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On scalable quantum-inspired distributed machine learning

Recently a new approach to train machine learning models, such as neural networks, has been introduced. This method is based on the simulation of a type of quantum systems, in particular systems of one-dimensional electrons coupled by a force, which offers important advantages. First, by exploiting simulations of the quantum tunnelling effect, a different, and faster, convergence in the training phase can be obtained. Secondly, it does not require the computation of any kind of gradient (in other words, it can be considered a derivative-free or gradient-free optimizer) thus allowing the training of complex models impossible to train otherwise, for instance with the gradient descent method, or variations of it. Finally, it allows the use of parallelization schemes which can scale linearly with the dimensions of problem at hand, i.e., the method is nearly "embarrassingly parallelizable". This opens the way towards scalable and performant distributed machine learning capabilities. The goal of this paper is to focus specifically on this very advantage, suggest various strategies for parallelization, and discuss their consequences.

Introduction

In the last two decades, the field of machine learning (ML) has shown impressive results which, in part, have become possible because of the emergence of tailored hardware such as graphics processing units (GPUs) and tensor processing units (TPUs). Although this incredibly fast progress, available ML techniques are starting to show their limitations. As a matter of fact, data sets are becoming too big to be handled by current hardware while Moore's law is coming to an end [START_REF] Khan | Science and research policy at the end of Moore's law[END_REF]. Clearly, novel and different approaches will be required if ML must continue to progress.

In this context, it is not surprising that a part of the scientific community has started to explore different directions, especially in terms of hardware, to improve the current situation so to overcome the actual limitations. Many alternatives have been proposed among which the use of quantum computing (QC) hardware. In practice, one seeks to combine ML and QC to achieve new and useful advantages which are not available nowadays. For instance, QC might be able to provide new and incredible computational tools by exploiting typical quantum effects such as tunnelling and entanglement. This combination is now known as the field of quantum machine learning (QML).

Although the amazing potential this quantum technology might hold, it is still difficult to see how and when any kind of quantum computer could be available. In fact, it is very well known by the community of experimental physicists that important issues are faced with the use of quantum systems. For instance, one of these issues is represented by the appearance of noise which triggers quantum decoherence, i.e., the system goes from an initial quantum regime to a perfectly classical one, therefore hindering the practical use of qubits beyond a certain (unspecified) number; consequently, at the present time, these systems require expensive and cumbersome cryogenic facilities to use even a relatively small number of qubits. Another relevant issue is represented by the process of measurements. While measurements are important to extract the solution of a computational problem, it has already been demonstrated that some experimental settings would require an infinite number of such measurements to properly extract the computed solution [START_REF] Ciliberto | Quantum machine learning: a classical perspective[END_REF]. Thus, it is yet to clarify if and when these intricate issues will be solved, and a different approach might be necessary [START_REF] Dyakonov | The case against quantum computing[END_REF].

Because of the typical issues mentioned above, recently a new approach to train ML models such as neural networks (NNs) have been proposed which is based on the use of digitally simulated quantum effects [START_REF] Sellier | On a quantum inspired approach to train machine learning models[END_REF]. Naturally, in this different context, not every quantum effect can be simulated on a digital machine efficiently and only the effects that can be simulated are utilized. This approach might not be able to achieve the full range of promises that the QML community is proposing but, at least, it can provide novel and useful ways to approach ML and improve it. We refer to this approach as quantum-inspired machine learning (QiML).

