the degree
matrix D is defined to be the diagonal matrix D = diag(d1, . . . , dn). With the
adjacency matrix denoted by A, the unnormalised graph Laplacian, L, is defined
as L = D−A, and there are two commonly used normalised Laplacians defined
as Lrw = D−1L and Lsym = D−1/2LD−1/2. The aim of this work is to compare
the spectra (eigenvalues) of the GSOMs, A and L, and since the two normalised
Laplacians are related by a similarity transform, so have identical eigenvalues,
we choose to work with just one of these, namely Lrw.

The spectral properties of the GSOMs are utilised in many disciplines [4] for
a broad range of different analysis methods, such as, the spectral clustering algo-
rithm [17], graph wavelets [15], change point detection in dynamic networks [1]
and the quantification of network similarity [7]. In particular, spectral clustering
has had a big impact in the recent analysis of networks, with active research on
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2 Lutzeyer and Walden

the theoretical guarantees which can be given for a clustering determined in this
way ([11],[14]). The spectral properties of the different GSOMs are also starting
to be leveraged in graph learning, as for example in [10]. It is the recommen-
dation to use whichever GSOM works best in a particular analysis or learning
task [13]. A framework under which the GSOM spectra can be compared and
an improved understanding of the magnitude of the spectral differences of the
GSOMs is of real use in informing such a decision.

In the remainder of the introduction we motivate the main ideas of the paper,
which are the use of affine transformation to enable the comparison of the GSOM
spectra, the affine transformation parameter choice and the bounds on the in-
dividual eigenvalue difference of the GSOMs. In Section 2 we provide bounds
on the eigenvalue differences of the GSOMs for general graphs and visualise
the effects of the affine transformation on the GSOM spectra corresponding to
Zachary’s karate social network. Then, in Section 3 we observe and explain the
monotonicity of the eigenvalue bounds. In Section 4 we provide bounds on the
difference of the normalised eigengaps (differences of successive eigenvalues) of
the GSOMs and visualise them using a sample from a stochastic blockmodel.
Section 5 highlights the impact of the GSOM choice on the inference drawn in
graphical analysis by applying the spectral clustering algorithm using all three
GSOMs to the karate network. In Section 6 we provide a summary and conclu-
sions.

1.1 Motivation of the affine transformations

A direct comparison of the observed spectra is difficult. Primarily this is because
for two of three comparisons to be made, the ordering of the eigenvalues is
reversed; there is a rough correspondence of the larger end of the adjacency
matrix spectrum to the the smaller end of the Laplacian spectra and vice versa
for the other ends. Also, the supports of the three GSOM spectra are different
[16, p. 29, 64, 68]. (The upcoming Figure 1 illustrates this.) For an insightful
comparison it makes sense to relocate and scale the spectra (eigenvalues), µn ≤
· · · ≤ µ1, say, via an affine transformation g(µ) = cµ + b, where c, b ∈ R, c 6= 0.
Ordering is preserved for c > 0, i.e., g(µ1) ≥ g(µ2) and reversed for c < 0,
i.e., g(µ1) ≤ g(µ2). Eigengaps, relative to the spectral support, are preserved.
Assume the domain of g is equal to the interval [x1, x2], so g’s image is equal to
[g(x1), g(x2)]. Then normalised eigengaps are preserved:

µ1 − µ2

x2 − x1

=
c (µ1 − µ2) + b− b

c (x2 − x1) + b− b
=

g(µ1)− g(µ2)

g(x2)− g(x1)
. (1)

In the spectral clustering algorithms, eigengaps are used to determine the num-
ber of clusters in the network, while the eigenvalue ordering is used to identify
which eigenvectors to consider [17]. Therefore, when comparing the impact of the
choice of GSOMs on graphical analysis, we need to preserve or reverse eigenvalue
ordering and preserve relative eigengap size.
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Comparing Spectra of Graph Shift Operator Matrices 3

1.2 Motivation of the parameter choice

All three GSOMs are related through the degree matrix D. Denote the degree
extremes by dmin and dmax. For d-regular graphs, where dmax = dmin = d, the
GSOMs are already exactly related by affine transformations and hence their
eigenvalues are related by the same affine transformations. For general (non-d-
regular graphs) we shall make parameter choices for the affine transformations
such that eigenvalue differences, after affine transformation, can be bounded
above in terms of the elements of D. These general parameter choices agree with
the natural existing transformation parameters for d-regular graphs.

1.3 Motivation for calculating a bound on the eigenvalue differences

The motivation for bounding the eigenvalue difference is twofold. On the one
hand, the structure of the bound and its dependency on network parameters
allow us to infer for which graphs we are able to see larger differences in the
GSOM spectra. On the other hand, the bounds allow us to add a sensible scale
to observed eigenvalues; the bound represents the theoretically maximal distance
the eigenvalues and eigengaps can differ by and therefore we are able to compare
observed differences to the maximal possible differences.

