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Abstract

Primary Central Nervous System (PCNS) lymphoma is an aggressive brain tumor which
segmentation on magnetic resonance imaging (MRI) is important to enhance diagnosis and
follow-up. The rise of segmentation foundation models (FM) for segmentation offers a
potential alternative to classical supervised deep learning approaches. There are generic
computer vision FMs such as Segment Anything Model (SAM) and FMs specialized for
medical images (e.g. MedSAM, UniverSeg). Nevertheless, their value on challenging tasks
such as lymphoma segmentation on clinical routine data has not been thoroughly studied.
In this paper, we assessed the performance of several FMs (SAM, MedSAM, UniverSeg) for
lymphoma segmentation and compared them to a classical supervised learning with nnU-
net. In addition, we performed experiments on the public dataset MSD-BraTS so that
others can reproduce our findings. We found that nnU-net outperformed FMs by vast and
statistically significant margins. For the lymphoma clinical routine dataset, the difference
between nnU-Net and the best FM was about 19 percent points of Dice. For MSD-BraTS, it
was about 10 percent points. The studied FMs fall short in these two complex segmentation
tasks. The poor performance of MedSAM and UniverSeg was particularly disappointing
as these FMs are dedicated to medical images. Thus, these approaches do not eliminate
the need for task-specific models, at least in the case of brain tumour segmentation, and
3D supervised learning (e.g. with nnU-Net) remains an essential tool. Trained models for
both tasks, code and box prompts (for MSD-BraTS) are available at https://github.

com/GuanghuiFU/medical_cv_foundation_eval.

Keywords: Lymphoma, foundation model, SAM, MedSAM, UniverSeg, Brain tumour,
Segmentation, Deep learning
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1. Introduction

Primary central nervous system (CNS) lymphoma (PCNSL) is a rare cancer, character-
ized by its rapid development and high mortality rate, which poses significant challenges
in clinical diagnosis, treatment planning and follow-up (Schaff and Grommes, 2022). Auto-
mated segmentation tools are critical for clinical care as well as for research to deepen our
understanding of the disease. However, few studies have been devoted to segmentation of
PCNSL (Pennig et al., 2021; El Jurdi et al., 2024) unlike other types of brain tumours such
as gliomas, e.g. (Ghaffari et al., 2019; Liu et al., 2021; van Kempen et al., 2021). Brain
tumour segmentation is a complex task due to variable location, shape and appearance.
Besides, lymphomas often include a varying number of lesions, which is rare for gliomas.
The task is even more complex when dealing with clinical routine data which is highly
heterogeneous.

Recently, foundation models (FM) for image segmentation have been proposed, (Kir-
illov et al., 2023; Huang et al., 2023; Mazurowski et al., 2023; Zhang et al., 2023). They
have several potential advantages over classical fully-supervised segmentation models: they
require none or limited annotated training data and reduce computational burden. Segment
Anything Model (SAM) (Kirillov et al., 2023) is a generic computer vision FM which allows
interactive segmentation with prompts. Specialized FMs for medical images have also been
trained. UniverSeg (Butoi et al., 2023) was trained on extensive medical imaging data.
MedSAM (Ma et al., 2024) is a version of SAM fine-tuned on medical data. The authors
claim that MedSAM can potentially eliminate the need for task-specific models.

Independent evaluations are needed to assess whether these FMs can replace fully-
supervised segmentation. Several works have compared FMs to supervised approaches for
medical image segmentation. However, most of them deal with SAM (He et al., 2023; Huang
et al., 2023; Mazurowski et al., 2023; Cheng et al., 2023; Wald et al., 2023; Zhang et al.,
2023; Hu and Li, 2023; Hu et al., 2023; Mattjie et al., 2023) and we could only find one
evaluation paper on UniverSeg (Kim et al., 2023) and none on MedSAM. Three preprints
(Pan et al., 2023; Wei et al., 2023; Wang et al., 2023) included an evaluation of MedSAM
but these papers were focused on introducing a different method and not on benchmarking
of FMs. One external evaluation of UniverSeg (Kim et al., 2023) found that its performance
was comparable to that of nnU-Net (Isensee et al., 2021). However, it dealt with prostate
segmentation, a task for UniverSeg was already pretrained and which is much simpler than
lymphoma segmentation, due to the lower variability of the prostate in terms of shape,
location and appearance. Moreover, many benchmarks (He et al., 2023; Huang et al., 2023;
Mazurowski et al., 2023; Cheng et al., 2023; Roy et al., 2023; Hu et al., 2023; Mattjie et al.,
2023; Pan et al., 2023; Xu et al., 2023) rely on prompts generated from ground truth which
does not correspond to a ”real-life” setting. Some studies (Cheng et al., 2023; Wald et al.,
2023) introduced randomness or jittering to ground-truth prompts but we don’t know if
this correctly mimics the users habits.

Our study compares supervised learning, using nnU-net (Isensee et al., 2021), and FMs
for segmentation of PCNS lymphoma on clinical routine MRI. We used a dataset of 112
patients with PCNSL acquired with different sequence parameters, sequence types (spin
echo vs gradient echo), 2D or 3D sequences, resolutions, and MRI scanners. Since this
clinical routine dataset cannot be shared, we complement our work with experiments on a
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subset of the open glioma dataset MSD-BraTS (Antonelli et al., 2022; Menze et al., 2014)
in order for others to reproduce our work. Compared to previous evaluations, our study has
the following novel features: i) comparison of MedSAM and UniverSeg in addition to SAM;
ii) use of highly heterogeneous clinical routine data; iii) manual box prompts (rather than
from ground-truth); iv) thorough evaluation with both inferential and descriptive statistics.