The goal of this work is to focus on the parallelization schemes which can be implemented in the context of QiML to reach concrete and performant distributed ML. In particular, we discuss the various options offered by this method in terms of parallelization schemes and analyze their pros and cons. Additionally, we provide a glossary of potential applications of proposed quantum-inspired distributed machine learning such as communication networks, cloud, etc. This paper is organized as follows: in section 2, we start by introducing the main tenets of the quantum-inspired machine learning on which this work is based, with a special focus on the computational steps. We also provide description of numerical discretization schemes for two families of methods, i.e., deterministic, and stochastic. For the sake of clarity, our attention is on two specific examples, i.e., the Euler method for the deterministic approaches and the Wigner Monte Carlo method for the stochastic ones. In section 3, we provide context on two common memory-based architectures in parallel computing along with their trade-offs. We also discuss commonly available off-the-shelf hardware with varying degrees of parallel computational advantages. In section 4, we introduce the approach to quantum-inspired distributed machine learning with its design considerations in distributed memory architecture. Lastly, in section 5, we provide intuition on a higher level of parallelization that is common among distributed machine learning community. We conclude by sharing potential use of this approach.

The authors firmly believe this approach can provide concrete and useful distributed ML capabilities which are difficult to imagine otherwise.

Computations involved in quantum-inspired training approach

In this section, we start by introducing the tenets of the QiML approach, recently suggested in [START_REF] Sellier | On a quantum inspired approach to train machine learning models[END_REF], with a special focus on the equations that are solved to train a ML model such as an artificial neural network (ANN). Specifically, we introduce and discuss the set of Schrödinger equations needed to be simulated along with the ANN inference phase (which represent the two most time-consuming parts of the method, during the training phase). Then, various discretization and parallelization schemes available are discussed along with their strengths and weaknesses in terms of node computation and communication tasks (i.e., the two principal bottlenecks in every existing parallelization scheme).

The tenets of the QiML approach

From a purely mathematical perspective, an ANN can be described as a function of its input x and its weights (and biases) w, i.e.:

where the variable y represents the output of the ANN, and where y, x and w can be scalars or (multi-dimensional) vectors, depending on the problem at hand. In practice, a set of samples (x i ; y i ), for i = 1, …, N s , referred to as the data set, is provided which, in a broad sense, describes the computational goal to be learned by the network. Consequently, the problem of training an ANN becomes a problem of minimizing some provided error function, also known as the loss, objective, or cost function, and which formally reads [START_REF] Bishop | Neural networks for pattern recognition[END_REF]: and which depends on the whole set of weights w. This task is accomplished by looking for the set of weights w* which minimizes the error function E = E(w). Obviously, many different algorithms exist to reach this goal, one of the most popular one being represented by the wellknown gradient descent method combined with the backpropagation technique (usually, the error function can be represented by an L 2 norm of some sort). In this specific case, the update rules for the weights (and biases) are well-known and read [START_REF] Bishop | Neural networks for pattern recognition[END_REF]: Now, it is possible to show that these update rules come from the Newton equation discretized by the Euler method. Thus, this set of update rules essentially describes a physical system which is classical in nature. By providing a simple physical interpretation to these terms, it becomes possible to depict the corresponding update rules in the quantum regime [START_REF] Sellier | On a quantum inspired approach to train machine learning models[END_REF]. In practice, these rules read: … and consists of a set of Schrödinger equations which can be found in quantum physics and chemistry for the physical description of a system. In the update rules above, one applies the following definition for the average position of a particle:

We can now proceed with a description of various discretization schemes which can be utilized to numerically solve the Schrodinger equation.

Numerical schemes for the Schrödinger equation

It is well known that the Schrödinger equation, although linear, is a particularly difficult partial differential equation especially when its exact solutions are required. As a matter fact, no analytical method exists capable of providing exact solutions to this equation for any circumstances and one is forced to recur to numerical methods, instead, to obtain approximated solutions. Many numerical methods to solve it have been depicted within the last century which can differ substantially from one to another. In this subsection, we select two quintessential methods, one deterministic and one stochastic in nature, and discuss them in some detail. The methods selected are 1) the well-known, and easy to implement, Euler method and 2) a Monte Carlo method known as the Wigner Monte Carlo method and on which a new formulation has been based and depicted (the signed particle formulation [START_REF] Sellier | A Signed Particle Formulation of Non-Relativistic Quantum Mechanics[END_REF]). Signed Particle Formulation (SPF) is a generalization of Wigner Monte Carlo (WMC), hence authors use these terms (and its respective acronyms) interchangeably to refer stochastic numerical scheme to solve Schrödinger equation.

