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Abstract

The increase of world energy demand contributes to the development of renewable energy sources. Fuel cells, which use
hydrogen to deliver energy, have seen a promising future. Fuel cells have been investigated since the last 50 years but they
are still relatively absent for the commercial use due to the large exploitation cost and poor durability. One of the reasons is
that the health state of a running fuel cell is hard to evaluate due to the system complexity and insufficient data. To tackle this
problem, this paper proposes a data-driven fuel cell performance prediction method based on transfer learning and dynamic
time warping. Historical data is trained in the source domain to build a model that can be transferred to the target domain and
can be fine-tuned with only a small volume of online measurement. To improve the model recognition, dynamic time warping
technology is applied to quantify the similarity between two different time series so that similar instances can be selected
to build the neural network prediction model. Results show that, compared to traditional prediction method, the proposed
prediction method has improved the prediction accuracy by almost 50%.
© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CCBY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Hydrogen, as an energy carrier, has emerged as a promising solution to the increasingly serious fossil fuel
depletion and environmental problems [1]. In transportation sector, proton exchange membrane fuel cells (PEMFCs)
are playing an important role in automotive traction systems owing to their advantages of quick start-up, low
operation temperature, high energy density, etc. Moreover, PEMFCs regenerate electricity from hydrogen and air,
and do not emit carbon dioxide or fine particles as conventional fuels do. However, the performance and durability
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of PEMFCs are the main obstacles to their massive industrial production and global adoption [2]. Researches on
materials and component design have been conducted in recent years to enhance the durability of PEMFCs from
the component level and the cell level, however, durability-oriented control and management strategies are rarely
discussed on the stack level and the system level [3]. This is due to the reason that the PEMFC systems are multi-
physics and multi-time scale, and it is difficult to detect the health state of a running PEMFC stack. Today, several
models are developed, either based on physical equations or on experimental data. However, and especially if the
model is to be used for control and management, limitations of physical models become obvious. For instance, some
internal parameters are hard to access due to the limitations of sensor technology, or measuring these parameters is
too costly [4]. It is, therefore, necessary to find ways of predicting fuel cell health status using in-situ data-driven
approach, in which on-board measurement techniques are used to feed the data-driven methods for health state
determination of the stack.

Data-driven methods investigate the internal connections inside the data and can be deployed to estimate and
predict the health state of an on-board PEMFC. As no model is required in data-driven methods, the performance of
data-driven method highly depends on the topology of neural networks and the selected input parameters. Liu et al.
(2020) have performed a dedicated literature survey on data-driven PEMFC prognostics methods and classified the
methods into neural network based methods and other methods, like ageing pattern recognition, autoregressive
methods, etc. [4]. In the literature, researchers have made continuous efforts to improve the design of neural
network based methods in order to improve the prediction performance. For example, Wang et al. (2022) have
developed a navigation sequence driven long short-term memory (LSTM) network to predict the degradation of a
fuel cell stack [5]. The novel topology with a navigation sequence can deal with the model recognition uncertainties
and enhance long-term prediction performance. Similarly, Benaggoune et al. (2022) have proposed to predict the
dynamic ageing performance of PEMFCs with the help of a non-dynamic autoregressive prediction sequence and
combine it with a convolutional neural network to predict the future performance with predictable dynamics [6].
Vichard et al. (2020) have developed a multi-input neural network based on the echo state network for PEMFC
degradation prediction, and found out that the operation condition, such as the stack temperature, has an influence
on the fuel cell stack degradation. The degradation prediction result has been improve by considering the temperature
as an input of the echo state network [7]. Moreover, Zhang et al. (2021) have developed a multi-step input and multi-
step output neural network based on LSTM, which turns out to achieve better performance in short-term prognostics
of PEMFCs [8]. For long-term prognostics, Zhang et al. (2021) have proposed to use a variable-step prediction
structure, which adapts the prognostics steps based on the prediction horizon and eliminates the indeterminacy of
long-term prediction to a large extent [8].

However, most researches focus on the prediction performance improvement of the constructed neural networks
regarding the input sequences and the topology. Few of them have discussed the prediction horizon. Most PEMFC
prognostics works in the literature tend to start prediction from the second half of ageing experiment data [9,10].
This is because that the prediction accuracy of data-driven methods is based on a certain training data volume. If the
data volume for training is small, the neural network cannot be effectively trained and recognized. On the contrary,
as long as the amount of the training data is large enough, the neural network is fully trained and can well express
the internal mapping relations of the data. Meanwhile, it can reduce the outliers in the data and obtain reliable
prediction result. For example, Li et al. (2020) have found that the existing degradation prediction method can
meet the reliability requirements only when the prediction range is within 350 h for a 1500 hours’ fuel cell ageing
dataset [11]. However, an effective performance prediction method must be capable of evaluating and predicting the
health state of the system throughout its life cycle in order to ensure the implementation of the subsequent real-time
control and management strategies. Therefore, a performance prediction method for PEMFCs under full lifetime
cycle, especially in the early stage, is demanding.

