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Abstract

The two most popular tree models used in phylogenetics are the birth-
death (BD) and the Kingman coalescent (KC). These two models differ in
several respects, notably: (i) population size is random in the BD versus
fixed in the KC, (ii) the BD makes assumptions about the way samples
are collected, while the KC conditions on the number of samples and the
collection times, thus bypassing the need to describe the sampling pro-
cedure. These two models have been applied to different contexts: the
BD in macroevolutive studies of clades of species, and the KC for pop-
ulations. The exception is the field of phylogenetic epidemiology which
uses both models. It then asks the question of how such different models
can be used in the same context. In this paper, we study large-population
limits of the BD, in a search for a mathematical link between the BD
and the KC. We show that the KC is the large-population limit of a BD
conditioned on a given population trajectory, and we provide the formula
for the parameter θ of the limiting KC. This formula appears in earlier
studies, but the present article is the first to show formally how the cor-
respondence arises as a large-population limit, and that the BD needs to
be conditioned for the KC to arise. Besides these fundamentally mathe-
matical results, we demonstrate how our findings can be used practically
in phylogenetic inference. In particular, we propose a new method for
phylogenetic epidemiology, ensuing from our results. We conjecture that
this new method, used in conjunction with auxiliary data, should allow
to estimate important epidemiological parameters (e.g. the prevalence
and the effective reproduction number), in a way that is robust to the
data-generating model and the sampling procedure. Future studies will
be needed to put our claims to the test.
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Introduction

The field of phylogenetics makes ample use of tree models to obtain a probability
distribution of a tree given an evolutionary model. Tree models may be used as
tree priors in Bayesian phylogenetic inference (e.g. 1–3) or fitted to pre-estimated
phylogenies in order to estimate evolutionary parameters (4). In either case, the
choice of tree model is determined by the type of object that the phylogenetic tree
represents.

The overwhelming majority of phylogenetic applications of tree models resorts to two
canonical models: the birth-death (BD, 5) and the Kingman coalescent (KC, 6). The
BD is typically used in macroevolution where the phylogenetic tree represents a species
tree (7–9). It makes the simplification that speciation and extinction are instantaneous
phenomena, whose frequency is governed by speciation (birth) and extinction (death)
rates. In macroevolutionary studies, the BD is used to study the dynamics of species
diversification across space (10, 11), time (12, 13), taxa (14), habitats (15, 16), etc...
In contrast, the KC is generally used in population studies, where a phylogeny is
taken to represent the genealogy of gene copies, borne by individuals in a population
(17, 18). Its unique parameter is the instantaneous effective population size θ(t), which
determines the rate of coalescence of any two gene copies. The KC has been most
popular to study populations in part because of its robustness, as many population
models converge to the KC in the limit of large population size (19). Its most popular
application has been for demographic inference, in particular for estimating temporal
variations of the effective population size (2, 20).

Thus, as a rule, the two tree models are used in different contexts: the BD for clades of
species and the KC for populations of individuals (21, 22, but see 23 who applied the
KC to a species tree). A notable exception to this schism is the phylogenetic study of
epidemics, wherein the object of study is a population of infected hosts. Both the BD
and the KC have been found suitable to model the phylogenetic relationships among
pathogens borne by hosts (24, 25). On the one hand, it makes sense to assume that
populations of pathogens too have an effective population size that governs the rate
of coalescence of pathogens’ gene copies, justifying the use of the KC (26–28). On the
other hand, the transmission of a pathogen to an uninfected host (aka the “birth” of a
new infected host) and the death (or recovery) of an infected host are seemly modeled
with birth and death rates, justifying the use of the BD (29–31).

Given that the BD and the KC are both used in an epidemiological context, it makes
sense to ponder why two models with such different mathematical foundations can be
applied to the same object of study. The KC models the coalescence of the branches
in the phylogeny of a sample from present to past. It is parametrized with a single
function θ(t), and the coalescence of any two branches occurs at rate 1/θ(t). Impor-
tantly, the KC is the large-population limit of population models whereby the census
population size N(t) is represented by a deterministic function of time (19). In con-
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trast, the BD unravels from past to present and considers that N(t) is random: N(t)
is increased (decreased) by births (deaths) occurring randomly at per-capita rate λ(t)
(µ(t)). A phylogenetic tree of the sample is obtained by pruning unsampled lineages
off of the entire population tree (32). The fact that population size is represented by
a deterministic function in the KC and a random variable in the BD is certainly a
serious obstacle to the identification of mathematical bridges between the two models.