2 GSOM eigenvalue differences

2.1 Transforms and bounds

Theorem 1. Consider a graph G with degree extremes dmin and dmax. Let the

eigenvalues of the corresponding adjacency matrix A and unnormalised Laplacian

matrix L be denoted by µn ≤ · · · ≤ µ1 and λ1 ≤ · · · ≤ λn, respectively. Then,
there exists a transformation f1(µi) = c1µi + b1, where c1 = −1 and b1 =
(dmax + dmin)/2, such that for all i ∈ {1, · · · , n},

|f1(µi)− λi| ≤
dmax − dmin

2

def
= e(A,L). (2)

For d-regular graphs, (2) gives e(A,L) = 0, so that f1(µi) = λi = c1µi + b1 =
d−µi, i.e., the eigenvalues are related by the required exact relation, as claimed
in Section 1.2.

For general graphs, using (2), we can establish a rough correspondence, to
within an affine transformation, between the eigenvalues of the adjacency ma-
trix, A, and the unnormalised graph Laplacian, L, if the extremes of the degree
sequence dmax and dmin are reasonably close.

Theorem 2. Consider a graph G with degree extremes dmin > 0 and dmax. Let

the eigenvalues of L and Lrw be denoted by λ1 ≤ · · · ≤ λn and η1 ≤ · · · ≤ ηn,
respectively. Then, there exists a transformation f2(λi) = c2λi + b2, where c2 =
2/(dmax + dmin) and b2 = 0, such that for all i ∈ {1, · · · , n},

|f2(λi)− ηi| ≤ 2
dmax − dmin

dmax + dmin

def
= e (L,Lrw) . (3)
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4 Lutzeyer and Walden

Asymptotically, as dmax → ∞ with fixed dmin > 0, the bound e (L,Lrw) tends
to 2. The restricted range of dmin is due to D−1, the normalised Laplacian and
consequently the bound e(L,Lrw) not being defined for dmin = 0. For d-regular
graphs, where dmax = dmin = d, the bound equals zero. Hence, the spectra of
f2(L) and Lrw are equal and ηi = c2λi = λi/d, i.e., the eigenvalues are related
by the required exact relation. Overall, the behaviour of this bound is similar
to e(A,L). The smaller the difference of the degree sequence extremes dmax and
dmin, the closer the spectra of L and Lrw are related, signified by a smaller bound
on the eigenvalue differences.

Theorem 3. Consider a graph G with degree extremes dmin > 0 and dmax. Let

the eigenvalues of A and Lrw be denoted by µn ≤ · · · ≤ µ1 and η1 ≤ · · · ≤ ηn,
respectively. Then, there exists a transformation f3(µi) = c3µi + b3, where c3 =
−2/(dmax + dmin) and b3 = 1, such that for all i ∈ {1, · · · , n},

|f3(µi)− ηi| ≤
dmax − dmin

dmax + dmin

def
= e (A,Lrw) . (4)

For d-regular graphs, e (A,Lrw) equals zero and hence the spectra of f3(A)
and Lrw are equal and ηi = 1+ c3µi = 1− (µi/d), i.e., the spectra of Lrw and A
are related by the required exact relation. For general graphs, e(A,Lrw) is small
for small degree extreme differences and hence the spectra of the two GSOMs
exhibit smaller maximal differences, as was the case for e(A,L) and e(L,Lrw).

The proofs of Theorems 1, 2 and 3 directly follow from inequality (4.3) in [2,
p. 46], choosing parameters c1, b2 and b3 as given in the theorem statements to
make the problem analytically solvable and by then analytically minimising the
two norm. More detailed proofs of the theorems are available from the authors
upon request.

2.2 Karate dataset example

The karate dataset [3] dates back to [19]. We work with a square matrix with
34 entries, ‘ZACHE,’ which is the adjacency matrix of a social network describing
presence of interaction in a university karate club. This data set is popular as it
naturally lends itself to clustering [5, 8, 9].