The Euler method.

Among the plethora of deterministic numerical methods based on finite differences, the Euler method is certainly one of the simplest to understand and implement. Despite its simplicity, it has shown to be a powerful method even for sophisticated simulations, for instance in the context of quantum chemistry [START_REF] Bigaouette | Nonlinear grid mapping applied to an FDTD-based, multi-center 3D Schrödinger equation solver[END_REF]. This method is based on the use of the first-order forward difference derivative to approximate the time-derivative, while a second-order central derivative is utilized to approximate the term for the second (spatial) derivative [START_REF] Press | Numerical recipes[END_REF]. This method, therefore, requires the following specifications to work:  A spatial grid consisting of N x cells of length Δx, with Δx = L X /N X with L X the total length of the spatial domain.  A temporal grid consisting of N T steps of duration Δt, so that the final time of simulation is represented by T F = N T Δt.  A function representing the initial conditions of the system, i.e., at time t = 0 .  A set of boundary conditions, in our case the well-known reflective conditions . Finally, the numerical scheme, for any of the set of update rules above, reads (for the n-th time step and the j-th spatial cell):

(1) which can be split into two equations (one for the real and one for the imaginary part, respectively). Therefore, this method consists in updating the value of every variable for every cell of the discretized spatial domain in discretized time steps until the final time is reached (as usual, j is the index for the spatial cell and n is the index for the time step).

We now introduce a stochastic method to solve the same equation.

Signed particles and the Wigner Monte Carlo approach

Recently, one of the authors of this work has presented a novel formulation of quantum mechanics which is based on the use of signed particles rather than the usual wave functions. Although very different from more standard formulations, such as the one from Schrödinger, it provides the same predictions as any other formulation. There are several important advantages in using the signed particle formulation (SPF), especially in terms of available parallelization schemes, which will be underlined in the next section.

The SPF is based on three postulates which completely define the evolution of ensembles of signed particles in the presence of external forces, and which read:  Postulate I: Physical systems can be described by means of (virtual) Newtonian particles, i.e., provided with a position x and a momentum p simultaneously, which carry a sign which can be positive or negative.

 Postulate II: A signed particle, evolving in a potential V=V(x), behaves as a field-less classical point-particle which, during the time interval dt, creates a new pair of signed particles with probability γ(x(t)) dt where: and V + W (x; p) is the positive part of the following quantity (called a momentum integral):

known as the Wigner kernel (in a d-dimensional space).

If, at the moment of creation, the parent particle has sign s, position x and momentum p, the new particles are both located in x, and have signs +s and -s, and momenta p+p' and p-p' respectively, with p' chosen randomly according to the normalized probability .

 Postulate III: Two particles with opposite sign and same phase-space coordinates annihilate.

This set of postulates is sufficient to reconstruct the whole quantum mechanics by simply using ensembles of signed particles [START_REF] Sellier | A Signed Particle Formulation of Non-Relativistic Quantum Mechanics[END_REF]. In practice, the picture that this novel theory offers is rather peculiar and different than any other mathematical formulation of quantum mechanics (with the only exception, in a broad sense, being represented by the Feynman formulation). Quantum systems are now described by means of ensembles of Newtonian field-less particles which now carry a sign and interact with an external potential by means of creation and annihilation events only. When a pair of particles is created, one is in an experimentally reachable state (positive sign), and the other in a non-reachable one (negative sign). This offers a physical picture which is relatively easy to grasp, and which even allows the inclusion of quite complex effects in a natural way [START_REF] Sellier | The Wigner-Boltzmann Monte Carlo method applied to electron transport in the presence of a single dopant[END_REF].

Finally, it is relatively easy to realize that this formulation has several peculiar advantages which mainly consist of 1) being intuitive and, therefore, easy to implement on various hardware platforms, and 2) embarrassingly parallelizable as signed particles are independent from each other, i.e., it scales linearly with the dimensions of the problem at hand -most likely a unique characteristic in the realm of quantum mechanics formulations.

