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Abstract 

Background The global human footprint has fundamentally altered wildfire regimes, creating serious consequences 
for human health, biodiversity, and climate. However, it remains difficult to project how long‑term interactions 
among land use, management, and climate change will affect fire behavior, representing a key knowledge gap 
for sustainable management. We used expert assessment to combine opinions about past and future fire regimes 
from 99 wildfire researchers. We asked for quantitative and qualitative assessments of the frequency, type, and impli‑
cations of fire regime change from the beginning of the Holocene through the year 2300.

Results Respondents indicated some direct human influence on wildfire since at least ~ 12,000 years BP, though nat‑
ural climate variability remained the dominant driver of fire regime change until around 5,000 years BP, for most 
study regions. Responses suggested a ten‑fold increase in the frequency of fire regime change during the last 250 
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years compared with the rest of the Holocene, corresponding first with the intensification and extensification of land 
use and later with anthropogenic climate change. Looking to the future, fire regimes were predicted to intensify, 
with increases in frequency, severity, and size in all biomes except grassland ecosystems. Fire regimes showed differ‑
ent climate sensitivities across biomes, but the likelihood of fire regime change increased with higher warming sce‑
narios for all biomes. Biodiversity, carbon storage, and other ecosystem services were predicted to decrease for most 
biomes under higher emission scenarios. We present recommendations for adaptation and mitigation under emerg‑
ing fire regimes, while recognizing that management options are constrained under higher emission scenarios.

Conclusion The influence of humans on wildfire regimes has increased over the last two centuries. The perspective 
gained from past fires should be considered in land and fire management strategies, but novel fire behavior is likely 
given the unprecedented human disruption of plant communities, climate, and other factors. Future fire regimes are 
likely to degrade key ecosystem services, unless climate change is aggressively mitigated. Expert assessment com‑
plements empirical data and modeling, providing a broader perspective of fire science to inform decision making 
and future research priorities.

Keywords Biome, Climate change, Ecosystem services, Expert assessment, Fire regime, Holocene, Management

Resumen 

Antecedentes Las huellas humanas globales han alterado fundamentalmente los regímenes de fuegos, creando 
serias consecuencias para la salud humana, la biodiversidad y el clima. Sin embargo, resulta difícil proyectar cómo las 
interacciones a largo plazo entre el uso de la tierra, la gestión, y el Cambio Climático van a afectar el comportamiento 
del fuego, lo que representa un vacío clave en el conocimiento para la gestión sostenible. Usamos las apreciaciones 
de expertos para combinar opiniones sobre regímenes de fuegos pasados y futuros de 99 investigadores en el tema 
de fuegos de vegetación. Preguntamos por determinaciones cualitativas y cuantitativas de la frecuencia, tipo, e impli‑
caciones de los cambios en los regímenes de fuegos desde el inicio del Holoceno hasta el año 2300.

Resultados Quienes respondieron indicaron alguna influencia humana directa en los fuegos de vegetación desde 
al menos ~ 12.000 años atrás, en los que la variabilidad climática perduró como la conductora dominante de los 
cambios en los regímenes de fuego hasta hace aproximadamente unos 5.000 años, para la mayoría de las regiones en 
estudio. Las respuestas sugirieron que hubo un incremento de 10 veces en la frecuencia de cambios en los regímenes 
de fuego durante los últimos 250 años comparado con el resto del Holoceno, correspondiendo en primer lugar con 
la intensificación y expansión del uso de la tierra y luego con el Cambio Climático antropogénico. Mirando al futuro, 
predicen que los cambios en los regímenes de fuego se intensificarán, con incrementos en la frecuencia, severidad, 
y tamaño en todos los biomas con excepción de los ecosistemas de pastizales. Los regímenes de fuego muestran 
diferente sensibilidad climática a través de los biomas, aunque la probabilidad de cambio en el régimen de fuego se 
incrementa con mayores escenarios de calentamiento en todos los biomas. Predicen asimismo que la biodiversidad, 
el almacenamiento de Carbono, y otros servicios ecosistémicos, van a decrecer para la mayoría de los biomas bajo 
escenarios de mayores emisiones. Presentamos recomendaciones para la adaptación y mitigación bajo regímenes de 
fuego emergentes, mientras que reconocemos que las opciones de manejo están condicionadas bajo escenarios de 
mayores emisiones.

Conclusiones La influencia de los humanos en los regímenes de fuego se ha incrementado en las últimas dos 
centurias. Las perspectivas ganadas sobre incendios pasados deben ser consideradas en las estrategias de manejo 
de tierras y de fuego, aunque un nuevo comportamiento del fuego es probable, dado que la disrupción humana en 
las comunidades vegetales, en el clima, y en otros factores no tiene precedentes. Los regímenes de fuegos futuros 
probablemente degraden algunos servicios ecosistémicos clave, al menos que el Cambio Climático sea agresiva‑
mente mitigado. Las apreciaciones de los expertos complementan los datos empíricos y modelados, proveyendo una 
perspectiva más amplia de la ciencia del fuego para informar a los decisores y priorizar futuras investigaciones.

Background
Human alteration of land cover and climate is reshaping 
wildfire on Earth (Andela et al. 2017; Bowman et al. 2020; 
Davis 2021; Pereira et al. 2022; Ellis et al. 2022). Most ter-
restrial ecosystems have coevolved with fire over millions 

of years, and many require periodic disturbance to main-
tain ecosystem structure and function (Bond et al. 2005; 
Harris et  al. 2016). Yet, when fires exceed their histori-
cal patterns of intensity, extent, severity, seasonality, and 
frequency (hereafter fire regime; Fig. 1a), they can harm 
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biodiversity (Kelly et  al. 2020; Feng et  al. 2021), climate 
(IPCC 2021), and societies (Doerr and Santín 2016; John-
ston et al. 2021; Jones 2017). In some regions, recent state 
changes in fire regimes have reduced ecosystem services, 
including air quality, water availability, habitat, and eco-
system carbon storage (McClure and Jaffe 2018; Pausas 
and Keeley 2019; Collins et al. 2021; Xie et al. 2022). Such 
changes in fire regime can cause loss of life and property, 
degradation of health, acute risk to fire managers, emer-
gency evacuations, and other socioeconomic impacts 
(Balch et al. 2020; Raymond et al. 2020).

