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Compressed sensing MRI using data-driven tight frame and total generalized variation

Undersampling k-space data is an efficient way to reduce the acquisition time of magnetic resonance imaging (MRI). This paper proposes a compressed sensing (CS) method for reconstructing magnetic resonance (MR) images from highly undersampled k-space data. The method is based on the combined use of data-driven tight frame (TF) and total generalized variation (TGV) regularization. The data-driven TF is used to adaptively learn a set of filters from the under-sampled data to provide a better sparse approximation of images. The TGV allows selectively regularizing different image regions to avoid staircase effect. The proposed reconstruction problem is solved by Fast Composite Splitting Algorithm (FCSA). The results on various MR images demonstrated that, for a large range of sampling ratios from 10% to 50%, the proposed method improves reconstruction quality and preserves different image features including edges and textures in comparison with other commonly used CS-MRI methods based on predefined transforms such as the discrete wavelet transform, framelets and shearlet.

.

, which achieved reconstruction by combining total variation (TV) and wavelets as sparsifying transforms. However, since the TV model favours piecewise constant image structures, such TV model-based methods blur details and cause blocking effect with fine structures lost, although the edges are preserved in reconstruction. To overcome the intrinsic drawback of the TV model, various extensions of this model have been proposed for CS-MRI image reconstruction, such as nonlocal total variation (NLTV)

Introduction

Magnetic resonance imaging (MRI) is a non-invasive medical imaging technique widely used to investigate the anatomy and function of the body in clinical diagnosis. However, the imaging speed of MRI is often limited because of the important quantity of k-space data to acquire. Reducing the acquisition time of MRI therefore remains a great challenge for clinical applications. Numerous efforts have been dedicated to designing fast acquisition sequences and reducing the amount of data required as much as possible while maintaining reconstruction quality [START_REF] Mcgibney | Quantitative evaluation of several partial Fourier reconstruction algorithms used in MRI[END_REF][START_REF] Blaimer | GRAPPA: how to choose the optimal method[END_REF][START_REF] Tsao | MRI temporal acceleration techniques[END_REF][START_REF] Luo | MRI reconstruction from 2D truncated k-space[END_REF][START_REF] Larkman | Parallel magnetic resonance imaging[END_REF][START_REF] Xie | Accelerated magnetic resonance imaging using the sparsity of multi-channel coil images[END_REF][START_REF] Majumdar | Calibration-Less Multi-coil MR image reconstruction[END_REF][START_REF] Hollingsworth | Reducing acquisition time in clinical MRI by data undersampling and compressed sensing reconstruction[END_REF]. Among them, parallel imaging (PI) emerged as the most widely used technique in clinical routine. There are a variety of PI methods such as simultaneous acquisition of spatial harmonics (SMASH) [START_REF] Sodickson | Simultaneous acquisition of spatial harmonics (SMASH): Fast imaging with radiofrequency coil arrays[END_REF], sensitivity encoding (SENSE) [START_REF] Pruessmann | SENSE: Sensitivity encoding for fast MRI[END_REF], generalized autocalibrating partially parallel acquisitions (GRAPPA) [START_REF] Griswold | Generalized Autocalibrating Partially Parallel Acquisitions (GRAPPA)[END_REF], and iterative self-consistent parallel imaging reconstruction (SPIRiT) [START_REF] Lustig | SPIRiT: Iterative Self-consistent Parallel Imaging Reconstruction From Arbitrary k-Space[END_REF]. However, the PI techniques are typically limited by Nyquist sampling rate and the achieved acceleration is limited to low factor values [START_REF] Hollingsworth | Reducing acquisition time in clinical MRI by data undersampling and compressed sensing reconstruction[END_REF]. [START_REF] Liang | Sensitivity Encoding Reconstruction With Nonlocal Total Variation Regularization[END_REF][START_REF] Junzhou | Compressed magnetic resonance imaging based on wavelet sparsity and nonlocal total variation[END_REF] and total generalized variation (TGV) [START_REF] Bredies | Total Generalized Variation[END_REF][START_REF] Knoll | Second Order Total Generalized Variation (TGV) for MRI[END_REF][START_REF] Guo | A New Detail-Preserving Regularization Scheme[END_REF]. These methods can avoid the staircase artifacts that are common to TV and wavelet regularizations, while better preserving image edges and details.

