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Abstract

Primary Central Nervous System (PCNS) lymphoma is an aggressive brain tumor with vari-
able response rates to current therapeutic strategies. Segmentation of PCNS lymphoma
on magnetic resonance imaging (MRI) is important to enhance diagnosis and follow-up.
However, it is a difficult task due to the highly variable presentation of lymphoma lesions
and the heterogeneity of acquisitions in clinical routine. The recent rise of foundation
models (FM) for segmentation, such as Segment Anything Model (SAM), offers a potential
alternative to classical supervised deep learning approaches. Nevertheless, their value on
challenging tasks such as lymphoma segmentation on clinical routine data has not been
thoroughly studied. In this paper, we assessed the performance of several FMs (SAM,
MedSAM, UniverSeg) for lymphoma segmentation and compared them to a classical su-
pervised learning with nnU-net. In addition, we performed experiments on the public
dataset MSD-BraTS so that others can reproduce our findings. We found that nnU-net
outperformed FMs by vast and statistically significant margins. For the lymphoma clinical
routine dataset, the difference between nnU-Net and the best FM was about 19 percent
points of Dice. For MSD-BraTS, it was about 10 percent points. Our findings suggest that
current FMs fall short in handling complex segmentation tasks in particular on clinical
routine data and that 3D supervised learning (e.g. with nnU-Net) is essential at present.
Trained models for both tasks, code and box prompts (for MSD-BraTS) are available at
https://github.com/GuanghuiFU/medical_cv_foundation_eval.

Keywords: Lymphoma, foundation model, SAM, Brain tumour, Segmentation, Deep
learning

© G. Fu et al.

https://github.com/GuanghuiFU/medical_cv_foundation_eval


Fu et al.

1. Introduction

Primary central nervous system (CNS) lymphoma (PCNSL) is a rare cancer, character-
ized by its rapid development and high mortality rate, which poses significant challenges
in clinical diagnosis, treatment planning and follow-up (Schaff and Grommes, 2022). Auto-
mated segmentation tools are critical for clinical care as well as for research to deepen our
understanding of the disease. However, few studies have been devoted to segmentation of
PCNSL (Pennig et al., 2021; El Jurdi et al., 2024) unlike other types of brain tumours such
as gliomas, e.g. (Ghaffari et al., 2019; Liu et al., 2021; van Kempen et al., 2021).

Recently, foundation models (FM) for image segmentation have been proposed, e.g. (Kir-
illov et al., 2023). They are highly effective in computer vision and have raised interest in
medical image analysis (Huang et al., 2023; Mazurowski et al., 2023). They have several po-
tential advantages over classical fully-supervised deep learning segmentation models: they
require none or limited annotated training data, reduce the need for expert labelling as well
as computational burden. Specifically, the application of FMs to new tasks requires only
providing prompts (Kirillov et al., 2023) or limited additional data (Butoi et al., 2023).
Segment Anything Model (SAM) (Kirillov et al., 2023) is a computer vision FM trained on
1 billion masks which allows interactive segmentation with prompts. MedSAM (Ma et al.,
2024) is a version of SAM for medical data. UniverSeg (Butoi et al., 2023) is an FM for
medical segmentation trained on extensive medical imaging data. It requires support data
(i.e. a limited set of annotated data) to perform specific segmentation tasks.

One can thus legitimately asks whether current FMs can replace fully-supervised seg-
mentation. Several works have assessed the value of FMs for medical image segmentation.
Some of these works (He et al., 2023; Huang et al., 2023; Mazurowski et al., 2023) rely
on prompts generated from ground truth. However, this is an ideal scenario which may
not reflect real use. If we have the ground truth, we do not need an automatic method.
Other studies (Cheng et al., 2023; Wald et al., 2023) introduced varying scales of jitter to
simulate degrees of user inaccuracy and generate Oracle prompts. However, it is unclear
if such simulated jitter reflects the users’ habitual patterns. Regarding UniverSeg (Butoi
et al., 2023), while it has undergone external validation (Kim et al., 2023), its effectiveness
on clinical routine datasets remains unverified. (Kim et al., 2023) evaluated UniverSeg for
prostate segmentation using an in-house dataset and found that the performance was com-
parable to that of nnU-Net (Isensee et al., 2021). However, it is important to note that
UniverSeg was already pretrained on prostate segmentation tasks and that prostate has
much less variability than brain tumours such as PCNSL making its segmentation easier. A
notable limitation of most of these studies is that they lacked validation on clinical routine,
heterogeneous, data.