2. Materials and Methods

2.1. Datasets

Lymphoma dataset. We studied 117 patients with primary CNS lymphoma. The study
was approved by the Institutional Ethical Committee (Pitié Salpêtrière Hospital, Ile-de-
France VI, n°DC-2009-957) and by the French Data Protection Authority (CNIL, Com-
mission Nationale de l’Informatique et des Libertés, DR 2013-279). According to French
regulation, consent was waived as these images were acquired as part of the routine clinical
care of the patients. Each patient had a T1-weighted MRI after gadolinium injection. The
images were acquired as part of clinical routine and were thus not harmonized (different
MRI scanners, types of sequences, resolutions, contrast to noise, etc.).

The full dataset was annotated by a certified neuroradiologist (L.N.) with four years of
experience in neuro-oncology imaging. A subset of 50 cases was independently annotated
by a certified radiologist (D.H.) with one year of experience in neuro-oncology imaging.
The computed inter-rater variability (mean and 95% confidence interval computed using
bootstrap on the 50 samples) metrics were: Dice coefficient 81.17 [77.76, 84.50]; Hausdorff
95th percentile distance: 6.99 [3.44, 11.46]; topological 3D error: 2.12 [1.16, 3.38]. Please
refer to section 2.3 for details about the metrics.

Each MRI volume in this dataset was resized and resampled to isotropic 1×1×1mm3

voxels and dimensions of 240×240×160 using resample and resize operations from Tor-
chIO (Pérez-Garćıa et al., 2021). We also rescale the intensity to a range of 0 and 1. We
removed five subjects because the preprocessing failed (wrong dimensions). The final lym-
phoma MRI dataset comprises 112 patients (60 females, 51 males, one unspecified) aged
32-86 years (mean 66.13). It includes 92 isotropic (or quasi-isotropic) 3D acquisitions and
20 non-isotropic 2D acquisitions across different field strengths (3T: 53 subjects, 1.5T: 53,
1.0T: 6), manufacturers (GE Healthcare: 93, Philips: 11, Siemens: 8). In-plane resolution
ranges from 0.39 mm to 1.2 mm and slice thickness ranges from 0.29 mm to 8.0 mm. The
example images in Figure 1 illustrate the variability in lesion appearance, location and im-
age quality. The dataset was randomly split into a training/validation set with 57 patients
and a test set with 55 patients. The test set was only used to validate the models.

MSD-BraTs dataset. We also conducted experiments on the MSD-BRATS public dataset
from the medical segmentation decathlon challenge (Antonelli et al., 2022). BraTS is a
dataset of patients with glioblastoma or lower-grade glioma, manually segmented by expert
raters (Simpson et al., 2019). The downloaded dataset has already undergone uniform
pre-processing, including co-registration to a common template, standardization to 1 mm3

resolution, and skull stripping. To be as similar as possible to lymphoma segmentation task,
we selected the T1-weighted MRI after gadolinium injection and focused on the enhancing
tumor as the target region. In order to have the approximately the same sample size for the
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Figure 1: Examples of clinical T1-weighted MR images of patients with PCNS lymphoma.
Each example shows the MRI image, the same image overlaid with the ground
truth segmentation, and a zoom in of the area(s) marked with a box. Please note
that the boxes shown here correspond the zoomed-in area and not to the box
prompts provided to the foundation models.

two tasks, we randomly selected 113 patients for our experiments1. They were subsequently
randomly split into a training/validation set with 58 patients and a test set comprising 55
patients. The test set was only used to evaluate the models.

2.2. Segmentation methods

nnUNet. nnU-Net is a supervised deep-learning segmentation method (Isensee et al.,
2021) which has been shown to be one of the most consistently effective algorithms across
many medical applications (Antonelli et al., 2022). Schematic architectures of the different
tested approaches are presented in the appendix (Figure S1). During the training time, 5-
fold cross-validation is executed on the training/validation data for 1000 epochs of training,
to select the optimal configuration.

SAM and MedSAM. SAM is an FM which has undergone training on a dataset compris-
ing 11 million images and 1.1 billion masks (Kirillov et al., 2023).Our experiments included
various versions of the SAM model, including SAM-vit-b, SAM-vit-l, and SAM-vit-h. These
models, trained with progressively larger numbers of masks, vary in their parameter sizes.
MedSAM (Ma et al., 2024) is a medically fine-tuned version of the smallest SAM model
variant (vit-b) which has been trained with over one million medical image-mask pairs.

Both SAM and MedSAM require a prompt from the user for each image to be seg-
mented. The prompt can take different forms including points and boxes. We chose box
prompts which have been suggested to lead to better performance in medical segmentation
tasks (Wald et al., 2023). One author (G.F.) manually annotated 3D box prompts in each
test volume. The number of boxes is variable, to ensure complete coverage when multi-
ple lesions are present. These 3D boxes are then transformed into 2D slice-level prompts.