Another common sparsity used for CS-MRI reconstruction is based on the discrete wavelet transform (DWT) [START_REF] Chen | Exploiting the wavelet structure in compressed sensing MRI[END_REF][START_REF] Hu | Wavelet-based edge correlation incorporated iterative reconstruction for undersampled MRI[END_REF][START_REF] Kayvanrad | Stationary wavelet transform for under-sampled MRI reconstruction[END_REF][START_REF] Ning | Magnetic resonance image reconstruction using trained geometric directions in 2D redundant wavelets domain and non-convex optimization[END_REF][START_REF] Qu | Undersampled MRI reconstruction with patch-based directional wavelets[END_REF]. It is well known that traditional wavelets transform appropriately point-like singularities, but generally lack performance when dealing with singularities in higher dimension, such as edges, contours or regular textures in two-dimensional (2D) images [START_REF] Jacques | A panorama on multiscale geometric representations, intertwining spatial, directional and frequency selectivity[END_REF]. To overcome the limitation, multi-scale geometric analysis method is introduced into CS-MRI in order to more sparsely represent piecewise smooth images containing rich geometric information (e.g. edges, curves, etc.), such as contourlets [START_REF] Gho | Three dimension double inversion recovery gray matter imaging using compressed sensing[END_REF][START_REF] Qu | Iterative thresholding compressed sensing MRI based on contourlet transform[END_REF], framelets [START_REF] Gopi | MR image reconstruction based on framelets and nonlocal total variation using split Bregman method[END_REF], and shearlets [START_REF] Guo | A New Detail-Preserving Regularization Scheme[END_REF][START_REF] Pejoski | Compressed Sensing MRI Using Discrete Nonseparable Shearlet Transform and FISTA[END_REF].

Data adaptive transforms can sparsify images better than those explored in various image-processing problems in recent years. Instead of predefined transforms, Hong et al [START_REF] Hong | Compressed sensing MRI with singular value decomposition-based sparsity basis[END_REF] proposed a data-adaptive sparsifying transform using singular value decomposition (SVD) for CS-MRI image reconstruction. This method can be applied to a broader range of MR images to improve image reconstruction quality effectively. In [START_REF] Cai | Data-driven tight frame construction and image denoising[END_REF], an adaptive data-driven tight frame (data-driven TF) was proposed to solve image restoration problems, and has been successfully applied to image denoising and seismic data restoration problems . Dictionary learning approaches learn a dictionary as a sparse basis from the elemental patches of particular image instance or class of images to achieve better sparsity of the input image in CS-MRI [START_REF] Ravishankar | MR Image Reconstruction From Highly Undersampled k-Space Data by Dictionary Learning[END_REF][START_REF] Huang | Sparsity-promoting orthogonal dictionary updating for image reconstruction from highly undersampled magnetic resonance data[END_REF]. However, these methods ignored the relationship between image patches in dictionary learning and sparse coding. Meanwhile, an adaptive nonlocal processing was also introduced for image restoration [START_REF] Buades | A review of image denoising algorithms, with a new one[END_REF][START_REF] Dabov | Image denoising by sparse 3-D transform-domain collaborative filtering[END_REF][START_REF] Bao | Structure-adaptive sparse denoising for diffusion-tensor MRI[END_REF]. By combining the notion of patches and nonlocal processing, a patch-based nonlocal operator was introduced for CS-MR image reconstruction [START_REF] Qu | Magnetic resonance image reconstruction from undersampled measurements using a patch-based nonlocal operator[END_REF]. This kind of methods is based on grouping similar 2-D image patches into 3-D data arrays, and then 3-D transforming the data arrays to obtain sparsity. Since the methods exploit the nonlocal self-similarity of images, it becomes possible to achieve lower reconstruction errors and higher visual quality, compared with the conventional CS-MRI reconstruction methods.

In this paper, we propose a CS method for reconstructing MR images from highly undersampled k-space data. The method is based on the combined use of data-driven tight frame (TF) and total generalized variation (TGV) regularization. The data-driven TF is used to adaptively learn a set of filters from the under-sampled data to provide a better sparse approximation of images. The TGV allows selectively regularizing different image regions to avoid staircase effect. The proposed reconstruction problem is solved by Fast Composite Splitting Algorithm (FCSA).

The rest of the paper is organized as follows. The proposed CS-MRI reconstruction method is detailed in Section 2. The experiments and results are presented in Section 3, followed by conclusion in Section 4.