Our study undertakes a comparison of supervised learning and foundation models for
segmentation of primary CNS lymphoma on clinical routine, heterogeneous, MRI. To that
purpose, we used a dataset of 112 patients with PCNSL acquired with different sequence
parameters, sequence types (spin echo vs gradient echo), 2D or 3D sequences, resolutions,
and MRI scanners. Since this clinical routine dataset cannot be shared, we complement our
work with experiments on a subset of the open glioma dataset MSD-BraTS (Antonelli et al.,
2022; Menze et al., 2014) in order for others to reproduce our work. We compared FMs
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to nnU-net (Isensee et al., 2021) which has been shown to be one of the most consistently
effective segmentation algorithms across many medical applications (Antonelli et al., 2022).

2. Materials and Methods

2.1. Datasets

2.1.1. Lymphoma dataset

We studied 117 patients with primary CNS lymphoma. The study was approved by
the Institutional Ethical Committee (Pitié Salpêtrière Hospital, Ile-de-France VI, n°DC-
2009-957) and by the French Data Protection Authority (CNIL, Commission Nationale de
l’Informatique et des Libertés, DR 2013-279). According to French regulation, consent was
waived as these images were acquired as part of the routine clinical care of the patients.
Each patient had a T1-weighted MRI after gadolinium injection. The images were acquired
as part of clinical routine and were thus not harmonized (different MRI scanners, types of
sequences, resolutions, contrast to noise, etc.).

The full dataset was annotated by a certified neuroradiologist (L.N.) with four years of
experience in neuro-oncology imaging. A subset of 50 cases was independently annotated
by a certified radiologist (D.H.) with one year of experience in neuro-oncology imaging to
calculate inter-rater reliability. The computed inter-rater variability (mean and 95% confi-
dence interval computed using bootstrap on the 50 samples) metrics were: Dice coefficient
81.17 [77.76, 84.50]; Hausdorff 95th percentile distance: 6.99 [3.44, 11.46]; topological 3D
error: 2.12 [1.16, 3.38]. Please refer to section 2.3 for details about the metrics.

Each MRI volume in this dataset was resized and resampled to isotropic 1×1×1mm3

voxels and dimensions of 240×240×160 using resample and resize operations from Tor-
chIO (Pérez-Garćıa et al., 2021). We also rescale the intensity to a range of 0 and 1. We
removed five subjects because the preprocessing failed (wrong dimensions). The final lym-
phoma MRI dataset comprises 112 patients (60 females, 51 males, one unspecified) aged
32-86 years (mean 66.13). It includes 92 isotropic (or quasi-isotropic) 3D acquisitions and
20 non-isotropic 2D acquisitions across different field strengths (3T: 53 subjects, 1.5T: 53,
1.0T: 6), manufacturers (GE Healthcare: 93, Philips: 11, Siemens: 8). In-plane resolution
ranges from 0.39 mm to 1.2 mm and slice thickness ranges from 0.29 mm to 8.0 mm. The
example images in Figure 1 illustrate the variability in lesion appearance, location and im-
age quality. The dataset was randomly split into a training/validation set with 57 patients
and a test set with 55 patients. The test set was only used to validate the models.

2.1.2. MSD-BraTs dataset

We also conducted experiments on the MSD-BRATS public dataset from the medical seg-
mentation decathlon challenge (Antonelli et al., 2022). BraTS is a dataset of patients with
glioblastoma or lower-grade glioma, manually segmented by expert raters (Simpson et al.,
2019). The downloaded dataset has already undergone uniform pre-processing, includ-
ing co-registration to a common template, standardization to 1 mm3 resolution, and skull
stripping. To be as similar as possible to lymphoma segmentation task, we selected the
T1-weighted MRI after gadolinium injection and focused on the enhancing tumor as the
target region. In order to have the approximately the same sample size for the two tasks,
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Figure 1: Examples of clinical T1-weighted MR images of patients with PCNS lymphoma.
Each example shows the MRI image, the same image overlaid with the ground
truth segmentation, and a zoom in of the area(s) marked with a box. Please note
that the boxes shown here correspond the zoomed-in area and not to the box
prompts provided to the foundation models.

we randomly selected 113 patients for our experiments1. They were subsequently randomly
split into a training/validation set with 58 patients and a test set comprising 55 patients.
The test set was only used to evaluate the models.