The untransformed and transformed eigenvalues of the GSOMs A, L and
Lrw of Zachary’s karate dataset are shown in Figure 1. From Figs. 1(a), (b)
and (c) not much can be said about how the spectra compare. From Figs. 1(d),
(e) and (f) it can be observed that each pair of spectra of the karate dataset
cover a similar range after transformation and that clearly the spectra of A
and Lrw are the most similar of the three. It can also be seen that the largest
eigengaps occur at opposing ends of the spectra when comparing A and Lrw with
L. This observation is only possible from the plots including the transforms, i.e.,
Figs. 1(d), (e) and (f). Clearly, the eigenvalue spectra become more comparable
through utilising the proposed transformations.
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Fig. 1. Transformation results for Zachary’s karate dataset. First row: (a) eigenvalues
µ of A (stars) and λ of L (diamonds); (b) eigenvalues λ of L and η of Lrw (circles); (c)
eigenvalues µ of A and η of Lrw. Second row: the first of the two eigenvalue spectra
are transformed by their respective transformations f1, f2 and f3.

Remark 1. [20, p. 32] shows that vertices with identical neighbourhoods generate
eigenvalues equal to 0 and 1 in the adjacency and normalised Laplacian spectrum,
respectively. Interestingly, we spot several such vertices in the karate network,
which will be shown in Fig. 4, and several corresponding eigenvalues equal to 0
and 1 in Fig. 1(c). It is very nice to see that the equivalence of these eigenvalues
is highlighted by our transformation mapping them exactly onto each other in
Fig. 1(f). ⊳

In Fig. 2, we display a proof of concept of our bounds. The eigenvalue bounds
are centred around the average value of each eigenvalue pair in order to highlight
the maximal difference achievable by each individual eigenvalue pair under com-
parison. For the karate dataset the bound values (e(A,L), e(L,Lrw), e(A,Lrw))
are equal to (8.00, 1.78, 0.89). The particular bounds displayed here are valid for
all graphs with dmin = 1 and dmax = 17, i.e., all graphs in C1,17, where Cj,k is the
class of graphs with dmin = j and dmax = k. The bounds being almost attained
in plot (a), and not attained in plots (b) and (c), is more a consequence of the
structure of the graph given by the karate data set than tightness and quality
of the bounds. Since the three bounds e(A,L), e(L,Lrw) and e(A,Lrw) apply
to entire classes Cj,k at a time, we can only achieve tightness on these classes —
bounds being attained for some elements in Cj,k — and not on each individual
element of them.

So for our particular social network, the karate dataset, firstly the bound
being almost attained in plot (a) tells us that the spectra of A and L deviate
almost as much as theoretically possible for a graph in C1,17. Secondly, from plot
(c) we see that the spectra of A and Lrw are rather similar for the karate data
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Fig. 2. Eigenvalue bounds on the karate eigenvalues. In plot (a) we display the bound
e(A,L) via the intervals together with the transformed eigenvalues of the adjacency
matrix f1(µ) (stars) and the eigenvalues of the Laplacian λ (diamonds). (b) the bound
e(L,Lrw) is displayed via the intervals, the diamonds correspond to the transformed
Laplacian eigenvalues f2(λ) and the circles are the eigenvalues of the normalised graph
Laplacian η. (c) the bound e(A,Lrw) is displayed via the intervals, the stars correspond
to the transformed adjacency eigenvalues f3(µ) and the circles are the normalised
Laplacian eigenvalues η.

Table 1. Comparing bounds on eigenvalue differences of A,L and Lrw. The bound
values are displayed as (e (A,L) , e (L,Lrw) , e (A,Lrw)).

dmin

0 1 2 3 4

1 ( 0.5, ·, ·) ( 0, 0, 0) * * *
2 ( 1, ·, ·) ( 0.5, 0.67, 0.33) ( 0, 0, 0) * *
3 ( 1.5, ·, ·) (1, 1, 0.5) ( 0.5, 0.4, 0.2) ( 0, 0, 0) *

dmax 4 (2, ·, ·) ( 1.5, 1.2, 0.6) ( 1, 0.67, 0.33) (0.5, 0.29, 0.14) ( 0, 0, 0)
5 ( 2.5, ·, ·) ( 2, 1.33, 0.67) (1.5, 0.86, 0.43) (1, 0.5, 0.25) (0.5, 0.22,0.11)
6 ( 3, ·, ·) (2.5, 1.43, 0.71) (2, 1, 0.5) (1.5, 0.67, 0.33) (1, 0.4, 0.2)

set and could theoretically deviate significantly more for a different graph in
C1,17 having degree extreme difference 16. The bounds give us insight into how
particular GSOM spectra behave for the karate dataset.