1. Experiments on lymphoma include 112 patients because one preprocessing defect was only identified
afterwards.
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Utilizing these prompts, SAM (or MedSAM) infers the segmentation in each 2D slice. Sub-
sequently, these predictions are stacked into 3D volume. The time taken to draw the box
prompt for one image was 76.18±26.7 (in seconds; mean± standard-deviation) for lym-
phoma and 72.15±16.67 for MSD-BraTs. An example of 3D box prompt is depicted in
Figure 2. In several other papers (He et al., 2023; Huang et al., 2023; Mazurowski et al.,
2023; Ma et al., 2024), box prompts were generated from ground truth segmentation. We
believe this does not reflect realistic usage. However, as a comparison, we also provide
results obtained by computing box prompts from ground truth in appendix C.

Figure 2: Example of a manually drawn 3D box prompt in a patient with lymphoma.

UniverSeg. UniverSeg is designed to solve new medical segmentation tasks without retrain-
ing, leveraging the new CrossBlock mechanism for information transfer from the support
set to the query image (Butoi et al., 2023). The support set is a small annotated dataset for
the target task. UniverSeg’s training encompasses 53 datasets across 26 medical domains
and 16 imaging modalities. The size of the support set can range from 1 to 64.

In the UniverSeg experiments, we initially converted the 3D volumes into 2D slices,
resizing them from their original dimensions of 240×240 to 128×128 to meet the model’s
architectural requirements. We then devised various support set configurations. UniverSeg
then processes each MRI slice in sequence. Upon completing all 2D slice predictions, these
are resized to their original resolution (from 128×128 back to 240×240) and reconstituted
into a 3D volume. The support set can include up to 64 images. We employed different
strategies to examine the performance impact of different support sets. Moreover, UniverSeg
generates soft predictions and we experimented with different thresholds. Results with
different support sets and different thresholds are presented in Appendix D. In the rest
of the paper, we present results obtained with the best performing support sets (mid for
lymphoma, large for MSD-BraTs) and thresholds (0.8 for lymphoma and 0.7 for BraTS).

2.3. Performance metrics and statistical analysis

For selecting performance metrics, we followed the recommendations of Metrics Reloaded (Maier-
Hein et al., 2024), specifically employing the 3D Dice coefficient and the 95% 3D Hausdorff
distance (HD95). We also computed the 3D connected component error (Topo 3D) which
is the absolute difference in number of 3D connected components between the ground truth
and prediction. For each metric, we report its mean value as well as the corresponding
95% confidence interval (CI) computed using bootstrap over the independent test set. For
a subset of results (see Results and Discussion sections), we assessed whether the observed
differences in Dice score between models were statistically significant using paired T-tests
on the independent test set.
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2.4. Code, data and trained models availability

We made the repository2 publicly available, it contains: code, list of patients, box prompts,
support sets for MSD-BraTS and trained models for both lymphoma and MSD-BraTS.
MSD-BraTS data can be downloaded from the MSD website3. We cannot provide data and
prompts for the lymphoma dataset due to regulatory constraints.

3. Results

Results are presented in Table 1. Our experiments, conducted on both a private PCNS
lymphoma and the public MSD-BraTS glioma dataset, yielded consistent findings. Super-
vised training with a 3D nnU-Net outperformed the best FM (SAM, vit-b version) by a vast
margin: there was a statistically significant improvement of about 19 percent points of Dice
(p < 10−9) for the lymphoma dataset and of about 10 percent points for the MSD-BraTS
(p < 10−5). Similar results were observed for the HD95 metric: improvement of about
8m and 14mm with the 3D nnU-net compared to the best FM, for the lymphoma and the
MSD-BraTS datasets respectively. For the 3D topological errors, nnU-net also performed
in general better compared to FMs, to the exception of MedSAM-vit-b which had similar
results for this specific metric. Overall, findings from both tasks underscore that nnUNet-
3D consistently outperformed FMs. Comparative examples of lymphoma segmentation by
different models are illustrated in Figure 3. In addition, distribution of Dice scores on the
test set are presented in Figures S2 and S3 of Appendix B. Morever, the appendix also
contains 2D slices of all models results (Figures S6, S7, S8, S10, S11 and S12) as well
as 3D rendering for BraTS (Figure S9). Finally, Table S3 provides results obtained when
using annotations of rater D.H. as ground-truth (Table 1 uses annotation from L.N.).

Table 1: The performance of lymphoma and brain glioma segmentation on T1-weighted
MRI from clinical dataset and MSD-BraTS dataset. Results presented as mean
with 95% bootstrap confidence interval computed on the independent test set.

Task Model type Model Dice (in %) HD95 (in mm) Topo 3D

Lymphoma
2D

UniverSeg 35.91 [29.33, 42.70] 73.89 [69.47, 78.41] 56.06 [51.22, 60.91]
SAM-vit-b 63.21 [57.96, 68.15] 21.98 [16.45, 28.11] 10.72 [5.54, 17.52]
SAM-vit-l 60.80 [55.66, 65.77] 21.12 [15.87, 27.02] 8.94 [4.93, 13.98]
SAM-vit-h 60.13 [54.98, 65.14] 22.46 [17.04, 28.40] 9.63 [5.65, 14.52]
MedSAM-vit-b 55.44 [49.78, 60.96] 22.83 [16.94, 29.35] 2.69 [1.80, 3.69]
nnUNet-2d 73.99 [67.49, 80.06] 9.78 [6.03, 14.19] 1.41 [0.93, 1.94]