The Reader should note that, although these two methods are very different, they provide the same results. This has been proved, for instance, in [START_REF] Nedjalkov | Wigner Quasi-Particle Attributes: An Asymptotic Perspective[END_REF]. Therefore, they represent two different alternatives to the problem of efficiently simulating the Schrödinger equation with, naturally, pros and cons depending on the situation at hand.

A note on parallel computing

Parallel computing provides ways to break down problem in smaller subproblems and solving them concurrently. While parallel computing has been used extensively across different problems, we emphasize on memory architectures and discretization of QiML. In this section, we introduce commonly used memory-based architectures.

There are two common memory-based architectures, shared memory, and distributed memory. Shared memory architecture revolves around the notion of multiple compute nodes (i.e., cores) share same memory addresses. This leads to incredibly fast access if the proportion of number of compute core and shared addresses is reasonable. In fact, the very factor affecting design of shared memory is fine balance between speed of access and number of shared addresses. Parallelization on such architecture has varying level of complexity and benefits based on the hardware (discussed in following section).

Nowadays, a plethora of parallel hardware is available off-the-shelf, multi-core CPUs (Central Processing Unit), GPU (Graphics Processing Units) cards and FPGA (Field-Programmable Gate Array) boards. Multi-core CPU (i.e., microprocessor), is a single integrated circuit constituted of two or more processing units (also referred to as cores). The units can communicate with each other through a bus interface and they all access to the same bank of memory. Algorithms developed for this type of hardware tend to parallelize well if inter-core communication is limited. GPUs are specialized circuits built for the purpose of speeding up graphics related computations such as, for instance, ray tracing, etc. GPU architecture is built around a scalable array of streaming multiprocessors (SM) and parallelism is achieved through the replication of this architectural building block. Each SM is designed to support concurrent execution of hundreds of threads, and there are generally multiple SMs per GPU, therefore it is possible to execute thousands of threads concurrently on a single GPU [START_REF] Cheng | Professional CUDA programming[END_REF]. Algorithms that can be vectorized are well suited for GPUs, which sometimes limits its usability. An FPGA is an integrated circuit designed to be programmed by a user after manufacturing. A typical FPGA contains an array of programmable logic blocks, and a hierarchy of reconfigurable interconnections which allow blocks to be wired together. Those logic blocks also include memory elements, which can range from simple flip-flops to more complete blocks of memory. Thus, FPGAs can be programmed to perform complex functions, allowing flexible reconfigurable computing as performed in computer software. Moreover, they come with the important advantage of providing significantly fast computational capabilities because of their parallel nature and optimality in terms of the number of gates used for computational purposes. The FPGA configuration is generally specified using a hardware description language (HDL), also utilized for application-specific integrated circuits (ASIC). HDLs provide programmers with incredible customized parallelization however, it comes at the cost of a very steep learning curve.

On the other hand, distributed memory architecture enables programs to be parallelized further for higher throughput and scalability. It consists of multiple computing nodes connected by a communication network and protocols. Individual nodes have a fast local memory that is not shared with other nodes. So, scaling processors with local or distributed memory is more cost effective compared to scaling processors with a shared memory. This opens opportunities for highly scalable deployments. However, there are two intertwined challenges with this architecture; first, inter-process communication is dependent on communication fabric (medium, protocols, etc.). Secondly, partitioning the problem for distributed execution.

We will discuss these two aspects in following section after looking into discretization of QiML for parallel computing.

Towards quantum-inspired distributed machine learning

In this section, we start with design principles to go beyond single compute node for scalability.

Then we discuss distributed memory parallelization schemes for QiML.

Design principles for distributed memory parallelization

Design considerations for distributed memory parallel processing can be broadly categorized into communication (communication and synchronization) and computation (partitioning and load balancing).