Methodology

Preliminaries

Tight Frame (TF) [START_REF] Daubechies | Framelets: MRA-based constructions of wavelet frames[END_REF][START_REF] Cai | Framelet based deconvolution[END_REF] : The frame is a generalized concept of the basis formed of linearly dependent vectors. Specifically, a set of vectors   n i i H   is a frame in Hilbert space H , if there exist two positive constants A and B , such that for any vector xH  :

2 22 22 , i i A x x B x    . ( 1 
)
when the constants 1

AB  , the frame   n i i  is called the tight frame (TF).
For a given frame   n i i  , two associated operators can be defined: the analysis operator  defined by

    2 :, i x H x l N      , (2) 
and the synthesis operator (adjoint operator of the analysis operator):

    2 : T i i i i c l N c H       . ( 3 
)
The sequence   n i i  forms a tight frame if and only if T I    with I designating the identity operator. A tight frame can be constructed from a set of filters based on the Unitary Extension Principle (UEP) proposed in [START_REF] Ron | Affine systems in L-2(R-d): The analysis of the analysis operator[END_REF]. Given a set of filters   n i i a , the analysis operator  can be defined as (

here, a S refers to the linear convolution operator. For a filter with finite support, the convolution operation can be represented by a block-wise Toeplitz matrix under Neumann boundary conditions [START_REF] Chan | Tight frame: an efficient way for high-resolution image reconstruction[END_REF]. For example, the discrete wavelet tight frame is one of the widely used tight frames, which is generated by a set of filters called framelet filter i h (corresponding to i a ). Data-driven TF [START_REF] Cai | Data-driven tight frame construction and image denoising[END_REF] : A tight frame simply constructed from predefined filters can sparsely represent certain classes of data. However, it is not efficient when the image structure is complex (for example for complex geometric structures, rich textures, etc.). The data-driven TF is then proposed that is constructed from a set of filters adaptively learned from the input data itself to sparsely represent the given data. Given an image x , a set of filters   
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, subject to T xI

            , ( 6 
)
where  is the coefficient vector that sparsely approximates the tight frame coefficients

x  , and 0   a regularization parameter. The detailed and complete description of the data-driven TF construction scheme and numerical solver can be found in [START_REF] Cai | Data-driven tight frame construction and image denoising[END_REF]. An example of the data-driven TF filters constructed with two different sizes is shown in Fig. 1 (a small image block represents a filter). 

Total generalized variation (TGV) [21,22]

: Unlike TV regularization, which preserves sharp edges but blurs some details and causes blocking effect with fine structures lost, the TGV is a direct extension of the classical TV semi-norm and the regularization term is convex. The TGV selectively regularizes different image regions at different levels and thus leads to better performance by preserving edges and suppressing the staircase effect [START_REF] Bredies | Total Generalized Variation[END_REF][START_REF] Knoll | Second Order Total Generalized Variation (TGV) for MRI[END_REF]. The discrete TGV of second-order formulated by [START_REF] Knoll | Second Order Total Generalized Variation (TGV) for MRI[END_REF] is

    2 10 TGV min u u v dx v dx           (7) 
where    

1 2 T v v v      denotes the symmetrized derivative, 0
 and 1  are the positive weights.

Proposed model

Assuming that x is a MR image and u F is a partial Fourier transform which can be expressed by u F P F , with F the Fourier transform and P the common under-sampling pattern (mask). The under-sampled measurements b of the image x with an unknown observation noise  in k-space is then defined as [START_REF] Lustig | Compressed sensing MRI[END_REF]:

+ u b F x   . ( 8 
) For the under-sampling case, Eq. ( 8) is highly underdetermined and has therefore an infinity of solutions. In order to find the optimal solution to this problem, additional constraints are introduced into the CS framework according to some prior knowledge. Thus, the CS-MRI reconstruction can be formulated as the following optimization problem

  2 2 arg min u x x F x b J x      , (9) 
where  

Jx is a regularizing functional and 0   denotes a balancing parameter. Now, by introducing the above-stated data-driven TF and TGV regularization, we can formulate the CS-MRI reconstruction as the following optimization problem

  2 2 1 2 1 arg min TGV 2 u x x F x b x x             . ( 10 
)
In the formula, the first term  refers to the second-order TGV of the image x , where, according to [START_REF] Knoll | Second Order Total Generalized Variation (TGV) for MRI[END_REF], the weights 0  and 1  appearing in Eq. ( 7) do not need to be tuned and are set to 2 and 1, respectively.