3D nnUNet-3d 82.08 [77.05, 86.44] 7.96 [4.63, 11.92] 1.19 [0.81, 1.59]

MSD-BraTS
2D

UniverSeg 51.42 [45.03, 57.89] 68.73 [63.81, 73.79] 98.33 [98.85, 104.51]
SAM-vit-b 69.96 [65.78, 73.80] 11.63 [9.28, 15.07] 17.58 [12.44, 23.56]
SAM-vit-l 69.77 [65.60, 73.60] 12.00 [9.63, 15.36] 14.62 [9.96, 19.95]
SAM-vit-h 67.76 [63.77, 71.43] 12.55 [10.23, 15.81] 14.80 [10.71, 19.58]
MedSAM-vit-b 46.11 [41.39, 50.78] 12.28 [9.95, 15.80] 8.31 [5.67, 11.69]
nnUNet-2d 73.46 [66.76, 79.30] 11.90 [7.76, 17.19] 7.67 [5.07, 11.02]

3D nnUNet-3d 79.98 [74.42, 85.12] 6.47 [4.93, 8.31] 8.33 [5.61, 11.78]

2. https://github.com/GuanghuiFU/medical_cv_foundation_eval
3. http://medicaldecathlon.com/
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4. Discussion

In this paper, we compared the segmentation performance of supervised learning with nnU-
Net and various FMs on two datasets: a local clinical routine lymphoma dataset and the
public MSD-BraTS glioma dataset. Results were consistent across datasets and demon-
strated that 3D nnU-Net outperformed FMs by a vast margin.

Even though the performance gap was already large (10 percent points of Dice) and
statistically significant for the MSD-BraTS dataset, it was huge for the lymphoma dataset
(19 percent points). This difference comes mainly from a lower performance of FMs while
that of nnU-Net was quite stable. There may be different explanations to this. The lym-
phoma dataset has a wide heterogeneity which reflects clinical routine. Multiple distant
brain lesions is commonly seen in patients with lymphoma, while it is rare in patients with
gliomas. The lower performance of SAM could in principle be expected as it was not trained
medical data and this limitation is acknowledged by the authors (Kirillov et al., 2023). (He
et al., 2023; Cheng et al., 2023; Hu and Li, 2023) also found that SAM was outperformed
by U-nets by vast margins over different medical tasks. However, the massive superiority of
nnU-net is at odds with the results reported in the original papers of MedSAM (Ma et al.,
2024) and Universeg (Butoi et al., 2023). The MedSAM paper reports excellent Dice scores
which are comparable to that of a U-Net (Butoi et al., 2023). UniverSeg was reported to
have lower performance than nnU-net (Butoi et al., 2023) but the difference was much lower
than in our experiments (13 Dice points in original paper versus 46 points for lymphoma
and 28 points for MSD-BraTS).

Among FMs, SAM-based models gave in general better performance. The smaller
SAM-vit-b model tended to work slightly better than the larger version, but confidence
intervals are overlapping. Surprisingly, MedSAM performed worse than the corresponding
non-medical SAM-bit-b, by vast and statistically significant margins (8 points of Dice for
lymphoma, p < 10−6; 23 points for MSD-BraTS, p < 10−13). This is in contradiction
with what was reported in the original paper (Ma et al., 2024) where superior performance
compared to SAM was observed. UniverSeg resulted in very poor performances, as it was
not only vastly outperformed by nnU-Net but also by SAM (28 Dice points for lymphoma,
p < 10−8; 18 points for MSD-BraTS, p < 10−7). Lower performance on MSD-BraTS is
particularly surprising as UniverSeg was trained on BraTS (even though not the same task
and with more modalities than in our experiments). The results we report are the best that
we obtained across different thresholds and support sets (see Appendix D). Qualitatively,
we could notice that UniverSeg tended to focus only on segments with similar contrast,
neglecting the anatomical location inside the data. This limitation becomes particularly
evident given the variable position and contrast of lymphoma (Barajas Jr et al., 2021).

The 3D nnUNet demonstrated superior performance over its 2D version. It is thus
possible that the poor performance of FMs is in part due to their 2D nature which prevents
them from using the complex 3D information. Nevertheless, the performance of FMs was
still inferior to that of the 2D nnUNet, indicating that this is likely not the only limitation.

Some previous works have generated prompts from ground truth. For comparison, we
also provided results obtained when generating prompts from ground truth (Appendix C).
The only setting that led to comparable results between SAM and nnU-Net was when 2D
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prompts generated from ground truth were provided. We believe this is clearly not a realistic
scenario as the box perfectly fits the ground truth on every slice.

Our work shows that the studied FMs, even UniverSeg and MedSAM which are dedi-
cated to medical images, are unsuitable for two important segmentation tasks. There may
be several underlying explanations. As mentioned above, the 2D nature of the studied
FMs is certainly a drawback but is likely not the only explanation given their overall poor
delineation of contours. Regarding UniverSeg, it seems that the support set mechanism
is insufficient to adapt to complex lesions disseminated throughout the brain. Regarding
MedSAM, it appears that its fine-tuning on medical images is not enough to make it a
universal tool. These observations underscore the importance of clearly defining the usage
scenarios for UniverSeg and MedSAM.