In the past and across large spatial scales, the dominant 
driver of fire regimes has been the interaction between 
climate and vegetation (Girardin et al. 2013; Abbott et al. 
2016; Harris et al. 2016; McDowell et al. 2020; Molinari 
et al. 2020). All aspects of climate, but especially patterns 
of precipitation and temperature influence plant com-
munity composition and its moisture content. Climate 
and weather also control ignition sources, with lightning 
being the most common natural source of wildfire. Con-
sequently, climate lays the foundation for fire regimes 
through fuel availability, flammability, and ignition like-
lihood (Bowman et  al. 2009; Scholten et  al. 2021; Chen 
et al. 2021a).

As humans modified global patterns of vegetation, igni-
tion, and climate over the past several millennia (Wat-
son et al. 2018; Abbott et al. 2019; McDowell et al. 2020; 
Ellis et  al. 2021), fire disturbance became progressively 
more anthropogenically influenced at local to global 
scales  (Hantson et  al. 2015; Nowacki and Abrams 2015; 
Lestienne et al. 2020; Hagmann et al. 2021) (Fig. 1a). For 
example, humans have directly modified vegetation type 
and density for 77% of the Earth’s terrestrial surface, pri-
marily through agriculture, with myriad consequences 
for fuel characteristics and ignition sources (Marlon et al. 
2008; Bowman et al. 2011; Balch et al. 2017; Watson et al. 
2018; Słowiński et al. 2022). Likewise, climate disruption 
has influenced all of the Earth’s ecosystems, supercharg-
ing wildfire in some regions (Turco et  al. 2017, 2018; 
Wasserman and Mueller 2023).

Understanding the characteristics and sensitivity of fire 
regime change is necessary for sustainable land manage-
ment as well as climate change mitigation, adaptation, 
and planning (Cochrane and Bowman 2021; Moritz et al. 
2014). However, our understanding is incomplete for 
relationships linking climate, land use, and fire regimes 
in the past, present, and future. In this context, we com-
bined scientific opinions about the drivers and conse-
quences of fire regime change in the Holocene and near 
future. Combining assessments from multiple sources 
allows an integrative evaluation of the range of possible 
futures complementary to numerical model projections 
(Morgan 2014; Sayedi et  al. 2020; Schuur et  al. 2013). 

We intended these assessments to address the current 
needs of decision makers and ecosystem managers to 
better understand and apply the consensus view from the 
research community.

Using the collected informed opinion from experts, we 
evaluated centennial to millennial-scale state changes 
(Fig. 1a) in past, present, and future fire regimes at both 
regional scales and biome levels. We were motivated by 
four topic questions: How have fire regimes varied dur-
ing the Holocene (the last ~ 11,700 years)? How likely are 
fire regime state changes under different future climate 
change scenarios? What component of ecosystems will 
be affected by potential future fire regimes? and What 
types of human activities could be the most effective for 
mitigation and adaptation under future fire regimes? We 
used a questionnaire to collect quantitative and qualita-
tive assessments from experts for specific biogeographic 
realms and biomes from around the world (Fig. 1b; Sup-
plementary Information).

Methods
We used expert assessment to evaluate the risk of fire 
regime change and its consequences in the future. The 
concept and initial preparation for this study emerged 
from a September 2016 paleofire workshop held in 
Beguey, France, supported by the PAGES (Past Global 
Changes) Global Paleofire Working Group 2. At that 
meeting and through 2020, we completed a literature 
review of both scientific and policy related documents 
about wildfires and fire regime change. Following best 
practices from expert assessment and expert elicitation 
(Bamber and Aspinall 2013; Morgan 2014; Sutherland 
and Burgman 2015; Sayedi et  al. 2020), we designed a 
structured questionnaire to gather scientific opinion on 
changes in fire regimes and their effects on ecosystems, 
climate, and societies (Supplementary Information). We 
focused on centennial-to-millennial changes in past, 
present, and future fire regimes across the globe (seven 
biogeographic realms and 11 biomes) to consider long-
term processes beyond observational and instrumental 
records. After two testing rounds, we distributed the final 
questionnaire containing 15 questions to 430 scientists 
with fire related expertise. To include both academic and 
applied wildfire experts, we invited coauthors from the 
papers in the background review as well as referrals from 
workshop participants and all respondents who filled out 
the questionnaire.

Of the 430 invitees, we collected 124 filled question-
naires from 99 respondents (included here as coauthors), 
with some respondents completing the questionnaire 
for more than one fire region, which explains the higher 
number of filled surveys. Respondents were from 23 
countries (Fig. S24) and were 46% female, 45% male, and 
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Fig. 1 a Conceptual diagram of fire regime characteristics and state changes for three example biomes. Fire regime is defined in terms 
of spatial (e.g., extent, type, patchiness), temporal (e.g., frequency, interval, seasonality), and physical (e.g., intensity, severity) fire characteristics. 
The size of flame in the figure represents fire extent, and the vertical placement of the flame represents fire type (e.g., surface vs. crown). The 
green and brown bands represent above‑ and below‑ground biomass, respectively. The vertical black dashed lines represent fire regime state 
change. The gray wedges represent fire seasonality before fire regime change: W: winter, Sp: Spring, S: summer and F: fall/autumn. Red dashed 
lines inside wedges represent new fire regime seasonality after state change b The location of the fire regions used in this study (Olson 2001) 
with the number of respondents per fire region
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9% unspecified (Table S2). The primary research disci-
plines, as identified by the respondents themselves, were 
paleoecology (55%), ecology (17%), and other fields, such 
as geography or geosciences (28%). Each response was 
specific to one biogeographic realm-biome combination, 
which we defined as “a fire region” (Fig. 1). We received 
responses for 70% of flammable land area worldwide 
(total land surface excluding rock, ice, and lakes; Fig. 1b 
and S1, Table S2), reflecting diverse global bioclimatic, 
socioeconomic, and fire regime characteristics (Olson 
et al. 2001).