3 Relating the spectral bounds

We display some sample bound values in Table 1. The first column of Table 1
only contains values of e(A,L) as for dmin = 0 the normalised Laplacian and
hence e(L,Lrw) and e(A,Lrw) are not well-defined. In practice this is of little
consequence since disconnected nodes are commonly removed from the dataset
as a preprocessing step. On the diagonal of Table 1, where dmax = dmin, i.e., for
the d-regular graphs, we find e (A,L) = e (L,Lrw) = e (A,Lrw) = 0 due to the
direct spectral relation of the GSOMs.
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Comparing Spectra of Graph Shift Operator Matrices 7

Remark 2. It is interesting to note, that since the spectral support of neither A,
nor L, is bounded, the bound on their eigenvalue difference is also not bounded
above. (This explains the large values in Fig. 2(a)). This does not apply to the
other two bounds as we have e (L,Lrw) ≤ 2 and e (A,Lrw) ≤ 1. ⊳

Before discussing the structure of Table 1, we define connected components
in a graph.

Definition 1. A path on a graph G is an ordered list of unique vertices such

that consecutive vertices are connected by an edge. A vertex set Sk is called a

connected component if there exists a path between any two vertices vi, vj ∈ Sk

and there exists no path from any vi ∈ Sk to any vj /∈ Sk. ⊳

Since all graphs in Cj+1,k can be extended to lie in Cj,k by adding one or more
connected components, all spectra of graphs in Cj+1,k are subsets of spectra of
graphs in Cj,k (the GSOM spectrum of a graph is the union of the spectra of
its connected components [6, p. 7]). Therefore, the support of the spectra of
graphs in Cj,k must be larger or equal to the support of spectra of graphs in
Cj+1,k. Hence, we expect the spectral bounds, e(·, ·), we derived to be decreasing
or constant with increasing dmin and constant dmax. This phenomenon can be
observed in Table 1 when traversing each row.

In similar fashion, any graph in Cj,k, can be extended to be a graph in Cj,k+1,
by adding a connected component with all vertex degrees greater or equal to j
and smaller or equal than k+1 with at least one node attaining degree k+1. Then
spectra of graphs in Cj,k are subsets of spectra of graphs Cj,k+1 and therefore
the spectral support and hence the spectral bounds on Cj,k+1 have to be greater
or equal than the respective quantities for Cj,k. So, any of the spectral bounds,
e(·, ·), will be increasing or constant with increasing dmax and constant dmin, as
seen in the columns of Table 1.

4 GSOM normalised eigengap differences

Here we derive bounds on the normalised eigengap differences, where each eigen-
gap is normalised by the spectral support of its corresponding GSOM.

4.1 Normalised eigengap difference of A and L

Let Mi denote the i
th eigengap of A, Mi = µi−µi+1, Li denote the i

th eigengap
of L, Li = λi+1 − λi and Ni denote the ith eigengap of Lrw, Ni = ηi+1 − ηi,
for i ∈ {1, 2, . . . , n − 1}. The spectral supports of A, L and Lrw are equal to
[−dmax, dmax], [0, 2dmax] and [0, 2], respectively [16, p. 29,64,68], so the lengths
of the supports are ℓ(µ) = ℓ(λ) = 2dmax and ℓ(η) = 2.

From (1) we see that the normalisation of transformed eigengaps by the
transformed spectral support is equal to the normalisation of the untransformed
eigengaps by the untransformed spectral support. We will therefore start our
analysis by considering the untransformed normalised eigengaps. Eigengap nor-
malisation by the spectral support of the corresponding GSOM is crucial to be
able to make a meaningful comparison of eigengap magnitudes.
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8 Lutzeyer and Walden

Theorem 4. Bounds on the normalised eigengap difference of the GSOMs are

given by
∣

∣

∣

∣

Mi

2dmax

−
Li

2dmax

∣

∣

∣

∣

≤
dmax − dmin

2dmax

def
= g(A,L);

∣

∣

∣

∣

Li

2dmax

−
Ni

2

∣

∣

∣

∣

≤ 2
dmax − dmin

dmax

def
= g(L,Lrw);

∣

∣

∣

∣

Mi

2dmax

−
Ni

2

∣

∣

∣

∣

≤
dmax − dmin

dmax

def
= g(A,Lrw).

The proofs of the three inequalities in Theorem 4 directly follow by applying
the triangle inequality and then varying the proofs of Theorems 1, 2 and 3 slightly
to accommodate the normalisation of the spectra as transformation parameters.
More detailed proofs of the theorems are available from the authors upon request.

4.2 Stochastic blockmodel example

Throughout this section we interpret large eigengaps in the context of spectral
clustering. Firstly, large eigengaps are understood to indicate the number of clus-
ters discovered by the different GSOMs, i.e., a large Kth eigengap is understood
to indicate a clustering into K communities [17, p. 410]. Secondly, the size of the
eigengap is understood to represent relative strength of evidence for a certain
clustering [17, p. 407].

We see that the eigengaps of the GSOMs are different, giving further evidence
that the graphical structure captured in the different spectra differs significantly
and possibly in a structured manner. Furthermore, we have been able to use
our bounds to put the magnitude of the observed eigengaps into the broader
perspective of all graphs with corresponding degree extremes.