Nonetheless, previous studies reported that, if the BD population size were known
at some time t, any two branches in the tree should coalesce at that time at a rate
given by 2λ(t)/N(t) (24, 33, 34). This suggests the following equivalence between the
parameter of the KC and quantities of the BD:

θ(t) ≡ N(t)

2λ(t)

To remedy the inconsistency of having a deterministic left-hand side and a random
right-hand side in this equivalence relation, a deterministic function may be substituted
for N(t) to try and have the KC match the BD as closely as possible. For instance,

one may evaluate whether a KC with θ(t) = E[N(t)|λ,µ]
2λ(t)

matches the corresponding BD

(e.g. 24). The mere inspection of the formulae for the probability density of a tree
under the two models indicates that the two models remain different, no matter what
parametrization of θ(t) is chosen.

In the present paper, we build on this previous work and demonstrate a mathematical
link between the BD and the KC. To do so we note that, if the BD population size were
(approximately) known at all times (e.g. with y(t) a non-random function, N(t) ≈
y(t) is given), then the branches of a BD tree should coalesce indeed at a rate close
to 2λ(t)/y(t) at time t. This is a hint that the BD must be conditioned on the
population size following some trajectory for the KC to arise. We thus study a BD
conditioned on its population size being close to some curve (hereafter a conditional
BD, in opposition to an unconditional BD without a condition on population size),
and show that the KC arises as the large-population limit of the conditional BD.
Beyond this fundamentally mathematical result, we demonstrate how this finding can
be applied in an epidemiological context to estimate parameters of interest such as
a pathogen prevalence or reproduction number with the KC (seen as the limit of
a conditional BD). Importantly, the advantages of the KC (agnostic to the sampling
procedure) and of the BD (whose parameters can be transformed into epidemiologically
meaningful quantities) are combined into this new modelling approach.

The paper is structured as follows. After outlining the BD model, we consider various
limits of the (un)conditional BD. First, we study the limit of the unconditional BD
with fixed λ(t) and µ(t) and with an initial number of individuals n going to infinity.
We argue that the limit of this model is the trivial KC with θ(t) = ∞. Second, we
consider the unconditional BD with fixed λ1(t) := λn(t)/n and r(t) = λn(t)−µn(t) and
show that as n→∞ the BD converges to something else than a KC. Third, we show
that the conditional BD with fixed λ1(t) and r(t) converges as n→∞ to a non-trivial
KC, which constitutes the main result of this paper. After this mathematical section,
we demonstrate how our results can be applied to the inference of epidemiological
parameters from a phylogenetic tree.
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Outline of the birth-death parameters and ran-
dom outcomes

The variable t denotes the time before present. We consider a BD process starting at
time T with n individuals. Each individual gives birth at rate λ(t) and dies at rate
µ(t). The growth rate is r(t) = λ(t) − µ(t). We denote by N(t) the integer random
population size at time t, and by N :=

(
N(t)

)
t

the value of N(t) at all times. Initially,
N(T ) = n. We call N the population process. We call a realization of the population
process a population trajectory. At the present, Z(0) individuals are sampled randomly,
each with probability ρ (Bernoulli sampling), and Z(t) denotes the random number of
ancestors of the sampled individuals at time t. We denote Z :=

(
Z(t)

)
t

the value of

Z(t) at all times and call Z the sample process. A valid realization z =
(
z(t)

)
t

of Z is
a decreasing integer-valued function of time with unit decrements. A value z induces
a set α(z) of coalescent times, which are the time points at which z decreases.

Our purpose is to study the limiting distributions as n→∞ of some random outcomes
of the BD process, namely the relative population size N/n and the sample process
Z, and in particular to determine in which case Z converges to a KC.

Various limits of the BD process

The unconditional BD with fixed λ(t) and µ(t) as n→∞

The most obvious large-population limit of the BD is to keep λ(t) and µ(t) fixed and
have n → ∞. We study here the limits of N(t)/n and Z and argue that, if Z does
converge to a KC, it converges to the trivial KC with θ(t) = ∞. The BD process
considered here is called unconditional, as no condition on N is assumed.