The questionnaire included detailed background infor-
mation and instructions to reduce the effects of avail-
ability bias and increase the likelihood of commensurate 
responses across experts from different realms (Morgan 
2014; Sayedi et  al. 2020). The questionnaire included a 
description of representative concentration pathways 
(RCP) scenarios (Moss et  al. 2008) and predicted tem-
perature and precipitation (Supplementary Information). 
We also provided detailed definitions and references 
on the concepts of fire regime and state change (details 
in Supplementary Information-questionnaire). Briefly, 
we defined state change as a large and sustained depar-
ture from a set of specific system behaviors. Fire regime 
state changes can be triggered by disturbances of vary-
ing duration and intensity, including internal and exter-
nal drivers such as climate change, vegetation shifts, and 
human activities (Fig. 1a). These disturbances can result 
in reversible or permanent changes to the fire regime. For 
example, a state change in a fire regime may be expressed 
as a shift in the central tendency, such as a decrease in 
mean annual area burned, a change in overall variance, 
such as an increase in interannual variability of area 
burned, or in the frequency of events that exceed an eco-
logical threshold, such as a change in the return interval 
of crown fires (Scheffer et al. 2009).

The questionnaire focused on four topics: (1) past fire 
regimes, (2) current fire regime states, (3) future fire 
projections, and (4) interventions and management. For 
each section, respondents provided self-reported exper-
tise, confidence level, sources used to generate estimates 
(e.g., published or unpublished empirical data, profes-
sional opinion; Table S3), along with a list of sources of 
uncertainty (Table 1). For future fire behavior, we asked 
experts to provide estimates for short (2050), medium 
(2100), and long (2300) time frames. We included the 
2300-timestep to account for lags in the response of fire 
regime to disturbance, as it can take several decades or 
centuries to fully manifest. Although climate projections 
and estimates of system response become increasingly 
uncertain for distant time frames, we asked respond-
ents to think conceptually about the eventual fire regime 
state if the described climate conditions persisted. We 

compared estimates for all three time-steps with current 
fire regime.

For most of the quantitative questions, we asked for 
three quantiles (5% lower, 50% central, and 95% upper) 
to build a credible range of 90%. We primarily discuss 
the distribution of central estimates for the main arti-
cle, though full ranges are shown in the Supplemen-
tary Information. The qualitative questions included 
both open-ended and numerical responses. The open-
ended questions were analyzed using a thematic analy-
sis method, where we applied coded categories to each 
response. We calculated descriptive statistics in R version 
3.6.1 (R Core Team 2019). We used ArcGIS Pro 3.0 for 
spatial analyses and visualizations.

In the following sections, we present estimates and sug-
gestions based on experts’ responses, which we compare 
with relevant literature. Because not all fire regions have 
the same number of respondents, we focus on identifying 
general patterns and trends rather than providing spe-
cific results for individual regions with limited represen-
tation (though the comprehensive results by fire region 
are included in the Supplementary Information). Conse-
quently, we focus on general patterns and trends among 
biomes and biogeographic realms to create a more com-
prehensive and nuanced understanding of the global pat-
terns of fire regimes.

Results
Past and present drivers of fire regime
The median estimated number of fire regime state 
changes during the Holocene varied across biomes, rang-
ing from two (Tundra) to seven (Temperate grasslands, 
savannas, and shrublands) (Fig. S2). Respondents iden-
tified the timing of the three largest fire regime state 
changes in the Holocene, with 16% of responses suggest-
ing the Early Holocene (ca. 11,700-8,200 BP), 27% the 
Mid Holocene (ca. 8,200-4,200 BP), and 57% the Late 
Holocene (ca. 4,200-0 BP). Survey responses indicated 
an increase in fire regime changes after the Industrial 
Revolution in 1760 AD, with 20% of identified fire regime 
changes occurring since that time (Fig. S3). This sug-
gests a ~ 10-fold increase in the frequency of fire regime 
changes over the last 250 years compared with the rest 
of the Holocene. The Nearctic and Australasia regions 
may have experienced even larger recent changes in fire 
regime, with 30% and 36% of the identified fire regime 
changes occurring in the past 250 years, respectively.

Climate was identified as the main driver of fire regime 
changes during the Holocene (47% of responses), espe-
cially in the Early and Mid-Holocene. Direct human 
activity was the second most identified driver of changes 
(32%). The onset of strong human influence on fire 
regimes varied among regions (Fig. 2), but direct human 



Page 6 of 22Sayedi et al. Fire Ecology           (2024) 20:18 

influence was the greatest during the Late Holocene. 
For the post-industrial period (1950 AD-present), cli-
mate change and direct human activity were mentioned 
equally often as drivers (40% and 46%, respectively). Veg-
etation and fuel were mentioned the least for each time 
interval (Fig. S4), possibly because these factors respond 
to climate on centennial timescales, emphasizing the 
importance of temporal scale when considering drivers.

Respondents identified several dimensions of altered 
fire regimes over the past 250 years, including changes 
in fire frequency, extent, and severity (Fig. S5). There 
was a wide range of human-wildfire interactions identi-
fied that were specific to fire regions. For example, in 
Indo-Malayan Tropical forests, deforestation due to 
economic development has modified the fuel structure 
and ignition sources, potentially increasing fire activity 
in an ecosystem where it was historically rare. In mul-
tiple regions, other fire management strategies such as 
increased fire suppression and exclusion of Indigenous or 
traditional prescribed burning practices were recognized 
as potential drivers of increasing fuel loads and ulti-
mately increased fire severity, especially when coupled 
with recent temperature increases. In seven out of eleven 
biomes, respondents identified a change in fire regime 
since the Industrial Revolution (Fig. S3), with the median 
estimate of current fire regime duration lasting less 
than 200 years (Fig. S6). The duration of the current fire 
regime was less than 70 years for Tundra; Mediterranean 
forests, woodlands, and scrub; Tropical and subtropi-
cal moist broadleaf forests; and Tropical and subtropical 
grasslands, savannas, and shrubs (Fig. S6).

Timing and type of future fire regime change
Respondents provided estimates of fire regime change 
for their fire region in 2050, 2100, and 2300, based on the 
IPCC RCPs 2.6, 4.5, and 8.5, representing increasingly 
severe greenhouse gas emission scenarios. Most respond-
ents predicted that the likelihood of fire regime change 
would increase with time and climate change severity 
(Figs. S9-10). For example, under RCP8.5, nine biomes 
were predicted to have ≥ 50% chance of experiencing a 
fire regime change by 2050, compared to one biome for 
RCP2.6. However, by 2100 and 2300, five biomes were 
predicted to have a ≥ 50% likelihood of fire regime change 
under RCP2.6 (Fig.  3a and S9-10). The climate sensitiv-
ity—which we defined as the amount of increase in the 
likelihood of a fire regime change across RCP scenarios—
varied substantially among biomes. For example, RCP2.6 
was predicted to be enough to initiate a fire regime 
change for Tundra, whereas the predicted likelihood of 
fire regime change was much lower under RCP2.6 than 
RCP8.5 for Boreal forest (Fig.  3b and S11-12). Results 

from all scales, years, and scenarios are presented in the 
Supplementary Information.