Our work has the following limitations. First, our results only concern two segmenta-
tion tasks, which are particularly difficult, and the situation could be different for other
tasks. Moreover, the field of FMs is advancing fastly. It is very well possible that better
results could be obtained with newer FMs. Furthermore, our provided prompts may have
imperfections. It is also possible that we have used UniverSeg in a suboptimal way, even
though we experimented with different support sets and thresholds. We have made prompts
and support sets openly available for MSD-BraTS for other researchers to experiment with
them and would be happy to be shown that there was a more optimal way to use FMs.

Figure 3: Ground-truth label vs predictions on three representative patients with lym-
phoma. Left: ground-truth superimposed on MRI. Right: 3D renderings of
ground-truth (label) and of predictions with different methods. One can see
that FMs generally provide very poor results. In particular, we can observe that
they are not able to accurately find the contours and cannot recover the 3D shape.
UniverSeg gives massive false positives remote from the lesions. nnU-Net-2D can,
in some cases, miss slices. nnU-Net-3D are overall satisfactory. Please refer to
Supplementary Figures S6, S7 and S8 for results on 2D slices across all models
for these three patients.
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Appendix A. Schematic overview of the tested segmentation methods

Figure S1 displays schematic overviews of the different tested segmentation methods.
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Figure S1: The model architectures of (a) nnUNet, (b) SAM and (c) UniverSeg.

Appendix B. Distribution of Dice score on the test set for different
models

Figure S2 and S3 display the Dice score distribution across the test set for different models
for lymphoma and MSD-BraTs tasks. For the lymphoma dataset, the variability (repre-
sented by the interquartile range - IQR) is lower for the best performing model (3D nnU-net)
compared to other models. For the BraTS dataset, the IQR is similar for nnU-Net-3D and
SAM, despite a much higher median value for the former. MedSAM, UniverSeg and nnU-
Net-2D display a larger variability. In general, the variability tends to be higher for lower
performing models. Nevertheless, note that for all models there are a few patients for which
the performance is very poor.

Appendix C. Generating box prompts from ground truth segmentation

In this study, we manually constructed prompts for SAM and MedSAM experiments. Some
other works have generated prompts from ground truth. We do not advocate for such ap-
proach as we believe it is a circular reasoning: if real labels are already available, automated
methods would be redundant. Nevertheless, we conducted experiments to compare the per-
formance when generating prompts from ground-truth to our manual box prompts. The
details of these experiments are as follows:

• 3D-manual: our manually labeled 3D box prompts.
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Figure S2: Boxplot illustrating the distribution of Dice score in different models for lym-
phoma data. Every box is bounded by the lower quartile (Q1) and the upper
quartile (Q3), with the centre line representing the median. Whiskers extend
from the box to the furthest data point within 1.5x the interquartile range of
the box.

• 3D-gt-single: a single 3D prompt box generated from the ground-truth defined as the
smallest 3D area which encompasses all lesions.

• 3D-gt-multi: multiple 3D boxes are generated: one for each connected component of
the ground-truth (only relevant for lymphomas).

• 2D-gt-single: a different 2D box prompt for each slice in the axial plane. Each box is
the smallest 2D area encompassing all lesions in a given slice.

• 2D-gt-multi: same as 2D-gt-single but with possibly multiple prompts per slice, cor-
responding to the different lesions (only relevant for lymphomas) .

Based on the results presented in Table 1, the SAM-vit-b model achieved the best per-
formance among SAM models. Consequently, we selected this version for our experiments.
Results with different box prompts are provided in Table S1.

The experimental results indicate that SAM-b with manual annotation (3D-manual)
outperforms a single 3D box prompt box generated from real labels (3D-gt-single). The
advantage of 3D-manual over 3D-gt-single is attributed to our manual annotations focusing
on the main lesion area, whereas 3D-gt-single may include unnecessarily large borders due
to pixels distant from the lesion center, adversely affecting performance. This effect is par-
ticularly noticeable in lymphoma data. On the contrary, the 3D-gt-multi approach, where
a bounding box is drawn for each connected region, resulted in a substantial improvement
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Figure S3: Boxplot illustrating the distribution of Dice score in different models for MSD-
BraTs data. Every box is bounded by the lower quartile (Q1) and the upper
quartile (Q3), with the centre line representing the median. Whiskers extend
from the box to the furthest data point within 1.5x the interquartile range of
the box.

but the Dice was still about 9 percent points lower than that of the 3D nnU-Net. Never-
theless, it resulted in a small improvement in HD95. The generation of 2D box prompts
from ground truth resulted in massive performance enhancement providing results which
are better than those of nnU-Net (the difference is moderate in terms of Dice score but
substantial in terms of HD95). This demonstrates that SAM-based segmentation models
can well capture lesion borders when given optimal prompts. However, this correspond to
a completly unrealistic scenario as the ground-truth was used to generate 2D boxes that
perfectly match the lesions on every slice.