 Communication frequency and synchronization: In an ideal scenario, communication or need for synchronization among nodes is negligible or non-existent, which means a distributed program can be scaled across nodes without any implication, often called embarrassingly parallel. However, like most distributed optimization methods, our quantum inspired distributed machine learning approach, requires varying degree of communication.

Considering homogenous and static communication resources, we discuss two most common yet critical design criterions to optimize communication resources. 1. Computation granularity (or communication frequency) refers amount of compute steps taken before communication is required. A high communication frequency requirement will ensure more cohesion among nodes but requires more communication resource. On the other end, less frequent communication can optimize communication resource with less cohesion. 2. Synchronous or asynchronous communication among nodes. Synchronous communication ensures timely delivery of message while asynchronous communication allows for non-blocking message exchanges. Synchronous communication ensure coherence at the cost of throughput of the system (e.g., ideal/wait time), while asynchronized communication might achieve higher throughout at the cost of lower coherence.

 Partitioning and Load Balancing: Distributed memory system requires either the problem or the algorithm to be divided into smaller parts, also known as domain and function decomposition, respectively. Dividing domain, function or both allows more manageable control over memory, communication, and computational requirements. It's critical to analyze problem and algorithm in context of computational and communication resources. This analysis brings up another aspect of load balancing which offers opportunities to further improve efficiency of the resources by evenly sharing computational requirements across nodes. In later part of this section, we provide intuition to design QiML for distributed memory architecture with uniform computation capabilities.

QiML for distributed memory parallelization

As discussed in the section 2, in the years following the birth of the Schrödinger equation, a plethora of different discretization methods have been depicted to find approximated solutions for it, since no general method to find exact solutions for any possible situation. Two of these methods, the Euler and the Wigner Monte Carlo approaches, have been selected as they represent typical examples of deterministic and stochastic methods, respectively. In this section we now focus on the different parallelization available according to the method in use. This discussion is, obviously, not restricted to the selected methods and more general conclusions can be evinced easily. Finally, for the sake of clarity, the context presented in this section is: given a certain number of computational nodes, that can communicate with each other to some specified level, discretize these methods for efficient and scalable parallelization.

In the case of a deterministic method, such as the Euler method, the discretization is introduced through the spatial and temporal variables. This means, a grid of N X cells is utilized to represent positions on the spatial domain and which is applied on the update rule [START_REF] Khan | Science and research policy at the end of Moore's law[END_REF]. Discrete time variable from equation ( 1) clearly suggests no parallelization strategy can be applied since the values of the wave function in every cell of the spatial grid depends on the same values but at a previous time. Therefore, the only (advantageous) parallelization scheme possible in this context is provided by: 1. Creating chunks of the spatial grid, i.e., in sub-grids.

2. Distributing sub-grids among nodes and each node locally compute the values of the wave function based on its local sub-grid. 3. Final solution can be constructed by a simple concatenation of the results obtained on every node.

Decomposition of spatial domain into subdomains across nodes provide a meaningful parallelization scheme, with minimal amount of information to be shared, i.e., actual values and boundary conditions. Consequently, this means that, supposing to have N computing nodes and N X cells in the spatial grid, it is only possible to divide the N X cells into N chunks which will contain N X / N values to compute. This might sound like a good parallelization strategy. For instance, one might use all nodes by simply augmenting the number of cells N X . The Reader should bear in mind, though, that this process cannot be applied forever. In fact, increasing the number of cells N X will force to reduce the time step Δt to keep stability and accuracy of rule [START_REF] Khan | Science and research policy at the end of Moore's law[END_REF]. Thus, this parallelization strategy has its own (important) limitations which, eventually, prevent continuous linear scaling. This applies to practically every deterministic finite difference method of any order.