The climate sensitivity estimates from this study 
agreed with many model-based studies projecting future 
changes in fire activity (Bowman et  al. 2020). Climate 
drivers such as fire weather and fire danger days are pro-
jected to increase in many areas of the globe (IPCC 2021), 
particularly in fire-prone regions such as the Mediterra-
nean basin, southwestern USA, and subtropical regions 
of the Southern Hemisphere (Bowman et al. 2017; Cook 
et al. 2022). An increase in extreme fire behavior is also 
projected in many regions such as the Amazon, western 
USA, Mediterranean and southern Australia (Turco et al. 
2018; Bowman et al. 2020). Substantial intensification of 
fire behavior is projected for higher latitudes through the 
end of the 21st century (Flannigan et al. 2013; Bergeron 
et al. 2010; Abbott et al. 2021; Talucci et al. 2022), though 
local fire patterns are expected to be heterogeneous 
(McCarty et al. 2021).

Respondents predicted an intensification of some com-
ponents of the fire regimes across biomes, with burned 
area, frequency, and severity increasing for all but a few 
biome-time-step combinations (Fig.  4). The magnitude 
of change generally increased with time and with higher 
emission scenarios (Figs. S13-16). These predictions 
are consistent with other studies, suggesting a substan-
tial intensification of fire regimes (i.e., an increase in 
fire extent, severity, and frequency) with greater warm-
ing. For example, panarctic wildfire emissions have been 
predicted to increase by 250% by 2100 under RCP8.5 
(Abbott et  al. 2016). Similarly, fire emissions in Finnish 
boreal forests have been predicted to experience a 190% 
increase, even under RCP4.5 (McCarty et  al. 2021). In 
Europe, burned area is predicted to increase between 180 
and 360% until the end of the century under RCP8.5, but 
less than 60% under RCP2.6 (Wu et al. 2015). In south-
ern Europe, burned area is projected to increase 5–50% 
per decade under high emission scenarios (Dupuy et al. 
2020), whereas with a 1.5° to 3 °C warming burned area is 
projected to increase 40–100% in Mediterranean Europe 
(Bowman et al. 2020). An increase in burned area is like-
wise predicted for the Amazon and western USA (Bow-
man et al. 2020; Abatzoglou et al. 2021). In the grasslands 
of central Asia, the potential burned area is expected to 
increase 13% by 2080 (Zong et al. 2020).

Contrary to most regions, less burning was predicted 
by experts for some parts of Africa under warmer sce-
narios. This is consistent with observations (Moritz et al. 
2012; Andela and van der Werf 2014) that reveal a more 
intense fire regime under cooler and wetter climates that 
favor fuel build-up in these dry regions (Daniau et  al. 
2013; Moritz et al. 2012). More generally, fire frequency 
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Fig. 2 Estimates of when the earliest human‑driven fire regime state changes occurred during the Holocene as estimated by respondents. a 75th 
percentile values of the earliest time humans were identified as a major driver of fire regime change by respondents. b Points represent individual 
responses; box plots represent the median, quartiles, most extreme points within 1.5 times the interquartile range (IQR), and points beyond 1.5 
times the IQR
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and severity are expected to decrease in fuel-limited eco-
systems under drier conditions, whereas they are likely to 
increase in wetter ecosystems where fuel humidity cur-
rently limits fire (Rogers et al. 2020).

Many respondents from most fire regions mentioned 
the importance of recognizing that within a single fire 
region, different ecological communities may experience 
divergent future fire trajectories (Moritz et al. 2012). For 
example, the risk of fire-climate interactions can vary 
in different types of conifer forests in western North 
America (moist-dry-subalpine) based on their elevation 
(Halofsky et  al. 2020). Likewise, substantial differences 
exist between eastern and western Boreal forests of the 
Nearctic, with the latter experiencing increasing annual 
area burned (Chavardès et al. 2022). However, projected 

climate change could create similar increases for east-
ern and western Boreal forests of the Nearctic during the 
mid- to late-21st century (Chavardès et al. 2022).

Consequences of fire regime change
Respondents estimated that biodiversity (habitat extent, 
diversity and quality), carbon stocks (soil and vegeta-
tion), and ecosystem services (other benefits for socie-
ties living in the region) would decrease with future fire 
regime change. The magnitude of change was predicted 
to increase for more extreme warming scenarios and 
longer timeframes in most biomes, similar to the patterns 
for other questions (Fig. 5 and S17-20). The estimates of 
fire consequences were highly spatially variable (Fig.  5). 
Negative impacts estimated for biodiversity were greatest 

Fig. 3 Estimated likelihood of fire regime change under different RCP scenarios a Median of central values of the likelihood of fire regime change 
for year 2100 under three RCP scenarios. b Climate sensitivity of fire regime change for each biome based on the slope between the estimated 
likelihood of a fire regime change (%) and the amount of radiative forcing across the three RCP scenarios  (Wm−2). The higher values represent 
a greater climate sensitivity and increased fire regime likelihood moving from RCP2.6 to RCP8.5
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in tropical, semiarid, and arid ecosystems, whereas 
decreases in carbon stocks were more uniform across 
biomes. The large projected decrease in carbon stocks 
for Boreal forests and Tropical and subtropical moist 
broadleaf forests was particularly concerning, given how 
these ecosystems contain much of global terrestrial car-
bon (McDowell et al. 2020; Pan et al. 2011; Schuur et al. 
2022). Similarly, the strong projected loss of ecosystem 
services, including air, water, and soil quality in Africa, 
South America, and southern Europe could further bur-
den areas already experiencing disproportionate climate 
impacts (Ogunbode 2022).