2.2. Segmentation methods

2.2.1. nnUNet

nnU-Net is a supervised deep-learning segmentation approach that dynamically adapts to
specific datasets by analyzing provided training cases and automatically configuring a corre-
sponding UNet-based segmentation pipeline (Isensee et al., 2021). Schematic architectures
of the different tested approaches are presented in the appendix (Figure S1). During the
training time, 5-fold cross-validation is executed on the training/validation data for 1000
epochs of training, to select the optimal configuration.

2.2.2. SAM and MedSAM

The Segment Anything Model (SAM) is an FM which has undergone training on a dataset
comprising 11 million images and 1.1 billion masks, demonstrating robust zero-shot perfor-
mance across a diverse range of segmentation tasks (Kirillov et al., 2023). Our experiments
included various versions of the SAM model, including SAM-vit-b, SAM-vit-l, and SAM-vit-
h. These models, trained with progressively larger numbers of masks, vary in their parame-
ter sizes. MedSAM (Ma et al., 2024) is a medically fine-tuned version of the smallest SAM
model variant (vit-b) which has been trained with over one million medical image-mask
pairs and was reported to consistently surpass the original SAM model in performance.

1. Experiments on lymphoma include 112 patients because one preprocessing defect was only identified
afterwards.
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Both SAM and MedSAM require a prompt from the user for each image to be seg-
mented. The prompt can take different forms including points and boxes. We chose box
prompts which have been suggested to lead to better performance in medical segmentation
tasks (Wald et al., 2023). One author (G.F.) manually annotated 3D box prompts in each
test volume. The number of boxes is variable, to ensure complete coverage when multi-
ple lesions are present. These 3D boxes are then transformed into 2D slice-level prompts.
Utilizing these prompts, SAM (or MedSAM) infers the segmentation in each 2D slice. Sub-
sequently, these predictions are stacked into 3D volume. The time taken to draw the box
prompt for one image was 76.18±26.7 (in seconds; mean± standard-deviation) for lym-
phoma and 72.15±16.67 for MSD-BraTs. An example of 3D box prompt is depicted in
Figure 2. In several other papers (He et al., 2023; Huang et al., 2023; Mazurowski et al.,
2023; Ma et al., 2024), box prompts were generated from ground truth segmentation (auto-
matically computing a bounding box from the ground truth, possibly with perturbation).
We believe this can only be an ideal scenario and not reflect realistic usage. However, as a
comparison, we also provide results obtained by computing box prompts from ground truth
in appendix C.

Figure 2: Example of a manually drawn 3D box prompt in a patient with lymphoma.

2.2.3. UniverSeg

UniverSeg is designed to solve new medical segmentation tasks without the need for retrain-
ing, leveraging the newly proposed CrossBlock mechanism for information transfer from the
support set to the query image (Butoi et al., 2023). The support set is a small annotated
dataset corresponding to the target task. UniverSeg’s training encompasses 53 datasets
across 26 medical domains and 16 imaging modalities. The size of the support set can
range from 1 to 64.

In the UniverSeg experiments, we initially converted the 3D volumes into 2D slices,
resizing them from their original dimensions of 240×240 to 128×128 to meet the model’s
architectural requirements. We then devised various support set configurations. UniverSeg
then processes each MRI slice in sequence. Upon completing all 2D slice predictions, these
are resized to their original resolution (from 128×128 back to 240×240) and reconstituted
into a 3D volume.

The support set can include up to 64 images. We employed different strategies to exam-
ine the performance impact of different support sets. Moreover, UniverSeg generates soft
predictions and we experimented with different thresholds. Results with different support
sets and different thresholds are presented in Appendix D. In the rest of the paper, we
present results obtained with the best performing support sets (mid for lymphoma, large
for MSD-BraTs) and thresholds (0.8 for lymphoma and 0.7 for BraTS).
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2.3. Performance metrics and statistical analysis

For selecting performance metrics, we followed the recommendations of Metrics Reloaded (Maier-
Hein et al., 2023), specifically employing the 3D Dice coefficient and the 95% 3D Hausdorff
distance (HD95). We also computed the 3D connected component error (Topo 3D) which
is the absolute difference in number of 3D connected components between the ground truth
and prediction. For each metric, we report its mean value as well as the corresponding
95% confidence interval (CI) computed using bootstrap over the independent test set. For
a subset of results (see Results and Discussion sections), we assessed whether the observed
differences in Dice score between models were statistically significant using paired T-tests
on the independent test set.