The stochastic blockmodel, which is widely used in the networks literature [9,
11], allows us to encode a block structure in a random graph via different proba-
bilities of edges within and between node-blocks. Our definition and parametri-
sation is adapted from [11].

Definition 2. Consider a graph with node set {v1, . . . , vn}. Split this node set

into K disjoint blocks denoted B1, . . . ,BK . We encode block membership of the

nodes via a membership matrix M ∈ {0, 1}n×K, where Mi,j = 1 if vi ∈ Bj and

Mij = 0 otherwise. Finally, we fix the probability of edges between blocks to be

constant and collect these probabilities in a probability matrix P ∈ [0, 1]K×K,

i.e., for nodes vi ∈ Bl and vj ∈ Bm the probability of an edge between vi and vj
is equal to Pl,m. ⊳

Hence, the parameters of the stochastic blockmodel are M ∈ {0, 1}n×K and
P ∈ [0, 1]K×K , where the number of nodes n ∈ N and the number of clusters
K ∈ N are implicitly defined via the dimensions of M. We simulate graphs from
this model by fixing these parameters and then sampling edges from Bernoulli
trials. The Bernoulli parameter of the trial corresponding to the edge connecting
vi to vj is given by the (i, j)th-entry of the matrix MPMT .
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Comparing Spectra of Graph Shift Operator Matrices 9

Figure 3 contains eigengaps corresponding to the three GSOMs of a graph
arising as a realisation of a stochastic blockmodel with parameters n = 600;
K = 6; M1,1 = . . . = M100,1 = M101,2 = . . . = M200,2 = M201,3 = . . . =
M300,3 = M301,4 = . . . = M400,4 = M501,6 = . . . = M600,6 = 1 and all other
entries of M equal 0;

P =





0.9 0.1 0.1 0 0 0
0.1 0.9 0.1 0 0 0
0.1 0.1 0.9 0 0 0
0 0 0 0.1 0.9 0.9
0 0 0 0.9 0.1 0.9
0 0 0 0.9 0.9 0.1



 .

Hence, we have a network of 6 blocks with 100 nodes per block. From ob-
servation of P , we recognise that all realisations from this model consist of at
least two connected components since the probability of an edge between blocks
{B1,B2,B3} and {B4,B5,B6} is equal to 0.

In order to gain more insight into the block structure of this stochastic block-
model we consider different definitions of clusters or blocks. [14] describe so called
‘heterophilic’ clusters, which they recover from the eigenvectors corresponding to
the extreme negative eigenvalues of the normalised Laplacian. These heterophilic
clusters have fewer connections within than between clusters and are exemplified
by romantic relationship graphs where the genders are the two biggest clusters
identifiable. Our blockmodel includes such heterophilic blocks in {B4,B5,B6}.
While blocks {B1,B2,B3} form clusters in the more traditional sense with more
edges within rather than between blocks, which will be referred to as ‘homophilic’
cluster structure for the remainder of this analysis.

In Figure 3 we find that all three spectra have a non-zero normalised eigengap
with indices 2, 4 and 598. In addition, A has a large first normalised eigengap
and L a large 301st normalised eigengap; with the exception of these two large
eigengaps, in the context of the spectral clustering algorithms the eigengaps
suggest searching for similar numbers of clusters.

From [17, p. 397,398] we know that the nonzero second eigengap of the Lapla-
cians in Figure 3 encodes the separation of the network into two connected
components. It is interesting to see that all GSOMs put higher weight on the
block structure encoded in the stochastic blockmodel which corresponds to the
large 4th and 598th normalised eigengaps each suggesting the search for the
block structure encoded mainly in one of the two connected components of our
stochastic blockmodel. It is especially interesting that for A and L the 4th and
598th normalised eigengaps are approximately equal, while for Lrw the 4th nor-
malised eigengap is almost twice as large as the 598th normalised eigengap. Both
components have symmetric parameters and therefore it is very interesting that
the eigengaps in Lrw suggest stronger evidence for the homophilic cluster struc-
ture encoded by the 4th eigengap rather than the heterophilic cluster structure
encoded by the 598th eigengap. A much larger simulation of stochastic block-
models with varying parameters, which is beyond the scope of this work, could
establish whether Lrw does indeed have a structured preference for homophilic
over heterophilic blocks.
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Fig. 3. Plots (a), (b) and (c) display all normalised eigengaps and plots (d), (e) and (f)
display the first and last 10 normalised eigengaps of a graph sampled from a stochas-
tic blockmodel. The stars correspond to eigengaps of A normalised by the spectral
support of A, the diamonds display the corresponding quantity for L and the circles
represent the corresponding quantity for Lrw. The solid black dots correspond to the
three bounds, where g(A,L) is displayed in plots (a) and (d), g(L,Lrw) is shown in
plots (b) and (e) and g(A,Lrw) is displayed in plots (c) and (f).