Appendix D. UniverSeg under different thresholds

As mentioned above, we test different strategies to build the support set. Specifically,
we chose one slice from each training scan, selecting those with the largest, smallest, and
medium lesion proportions (denoted as large, small, and mid). We conducted an additional
experiment where we combined slices with the largest and smallest lesion proportions to
investigate performance at the maximum setting of 64 images (large+small experiment).
Also, we experimented with different thresholdings of the soft predictions generated by
UniverSeg, from 0.1 to 0.9. Results are presented in Table S2 and Figures S4 and S5.
The small support set setting produces almost no predictions. For lymphoma, large and
mid setting provided comparable results. For MSD-BraTS, the large setting proved more
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Table S1: Comparison between our 3D manual box prompts and different box prompts
generated from ground-truth (denoted as gt). Please refer to the text for the ex-
planation of the different strategies used to generate prompts from ground truth.
Results presented as mean with 95% bootstrap confidence interval computed on
the independent test set.

Data Prompt Model Dice HD95 Topo3D

Lymphoma

3D-manual

SAM-vit-b

63.21 [57.96, 68.15] 21.98 [16.45, 28.11] 10.72 [5.54, 17.52]
3D-gt-single 45.82 [37.84, 53.80] 19.61 [15.89, 23.60] 58.88 [38.80, 82.54]
3D-gt-multi 73.12 [70.03, 76.28] 6.17 [5.27, 7.12] 10.19 [6.24, 14.74]
2D-gt-single 75.17 [69.73, 80.16] 7.50 [5.32, 9.90] 9.09 [4.57, 14.22]
2D-gt-multi 86.33 [84.35, 88.24] 1.91 [1.68, 2.19] 3.96 [2.20, 5.91]
None nnUNet-2d 73.99 [67.49, 80.06] 9.78 [6.03, 14.19] 1.41 [0.93, 1.94]
None nnUNet-3d 82.08 [77.05, 86.44] 7.96 [4.63, 11.92] 1.19 [0.81, 1.59]

MSD-BraTs

3D-manual
SAM-vit-b

69.96 [65.78, 73.80] 11.63 [9.28, 15.07] 17.58 [12.44, 23.56]
3D-gt-single 64.68 [60.55,68.95] 14.23 [12.46, 16.46] 25.62 [18.89, 33.78]
2D-gt-single 82.22 [79.39, 84.90] 4.46 [3.78, 5.23] 7.45 [5.04, 10.35]
None nnUNet-2d 73.46 [66.76, 79.30] 11.9 [7.76, 17.19] 7.67 [5.07, 11.02]
None nnUNet-3d 79.98 [74.42, 85.12] 6.47 [4.93, 8.31] 8.33 [5.61, 11.78]

efficient. Predictions with thresholds below 0.7 tended to segment all high-signal regions,
resulting in many meaningless regions.
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Figure S4: The Dice score of UniverSeg across varying thresholds for the lymphoma dataset.
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Table S2: Influence of different strategies to define the support set and of different threshold
on UniverSeg results. Results presented as mean with 95% bootstrap confidence
interval computed on the independent test set.

Data Support set Threshold Dice HD95 Topo 3D

Lymphoma

large (57)

0.1 7.65 [5.68, 9.89] 92.82 [88.81, 96.89] 168.81 [154.48, 182.70]
0.2 12.15 [9.15, 15.51] 89.54 [85.32, 93.75] 170.02 [158.37, 181.76]
0.3 16.41 [12.58, 20.67] 87.55 [83.31, 91.87] 165.20 [153.91, 176.44]
0.4 20.59 [16.04, 25.65] 85.67 [81.41, 90.02] 158.72 [148.74, 168.59]
0.5 24.38 [19.17, 30.07] 84.12 [79.81, 88.56] 136.41 [128.74, 143.98]
0.6 27.79 [22.01, 33.99] 82.60 [78.08, 87.22] 115.89 [109.20, 122.65]
0.7 30.93 [24.77, 37.41] 80.46 [75.77, 85.25] 91.35 [85.39, 97.33]
0.8 33.65 [27.15, 40.45] 78.01 [73.32, 82.91] 68.76 [63.94, 73.54]
0.9 35.43 [28.59, 42.21] 73.96 [69.13, 78.81] 41.33 [37.96, 44.87]

mid (57)

0.1 9.71 [7.43, 12.34] 91.41 [87.30, 95.47] 223.13 [206.89, 239.02]
0.2 15.80 [12.31, 19.69] 86.60 [82.44, 90.83] 202.15 [189.06, 214.89]
0.3 20.93 [16.49, 25.77] 84.05 [79.90, 88.36] 176.35 [164.52, 187.57]
0.4 25.40 [20.29, 30.98] 82.12 [77.89, 86.51] 152.70 [142.44, 162.69]
0.5 29.12 [23.58, 35.08] 80.22 [75.99, 84.57] 131.52 [122.41, 140.28]
0.6 32.09 [26.18, 38.33] 78.38 [74.16, 82.70] 104.54 [97.15, 111.57]
0.7 34.47 [28.22, 41.00] 76.53 [72.18, 80.93] 79.13 [73.24, 85.09]
0.8 35.91 [29.33, 42.70] 73.89 [69.47, 78.41] 56.06 [51.22, 60.91]
0.9 35.50 [28.73, 42.37] 67.51 [62.50, 72.63] 31.07 [27.87, 34.41]

large+small (64)