On the other hand, the Wigner Monte Carlo (WMC) method can be partitioned in several ways, combination of domain and function decomposition or simply domain decomposition. We start with discretization of WMC first. Stochastic or Monte Carlo (MC) methods are based on independent samplings of some given quantity which, eventually, provides a way to compute the final solution of the problem, with the accuracy increasing with the number of samples. In the case of the WMC method, this consists in two main steps:

 Evolution of the signed particles: in this context, the state of a quantum system is represented by an ensemble of (signed) field-less Newtonian particles which are evolved at every time step Δt. The evolution consists in updating their position and the momentum, and then check if any couple of new signed particles must be created. This process does not require any communication at any moment since the evolution of every particle is independent. Consequently, this part can be parallelized at will, i.e., it can scale linearly. For instance, if one is in presence of N s signed particles, they can be equally distributed among N computing nodes without losing any accuracy (no concept of spatial grid is necessary in this process).  Computation of the Wigner kernel: several ways of computing the kernel have been proposed [START_REF] Sellier | On a full Monte Carlo approach to quantum mechanics[END_REF] which can be classified in deterministic and stochastic approaches. If one focuses on the stochastic methods by utilising, for instance, the importance sampling MC method then it is possible to show the counterintuitive fact that this method improves its accuracy with the dimensions of the problem. This makes this approach perfect for the task of computing the Wigner kernel. Moreover, it is based on independent stochastic samplings of certain quantities, which scales linearly with the complexity of the problem [START_REF] Dimov | Monte Carlo Methods For Applied Scientists[END_REF].

From the considerations above, it becomes quickly clear that the MC method can even reach linear scaling, at least in some practical circumstances, which cannot be reached by a deterministic method based on finite differences such as the Euler method. Moreover, it is simple to reach advantageous parallelization if the number of signed particles does not exceed the amount of local memory available. For instance, this number can be kept under control with an annihilation mechanism [START_REF] Sellier | A Signed Particle Formulation of Non-Relativistic Quantum Mechanics[END_REF], which tends to be the bottleneck in parallelization.

Partitioned WMC with functional decomposition, involves some functions or steps computed on different nodes without sharing memory. For example, computation of kernel and evolution of particles can be partitioned on two different nodes [START_REF] Dimov | Monte Carlo Methods For Applied Scientists[END_REF]. Additionally, these two functions can be further partitioned by domains for scalability. Annihilation of particles is carried out as needed and only possible after evolution of particles. Hence these two functions could either share memory or perform fine grained synchronization in distributed memory setting. In case of distributed memory, communication bottleneck can still occur due to very large number of particles need to be shared across nodes for annihilation.

In [START_REF] Ellinghaus | Distributed-memory parallelization of the Wigner Monte Carlo method using spatial domain decomposition[END_REF], a domain decomposition technique to optimize scalability and throughput in a distributed memory simulation was suggested. Performance of WMC in distributed memory is limited by sequential and global/centralized annihilation step (when annihilation is necessary). Instead, the authors use local/decentralized particle annihilation by coordinating workers with a master node. This is possible through careful overlap between subdomains among workers.

Overlapping subdomains act as a trade-off factor between 1. communication and synchronization (i.e., particle transfer for annihilation) cost and 2. partitioning and load balancing efficiency.

Conclusion

From the previous sections, it's clear that parallelization can be achieved at particle level. For example, parallelization of the update rule, i.e., applying equation (1) on sub-grids of the whole spatially discretized domain in case of Euler, or updating position and momentum of signed particles in case of WMC. Additionally, like gradient-based optimization of ANN parameters (e.g., weights and biases), higher level of parallelization is also possible. For instance, in the case of the Euler method, the update rule (1) can be applied for all weights at the same time (since the new state depends on the previous values of the weights and not on the current one). The same reasoning applies to the case of Wigner MC method.

Clearly, the nascent field of quantum-inspired machine learning can lead to a plethora of opportunities for scalable learning frameworks. More specifically, the authors of this work believe this approach will have a significant role to play in the future of telecommunications networks. In fact, the promises of enhanced connectivity, latency, and reliability of the approaching 6G networks (and beyond) will be hardly reachable without appropriate learning approach. QiML is showing to potential for such realistic learning capabilities since it can be parallelized and scaled efficiently on existing digital machines.
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