2.4. Code, data and trained models availability

We made the repository2 publicly available, it contains: code, list of patients, box prompts,
support sets for MSD-BraTS and trained models for both lymphoma and MSD-BraTS.
MSD-BraTS data can be downloaded from the MSD website3. We cannot provide data and
prompts for the lymphoma dataset due to regulatory constraints.

3. Results

Results are presented in Table 1. Our experiments, conducted on both a private PCNS
lymphoma and the public MSD-BraTS glioma dataset, yielded consistent findings. Super-
vised training with a 3D nnU-Net outperformed the best FM (SAM, vit-b version) by a vast
margin: there was a statistically significant improvement of about 19 percent points of Dice
(p < 10−9) for the lymphoma dataset and of about 10 percent points for the MSD-BraTS
(p < 10−5). Similar results were observed for the HD95 metric: improvement of about
8m and 14mm with the 3D nnU-net compared to the best FM, for the lymphoma and the
MSD-BraTS datasets respectively. For the 3D topological errors, nnU-net also performed
in general better compared to FMs, to the exception of MedSAM-vit-b which had similar
results for this specific metric. Overall, findings from both tasks underscore that nnUNet-
3D consistently outperformed FMs. Comparative examples of lymphoma segmentation by
different models are illustrated in Figure 3. In addition, distribution of Dice scores on the
test set are presented in Figures S2 and S3 of Appendix B.

4. Discussion

In this paper, we compared the segmentation performance of supervised learning with nnU-
Net and various FMs on two datasets: a local clinical routine lymphoma dataset and the
public MSD-BraTS glioma dataset. Results were consistent across datasets and demon-
strated that 3D nnU-Net outperformed FMs by a vast margin.

Even though the performance gap was already large (10 percent points of Dice) and sta-
tistically significant for the MSD-BraTS dataset, it was huge for the lymphoma dataset (19
percent points). This difference comes mainly from a lower performance of FMs while that

2. https://github.com/GuanghuiFU/medical_cv_foundation_eval
3. http://medicaldecathlon.com/

6

https://github.com/GuanghuiFU/medical_cv_foundation_eval
http://medicaldecathlon.com/


Comparing Foundation Models and nnU-Net for Brain Lymphoma Segmentation

Table 1: The performance of lymphoma and brain glioma segmentation on T1-weighted
MRI from clinical dataset and MSD-BraTS dataset. Results presented as mean
with 95% bootstrap confidence interval computed on the independent test set.

Task Model type Model Dice (in %) HD95 (in mm) Topo 3D

Lymphoma
2D

UniverSeg 35.91 [29.33, 42.70] 73.89 [69.47, 78.41] 56.06 [51.22, 60.91]
SAM-vit-b 63.21 [57.96, 68.15] 21.98 [16.45, 28.11] 10.72 [5.54, 17.52]
SAM-vit-l 60.80 [55.66, 65.77] 21.12 [15.87, 27.02] 8.94 [4.93, 13.98]
SAM-vit-h 60.13 [54.98, 65.14] 22.46 [17.04, 28.40] 9.63 [5.65, 14.52]
MedSAM-vit-b 55.44 [49.78, 60.96] 22.83 [16.94, 29.35] 2.69 [1.80, 3.69]
nnUNet-2d 73.99 [67.49, 80.06] 9.78 [6.03, 14.19] 1.41 [0.93, 1.94]

3D nnUNet-3d 82.08 [77.05, 86.44] 7.96 [4.63, 11.92] 1.19 [0.81, 1.59]

MSD-BraTS
2D

UniverSeg 51.42 [45.03, 57.89] 68.73 [63.81, 73.79] 98.33 [98.85, 104.51]
SAM-vit-b 69.96 [65.78, 73.80] 11.63 [9.28, 15.07] 17.58 [12.44, 23.56]
SAM-vit-l 69.77 [65.60, 73.60] 12.00 [9.63, 15.36] 14.62 [9.96, 19.95]
SAM-vit-h 67.76 [63.77, 71.43] 12.55 [10.23, 15.81] 14.80 [10.71, 19.58]
MedSAM-vit-b 46.11 [41.39, 50.78] 12.28 [9.95, 15.80] 8.31 [5.67, 11.69]
nnUNet-2d 73.46 [66.76, 79.30] 11.90 [7.76, 17.19] 7.67 [5.07, 11.02]