0.1 10.00 [7.60, 12.76] 91.73 [87.66, 95.73] 239.76 [224.17, 254.91]
0.2 16.13 [12.46, 20.23] 88.53 [84.31, 92.70] 224.91 [210.74, 238.96]
0.3 21.05 [16.55, 26.05] 86.26 [81.93, 90.61] 197.76 [184.67, 210.31]
0.4 25.02 [19.85, 30.61] 84.02 [79.70, 88.47] 169.83 [158.31, 181.57]
0.5 27.94 [22.25, 33.83] 81.82 [77.27, 86.44] 141.13 [130.81, 150.98]
0.6 29.85 [23.89, 36.04] 80.09 [75.37, 84.81] 111.61 [103.20, 119.65]
0.7 30.99 [24.81, 37.34] 78.17 [73.38, 82.90] 83.39 [76.89, 89.70]
0.8 31.09 [24.71, 37.69] 75.81 [70.96, 80.62] 57.56 [52.69, 62.33]
0.9 29.54 [22.97, 36.24] 70.49 [65.48, 75.59] 32.50 [29.39, 35.72]

MSD-BraTs

large (57)

0.1 14.85 [12.56, 17.30] 83.10 [80.14, 86.26] 120.85 [113.65, 128.31]
0.2 22.02 [18.84, 25.34] 81.30 [78.27, 84.50] 121.87 [113.80, 129.69]
0.3 29.46 [25.55, 33.57] 80.68 [77.59, 83.94] 139.18 [129.78, 148.73]
0.4 37.50 [32.94, 42.24] 79.99 [76.72, 83.39] 153.24 [143.96, 162.05]
0.5 44.65 [39.34, 50.04] 78.44 [74.63, 82.05] 154.25 [146.71, 161.65]
0.6 49.64 [43.83, 55.53] 74.96 [70.84, 79.23] 141.45 [133.64, 148.80]
0.7 51.42 [45.03, 57.89] 68.73 [63.81, 73.79] 98.33 [91.85, 104.51]
0.8 49.16 [42.32, 56.08] 53.89 [47.27, 60.63] 53.24 [48.84, 57.62]
0.9 41.43 [34.60, 48.43] 30.75 [24.14, 37.87] 18.76 [15.84, 21.91]

mid (57)

0.1 11.14 [8.94, 13.45] 87.80 [84.56, 91.10] 208.62 [197.42, 220.80]
0.2 18.06 [14.42, 21.83] 82.11 [77.84, 86.44] 215.65 [201.93, 229.13]
0.3 18.66 [14.44, 23.15] 64.27 [59.86, 68.72] 123.73 [113.20, 134.11]
0.4 12.86 [9.19, 16.88] 52.37 [46.91, 57.77] 63.98 [56.91, 70.96]
0.5 7.02 [4.47, 9.94] 39.89 [35.11, 44.74] 29.38 [24.95, 33.67]
0.6 3.24 [1.83, 4.96] 34.44 [30.73, 38.43] 13.96 [11.13, 17.05]
0.7 1.20 [0.59, 1.92] ∞ 8.60 [6.20, 11.76]
0.8 0.38 [0.11, 0.75] ∞ 8.55 [5.96, 11.71]
0.9 0.11 [0.01, 0.27] ∞ 9.22 [6.42, 12.60]
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Figure S5: The Dice score of UniverSeg across varying thresholds for the MSD-BraTS
dataset.

Appendix E. Lymphoma segmentation results on annotations by the
second rater

We performed an additional evaluation on 30 lymphoma patients annotated by the second
radiologist (D.H.) which were part of the test set (unfortunately, 20 of them are from training
set patients and thus unusable for testing). As described in Section 2.1, D.H. contributed
50 annotations for the purpose of calculating inter-rater reliability, 30 of which were part of
the test set. We evaluated the performance on these 30 annotations to study how models
perform with annotations provided by another radiologist. In particular, we were interested
to study if nnU-Net took advantage of using annotations from the same rater (as is the
case for the results presented in Table 1 which rely on annotations from L.N.). Results
are presented in Table S3. There is a small decrease in performance for nnU-Net-3D (∼3
percent points) but it remains vastly superior to FMs. The difference for nnU-Net-2D is
larger (∼6 points) but its performance remains above that of all FMs and vastly superior
to MedSAM and UniverSeg. To conclude, it seems that there is little influence of the choice
of the rater on the performance of nnU-Net-3D.

Appendix F. 2D visualizations of lymphoma segmentation results

Figures S6, S7 and S8 display 2D results of the different models for the three patients with
lymphoma shown in 3D in the main text (Figure 3). For each case, we comment upon the
results of each model in the caption.
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MRI Label UniverSeg MedSAMSAM nnUNet-2D nnUNet-3D

Figure S6: Ground-truth label vs predictions on lymphoma data: case (a). Upper row:
full MRI. Lower row: zoom-in. FMs results are all very poor. They are all
inconsistent across slices. UniverSeg vastly underestimates the lesion boundaries
but also produces many produces false positives remote from the lesion (these
can be better appreciated in the 3D renderings in Figure 3). SAM and MedSAM
both provide massive over- and under-estimations depending on the area. nnU-
Net-2D completely misses some slices as was already clear from Figure 3. The
result of nnU-Net-3D is in general acceptable even though it misses small parts
of the tumor. Note that we can also see that the ground-truth label has some
minor imperfections.
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MRI Label UniverSeg MedSAMSAM nnUNet-2D nnUNet-3D