Limit of the relative population size N(t)/n

The first result is that, as shown in Lemma C.5 in the Appendix, N(t)/n converges

in probability to E[N(t)|N(T ) = n]/n = exp
∫ T
t
r(s)ds as n→∞, uniformly on [0, T ]

(see Figure 1 for an illustration), that is

inf
t∈[0,T ]

P

(∣∣∣N(t)

n
− E[N(t)|N(T ) = n]

n

∣∣∣ < ε

∣∣∣∣ N(T ) = n

)
−−−−→
n→∞

1

This immediately implies that N(t)/E[N(t)|N(T ) = n] converges in probability to 1
as n→∞. Hence, N(t)/n becomes deterministic in the limit of large population size.
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Figure 1: Distribution of the relative population size N(t)/n for the uncondi-
tional BD, for different values of n, with fixed λ(t) = 1 and r(t) ' 0.069. The

black line is the expected value (equal to exp
∫ T

t
r(s)ds) and the ribbon ranges

from the .025 to the .975 quantile. The distribution narrows as n increases, il-
lustrating the convergence in probability of N(t)/n to the deterministic function

exp
∫ T

t
r(s)ds.

Limit of the sample process Z

We now turn to the distribution of Z given Z(0) = z0 (because the KC is expressed
conditionally on the sample size, the BD must also be conditioned on the sample size
if the two models are to be matched). In Section J.1 of the Appendix, we provide a
heuristic suggesting that the pairwise coalescent rate under the BD is given by (see
also 24, 33, 34)

ωBD
(
N(t), t

)
=

2λ(t)

N(t)

This rate is random, since N(t) is random under the BD.

Given that N(t)/E[N(t)|N(T ) = n]
p−−−−→

n→∞
1, if the BD converges to a KC, it must be

to the KC with parameter θ(t) = E[N(t)|N(T ) = n]/
(
2λ(t)

)
, whose pairwise coalescent

rate is

ωKC(t) =
1

θ(t)
=

2λ(t)

E[N(t)|N(T ) = n]

and is deterministic.

Indeed we have that the ratio of the two models’ coalescent rates converges to 1 in
probability:

ωKC(t)

ωBD
(
N(t)

) =
N(t)

E[N(t)|N(T ) = n]

p−−−−→
n→∞

1 (1)
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It is however important to note that the matching KC has a null coalescent rate in
the limit n→∞, since

ωKC(t) =
2λ(t)

E[N(t)|N(T ) = n]
=

2λ(t)

n exp
∫ T
t
r(s)ds

−−−−→
n→∞

0

As shown in Figure 2, this limit is not useful, as the limiting process is the process
whereby the outcome ∀t ∈ [0, T ] Z(t) = z0 has probability 1.

Figure 2: Distribution of the sample process Z given Z(0) = z0 = 9 for the
unconditional BD (black solid line and grey ribbon), for different values of n,
with fixed λ(t) = 1 and r(t) ' 0.069. The thick line is the expected value
and the ribbon ranges from the .025 to the .975 quantile. For comparison, the
red dashed line and red ribbon show the distribution of Z under a KC with
θ(t) = E[N(t)|N(T ) = n]/(2λ(t)). We see that, as n increases, although the two
distributions get more similar, coalescences are ever rarer, and they would not
happen at all in the limit n→∞.

Summary

There are good arguments to reckon that the pairwise coalescent rate of the BD
is given by 2λ(t)/N(t) at time t (see Section J.1 of the Appendix and 24, 33, 34).
Then the obvious problem for matching the BD with a KC is that this rate is ran-
dom under the BD (since N(t) is random). Yet, the convergence in probability of
N(t)/E[N(t)|N(T ) = n] to 1 as n → ∞ could imply that the BD converges to a KC
with coalescent rate 2λ(t)/E[N(t)|N(T ) = n] as n→∞. Unfortunately, this limiting
process is uninteresting since it has a null coalescent rate.
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The unconditional BD with fixed λ1(t) and r(t) as n→∞

We now study the BD parametrized with ρ1, λ1(t) and r(t) such that

λ(t) = λn(t) = λ1(t)n

µ(t) = µn(t) = λn(t)− r(t)
ρ = ρn = ρ1/n

with ρ1 ∈ (0, 1], and with on [0, T ]: (i) λ1(t) > 0, (ii) λ1(t) and r(t) uniformly
continuous and (iii) λ1(t) ≥ r(t). We consider this parametrization because the BD
coalescent rate, as we shall see below, does not vanish as n→∞, yielding non-trivial
limiting processes.

We show that N/n remains random as n → ∞, and that Z converges in distribution
to a random process Ż which is not a KC.