3D nnUNet-3d 79.98 [74.42, 85.12] 6.47 [4.93, 8.31] 8.33 [5.61, 11.78]

of nnU-Net was quite stable. There may be different explanations to this: the lymphoma
dataset has a wide heterogeneity which reflects clinical routine and lymphoma characteris-
tics are highly variable. This highlights the interest of performing experiments on clinical
routine datasets. The lower performance of SAM could in principle be expected as it was
not trained medical data and this limitation is acknowledged by the authors (Kirillov et al.,
2023). (He et al., 2023) also found that SAM was outperformed by U-nets by vast margins
over different medical tasks. However, the massive superiority of nnU-net is at odds with
the results reported in the original papers of MedSAM (Ma et al., 2024) and Universeg (Bu-
toi et al., 2023). The MedSAM paper reports excellent Dice scores which are comparable
to that of a U-Net (Butoi et al., 2023). UniverSeg was reported to have lower performance
than nnU-net (Butoi et al., 2023) but the difference was much lower than in our experi-
ments (13 Dice points in original paper versus 46 points for lymphoma and 28 points for
MSD-BraTS).

Among FMs, SAM-based models gave in general better performance. The smaller
SAM-vit-b model tended to work slightly better than the larger version, but confidence
intervals are overlapping. Surprisingly, MedSAM performed worse than the corresponding
non-medical SAM-bit-b, by vast and statistically significant margins (8 points of Dice for
lymphoma, p < 10−6; 23 points for MSD-BraTS, p < 10−13). This is in contradiction
with what was reported in the original paper (Ma et al., 2024) where superior performance
compared to SAM was observed. UniverSeg resulted in very poor performances, as it was
not only vastly outperformed by nnU-Net but also by SAM (28 Dice points for lymphoma,
p < 10−8; 18 points for MSD-BraTS, p < 10−7). Lower performance on MSD-BraTS is
particularly surprising as UniverSeg was trained on BraTS (even though not the same task
and with more modalities than in our experiments). The results we report are the best that
we obtained across different thresholds and support sets (see Appendix D). Qualitatively,
we could notice that UniverSeg tended to focus only on segments with similar contrast,
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neglecting the anatomical location inside the data. This limitation becomes particularly
evident given the variable position and contrast of lymphoma (Barajas Jr et al., 2021).

The 3D nnUNet demonstrated superior performance over its 2D version. It is thus
possible that the poor performance of FMs is in part due to their 2D nature which prevents
them from using the complex 3D information. Nevertheless, the performance of FMs was
still inferior to that of the 2D nnUNet, indicating that this is likely not the only limitation.

Some previous works have generated prompts from ground truth. For comparison, we
also provided results obtained when generating prompts from ground truth (Appendix C).
The only setting that led to comparable results between SAM and nnU-Net was when 2D
prompts generated from ground truth were provided. We believe this is clearly not a realistic
scenario as the box perfectly fits the ground truth on every slice.

Our work has the following limitations. First, our results only concern two segmenta-
tion tasks, which are particularly difficult, and the situation could be different for other
tasks. Moreover, the field of FMs is advancing fastly. It is very well possible that better
results could be obtained with newer FMs. Furthermore, our provided prompts may have
imperfections. It is also possible that we have used UniverSeg in a suboptimal way, even
though we experimented with different support sets and thresholds. We have made prompts
and support sets openly available for MSD-BraTS for other researchers to experiment with
them and would be happy to be shown that there was a more optimal way to use FMs.
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Figure 3: Ground truth vs predictions on lymphoma data. Left: ground-truth superim-
posed on MRI. Right: 3D renderings of ground-truth (label) and of predictions
with different methods.
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Appendix A. Schematic overview of the tested segmentation methods

Figure S1 displays schematic overviews of the different tested segmentation methods.