5 Application to spectral clustering

To illustrate the impact of the GSOM choice, we display the spectral clustering
according to the first two eigenvectors of each of the three GSOMs corresponding
to the karate data set. The choice of GSOM has a significant impact on the
clustering outcome. We use the simplest form of spectral clustering by running
the k-means algorithm on the rows of the first k eigenvectors of the different
GSOMs [17, p. 399].

Since for the karate dataset, we have a reasonably large degree extreme dif-
ference, dmax − dmin = 16, we expect to see deviating results in the spectral
clustering according to the different GSOMs.

At first sight, all clusterings displayed in Figure 4 seem sensible. The clus-
tering according to the adjacency matrix extends the cluster marked with the
unfilled, square nodes by one node, karate club member 3, in comparison to the
clustering according to the normalised Laplacian. In contrast, the unnormalised
Laplacian detects 5 nodes less (karate club members 2, 4, 8, 14 and 20) in the
cluster marked by the unfilled square nodes, than does the normalised Laplacian.

We find the clustering according to the adjacency matrix A to agree with the
true clustering suggested by the eventual split of the karate club as recorded by
[19]. The normalised Laplacians misplace one out of 34 nodes, which is known to
be difficult to cluster correctly in the literature [8]. The unnormalised Laplacian
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(a) (b) (c)

Fig. 4. Spectral clustering of the karate network according to the first two eigenvec-
tors of the adjacency matrix A in (a), the unnormalised Laplacian L in (b) and the
normalised Laplacian Lrw in (c).

however, misplaces 6 nodes, only one of which is known to us to be commonly
misclustered. Hence, the unnormalised Laplacian clustering is clearly outper-
formed by the other two GSOMs when using the first two eigenvectors to find
two communities in the karate data set. In [18] the conditions under which
spectral clustering using the unnormalised Laplacian converges are shown to be
more restrictive than the conditions under which spectral clustering according
to the normalised Laplacian converges. [18] hence advocate using the normalised
Laplacian for spectral clustering over the unnormalised Laplacian. Our clustering
results agree with this recommendation.

Remark 3. The choice of GSOM can clearly impact the results of cluster infer-
ence via spectral clustering. We suggest considering the degree extreme difference
as a parameter in graphical signal processing to infer the potential impact of the
choice of GSOM. ⊳

6 Summary and Conclusions

We have compared the spectra of the GSOMs: the adjacency matrix A, the
unnormalised graph Laplacian L and the normalised graph Laplacian Lrw and
found differences in the spectra corresponding to general graphs. For all three
pairs of GSOMs the degree extreme difference, dmax − dmin, was found to lin-
early upper bound both the spectral differences, when transforming one of the
two spectra by an affine transformation, and the normalised eigengap differ-
ences. We explained the monotonicity found in the eigenvalue bounds by parti-
tioning the class of graphs according to their degree extremes and considering
the addition/deletion of connected components to/from the graph. Our bounds
were illustrated on Zachary’s karate network and on a network sampled from a
stochastic blockmodel with homophilic and heterophilic cluster structures. We

find that if the degree extreme difference is large, different choices of GSOMs

may give rise to disparate inference drawn from network analysis; smaller de-

gree extreme differences will result in consistent inference, whatever the choice

of GSOM. The significant differences in inference drawn from graphical analysis
using the different GSOMs were illustrated via the spectral clustering algorithm
applied to Zachary’s karate network.
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Proofs of the Theorems in “Comparing Spectra

of Graph Shift Operator Matrices”

Johannes F. Lutzeyer and Andrew T. Walden

Imperial College London, London SW7 2AZ, UK,
jl7511@ic.ac.uk, a.walden@imperial.ac.uk

In this document we present detailed proofs of all theorems contained in [3].

1 Notation

We follow the notation in [3], which will be recalled in this section. We work with
undirected, simple graphs with n nodes, in which the number of edges connected
to the ith vertex is denoted by di. Then, we are able to define the diagonal
degree matrix D = diag(d1, . . . , dn). We denote the maximal and minimal degree
in a graph by dmax and dmin, respectively. From the degree matrix follow the
definitions of the three graph shift operator matrices (GSOMs) considered in
this document, namely, the adjacency matrix A, the unnormalised Laplacian
L = D −A and the normalised Laplacian Lrw = D−1L. We denote the spectra
(eigenvalues) of A, L and Lrw by µn ≤ · · · ≤ µ1, λ1 ≤ · · · ≤ λn and η1 ≤ · · · ≤
ηn, respectively. From the GSOM spectra we are able to define the eigengaps of
A, L and Lrw as Mi = µi − µi+1, Li = λi+1 − λi, Ni = ηi+1 − ηi, respectively,
for i ∈ {1, 2, . . . , n− 1}.