Limit of the relative population size N(t)/n

Lemma D.1 shows that ∀n ∈ N>0

E
[
N(t)

n

∣∣∣N(T ) = n

]
= exp

∫ T

t

r(s)ds

and Lemma D.2 shows that

Var

[
N(t)

n

∣∣∣N(T ) = n

]
−−−−→
n→∞

exp

(
2

∫ T

t

r(s)ds

)∫ T

t

2λ1(s)ds

exp
( ∫ T

s
r(u)du

) > 0

In other words, N(t)/n does not converge in probability to its mean but remains
random instead (see Figure 3 for an illustration).
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Figure 3: Distribution of the relative population size N(t)/n for the uncondi-
tional BD, for different values of n, with fixed λ1(t) = 0.1 and r(t) ' 0.069.
The black line is the expected value and the ribbon ranges from the .025 to the
.975 quantile. The distribution barely changes as n → ∞, illustrating that it
reaches a limit.

We notice that under the current parametrization, the BD coalescent rate does not
vanish as n→∞. Indeed, we have

2λ(t)

N(t)
=

2λ1(t)

N(t)/n

and N(t)/n is stochastically bounded, since (using Bishop (35)’s Theorem 14.4-1 and
the Op(·) notation defined therein):

N(t)

n
= E[N(t)/n|N(T ) = n] +Op

(
Var[N(t)/n|N(T ) = n]

1
2
)

= exp

∫ T

t

r(s)ds+Op
(
Var[N(t)/n|N(T ) = n]

1
2
)

with Var[N(t)/n|N(T ) = n] bounded since it reaches a limit.

Also, the BD coalescent rate remains random as n→∞, since Var[N(t)/n|N(T ) = n]
does not vanish. This suggests that the KC, which has a deterministic coalescent rate,
will not be recovered as the limit of Z, as shown in the next section.

Limit of the sample process Z

Lemma D.3 shows that Z converges in distribution to a random process Ż with density

fŻ(z) := lim
n→∞

fZ(z) =

(
z(0)− 1

)
!(

z(T )− 1
)
!z(T )!

(
ρ1D(0, T )(

1 + ρ1B1(0, T )
)2
)z(T )

× exp

(
−ρ1D(0, T )

1 + ρ1B1(0, T )

) ∏
t∈α(z)

λ1(t)ρ1D(0, t)

(1 + ρ1B1(0, t))2
(2)
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with z =
(
z(t)

)
t

a valid trajectory of the sample process (i.e. a decreasing integer-
valued function with unit decrements), α(z) the set of coalescent times induced by z
and with

D(t1, t2) := exp

∫ t2

t1

r(s)ds B1(t1, t2) :=

∫ t2

t1

λ1(s)D(s, t2)ds

Furthermore, Lemma D.4 in the Appendix shows that this implies that Z|Z(0) = z0

converges to a random process Ż|Ż(0) = z0 with density function

fŻ(z|Ż(0) = z0) ∝ fŻ(z) (3)

Figure 4 shows the distribution of Z given Z(0) = z0 for different values of n.

Figure 4: Distribution of the sample process Z given Z(0) = z0 = 9 for the
unconditional BD, for different values of n, with fixed λ1(t) = 0.1 and r(t) '
0.069. The black line is the expected value and the grey ribbon ranges from
the .025 to the .975 quantile. The distribution barely changes as n → ∞,
illustrating the limit. For comparison, the red dashed line and red ribbon show
the distribution of Z under a KC with θ = E[N(t)|N(T ) = n]/(2λ(t)). We see
that, as n increases, the two distributions do not get more similar, illustrating
that the limiting BD distribution of Z is not a KC.

Importantly, the limiting density of Z conditioned on Z(0) = z0 (Eq. 3), is different
from the KC density, which is of the form

fKCZ (z) = exp

(∫ T

tz(0)−z(T )

(
z(T )

2

)
θ(s)ds

)
z(0)−z(T )∏

i=1

(
z(0)−i+1

2

)
θ(ti)

exp

(∫ ti

ti−1

(
z(0)−i+1

2

)
θ(s)ds

)
(4)

with t0 := 0 and with ∀i ∈ {1, ..., z(0)− z(T )}, ti ∈ α(z), ti > ti−1. Indeed, it can be
verified that there does not exist a parametrization of θ(t) in terms of ρ1, λ1(t) and
r(t) such that Eq. (4) reduces into Eq. (3).
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Summary

The parametrization considered here is interesting because the BD coalescent rate does
not vanish as n → ∞, contrarily to the limit with fixed λ(t) and µ(t) considered in
the previous section. However, the BD coalescent rate remains random in the limit,
which logically implies that the limiting sample process is not a KC.