Appendix B. Distribution of Dice score on the test set for different
models

Figure S2 and S3 display the Dice score distribution across the test set for different models
for lymphoma and MSD-BraTs tasks. For the lymphoma dataset, the variability (repre-
sented by the interquartile range - IQR) is lower for the best performing model (3D nnU-net)
compared to other models. For the BraTS dataset, the IQR is similar for 3D nnU-Net and
SAM, despite a much higher median value for the former. MedSAM, UniverSeg and nnU-
Net display a larger variability. In general, the variability tends to be higher for lower

11



Fu et al.

Data fingerprint

Image resampling

Image normalization

Cross-validation

3D/2D network training

Train data

Rule-based parameters

Loss function

Optimizer

Fixed parameters

Architecture template

Training schedule

Data augmentation
Batch size

…
…

Image Encoder

Prompt Encoder

Mask Decoder

Box prompt

Image Embedding

Support set

Query image

UniverSeg architecture

…

(b) SAM

(c) UniverSeg

(a) nnUNet

Figure S1: The model architectures of (a) nnUNet, (b) SAM and (c) UniverSeg.

performing models. Nevertheless, note that for all models there exist a few patients for
which the performance is very poor.

Appendix C. Generating box prompts from ground truth segmentation

In this study, we manually constructed prompts for SAM and MedSAM experiments. Some
other works have generated prompts from ground truth. We do not advocate for such ap-
proach as we believe it is a circular reasoning: if real labels are already available, automated
methods would be redundant. Nevertheless, we conducted experiments to compare the per-
formance when generating prompts from ground-truth to our manual box prompts. The
details of these experiments are as follows:

• 3D-manual: our manually labeled 3D box prompts.

• 3D-gt-single: a single 3D prompt box generated from the ground-truth defined as the
smallest 3D area which encompasses all lesions.

• 3D-gt-multi: multiple 3D boxes are generated: one for each connected component of
the ground-truth (only relevant for lymphomas).

• 2D-gt-single: a different 2D box prompt for each slice in the axial plane. Each box is
the smallest 2D area encompassing all lesions in a given slice.

• 2D-gt-multi: same as 2D-gt-single but with possibly multiple prompts per slice, cor-
responding to the different lesions (only relevant for lymphomas) .
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Figure S2: Boxplot illustrating the distribution of Dice score in different models for lym-
phoma data. Every box is bounded by the lower quartile (Q1) and the upper
quartile (Q3), with the centre line representing the median. Whiskers extend
from the box to the furthest data point within 1.5x the interquartile range of
the box.

Based on the results presented in Table 1, the SAM-vit-b model achieved the best per-
formance among SAM models. Consequently, we selected this version for our experiments.
Results with different box prompts are provided in Table S1.

The experimental results indicate that SAM-b with manual annotation (3D-manual)
outperforms a single 3D box prompt box generated from real labels (3D-gt-single). The
advantage of 3D-manual over 3D-gt-single is attributed to our manual annotations focusing
on the main lesion area, whereas 3D-gt-single may include unnecessarily large borders due
to pixels distant from the lesion center, adversely affecting performance. This effect is par-
ticularly noticeable in lymphoma data. On the contrary, the 3D-gt-multi approach, where
a bounding box is drawn for each connected region, resulted in a substantial improvement
but the Dice was still about 9 percent points lower than that of the 3D nnU-Net. Never-
theless, it resulted in a small improvement in HD95. The generation of 2D box prompts
from ground truth resulted in massive performance enhancement providing results which
are better than those of nnU-Net (the difference is moderate in terms of Dice score but
substantial in terms of HD95). This demonstrates that SAM-based segmentation models
can well capture lesion borders when given optimal prompts. However, this correspond to
a completly unrealistic scenario as the ground-truth was used to generate 2D boxes that
perfectly match the lesions on every slice.
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Figure S3: Boxplot illustrating the distribution of Dice score in different models for MSD-
BraTs data. Every box is bounded by the lower quartile (Q1) and the upper
quartile (Q3), with the centre line representing the median. Whiskers extend
from the box to the furthest data point within 1.5x the interquartile range of
the box.

Table S1: Comparison between our 3D manual box prompts and different box prompts
generated from ground-truth (denoted as gt). Please refer to the text for the ex-
planation of the different strategies used to generate prompts from ground truth.
Results presented as mean with 95% bootstrap confidence interval computed on
the independent test set.