This paper proposes a transfer learning based PEMFC performance prediction method, in which historical
datasets are trained offline to establish a knowledge base so that only a small volume of data is required for
the online prediction. Dynamic time warping method is used to select the most relevant degradation behaviour
to train the neural network model based on the online measurement. The proposed method aims to achieve accurate
performance prediction, especially at the early stage of the fuel cell operation. Two ageing experiments have been
conducted to validate the effectiveness of the proposed method.

The following sections are arranged as: Section 2 introduces the proposed data-driven PEMFC performance
prediction method based on transfer learning and dynamic time warping; Section 3 describes the ageing experiments
and the corresponding data structure used for validation, and demonstrates the results and some comparisons; and
Section 4 concludes the paper.
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2. Performance prediction method

The proposed PEMFC performance prediction method is implemented based on Multi-Layer Perceptron (MLP).
A transfer learning scheme with dynamic time warping (DTW) is proposed to enhance the recognition capability
of the model so that it can be used to predict the future performance evolution with a small volume of online
measurement. The corresponding methodology is presented in this section.

2.1. Neural network topology

An MLP is built to perform the prediction task. MLP is a multi-layer neural network derived from perception
learning algorithm, which calculates the output using the following equations:

u = Z wiXx; + b (l)
i=1
. +1,u>0
y =sign(u) = ()
—1,u<0

MLP is constructed based on the deepening of the perception learning algorithm on the network level, which
can deal with nonlinear problems and can simulate any complex function theoretically. MLP has multiple layers
including input layer, output layer and the layers in the middle, namely, hidden layers. An MLP structure with one
single hidden layer and the corresponding feed-forward process is shown in Fig. 1.

Input layer Output layer
y 5 . /V)“
X3
» b

23

=

Fig. 1. Feed-forward process of MLP.

Therefore, the output of an MLP is calculated based on (3), where x is the input, u is the hidden state, y is the
output, w is the weight and b is the bias. f(-) is activation functions. Suppose that there are L layers, w;V? is the
weight from the ith neuron on the (I-1)th layer to the jth neuron on the /th layer, and b;") is the bias of the jth
neuron on the /th layer.

w? = f")

Ml(j) — Z wl(ji)yl_l(i) +b1(j)
ieL;_

yi = fu) = f(W;y—1 +by)

The neurons in the MLP are trained with the backpropagation learning algorithm and the prediction is performed
on the output layer by an iterative scheme until reaching the failure threshold.

3)

2.2. Transfer learning

As an important technology in machine learning, transfer learning serves especially for those applications with
limited training data because it can transfer the knowledge learned with similar historical datasets to the model
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training in real time. Generally, in the source domain, sufficient historical data is available to train the neural
network, however, in the target domain, one may be not able to obtain enough data to train the model. In this
situation, transfer learning helps to accelerate the training efficiency in the target domain by fine-tuning the trained
model in the source domain with a small volume of real-time data [12]. The working process of the proposed
prediction method using transfer learning and DTW is shown in Fig. 2, in which DTW is deployed to select the
most similar instants from the source domain.

IM\“\‘ Dynamic time
q Data i : =
\ k\‘ﬁ Data filtering e etion Scaled data warping fcn: instant
Y selection

©
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Fig. 2. Working process of the proposed prediction method using transfer learning and DTW.

In the proposed method, the historical data in the source domain and the real-time data in the target domain
are firstly filtered and normalized. The selected instances by DTW are used as the training dataset and are used
for neural network training and evaluation. Once the network model is trained, the scaled real-time data is used to
fine-tune and update the model for better online adaption. The updated model is used to predict the N step ahead.

2.3. Dynamic time warping (DTW)

Transfer learning is used to build a model using historical data, while the built model is used for online prediction.
The perquisite of using transfer learning is that the systems in the source domain and in the target domain have
similar behaviour. Therefore, it is necessary to quantify the similarity between the historical data and the real-time
data so that the most similar instances could be found to train the model and to improve the model recognition.
DTW is such a method for similarity calculation. In general, the similarity between two time series is calculated
by Euclidean distance:

D =) “)

i=1

Do(X,Y) =

This calculation is based on the hypothesis that the two time series have the same lengths. However, if X and Y
have different numbers of elements, D,, (X, Y) turns out to be large even if the two time series might be similar.
DTW distance is proposed to overcome this problem. It calculates the shortest warping path, which is built by
calculating the best alignment between the two time series using a matrix:

K

Dprw(X,Y) = arg min(W = wy, wo, ..., w) = arg min Z (xi —y;)? ©)
k=1 =(.j)
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where X and Y are two time series with different length, while x; and y; are the ith and jth element of X and Y. wy
is the warping path of element (i, j). Therefore, it can determine the similarity between two time series with different
lengths by warping them non-linearly in the time dimension [13]. Fig. 3 shows the process of implementing DTW.
Only selected instances from the whole source data are used to train the neural network model, as shown in Fig. 2.