The conditional BD with fixed λ1(t) and r(t) as n→∞

We now consider the same limit as in the previous section, with fixed λ1(t) and r(t) (ρ
will be irrelevant here), but we condition N on belonging to some set Ωn of population
trajectories such that N(t)/n converges in probability to some deterministic function
u(t) as n→∞. In this case, the BD coalescent rate is given by

2λ(t)

N(t)
=

2λ1(t)n

N(t)
=

2λ1(t)

N(t)/n

p−−−−→
n→∞

2λ1(t)

u(t)
> 0,

becomes deterministic and does not vanish as n→∞. As we show below, this means
that the limiting sample process of the BD is a non-trivial KC.

For Ωn we chose the set of population trajectories defined as follows. Given u(t) any
function of time such that, on [0, T ]: (i) u(t) is continuous (ii) u′(t) exists and is
bounded, (iii) u(t) > 0 and (iv) u(T ) = 1, we define

y(t) = yn(t) := du(t)ne

We further introduce g1 : T
g1
∈ N>0, define g := g1

n
, and define the set Ωn such that

N ∈ Ωn if and only if

∀t ∈ {0, g, 2g, ..., T} N(t) = y(t) (5)

We call the conditional BD the BD process conditioned on N ∈ Ωn. This condition
means that N(t) is constrained to be equal to y(t) every g units of time, with g ∝ 1

n

(see Figure 5). Notice that all the trajectories in Ωn that are not valid BD trajectories
(BD trajectories are step functions with unit increments/decrements) have probability
0.
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Figure 5: Valid population trajectories belonging to the set Ωn. The red line is
the function y(t), and the grey lines are ten random trajectories belonging to
Ωn, i.e. conditioned on N(t) = y(t) every g = g1/n units of time. The figure
shows the interval [5, 5 + 3g]. Red dots delineate the three intervals of length g.
In this example λ1(t) = 0.1, r(t) ' 0.069, g1 = 10, T = 10 and u(t) is illustrated
in Figure 6.

Limit of the relative population size N(t)/n

We show in Theorem G.3 in the Appendix that the condition N ∈ Ωn implies that the
relative population size N(t)/n converges in probability to u(t) as n→∞, uniformly
on [0, T ] (see Figure 6), that is, for any ε > 0

inf
t∈[0,T ]

P

(∣∣∣N(t)

n
− u(t)

∣∣∣ < ε

∣∣∣∣ N ∈ Ωn

)
−−−−→
n→∞

1
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Figure 6: Same example population trajectories belonging to the set Ωn as in
Figure 5, but scaled by n and shown on [0, T ], with T = 10. The blue line is
the function u(t), and the grey lines are ten random trajectories. We see how
the trajectories in Ωn, scaled by n, narrow around u(t) as n → ∞, illustrating
the convergence in probability of N(t)/n | N ∈ Ωn to u(t).

Limit of the sample process Z

The main result of this study is given in Theorem F.1 (see also Section B of the Ap-
pendix for an overview of the proof) and shows that the sample process Z, conditional
on N ∈ Ωn and on Z(0) = z0, converges (in terms of finite-dimensional distributions)
to the KC with a sample size z0 and with parameter

θ(t) =
u(t)

2λ1(t)
(6)

See Figure 7 for an example.
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Figure 7: Distribution of the sample process Z given Z(0) = z0 = 9 for the
conditional BD (black lines and grey ribbons), for different values of n, with
fixed λ1(t) = 0.1, r(t) ' 0.069, g1 = 10 and u(t) as in Figure 6. The thick line is
the expected value and the ribbon ranges from the .025 to the .975 quantile. For
comparison, the red dashed lines and red ribbons show the limiting distribution
of Z, i.e. that of a KC with θ(t) = u(t)/(2λ1(t)). We see that, as n increases,
the two distributions get more similar, contrarily to Figure 4, and coalescences
do not become rarer as n increases, contrarily to Figure 2.

Importantly, θ(t) is finite, and since the coalescent rate of the limiting process depends
on u(t) and λ1(t), non-trivial limiting processes, which may or may not coalesce by
time T , can be studied.

We acknowledge that the conditional BD process considered here, if observed every
g units of time (i.e. for t ∈ {0, g, 2g, . . . , T}), is in effect a (time-inhomogeneous)
Cannings process. It is therefore expected that the limiting process be the KC, given
the previous literature which shows that Cannings processes converge to the KC in
the limit of large population size (e.g. 6, 19). However, the demonstration that the
parameter of the limiting KC is given by the formula in Eq. (6) is far from trivial (see
the proofs in the Appendix), and to our knowledge original.