The projected response of albedo displayed significant 
temporal complexity, representing a dimension of eco-
system response that was generally expected to improve 
with fire regime changes (Fig. 5 and S21). It is important 
to note that the relationship between fire emissions and 
albedo is multifaceted, varying depending on factors 
such as the region and land surface type. These factors 
can lead to different effects on albedo. For example, while 
aerosols from fire emissions may initially reduce albedo 
by promoting snowpack melting, it  is worth considering 
the net negative radiative impact of such emissions, as 
demonstrated in (Tian et al. 2022), which can result in a 
mid-term cooling effect.

Our survey respondents estimated a general increase in 
albedo from 2050 to 2100 as fire regimes increased. How-
ever, it  is noteworthy that this trend reversed for some 

biomes beyond 2300, indicating a transient stabilizing 
effect on climate (Fig. 5 and S21). The intricate analysis 
encompassing various scales, scenarios, and years can be 
found in the Supplementary Information.

This discussion underscores the complexity of fire 
emissions and their impact on albedo, with outcomes 
varying depending on regional factors and land surface 
characteristics. Furthermore, the influence of fires on 
albedo evolves over time, making it a dynamic and intri-
cate phenomenon.

Drivers of fire regime change and management options
The identified fire regime drivers varied substantially by 
both warming scenario and fire region. Under higher 
emissions (i.e., RCP4.5 and RCP8.5), most experts sug-
gested that climatic factors would be the dominant 
driver of fire regime change. Conversely, under RCP2.6, 
only about half of the responses indicated that climatic 
factors would be the most important driver. For Aus-
tralasia and Nearctic fire regimes, climatic factors were 
identified as the most important driver for all scenarios. 
In the Neotropic, Afrotropic, and Indo-Malayan bio-
geographic realms, human activities were identified as 
the most important fire driver, with an average of 18% of 
responses across all scenarios. Although vegetation and 
fuel were also frequently mentioned, accounting for 22% 
of total responses, these factors were never suggested as 
the most important driver of future fire regime changes 

Fig. 4 Direction and magnitude of change of fire regime characteristics as estimated by respondents. Median estimates of changes in fire extent 
(area), frequency, and severity for global greenhouse gas emission scenarios RCP2.6, RCP4.5 and RCP8.5 in 2050, 2100, and 2300

(See figure on next page.)
Fig. 5 The net effect of predicted fire regime changes on ecosystem values in the future as estimated by respondents. a The maps show 
the median value of expert estimates under RCP4.5, year 2100 (see Figs S18‑21 for changes in RCP2.6 and RCP8.5). b Average values and standard 
error for year 2100 under three RCP scenarios. The full names of the biomes can be seen in Fig. 1b Experts responded on a ‑5 to 5 scale 
for how strongly the future fire regime of the three RCP scenarios would affect the indicated parameters in the year 2100 (‑5 = strong net decrease, 
0 = no net effect, 5 = strong net increase)
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Fig. 5 (See legend on previous page.)
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(representing approximately 1% of the responses (Fig. 
S22)), highlighting the complex interplay amongst cli-
mate, fuel, and fire, especially on centennial timescales.

While we have summarized and combined the manage-
ment suggestions from respondents below, we emphasize 
that suitable management applications vary substantially 
between and within biomes. The detailed responses for 
each fire region can be found in the Supplementary Infor-
mation. Responses suggested that human actions for the 
next 20–50 years will be highly influential in determining 
how different ecosystem values (e.g., biodiversity, carbon 
stocks) are likely to change. Only 14% of the respondents 
indicated that human actions have no effect, mainly lim-
ited to albedo (Table S1). Only 10% of responses recom-
mended non-intervention, which instead was rated as a 
negative or unhelpful approach, though there were mixed 
opinions across and within fire regions.

About half of the respondents considered direct land 
management as an important approach for mitigating 
impacts of changing fire regime. Several landscape man-
agement strategies had general support, including increas-
ing landscape heterogeneity, diversification, and reduction 
of landscape flammability by targeted land use, as well as 
creating buffer zones around primary and old-growth 
forests (Barredo et al. 2021). Attention to the human-fire 
interface was a common recommendation, as certain levels 
of population (housing) density, wildland-urban interface, 
and landscape connectivity can affect the characteristics 
and societal consequences of fire (Syphard et  al. 2007; 
Archibald et al. 2012; Moritz et al. 2014; Kelley et al. 2019). 
Fuel treatment, vegetation management, urban/suburban 
development design, and sustainable agriculture (cropland 
optimization, savanna conversion management, integrated 
grazing, traditional agroforestry, etc.) were identified as 
potentially useful mitigation approaches.

There was a high level of agreement that prescribed 
burning would help biodiversity and ecosystem ser-
vices, but there were mixed opinions about its effect on 
carbon stocks, potentially because of successional com-
plexities and the fact that the area subject to prescribed 
burning is relatively small compared to the total burned 
area each year. There was less agreement about other 
fuel management techniques such as forest clearing or 
thinning, potentially because of the variety of vegeta-
tion types under consideration, and the lack of consen-
sus in the literature on mechanical treatments. Even 
though activities such as clear-cutting reduce fuel, fire 
activity may increase due to the effects on microclimate 
and residual biomass, therefore changing fuel structure 
and composition (Lindenmayer et  al. 2009, 2020; Max-
well et al. 2019; Stephens et al. 2020; Baker and Hanson 
2022). Conversely, traditional or Indigenous practices—
such as cultural burning—were suggested as beneficial in 

reinforcing fire regime resilience, protecting biodiversity, 
and mitigating damage by preventing extreme wildfire 
events (Christianson 2015; Fletcher et al. 2021; Hoffman 
et al. 2021). However, respondents also noted that many 
current burning practices—such as slash-and-burn tech-
niques—no longer resemble traditional cultural burning 
practices as they existed before industrialization.

There was a high level of agreement among experts 
who mentioned restoring vegetation (i.e., native habitat 
conservation and restoration; establishment of climate-
adaptable vegetation communities) as a positive impact 
on all ecosystem values. There were mixed opinions 
about introducing fire resilient plants, but agreement on 
the positive effect of reducing flammable invasive plants. 
The natural or artificial selection of nonflammable spe-
cies was mostly considered to have a negative effect on 
biodiversity and ecosystem services but variable effects 
on carbon and albedo.