The proposed optimization problem (Eq. ( 10)) can be solved by the Fast Composite Splitting Algorithm (FCSA) proposed in [START_REF] Huang | Efficient MR image reconstruction for compressed MR imaging[END_REF]. Let   , the proximal map is described as [START_REF] Huang | Efficient MR image reconstruction for compressed MR imaging[END_REF]:

     2 2 1 arg min 2 prox x u u x          , ( 11 
)
where scalar 0   is the inverse of the Lipschitz constant

L of f  defined [46] by   2 2 1 2 T u u u f F x b F F x b x          
, with T u F denotes the inverse partial Fourier transform. Then, the regularization of l 1 -norm sub-problem is achieved via solving the following minimization

   2 1 2 1 1 arg min 2 k u prox g x u x u            . ( 12 
)
Eq. ( 12) is solved using an iterative thresholding algorithm under a tight frame [START_REF] Cai | Data-driven tight frame construction and image denoising[END_REF].

The TGV regularization sub-problem is formulated as

     2 2 2 2 1 arg min 2 u prox g x u x TGV u           . ( 13 
)
Eq. ( 13) can be solved using the first-order primal-dual algorithm. More details about this algorithm can be found in [START_REF] Knoll | Second Order Total Generalized Variation (TGV) for MRI[END_REF]. The proposed algorithm is outlined in Table 1.

Table 1

Outline of the proposed CS-MRI reconstruction algorithm INPUT: K : the maximum number of iterations;

n : the filter size of data-driven TF;

,  : the regularization parameters;  : the tolerance parameter;

INIT:

Set 1 0 1 1 , 1, 0, 0; t x r k L       OUTPUT:
x : reconstructed image.

REPEAT:

k = k + 1;
Generate the analysis operator k  according to Eq. ( 6);

              1 1 2 2 12 2 1 11 1 ; 2; 2; 
; 2

1 1 4 ; 2 1 ; kk g k g g k k k k k k k k k x r f r x prox x x x prox TGV x x xx x t t t r x x x t                      UNTIL kK  OR 1 2 2 kk k xx x    

Experiments results and Discussion

Experimental setup

To evaluate the performance of the proposed method, the MR images of size 256×256 from [START_REF] Junzhou | Compressed magnetic resonance imaging based on wavelet sparsity and nonlocal total variation[END_REF][START_REF] Chen | Exploiting the wavelet structure in compressed sensing MRI[END_REF][START_REF] Huang | Efficient MR image reconstruction for compressed MR imaging[END_REF] were used, as shown in Fig. 2(b)-(e). In Fig. 2(a) is shown the k-space sampling mask where the k-space data is sampled with a rate of 15% (i.e. keeping 15% of the complete k-space data) using variable density undersampling pattern [START_REF] Lustig | Sparse MRI: The application of compressed sensing for rapid MR imaging[END_REF]. The proposed method was also compared with existing state of the art CS-MRI methods based on the commonly used sparsifying transforms, including the SparseMRI [START_REF] Lustig | Sparse MRI: The application of compressed sensing for rapid MR imaging[END_REF], FCSA [START_REF] Huang | Efficient MR image reconstruction for compressed MR imaging[END_REF], Framelet+NLTV [START_REF] Gopi | MR image reconstruction based on framelets and nonlocal total variation using split Bregman method[END_REF], Shearlet+TGV [START_REF] Guo | A New Detail-Preserving Regularization Scheme[END_REF]. For fair comparisons, all codes were downloaded from the authors' website and the corresponding experimental setup was carefully followed. , with

x  denoting the standard deviation of the original image. In the proposed method, the filter size of data-driven TF was set as 8×8, the regularization parameter  in the soft- thresholding operator as 0.1× n  , the regularization parameter  as 0.05, and the ISNR as 30 dB. Note that, in the proposed method, since the filter size of data-driven TF has non negligible influence on computation time, to assess the influence of filter size on reconstruction results, several filter sizes were tested, including 2×2, 4×4, 8×8, 10×10, 16×16.

In addition to the visual assessment, three quantitative indices were calculated for the MR images reconstructed with different methods. They are the peak-signal-to-noise ratio (PSNR), relative l2 norm error (RLNE) [START_REF] Qu | Undersampled MRI reconstruction with patch-based directional wavelets[END_REF] and mean structural similarity (MSSIM) [START_REF] Wang | Image quality assessment: From error visibility to structural similarity[END_REF]. PSNR and RLNE are used for measuring reconstruction accuracy, and MSSIM is used for evaluating the structural similarity between reconstructed and reference images.