MRI Label UniverSeg MedSAMSAM nnUNet-2D nnUNet-3D

Figure S7: Ground-truth label vs predictions on lymphoma data: case (b). Upper row: full
MRI. Lower row: zoom-in. FMs results are overall poor. UniverSeg misses a
large part of the bigger lesion and, again, produces many false positives (see also
Figure 3). SAM and MedSAM provide very poor results on many slices. nnU-
Net-2D misses one lesion. The results of nnU-Net-3D are good, in particular it
is able to segment all lesions. Note that we can also see that the radiologist took
a conservative margin in that specific annotation (the overall contour is about
one voxel smaller than in the other cases).
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MRI Label UniverSeg MedSAMSAM nnUNet-2D nnUNet-3D

Figure S8: Ground-truth label vs predictions on lymphoma data: case (c). Upper row: full
MRI. Lower row: zoom-in. FMs display various errors even though less than in
Figures S6 and S7. UniverSeg tends to underestimate the lesion boundaries and,
as in almost every case, produces false positives remote from the lesion (see also
Figure 3). SAM and MedSAM in general overestimate lesion boundaries and are
inconsistent across slices due to their 2D nature. nnU-Net-2D and nnU-Net-3D
both look satisfactory even though nnU-Net-3D is more accurate.
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Table S3: The performance of lymphoma segmentation on labels provided by the second
annotator (D.H.) on clinical dataset T1-weighted MRI. Results presented as mean
with 95% bootstrap confidence interval computed on the independent test set.

Task Model type Model Dice (in %) HD95 (in mm) Topo 3D

Lymphoma
2D

UniverSeg 29.16 [20.50, 37.99] 64.5 [57.79, 71.41] 30.03 [25.23, 35.13]
SAM-vit-b 62.56 [56.30, 68.23] 29.50 [21.52, 38.22] 12.37 [5.63, 23.4]
SAM-vit-l 60.74 [54.5, 66.47] 27.91, [20.35, 36.52] 9.97 [5.0, 17.87]
SAM-vit-h 60.33 [54.04, 66.07] 28.31 [20.75, 36.91] 11.83 [5.83, 20.1]
MedSAM-vit-b 53.16 [45.70, 60.27], 29.87 [21.44, 38.84] 4.87 [2.73, 7.6]
nnUNet-2d 67.66 [58.10, 76.36] 16.57 [9.41, 24.49] 2.83 [1.53, 4.8]

3D nnUNet-3d 77.02 (69.82, 82.83] 14.44 [7.38, 22.49] 3.07 [1.7, 4.97]

Appendix G. 2D and 3D visualizations of MSD-BraTS segmentation
results

Figure S9 displays the 3D renderings of results obtained for three representative patients
from MSD-BraTS. Figures S10, S11 and S12 display 2D results of the different models for
these three patients. For each case, we comment upon the results of each model in the
caption.

Label
 UniverSeg
 SAM
 MedSAM
 nnUNet2D
 nnUNet3d


(a)


(b)


(c)


Figure S9: Ground-truth label vs predictions on three representative patients from MSD-
BraTS. Left: ground-truth superimposed on MRI. Right: 3D renderings of
ground-truth (label) and of predictions with different methods. As for lym-
phomas, FMs do not recover the 3D shape of the tumor. Besides, UniverSeg
produces a lot of false positives distant from the lesion.
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MRI Label UniverSeg MedSAMSAM nnUNet-2D nnUNet-3D

MRI Label UniverSeg MedSAMSAM nnUNet-2D nnUNet-3D

Figure S10: Ground-truth label vs predictions on MSD-BraTS data: case (a). Upper row:
full brain. Lower row: zoom-in. All FMs perform poorly but MedSAM and
UniverSeg results are particularly disastrous. UniverSeg massively underseg-
ments, while also producing false positive remote from the main lesion. Med-
SAM massively oversegments on one side of the tumor and, at the same time,
largely misses the other side. SAM generates several false positive areas, as
can be better seen on coronal and sagittal slices. nnU-Net-2D makes several
errors but still does much better than FMs. nnU-Net-3D is overall the best
performing even though some defects can be seen on the axial slice.
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MRI Label UniverSeg MedSAMSAM nnUNet-2D nnUNet-3D

MRI Label UniverSeg MedSAMSAM nnUNet-2D nnUNet-3D

Figure S11: Ground-truth label vs predictions on MSD-BraTs data: case (b). Upper row:
full brain. Lower row: zoom-in. All FMs result in a poor segmentation. Uni-
verSeg mostly undersegments the tumor. SAM and MedSAM struggle finding
the contours, alternating between over- and under-segmentations. nnU-Net-
2D and nnU-Net-3D both do a decent job even though the 3D version misses
a part of the tumor which is partly recovered by the 2D model. The latter
phenomenon was rarely found (in general, the nnU-Net-3D provides better re-
sults).
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Figure S12: Ground-truth label vs predictions on MSD-BraTs data: case (c). Upper row:
full brain. Lower row: zoom-in. Both FMs and nnU-Net-2D do a poor job,
even though the results of FMs are substantially worse. UniverSeg misses
most of the tumor. SAM and MedSAM have a very hard time identifying
boundaries. As for nnU-Net-2D, even though the axial plane looks decent, it
misses important parts of the tumor. nnU-Net-3D is clearly better than all
other models. However, one can appreciate (mostly on the sagittal slice) that
the boundaries are not particularly accurate.
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