2 Proof of Theorem 1

Proof. From [2, p. 385] it follows that f1(A) = c1A+ b1I has eigenvalues of the
form,

f1(µi) = c1µi + b1. (1)

Now, we proceed to analyse the error made by approximating λi by f1(µi).
Here we view the affine transform f1(A) as a perturbation of L. Firstly, using
inequality (4.3) in [1, p. 46],

‖f1(A) − L‖
2
≥ |f1(µi)− λi| = |c1µi + b1 − λi|, (2)

for i ∈ {1, 2, . . . , n} and c1 ≤ 0 (to ensure equal ordering in magnitude of the two
compared spectra). In other words, the difference of corresponding eigenvalues
of a symmetric matrix L and its ‘perturbed’ version f1(A) is bounded by the
two norm of the perturbation f1(A) − L. Now,

‖f1(A) − L‖
2
= ‖b1I −D + (1 + c1)A‖2 . (3)



2 Lutzeyer and Walden

dmin dmax

Fig. 1. This plot displays values of b1 on the x-axis. The dotted line corresponds to
the function |dmin− b1|, the dashed line plots the function |dmax− b1| and the solid line
depicts the bound which is to be minimised in (4), i.e., max(|dmax − b1|, |dmin − b1|).

We are able to reexpress this norm in a simple form in terms of D by the choice

c1
def
= − 1, i.e.,

‖f1(A)− L‖
2
= ‖b1I −D‖

2

= max (|b1 − dmax| , |b1 − dmin|) . (4)

Equation (4) uses the fact that the eigenvalues of diagonal matrices are equal
to their diagonal elements. From Fig. 1 it is obvious that (4) is analytically
minimised at the intersection of the increasing part of the dotted line, |dmin−b1|,
and the decreasing part of the dashed line, |dmax − b1|, which is calculated now.

b1 − dmin = dmax − b1

⇔ b1 =
dmax + dmin

2
.

Evaluating (4) at b1
def
=(dmax + dmin)/2 gives,

‖f1(A)− L‖
2
=

dmax − dmin

2
.

Putting (2) and (4) together, we obtain

|f1(µi)− λi| ≤
dmax − dmin

2

def
= e(A,L).

3 Proof of Theorem 2

Proof. As in the proof of Theorem 1, f2(L) = c2L + b2I has eigenvalues of the
form,

f2(λi) = c2λi + b2. (5)
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The following result is the equivalent of (2):

‖f2(L)− Lrw‖2 ≥ |f2(λi)− ηi | = |c2λi + b2 − ηi| , (6)

for i ∈ {1, 2, . . . , n} and c2 ≥ 0 (to ensure equal ordering in magnitude of the two
compared spectra). In the steps that follow we use firstly that the eigenvalues of
Lrw are all positive, and secondly that ‖Lrw‖2 ≤ 2; as established in [4, p. 64].
Now,

‖f2(L)− Lrw‖2 = ‖(c2D − I)Lrw + b2I‖2 .

The norm can be simplified by the choice b2 = 0, i.e.,

‖f2(L)− Lrw‖2 = ‖(c2D − I)Lrw‖2 (7)

≤ ‖Lrw‖2 ‖c2D − I‖
2

≤ 2max (|dmaxc2 − 1| , |dminc2 − 1|) . (8)

From Fig. 2 it is obvious that (8) is analytically minimised at the intersection of
the increasing part of the dashed line, |dmaxc2 − 1|, and decreasing part of the
dotted line, |dminc2 − 1|, which is calculated now.

dmaxc2 − 1 = − (dminc2 − 1)

⇔ (dmax + dmin) c2 = 2

⇔ c2 =
2

dmax + dmin

.

Evaluating (8) at c2
def
=2/(dmax + dmin) = 1/b1 gives,

‖f2(L)− Lrw‖2 ≤ 2
dmax − dmin

dmax + dmin

.

We thus obtain

|f2(λi)− ηi| ≤ 2
dmax − dmin

dmax + dmin

def
= e (L,Lrw) .