Data Prompt Model Dice HD95 Topo3D

Lymphoma

3D-manual

SAM-vit-b

63.21 [57.96, 68.15] 21.98 [16.45, 28.11] 10.72 [5.54, 17.52]
3D-gt-single 45.82 [37.84, 53.80] 19.61 [15.89, 23.60] 58.88 [38.80, 82.54]
3D-gt-multi 73.12 [70.03, 76.28] 6.17 [5.27, 7.12] 10.19 [6.24, 14.74]
2D-gt-single 75.17 [69.73, 80.16] 7.50 [5.32, 9.90] 9.09 [4.57, 14.22]
2D-gt-multi 86.33 [84.35, 88.24] 1.91 [1.68, 2.19] 3.96 [2.20, 5.91]
None nnUNet-2d 73.99 [67.49, 80.06] 9.78 [6.03, 14.19] 1.41 [0.93, 1.94]
None nnUNet-3d 82.08 [77.05, 86.44] 7.96 [4.63, 11.92] 1.19 [0.81, 1.59]

MSD-BraTs

3D-manual
SAM-vit-b

69.96 [65.78, 73.80] 11.63 [9.28, 15.07] 17.58 [12.44, 23.56]
3D-gt-single 64.68 [60.55,68.95] 14.23 [12.46, 16.46] 25.62 [18.89, 33.78]
2D-gt-single 82.22 [79.39, 84.90] 4.46 [3.78, 5.23] 7.45 [5.04, 10.35]
None nnUNet-2d 73.46 [66.76, 79.30] 11.9 [7.76, 17.19] 7.67 [5.07, 11.02]
None nnUNet-3d 79.98 [74.42, 85.12] 6.47 [4.93, 8.31] 8.33 [5.61, 11.78]
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Appendix D. UniverSeg under different thresholds

As mentioned above, we test different strategies to build the support set. Specifically,
we chose one slice from each training scan, selecting those with the largest, smallest, and
medium lesion proportions (denoted as large, small, and mid). We conducted an additional
experiment where we combined slices with the largest and smallest lesion proportions to
investigate performance at the maximum setting of 64 images (large+small experiment).
Also, we experimented with different thresholdings of the soft predictions generated by
UniverSeg, from 0.1 to 0.9. Results are presented in Table S2 and Figures S4 and S5.
The small support set setting produces almost no predictions. For lymphoma, large and
mid setting provided comparable results. For MSD-BraTS, the large setting proved more
efficient. Predictions with thresholds below 0.7 tended to segment all high-signal regions,
resulting in many meaningless regions.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Threshold

0

20

40

60

80

100

Di
ce

 S
co

re
 (%

)

Dice Score vs. Threshold by Setting
UniverSeg-largest (57)
UniverSeg-mid (57)
UniverSeg-largest+smallest (64)

Figure S4: The Dice score of UniverSeg across varying thresholds for the lymphoma dataset.
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Table S2: Influence of different strategies to define the support set and of different threshold
on UniverSeg results. Results presented as mean with 95% bootstrap confidence
interval computed on the independent test set.

Data Support set Threshold Dice HD95 Topo 3D

Lymphoma

large (57)

0.1 7.65 [5.68, 9.89] 92.82 [88.81, 96.89] 168.81 [154.48, 182.70]
0.2 12.15 [9.15, 15.51] 89.54 [85.32, 93.75] 170.02 [158.37, 181.76]
0.3 16.41 [12.58, 20.67] 87.55 [83.31, 91.87] 165.20 [153.91, 176.44]
0.4 20.59 [16.04, 25.65] 85.67 [81.41, 90.02] 158.72 [148.74, 168.59]
0.5 24.38 [19.17, 30.07] 84.12 [79.81, 88.56] 136.41 [128.74, 143.98]
0.6 27.79 [22.01, 33.99] 82.60 [78.08, 87.22] 115.89 [109.20, 122.65]
0.7 30.93 [24.77, 37.41] 80.46 [75.77, 85.25] 91.35 [85.39, 97.33]
0.8 33.65 [27.15, 40.45] 78.01 [73.32, 82.91] 68.76 [63.94, 73.54]
0.9 35.43 [28.59, 42.21] 73.96 [69.13, 78.81] 41.33 [37.96, 44.87]

mid (57)