Source data reshaped
to (instances, window)

Source data 4

Dynamic time

E— > —>
warping
Select similar
‘\/ \ Local looking back instances to the Selected instances from
\ window for transfer  |ooking back window the whole source data
learning

S

Target data

Fig. 3. Working principle of DTW.

3. Experiments and result discussion

3.1. Fuel cell ageing experiments

Two ageing experiments have been executed on a 1 kW test bench located in FCLAB laboratory (FR CNRS
3539),! France. The two tested stacks are both of 5 cells with an active area of 100 c¢m?. The two stacks are loaded
with different current densities: one with a constant current density of 0.70 A/ cm? and the second is loaded with a
dynamic current density by adding a ripple current density, denoted as “FC1” and “FC2”, respectively. The details
of the experiment setup are described in Table 1.

Table 1. Ageing experiment setup.

Parameter Value

Active surface 100 cm?
Number of cells 5

Gas pressure 0-2 bar

Air flow 0-100 1/min
Hydrogen flow 0-30 I/min
Cooling water flow 0-10 V/min
Cooling temperature 20-80 °C
Maximum operation temperature 80 °C

Maximum current (current density) 100 A (1 A/ecm?)
Nominal current density 0.70 A/cm?
Ripple current 0.14 A/cm? oscillating with the frequency of 5 kHz

The obtained measurements consist of cell voltages, current density, inlet and outlet gas temperature and pressure,
inlet and outlet water temperature, flows rates, inlet air hygrometry, etc. The stack voltage is calculated by adding
cell voltages together. 143 863 and 127 370 monitoring samples are obtained for FC1 and FC2, respectively. The
stack voltage evolutions of the two stacks are plotted in Fig. 4 and are used as the PEMFC degradation performance
indicator.

To validate the proposed PEMFC performance prediction method, the two datasets are used as “historical dataset”
and “real-time dataset” alternatively. “Historical dataset” is used to performing the MLP prediction model training,
and a certain length of “real-time dataset” is used to in the test phase, which fine-tunes the trained model for online
performance prediction.

U http://www fclab.fr/.
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Fig. 4. Ageing experiment data on a 1 kW test bench: (a) FC1 stack voltage evolution under constant current; (b) FC2 stack voltage
evolution under ripple current.

3.2. Result discussion

The cross validation is performed with FC1 and FC2. First, FC2 is used as historical dataset and an MLP is
trained with the entire FC2 stack voltage data. Then, the trained model is transferred for the online FC1 prediction
task. Only 200 hours’ data from FCI is injected to the trained MLP to update the model. 100 tests are repeated to
indicate the uncertainty of the results, i.e. the orange shadow shown in Fig. 5, and the median values are calculated
as the prediction results, i.e. the orange solid line shown in Fig. 5. The validation is then alternated by exchanging
the historical data and the real-time data. Results with the proposed transfer learning and DTW method and those
without transfer learning and DTW are compared in Fig. 5. Table 2 compares the root mean square error (RMSE)
and the mean average error (MAE) of the results. It could be seen from the results that the proposed PEMFC
performance prediction method based on transfer learning and DTW is able to accurately predict the PEMFC
performance degradation even with only 200 hours’ data. The predicted time series dynamically follow the originally
degradation trend. Compared to the method without transfer learning and DTW, the prediction accuracy has been
improved by almost 50%.

Table 2. Result comparison.

Historical data: FC2 FC1
Real-time data: FC1 FC2

RMSE MAE RMSE MAE
With transfer learning and DTW 0.0098 0.2625 0.0115 0.3040
Without transfer learning and DTW 0.0192 0.4666 0.0205 0.5872

4. Conclusion

Existing data-driven PEMFC performance prediction methods have been developed based on certain training
data volume and operation time. However, it is difficult to evaluate and predict the PEMFC state in its early
running stage. This paper has proposed a transfer learning based prediction method to deal with the early stage
performance prediction problem of the PEMFC. The model trained by the historical data was transferred for online
prediction so that it could fasten the online model training and only a small volume of online data was needed to
fine-tune the model. The similarity between the historical data and the real-time data was calculated by dynamic
time warping method in order to improve the model recognition by training similar instances. A comparison has
been conducted between the proposed method and the prediction model without transfer learning and dynamic time
warping, which showed that the proposed method could continuously predict the PEMFC performance and the
accuracy was improved by almost 50%.
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Fig. 5. Prediction result: (a) FC1 prediction starting at 200 h with transfer learning and DTW; (b) FC1 prediction starting at 300 h without
transfer learning and DTW; (c) FC2 prediction starting at 200 h with transfer learning and DTW; (d) FC2 prediction starting at 200 h
without transfer learning and DTW. (For interpretation of the references to colour in this figure legend, the reader is referred to the web

version of this article.)
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