The PSNR is defined as

10 PSNR 20log x MAX MSE     , ( 14 
)
where [START_REF] Wang | Image quality assessment: From error visibility to structural similarity[END_REF].

   
The experiments were performed on a PC computer with Intel (R) Core (TM) i5-2400 3.1GHz CPU, 4.00GB memory and Windows 7 SP1, MATLAB Version 7 platform.

Visual comparison

Figs. 3456show the visual comparison of the MR images reconstructed using different methods. The sampling ratio was set to be approximately 15%. It is seen that the proposed method provides more satisfying results with clear contours, sharp edges and fine image details. More quantitatively, the PSNR, RLNE and MSSIM indices calculated for the MR images reconstructed with the different methods are given in Tables 2 to 4. It can be observed that the proposed method improves the reconstruction performance in comparison with existing methods, by providing higher PSNRs, smaller RLNEs, and greater MSSIMs. 

Effect of sampling rates

In order to investigate the effect of sampling rates on MR image reconstruction, experiments were performed with sampling rates varying from 10% to 50% (corresponding to 0.1~0.5 on the x-axis in the Figs.). The curves of PSNR, RLNE and MSSIM versus different sampling rates for all the MR images reconstructed with different methods are shown in Figs. 789. It can be seen that the proposed method almost always outperforms SparseMRI, FCSA, Framelet+NLTV and Shearlet+TGV for different MR image and different sampling rates. For example, as illustrated in Fig. 7(a), Fig. 8(a) and Fig. 9(a) on the coronal brain MR image, the proposed method delivers higher PSNR and MSSIM and lower RLNE than the other methods. These results also imply that, for the same image reconstruction quality, the proposed method requires even fewer samples and as a result allows further shortening acquisition time.

Effects of filter size

The influence of filter size on reconstruction results are illustrated in Figs. 10-12. We observe that the reconstruction performance (PSNR, RLNE and MSSIM) of the proposed method on different images changed little when the filters size was larger than 2×2. This means that the proposed method is little sensitive to the filter size. 

Computation time

Concerning computation time, the comparison between the proposed method and the other methods is given in Table 5 with a sampling ratio of 10%. It can be clearly seen that the FCSA method is the fastest among the four methods, and the proposed method takes the longest time. Moreover, the computation time of the proposed method increases with the increase of the filter size. 

Discussion and Conclusion

Reducing acquisition time and keeping image quality of MRI remains a great challenge for clinical applications. Many attempts have been made to shorten the acquisition time, such as parallel imaging, partial k-space imaging and simultaneous multi-slice (SMS) imaging. Compressed sensing MRI is an acceleration technique based on sparse data sampling and iterative reconstruction that allowing scan time reduction while maintaining acceptable image quality.

We have proposed a CS method for reconstructing various types of MR images from highly undersampled k-space data. The method presents the particularity of combining the data-driven TF and TGV to form a new regularization approach, which has enabled us to adaptively generate a set of filters from the undersampled data, obtain a better sparse approximation of MR images, and avoid staircase effects commonly present in TV regularization. The experimental results demonstrated that the proposed method presents better performance than existing state of the art CS-MRI methods for various MR images by preserving edges, suppressing undersampling artifacts, delivering higher PSNR and MSSIM and lower RLNE at a wide range of sampling rates from 10% to 50%. The improved CS MR image reconstruction method proposed in this work has been shown to produce better reconstruction results for a broad range of MR images, which suggests its potential clinical utility.". In the future work, it would be interesting to work on how to accelerate the computation time of the proposed method.
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 1 Fig. 1. Illustration the data-driven TF filters constructed with two different sizes. (a) Filter (atom) size 8×8, (b) Filter (atom) size 16×16.

   is a data fidelity term, the second term 1 x  and the third term   2 TGV x  are regularization terms, and  and  are the regularization parameters.  is the data-driven TF described above,
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 1 denoted as a regularizing functional. According to the FCSA algorithm framework, the   gx problem can be divided into two sub-problems: the regularization of l norm and TGV. Thus,   gx can be expressed as  sub-problem is actually a convex function which can be solved by a proximal mapping operation. Given a continuous convex function  x 
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 2 Fig. 2. k-space undersampling mask and MR images. (a) k-space sampling mask, (b) Coronal brain, (c) Cardiac, (d) Shoulder, (e) Renal arteries.

Fig. 3 .