We further acknowledge that our proof is specific to our choice of definition of Ωn, al-
though we conjecture that our result would hold for Ωn defined as any set of population

trajectories such that
(
N(t)
n
|N ∈ Ωn

)
p−−−−→

n→∞
u(t).

Summary

We observe that two ingredients are necessary for the BD to converge to a KC. First,
one must condition the population process in such a way that the relative population
size N(t)/n converges in probability to a deterministic function u(t) as n→∞. This
ensures that, in the limit, the BD coalescent rate becomes deterministic, like for the
KC. Second, the birth rate must be proportional to n (actually our theorems could
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probably be generalized to the case where λn(t)/n reaches a positive limit). This
ensures that the BD coalescent rate does not vanish as n→∞, as the numerator and
the denominator of the BD coalescent rate remain of the same order.

In the next section we show how considering a KC with θ(t) = u(t)/
(
2λ1(t)

)
as the

large-population limit of a BD conditioned in such a way that N(t)/n
p−−−−→

n→∞
u(t)

provides new avenues for phylogenetic inference with the KC.

Application to the phylogenetic study of epidemics

The present section aims to serve as a proof of concept for the practical usefulness of
our main result (Theorem F.1 and Eq. 6) for the statistical inference of evolutionary
parameters from an observation z =

(
z(t)

)
t

of the sample process. We focus on the
epidemiological context and consider using z as data to estimate a pathogen prevalence
(i.e. its population size N(t)) and effective reproduction number Re(t).

After reviewing briefly the methods most commonly used in phylogenetic epidemiology,
we present a new method ensuing from the main result of this paper. We argue that this
new method is robust with regard to the sampling procedure and the data-generating
model. We illustrate this robustness by showing examples where the new method is
accurate while some of the traditional methods fail.

Classical methods in phylogenetic epidemiology

As explained in the introduction, both the BD and the KC are used for the phylogenetic
study of epidemics. Because pathogen samples are collected at various points in time,
the BD has been extended to model the sampling procedure. This has given rise to
the “birth-death sampling” (BDS) model (29, 30), whereby each individual pathogen
is sampled at rate ψ(t). There are two main appeals of the BDS: (i) the parameters
of the BDS are readily converted into meaningful epidemiological parameters such as
the prevalence or the effective reproduction number (29, 30), and (ii) if the chosen
parametrization for the function ψ(t) fits well the observed sampling times, the BDS
leverages the information of the sampling times to gain precision (34). On the other
hand, the main drawback of the BDS is its lack of robustness to the misspecification
of ψ(t) (see 34 and our example below). In contrast to the BD, the KC conditions on
sampling times, and should therefore be robust with regard to the sampling procedure.
Uses of the KC in epidemiology can be classified into two main approaches. First, the
“skyline” approach sets θ(t) = f(t), with f(t) a piecewise function (e.g. 36–38). Such
KC models can fit the data well, provided f(t) has enough free parameters. However,
the estimate of θ is hardly interpretable, since f is a phenomenological representation
of θ. Importantly, θ is not, in general, proportional to the census population size N
(25). In the case of the BD, for instance, θ(t) ' N(t)/(2λ(t)), so that proportionality
holds only under the assumption that the birth rate is constant through time, which is
violated by most epidemiological models (e.g. 39). Thus, with this approach, little can
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be inferred about demographic or epidemiological parameters (although θ does reflect
the genetic diversity and the potential for adaptation, 40). The second category of
KC models falls into the “mechanistic” approach, which sets θ(t) ∝ f(t), with f(t)
the population size expected under some deterministic epidemiological model (e.g.
28, 36, 39, 41). For instance, Pybus et al. (39) studied the Hepatitis C virus using
the KC, setting f(t) to the number of infections predicted by a deterministic SIS
model. Contrarily to the skyline approach, and similarly to the BDS approach, the
mechanistic approach has the advantage that epidemiological parameters are readily
obtained. However, as we show below, it is not robust to the misspecification of
the data-generating model (e.g. the estimates obtained assuming an SIR model are
inaccurate if the true model was more like an SIS model). Furthermore, the same
problem as for the skyline approach remains: θ is not, in general, proportional to N ,
so that the prevalence may not be inferred. Finally, the KC has been criticized for its
assuming that the population size is deterministic (e.g. 24, 42), spawning extensions of
the KC to accommodate a random population size (e.g. 43, 44). Given our results, we
would instead argue that the KC does not assume that population size is deterministic:
it conditions on a given population trajectory (i.e. on one realization of an otherwise
random population process) in order to estimate it. In line with this, the KC is known
to be the limit of Cannings models, which are Galton-Watson processes (with a random
population size) conditioned on a population trajectory (45).