Direct fire management was recommended in 17% of 
responses. In the case of fire suppression as a direct fire 
management strategy, there was less agreement about the 
direction of effects on different factors. Fire suppression 
can have a negative impact on fire-dependent ecosys-
tems, and aggressive suppression policies have led to fuel 
accumulation and increased flammability that have con-
tributed to today’s extreme wildfire events (Marlon et al. 
2012; Valese et  al. 2014; Schoennagel et  al. 2017; Paris-
ien et al. 2020). A greater proportion of responses (23%) 
indicated the importance of social or political awareness 
and action. These initiatives include climate mitigation, 
public education on fire risks and their ecological roles, 
direct (e.g., controlled burns, firebreak establishment) 
and indirect (e.g., illegal logging regulations, land-use 
policies) conservation policies, and the incorporation of 
Indigenous and traditional knowledge. (Table S1).

For most biogeographic realms—though notably not 
the Afrotropic and the Indo-Malayan—respondents 
projected that under RCP8.5, humans would have a 
decreasing capacity to control wildfires. This was most 
obvious for the Neotropic, Nearctic, and Australasia for 
both 2100 and 2300. Respondents for the Neotropic and 
Nearctic fire regimes indicated that this same decreased 
capacity was likely to apply under RCP4.5. For RCP2.6, 
70% of respondents indicated that humans would main-
tain some effectiveness in managing fire-impacts (Fig. 
S23).

Sources of uncertainty
For each question, respondents identified their main 
sources of uncertainty (Table  1). The most common 
responses were limited observational data, inadequate 
modeling frameworks, and system complexity, particu-
larly social dimensions. Respondents emphasized that 
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the impact of different human activities is not completely 
understood for the past or present, and that untangling 
different fire drivers can be difficult due to multiple inter-
actions and feedbacks, which are often not represented 
in coupled models. Respondents also mentioned that 
the unprecedented rate of ongoing climate change and 
heterogeneity of human activities made estimations of 
fire return intervals and other dimensions of fire regime 
uncertain. Respondents had uncertainties about emer-
gent economic and policy direction, cultural beliefs, and 
available technologies as tools to combat changing fire 
regime. Additional sources of uncertainty included the 
spatial variability and a lack of information about fire 
severity impacting ecological succession, albedo, and car-
bon-climate feedbacks.

Discussion
This expert assessment synthesized global fire exper-
tise to explore the possible magnitude, type, and conse-
quences of human-wildfire interactions in the Holocene 
and Anthropocene. The results confirmed the growing 
consensus in the literature that we have entered a new 
epoch of fire behavior dominated by climate change and 
direct human activity (Bowman et  al. 2020; Mottl et  al. 
2021). The geographic diversity of past and future fire 
regimes also emphasized the importance of local factors, 
especially human culture and plant community. In the 
following section, we compare our survey results with the 
broader literature and summarize potential management 
and policy implications.

Fire regime change as an indicator of the Anthropocene
This study adds to the consensus that human activity 
dominates vegetation disturbance and distribution glob-
ally (Harris et al. 2016; Watson et al. 2018; Abbott et al. 
2019; Bowman et  al. 2020; Mottl et  al. 2021; Słowiński 
et  al. 2022). The ten-fold acceleration of fire regime 
change over the past two centuries aligns directly with 
recent paleoecological evidence showing vegetation shifts 
unprecedented in the last 18,000 years (Mottl et al. 2021). 
Although there are still debates about the formal start of 
the Anthropocene (Witze 2023), our survey results pro-
vide evidence that we have entered a new epoch where 
fire is no longer solely influenced by natural factors but is 
increasingly shaped by human activities, both intentional 
and inadvertent (Fig.  S1). After approximately 500  mil-
lion years of natural wildfire regulation driven by climate 
and vegetation interactions (Glasspool et  al. 2004), our 
findings indicate that fire dynamics in the Earth system 
are now significantly controlled by direct and indirect 
human actions. Notably, the quadruple combination of 
invasive species, fire ignition and suppression practices, 
land use changes, and climate change has substantially 
reshaped nearly every dimension of fire behavior in the 
Anthropocene (Fig. 1).

One of the paradoxes highlighted by our study and 
much previous work is that knowledge of past fire behav-
ior is both crucial and rapidly becoming outdated. Past 
fire regimes provide perspective on how climate, vegeta-
tion, and human actions interacted to shape fire dynam-
ics in the Earth system (Marlon et al. 2008; Pechony and 

Table 1 Sources of Uncertainty in Survey Estimates

This table presents the major sources of uncertainty identified by respondents for each section of the survey. The percentages represent the proportion of responses 
within each category for the respective sections. Note that the table includes only the significant sources of uncertainty, and the columns may not sum up to 100% 
due to the omission of less prominent factors
a E.g., Fire management history, land use history, etc.
b E.g., Climate-vegetation dynamics, albedo and new vegetation, vegetation-fire interaction, fuel-ignition relationships, climate-human intervention, climate-
vegetation feedbacks

Past Current Future Management

Sources of uncertainty % Sources of uncertainty % Sources of uncertainty % Sources of uncertainty %
Limited proxy‑paleo data 23 Spatial variability 31 Vegetation shift 12 Political and socio‑economic 22

Spatial variability 17 Limited data 17 Ecosystem interactions 
and  feedbacksb

12 Capacity and effectiveness 
of management and interven‑
tion

13

Proxy resolution 15 Combustion/severity 8 Climate change 10 Climate change 11

Model limitation 11 Small fire detection/remote 
sensing

7 Political and socio‑economic 8 Ecosystem interactions 
and feedbacks

10

Human  influencea 11 Human activity 8 Model limitation 7 Technology developments 6

Proxy reliability 8 Recent changes 4 Fire management and interven‑
tion

7 Science and management 
connection

4

Temporal variability 6 Land use change 6 Vegetation state 4

Chronological 5 Precipitation 6
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Shindell 2010; Molinari et  al. 2018). For example, paleo-
ecological knowledge about vegetation community and 
historical amplitude of fire regime change in a given 
biome can provide estimates of historical thresholds and 
optimal vegetation structure for management purposes 
(Hennebelle et  al. 2018). Likewise, fire histories show 
human-vegetation-climate linkages, such as decreas-
ing tree cover creating microclimates favorable to the 
encroachment of flammable vegetation in the understory 
(Feurdean et  al. 2020). However, we have exceeded the 
envelope of global fire behavior observed in the Holocene, 
meaning that human-fire interactions could have extreme 
and unexpected outcomes (Bova et  al. 2021; Hammond 
et  al. 2022). We should not assume that historical man-
agement practices will suffice (Pyne 2007; Crandall et al. 
2021; Ellis et al. 2021) given accelerated rates of vegetation 
change (Mottl et  al. 2021; Słowiński et  al. 2022; Talucci 
et  al. 2022), climate destabilization (Armstrong McKay 
et  al. 2022; Breyer et  al. 2023), the emergence of novel 
biotic and abiotic conditions (Ordonez et  al. 2016; Fins-
inger et al. 2017; Burke et al. 2019), and increasing human 
population and affluence. For example, the expansion of 
human development in fire-prone areas in the western US 
is increasing both wildfire incidence and cost of suppres-
sion (Balch et al. 2017).