 3 Fig. 3. Results of reconstruction on the coronal brain MR image using different methods with 15% sampling. (a) Original MR images, images reconstructed by, (b) SparseMRI, (c) FCSA, (d) Framelet+NLTV, (e) Shearlet+TGV, (f) Data-driven TF+TGV (proposed).

Fig. 4 .

 4 Fig. 4. Results of reconstruction on the cardiac MR image using different methods with 15% sampling. (a) Original MR images; images reconstructed using, (b) SparseMRI, (c) FCSA, (d) Framelet+NLTV, (e) Shearlet+TGV, (f) Data-driven TF+TGV (proposed).
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 5 Fig. 5. Results of reconstruction on the shoulder MR image using different methods with 15% sampling. (a) Original MR images; images reconstructed using, (b) SparseMRI, (c) FCSA, (d) Framelet+NLTV, (e) Shearlet+TGV, (f) Data-driven TF+TGV (proposed).
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 6 Fig. 6. Results of reconstruction on the renal arteries MR image using different methods with 15% sampling. (a) Original MR images; images reconstructed using, (b) SparseMRI, (c) FCSA, (d) Framelet+NLTV, (e) Shearlet+TGV, (f) Data-driven TF+TGV (proposed).

Fig. 7 .

 7 Fig. 7. Comparison of PSNR as a function of sampling rate on different MR images. (a) Coronal brain image, (b) Cardiac image, (c) Shoulder image, (d) Renal arteries image.

Fig. 8 .Fig. 9 .

 89 Fig. 8. Comparison of RLNE as a function of sampling rate on different MR images. (a) Coronal brain image, (b) Cardiac image, (c) Shoulder image, (d) Renal arteries image.

Fig. 10 .

 10 Fig. 10. Comparison of PSNR curves with different filters size. (a) Coronal brain image, (b) Cardiac image, (c) Shoulder image, (d) Renal arteries image.

Fig. 11 .

 11 Fig. 11. Comparison of RLNE curves with different filters size. (a) Coronal brain image, (b) Cardiac image, (c) Shoulder image, (d) Renal arteries image.

Fig. 12 .

 12 Fig. 12. Comparison of MSSIM curves with different filters size. (a) Coronal brain image. (b) Cardiac image, (c) Shoulder image, (d) Renal arteries image.

Table 2

 2 PSNR of reconstruction on MR images using different methods with 15% sampling

		SparseMRI FCSA	Framelet+NLTV	Shearlet+TGV	Proposed
	Coronal Brain	20.79	26.07	26.25	27.21	27.59
	Cardiac	30.08	32.44	31.25	33.60	34.30
	Shoulder	23.86	31.94	25.05	35.08	38.27
	Renal arteries	26.97	32.21	32.34	33.46	35.28
	Table 3					
	RLNE of reconstruction on MR images using different methods with 15% sampling	
		SparseMRI	FCSA Framelet+NLTV	Shearlet+TGV	Proposed
	Coronal Brain	0.26	0.14	0.14	0.13	0.12
	Cardiac	0.19	0.15	0.17	0.13	0.12
	Shoulder	0.37	0.15	0.32	0.10	0.07
	Renal arteries	0.16	0.09	0.09	0.08	0.06
	Table 4					
	MSSIM of reconstruction on MR images using different methods with 15% sampling
		SparseMRI	FCSA Framelet+NLTV	Shearlet+TGV	Proposed
	Coronal Brain	0.53	0.84	0.85	0.87	0.88
	Cardiac	0.75	0.80	0.79	0.84	0.86
	Shoulder	0.82	0.89	0.89	0.96	0.97
	Renal arteries	0.58	0.88	0.88	0.89	0.93

Table 5 Comparison

 5 

	of computation time (in second) of different methods on different images
	with a sampling ratio of 10%			
	methods	image	Coronal brain Cardiac Shoulder Renal arteries
	FCSA		6.2	5.9	5.9	5.2
	SparseMRI		16.7	20.1	19.9	18.1
	Shearlet+TGV		87.2	88.6	100.3	58.9
	Framelet+NLTV		291.0	288.7	291.8	292.3
	Proposed (filters size 2×2)	491.2	491.3	491.4	490.1
	Proposed (filters size 4×4)	1559.9	1565.5	1564.2	1567.8
	Proposed (filters size 8×8)	6158.6	6172.6	6157.3	6153.0
	Proposed (filters size 10×10)	9638.6	9662.9	9653.6	9639.6
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