Our new method

We propose a new method for epidemiological phylogenetics, ensuing from our main
result (Theorem F.1 and Eq. 6) in that it consists of a KC seen as the large-population
limit of a conditional BD. Its purpose is to gain insight into the historical progress of
an epidemic from an observation of the sample process. We argue that our method
combines the three following advantages: (i) it is robust with regard to the data-
generating process (i.e. whether the epidemic unfolded as predicted by an SIS, SIR,
SIRV, etc... model), (ii) important epidemiological parameters can be estimated, in
particular the prevalence, effective reproduction number, transmission rate and du-
ration of infections, and (iii) it is robust with regard to the sampling procedure (i.e.
whether samples are collected homogeneously through time, punctually, erratically...).

Before presenting our new method, we here define a class of models, called BD-type
models, because we will argue that our method performs well for all the models of this
class. We define a BD-type model as a model whose population process is such that,
in any sufficiently small interval of time, every individual of the population can give
birth to at most one new individual or can be removed from the population. Moreover,
individuals are exchangeable at all times. This body of models notably encompasses
the BD model with deterministic per-capita rates which we studied in this paper,
and also the stochastic versions of many compartmental models used in epidemiology,
which are BD models with random per-capita rates (e.g. in the SIR model, the per-
capita birth rate of infectious individuals is proportional to the random number of
susceptible individuals).

Finally, we will now define Ñ(t), λ̃(t) and µ̃(t), which are phenomenological functions
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representing respectively the realized population trajectory, and what we call the re-
alized birth and death rates, and which our method will aim at inferring. For any
BD-type model, the population size is given by N(t) = N(0) − B(t) + D(t), where
B(t) and D(t) are the random cumulative number of births and deaths, respectively,
between the present and time t. To any population at study correspond fixed realiza-
tions N = ν, B = β and D = δ of these random processes, which we would like to
estimate. To do so, we represent β and δ with differentiable functions B̃ and D̃ and
logically we represent ν with a function Ñ = Ñ(0) − B̃ + D̃. We define the realized
birth and death rates as λ̃ := B̃′/Ñ and µ̃ := D̃′/Ñ . Understandably λ̃(t) represents
the per-capita birth rate in action at time t, given that the number of births that
occurred by time t is β(t) ≈ B̃(t) =

∫ t
0
λ̃(s)Ñ(s)ds, and similarly for deaths and µ̃(t).

We call these rates “realized”, because they describe the accumulation of births and
deaths in a realization of the population process.

Our method consists of a KC parametrized with

θ(t) =
Ñ(t)

2λ̃(t)
=
Ñ(0) exp

∫ t
0

(
µ̃(s)− λ̃(s)

)
ds

2λ̃(t)
,

that is parametrized in terms of important epidemiological parameters: Ñ (the realized
population trajectory, or prevalence), λ̃ (the realized transmission rate), µ̃ (the realized
inverse of the average duration of infections), and also R̃e = λ̃/µ̃ (the realized effective
reproduction number) can be deduced. We will now explain how this parametrization
of θ arises and why we think it should be robust.

Robustness with regard to the data-generating model. We have shown in
this paper that, for the BD with deterministic rates, after conditioning the population
process in such a way that N(t)/n

p−→ u(t) as n→∞, the sample process Z converges

to a KC with θ(t) = u(t)
2λ1(t)

. Given that λ1(t) = λ(t)/n and that N(t)/n
p−→ u(t), we

have that N(t)
2λ(t)

= N(t)/n
2λ(t)/n

p−→ u(t)
2λ1(t)

. This can be phrased informally as follows. For

some function u(t), for sufficiently large n, we should have that a KC with θ(t) = N(t)
2λ(t)

is a good approximation to the BD distribution of Z, conditioned on N(t)/n ≈ u(t).