Climate and culture control native and invasive vegetation
Ecosystem response to changing fire disturbance can take 
centuries to millennia (Carcaillet et  al. 2010, 2020). In 
the Anthropocene, which is characterized by overlapping 
and interacting human disturbances, the emergence of 
stable fire regimes depends on synergies among fire, veg-
etation changes, and climate within a region.

The combination of climate and species change can shift 
the balance between native and invasive taxa. New fire-
adapted species have altered vegetation structure in many 
fire-prone regions, including cheatgrass (Bromus tecto-
rum) in some desert environments of the USA, tussock 
grass (Poa flabellata) and pampas grass (Cortaderia sell-
oana) in Spain, guinea grass (Megathyrsus maximus) and 
fountain grass (Cenchrus setaceus) in Hawaii, and black 
locust (Robinia pseudoacacia) and tree-of-heaven (Ailan-
thus altissima) in southern Europe (Maringer et al. 2012; 
Trauernicht et al. 2015). These species exploit and create 
novel disturbance niches to outcompete native vegetation 
during post-fire recovery. These direct and indirect effects 
of fire regime change can alter plant community struc-
ture and composition, often amplifying aspects of the fire 
regime, including fire frequency and extent (Wan et  al. 
2014; Bishop et al. 2020; Mirzaei et al. 2023).

As the vegetation-climate interaction evolves in the 
Anthropocene, many or even most communities around 

the world will need to develop new cultural norms 
around fire (Dickinson et  al. 2015; Trauernicht et  al. 
2015; Chapin et  al. 2022). Given how controversial fire 
management can be, even under the best of conditions 
(Crandall et  al. 2021; Dale and Barrett 2023), it will be 
crucial to establish two-way communication that pre-
pares policymakers, managers, and the public for adap-
tive changes in policy and practice, including the loss of 
cultural and ecosystem services provided by disappear-
ing historical fire regimes (Cassidy et al. 2022; Bowman 
and Sharples 2023).

Uncertain services
One of the clear conclusions from our study is that the 
novel fire regimes of the Anthropocene threaten multiple 
ecosystem services ranging from carbon sequestration 
to air quality. The erosion of these ecosystem services 
has already been observed in many regions (Balch et al. 
2017; Canadell et al. 2021; Hammond et al. 2022; Hamp-
ton et  al. 2022). Novel climatic conditions in peatlands 
can limit their recovery from disturbances, decreasing 
carbon stocks (Loisel et al. 2021). More severe and fre-
quent fires can threaten carbon storage in Boreal forests 
(Walker et al. 2019), though changes to successional tra-
jectories may offset or negate these losses in some cases 
(Girardin et al. 2013; Mack et al. 2021). Ozone produced 
during combustion can damage plant tissues, potentially 
doubling carbon losses by reducing post-fire photosyn-
thesis (Lasslop et al. 2019). Because human land use and 
fire regimes are so closely linked, human actions such as 
deforestation coupled with cropland development can 
decrease carbon stocks at the same time as they modify 
the fire regime (Bowman et al. 2011; Cochrane and Bow-
man 2021).

The local impacts of changing fire regimes are both 
unequal and increasing (Bytnerowicz et  al. 2016; Errigo 
et al. 2020; Burke et al. 2021; Chen et al. 2021b). From the 
negative health consequences of air pollution to threat-
ened drinking water from post-fire floods and erosion 
(Marki and Stilianakis 2008; Tessum et al. 2019; Crandall 
et al. 2021; Xie et al. 2022; Bowman and Sharples 2023), 
we need to prepare for the socioecological consequences 
of fire regime change. These local changes are of course 
linked to additional global feedbacks. For example, 
enhanced black carbon and soot deposition associated 
with increased fire disturbance contributes to decreased 
albedo and accelerated ice melting (McCarty et al. 2021; 
Aubry-Wake et al. 2022). Likewise, in Indian tropical dry 
forests, an increase in fire activity may negatively alter 
forest potential for water regulation by changing soil 
characteristics (Schmerbeck and Fiener 2015) and atmos-
pheric moisture recycling (Abbott et al. 2019).
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The limits of control: prevention versus treatment
Although our global-scale study may have limited appli-
cation in many specific management contexts, there were 
some general patterns that could be informative for poli-
cymakers, managers, and researchers. Despite the sub-
stantial uncertainties associated with fire regime changes, 
mitigation efforts such as allowing some fires to burn 
to reduce fuel loads, prescribed burning, and fuel treat-
ments will help limit fire impacts and cost (Moritz et al. 
2014; Harris et al. 2016; Radeloff et al. 2018; Mietkiewicz 
et al. 2020). Likewise, the conservation of large, contigu-
ous ecosystems (e.g., Kruger National Park, South Africa) 
allows the use of more effective wildfire management 
tools such as prescribed burning and increases resilience 
when unexpected wildfire behavior emerges (Driscoll 
et al. 2016; Bentley and Penman 2017; Miller 2020).

However, there was a high level of agreement across 
fire regions that the risk of extreme fire behavior over-
whelming the capacity of these fire management tools 
increases under higher greenhouse gas emissions. 
Although the specific consequences vary by fire region 
and habitat type, the overall message is clear: rapid 
reduction of greenhouse gas emissions is needed to 
restore Holocene-like climate conditions (Cyr et al. 2009; 
Abbott et al. 2022; Breyer et al. 2023; Burton et al. 2023). 
This would reduce the difference between natural and 
managed environments and ensure long-term conserva-
tion of ecosystem functions and services, thereby pre-
serving socioeconomic benefits (Führer 2000; Gauthier 
et al. 2009). Otherwise, the emergence of novel climates, 
vegetation communities, and fire regimes outside of the 
range of Holocene variability will complicate or com-
promise our ability to conserve habitats, ensure healthy 
communities, and preserve terrestrial carbon uptake and 
storage.