0.1 9.71 [7.43, 12.34] 91.41 [87.30, 95.47] 223.13 [206.89, 239.02]
0.2 15.80 [12.31, 19.69] 86.60 [82.44, 90.83] 202.15 [189.06, 214.89]
0.3 20.93 [16.49, 25.77] 84.05 [79.90, 88.36] 176.35 [164.52, 187.57]
0.4 25.40 [20.29, 30.98] 82.12 [77.89, 86.51] 152.70 [142.44, 162.69]
0.5 29.12 [23.58, 35.08] 80.22 [75.99, 84.57] 131.52 [122.41, 140.28]
0.6 32.09 [26.18, 38.33] 78.38 [74.16, 82.70] 104.54 [97.15, 111.57]
0.7 34.47 [28.22, 41.00] 76.53 [72.18, 80.93] 79.13 [73.24, 85.09]
0.8 35.91 [29.33, 42.70] 73.89 [69.47, 78.41] 56.06 [51.22, 60.91]
0.9 35.50 [28.73, 42.37] 67.51 [62.50, 72.63] 31.07 [27.87, 34.41]

large+small (64)

0.1 10.00 [7.60, 12.76] 91.73 [87.66, 95.73] 239.76 [224.17, 254.91]
0.2 16.13 [12.46, 20.23] 88.53 [84.31, 92.70] 224.91 [210.74, 238.96]
0.3 21.05 [16.55, 26.05] 86.26 [81.93, 90.61] 197.76 [184.67, 210.31]
0.4 25.02 [19.85, 30.61] 84.02 [79.70, 88.47] 169.83 [158.31, 181.57]
0.5 27.94 [22.25, 33.83] 81.82 [77.27, 86.44] 141.13 [130.81, 150.98]
0.6 29.85 [23.89, 36.04] 80.09 [75.37, 84.81] 111.61 [103.20, 119.65]
0.7 30.99 [24.81, 37.34] 78.17 [73.38, 82.90] 83.39 [76.89, 89.70]
0.8 31.09 [24.71, 37.69] 75.81 [70.96, 80.62] 57.56 [52.69, 62.33]
0.9 29.54 [22.97, 36.24] 70.49 [65.48, 75.59] 32.50 [29.39, 35.72]

MSD-BraTs

large (57)

0.1 14.85 [12.56, 17.30] 83.10 [80.14, 86.26] 120.85 [113.65, 128.31]
0.2 22.02 [18.84, 25.34] 81.30 [78.27, 84.50] 121.87 [113.80, 129.69]
0.3 29.46 [25.55, 33.57] 80.68 [77.59, 83.94] 139.18 [129.78, 148.73]
0.4 37.50 [32.94, 42.24] 79.99 [76.72, 83.39] 153.24 [143.96, 162.05]
0.5 44.65 [39.34, 50.04] 78.44 [74.63, 82.05] 154.25 [146.71, 161.65]
0.6 49.64 [43.83, 55.53] 74.96 [70.84, 79.23] 141.45 [133.64, 148.80]
0.7 51.42 [45.03, 57.89] 68.73 [63.81, 73.79] 98.33 [91.85, 104.51]
0.8 49.16 [42.32, 56.08] 53.89 [47.27, 60.63] 53.24 [48.84, 57.62]
0.9 41.43 [34.60, 48.43] 30.75 [24.14, 37.87] 18.76 [15.84, 21.91]

mid (57)

0.1 11.14 [8.94, 13.45] 87.80 [84.56, 91.10] 208.62 [197.42, 220.80]
0.2 18.06 [14.42, 21.83] 82.11 [77.84, 86.44] 215.65 [201.93, 229.13]
0.3 18.66 [14.44, 23.15] 64.27 [59.86, 68.72] 123.73 [113.20, 134.11]
0.4 12.86 [9.19, 16.88] 52.37 [46.91, 57.77] 63.98 [56.91, 70.96]
0.5 7.02 [4.47, 9.94] 39.89 [35.11, 44.74] 29.38 [24.95, 33.67]
0.6 3.24 [1.83, 4.96] 34.44 [30.73, 38.43] 13.96 [11.13, 17.05]
0.7 1.20 [0.59, 1.92] ∞ 8.60 [6.20, 11.76]
0.8 0.38 [0.11, 0.75] ∞ 8.55 [5.96, 11.71]
0.9 0.11 [0.01, 0.27] ∞ 9.22 [6.42, 12.60]
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Figure S5: The Dice score of UniverSeg across varying thresholds for the MSD-BraTS
dataset.
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