4 Proof of Theorem 3

Proof. As in the proof of Theorems 1 and 2, f3(A) = c3A+ b3I has eigenvalues
of the form,

f3(µi) = c3µi + b3. (9)

We start with,

‖f3(A) − Lrw‖2 ≥ |f3(µi)− ηi| = |c3µi + b3 − ηi|, (10)

for i ∈ {1, 2, . . . , n} and c3 ≤ 0 (to ensure equal ordering in magnitude of the
two compared spectra). Then,

‖f3(A) − Lrw‖2 =
∥

∥c3A+ b3I − I +D−1A
∥

∥

2

=
∥

∥(c3D + I)D−1A+ b3I − I
∥

∥

2
. (11)
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1

dmax

1

dmin

Fig. 2. This plot displays values of c2 on the x-axis. The dotted line corresponds to the
function |dminc2 − 1|, the dashed line plots the function |dmaxc2 − 1| and the solid line
depicts the bound which is to be minimised in (8), i.e., max(|dmaxc2 − 1|, |dminc2 − 1|).

At this stage we choose b3
def
=1 to simplify the norm. Then,

‖f3(A)− Lrw‖2 ≤ ‖I + c3D‖
2

∥

∥D−1A
∥

∥

2
(12)

= max (|1 + dmaxc3| , |1 + dminc3|) , (13)

where in (12) we use the fact that
∥

∥D−1A
∥

∥

2
= 1 [4, p. 64]. Finding c3 as the

analytical minimum of this term is equivalent to finding c2 in (8) and therefore

c3 = −c2
def
= − 2/(dmax + dmin). Consequently,

‖f3(A)− Lrw‖2 ≤
dmax − dmin

dmax + dmin

.

Hence, we obtain

|f3(µi)− ηi| ≤
dmax − dmin

dmax + dmin

def
= e (A,Lrw) .
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5 Proof of Theorem 4

Proof. The bound on the normalised eigengap difference of the adjacency matrix
A and the unnormalised Laplacian L, denoted g(A,L), can be derived as follows:

∣

∣

∣

∣

Mi

2dmax

−
Li

2dmax

∣

∣

∣

∣

=
1

2dmax

|µi − µi+1 − λi+1 + λi|

=
1

2dmax

∣

∣

∣

∣

µi −
dmax + dmin

2
+ λi − µi+1 +

dmax + dmin

2
− λi+1

∣

∣

∣

∣

=
1

2dmax

|[λi − f1(µi)] + [f1(µi+1)− λi+1]| (14)

≤
1

2dmax

2e(A,L) (15)

=
dmax − dmin

2dmax

def
= g(A,L),

where the triangle inequality has been used to go from (14) to (15).
We proceed to derive a bound on the normalised eigengap difference of L and

Lrw, denoted g(L,Lrw), as follows:

∣

∣

∣

∣

Li

2dmax

−
Ni

2

∣

∣

∣

∣

=
1

2

∣

∣

∣

∣

1

dmax

(λi+1 − λi) + ηi − ηi+1

∣

∣

∣

∣

≤
1

2

[∣

∣

∣

∣

1

dmax

λi+1 − ηi+1

∣

∣

∣

∣

+

∣

∣

∣

∣

1

dmax

λi − ηi

∣

∣

∣

∣

]

,

from the triangle inequality. A comparison with (6), shows that these eigenvalue
differences can be bounded by replacing c2 in (6) by 1/dmax and then making
this substitution into (8),

∣

∣

∣

∣

Li

2dmax

−
Ni

2

∣

∣

∣

∣

≤
1

2

[

4max

(

0,

∣

∣

∣

∣

dmin

dmax

− 1

∣

∣

∣

∣

)]

= 2

(

1−
dmin

dmax

)

= 2
dmax − dmin

dmax

def
= g(L,Lrw).

Finally, we will derive the bound on the normalised eigengaps of A and Lrw,
denoted by g(A,Lrw).

∣

∣

∣

∣

Mi

2dmax

−
Ni

2

∣

∣

∣

∣

=
1

2

∣

∣

∣

∣

1− 1 +
1

dmax

(µi − µi+1) + ηi − ηi+1

∣

∣

∣

∣

≤
1

2

[∣

∣

∣

∣

1−
1

dmax

µi+1 − ηi+1

∣

∣

∣

∣

+

∣

∣

∣

∣

1−
1

dmax

µi − ηi

∣

∣

∣

∣

]

,

via the triangle inequality. Again, as in the proof of Theorem 3, we chose the
translation parameter equal to 1 to simplify the norm. Then, a comparison with
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(10), shows that these eigenvalue differences can be bounded by replacing c3 by
−1/dmax and then substituting into (13) to give

∣

∣

∣

∣

Mi

2dmax

−
Ni

2

∣

∣

∣

∣

≤ max

(

0,

∣

∣

∣

∣

1−
dmin

dmax

∣

∣

∣

∣

)

=
dmax − dmin

dmax

def
= g(A,Lrw).
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