For example, without a reduction in greenhouse gas 
emissions, changes in fire regimes could undermine 
climate mitigation policies such as negative emissions 
through reforestation and afforestation (Anderegg et  al. 
2020; Veldman et  al. 2019). Any carbon uptake from 
recovered or cultivated forests could be negated by the 
increased fire frequency or intensity projected for many 
regions (Hammond et al. 2022; Smith et al. 2020). Like-
wise, the available tools for fire management will likely 
be reduced as extreme fire weather narrows the periods 
when prescribed burning can safely take place (Pyne 
2007; Abatzoglou et al. 2021; Bowman et al. 2017). These 
risks are not hypothetical. Indeed, climate-fire interac-
tions are already eroding climate mitigation efforts in 
many regions by altering forest, grassland, and peatland 
carbon structure (Bowman et  al. 2020; Carcaillet et  al. 
2020; Loisel et al. 2021; Dahl et al. 2023). For example, in 

tropical biomes where fires have been historically rare, 
an increase in extreme wildfires is augmenting tree mor-
tality leading to habitat loss, decreasing biodiversity and 
carbon storage (Trauernicht et  al. 2015; Silveira et  al. 
2016; Deb et al. 2018).

Expert assessment utility and limitations in adaptive fire 
management
Although this study brought together a diverse group 
of fire researchers, it is important to recognize that our 
group is not geographically balanced. Despite invitations 
to several hundred researchers, we received only a few 
responses for some fire regions (Fig.  1b), including the 
African subtropical and tropical grassland region, which 
accounts for a large portion of global area burned (Ramo 
et  al. 2021). This reflects the broader geographical and 
cultural bias in ecological research generally (Moerman 
and Estabrook 2006), and wildfire research specifically 
(Bradstock et al. 2002; Hantson et al. 2016; Metcalfe et al. 
2018), highlighting the need for more spatially diverse 
research networks. It is essential for readers to consider 
the limitations arising from the smaller number of par-
ticipants in certain fire regions when interpreting our 
results, as well as research from other “global” fire stud-
ies. Furthermore, it is important to recognize that a simi-
lar expert assessment with a different group of experts, 
such as fire managers or policymakers, could yield differ-
ent results. The perspectives and opinions shared by our 
participants were influenced by their background, knowl-
edge, and expertise, constituting both the value and limi-
tation of this exercise.

Thinking more generally about our goal of establish-
ing effective, two-way communication among research-
ers, managers, and policymakers, is expert assessment a 
useful tool? Decision-making in landscape and fire man-
agement requires a nuanced, multi-scale understanding 
of human and natural systems. Currently, policymakers 
and managers working on fire issues are operating in an 
evolving environment with sometimes conflicting tradi-
tional, scientific, societal, and political information and 
priorities. As the physical, biological, and human factors 
controlling wildfire behavior change rapidly, how can we 
improve the rigor and breadth of the knowledge available 
to those facing changing fire regimes? The decisions and 
beliefs of resource managers and citizens are often based 
on news coverage, anecdotal accounts, agency tradition, 
or single-expert advice.

As several respondents mentioned in this study, quan-
titative models cannot capture all the factors influencing 
the evolution of fire behavior (Harris et al. 2016; Abbott 
et al. 2016; Hantson et al. 2016). We believe that various 
types of expert elicitations can complement quantitative 
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models to generate more robust and reliable guidance 
that allows adaptive management. This could range from 
informal interpretation of model outputs by expert pan-
els to iterative combinations, such as expert input on 
management plans or machine learning models. These 
approaches should be (and already are in some cases) 
used in various aspects of fire management, from detect-
ing fires to planning and policy, by providing a bench-
mark or improving the initial parameters and weights 
(Jain et al. 2020).

We are not proposing a new role for experts in policy-
making and management. Rather we suggest that local 
expert knowledge be integrated in a more rigorous and 
robust way. Policymakers and managers are making deci-
sions based on available information that is often fil-
tered through informal information networks, especially 
trusted relationships and professional networks (Dickin-
son et al. 2015; Boag et al. 2018; Hertel-Fernandez et al. 
2019). In the dynamic and dangerous environment of the 
Anthropocene, we cannot afford to dismiss knowledge or 
exclude stakeholders. For example, local expertise such as 
Indigenous knowledge remains insufficiently represented 
in scientific publications and fire management policies 
(Christianson 2015). Therefore, we invite those in posi-
tions of influence at any level to consider how to better 
share information and challenges.

Conclusion
This study investigated the past and future changes in 
global fire regimes using expert assessment. We iden-
tified the main drivers of fire regime change during the 
Holocene and explored the potential trajectories and 
impacts of future fire regimes on different ecosystem 
services. Our findings aligned with other studies that fire 
regimes have experienced an increase in state changes, 
and that fire regimes are likely to degrade ecosystem ser-
vices, particularly under higher greenhouse gas emissions 
scenarios. We caution that carbon sequestration poli-
cies should be carefully evaluated in light of the expected 
increase in fire activity for a warmer planet. Although 
our study primarily focuses on general global patterns, 
the results offer a foundation for hypothesis testing in 
future research at smaller scales. By integrating our find-
ings with other studies exploring aspects such as the like-
lihood of fire regime changes and their effects, we can 
gather more detailed information to address regional-
specific needs.

Synthesis activities that focus on addressing deci-
sion-making needs are vital, bridging the gap between 
science and policy. Governments should implement sys-
tematic approaches to involve larger groups of experts 
in decision-making processes promptly and efficiently, 

encouraging participation from diverse backgrounds, 
including the scientific community, local managers, 
and traditional knowledge holders and practitioners. 
Given the complexity and multi-factor nature of fires, 
we propose conducting similar expert assessment activi-
ties involving fire and land managers and other types of 
expertise. These endeavors will provide new insights and 
perspectives on pressing issues related to fire.
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