Hence, our proposed method is a KC parametrized with θ(t) = N(t)
2λ(t)

. While our result
is specific to the BD with deterministic rates, we argue heuristically in Appendix J.1
that our method should perform well for all BD-type models. Very briefly, for all
BD-type models, given realizations ν and β of N and B, the probability that a pair
of individuals do not coalesce in [0, t] is given by (see notably 46)

P (t) =

β(t)∏
i=1

(
1− 1(

ν(ti)
2

))
where ti is the time of the i-th birth from present to past. In Appendix J.1, we suggest
that, provided that ν is sufficiently large in [0, t], the following approximation should
hold:

P (t) ≈ exp

(
−
∫ t

0

2λ̃(s)

Ñ(s)
ds

)
The latter expression is equal to the probability of a pair of individuals not coalescing
in [0, t] under a KC with θ = Ñ/(2λ̃) and, importantly, it should hold for all the
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BD-type models, given that our heuristic did not use any more assumptions than the
absence of multiple births, the exchangeability of individuals, and large population
size (see Appendix J.1).

Important epidemiological parameters can be inferred. Without further
considerations, fitting a KC with θ = Ñ/(2λ̃), for some parametrizations of the curves
Ñ and λ̃, would not allow to estimate interesting parameters. Obviously, the scales
of the two curves cannot be separately identified, and µ̃ and R̃e cannot be derived.
To remedy this, we notice that, given the above definitions of λ̃ and µ̃, then Ñ =
Ñ(0)− B̃ + D̃ implies that (see Appendix J.2)

Ñ(t) = Ñ(0) exp

∫ t

0

(
µ̃(s)− λ̃(s)

)
ds

This makes µ̃ appear as a parameter, and consequently R̃e = λ̃/µ̃ too. We thus
have θ parametrized in terms of all the parameters that we wish to estimate. Still,
these parameters cannot be identified, since an infinite number of combinations of λ̃,
µ̃ and Ñ(0) can yield the same θ, and hence the same likelihood. Actually, letting a
triple

(
λ̃, µ̃, Ñ(0)

)
define a “model”, and calling an equivalence class of models a set of

models yielding the same θ, we show in Appendix J.3 that the equivalence classes for
our method are the same as the equivalence classes defined in Louca and Pennell (47)
for the Bernoulli-sampled BD model. Therefore, our method cannot be used without
the use of auxiliary data to inform at least one of the curves λ̃, µ̃ or Ñ . This must be
kept in mind as an important subject of study in the future, but identifiability shall
not be our primary concern here. Our purpose is only to show that, provided that an
external estimate of λ̃, µ̃ or Ñ can be obtained, the other parameters can be inferred.
In the remaining of this section, we will thus assume that µ̃ is fixed to a value inferred
by other means than phylogenetics, and the phylogenetic analysis then comes to bring
additional information about the epidemic. Appendix I gives more detail about this,
and explains the chosen parametrization for the remaining free curve λ̃.

Robustness with regard to the sampling procedure. Because the KC
conditions on sampling times, it does not need to assume a particular sampling proce-
dure. This contrasts with the BDS approach, which is sensitive to the misspecification
of the sampling procedure.

Comparison of our new method with classical methods

In sum, in the previous section, we argued that our method of using a KC parametrized
with

θ(t) =
Ñ(t)

2λ̃(t)
=
Ñ(0) exp

∫ t
0

(
µ̃(s)− λ̃(s)

)
ds

2λ̃(t)

provides estimators of important epidemiological quantities such as the prevalence Ñ ,
or the effective reproduction number R̃e, in a way that is robust with regard to the
data-generating process and the sampling procedure. To properly test our claims, a
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dedicated simulation study will be warranted. Here, we merely want to illustrate our
words with a few worked examples. We disclose that we have actively searched for
examples of failures of the methods other than ours, and we do not claim that these
methods fail in general. We assert that in the process of looking for examples, we have
not come across a case where our method was inaccurate.

We present the results of three pairs of analyses. For each pair, the same simulated
datasets are analysed with (i) our method and (ii) one of the classical methods (i.e. the
skyline KC, the mechanistic KC, and the BDS approaches described above). For each
pair of analyses, we simulated a single population trajectory, and then simulated 100
realizations of the sample process, conditional on the simulated population trajectory.
Each dataset was analyzed with the two methods being compared (i.e. parameter
estimates were obtained by maximum likelihood). All the details of the simulations
and inferences are given in Appendices H and I.

For the first comparison, we simulated the population trajectory using an SIS model
whose parameters have been chosen so that the predicted curve for θ is not proportional
to N , because of important temporal variations of the birth rate. Indeed, with an SIS
model, the per-capita birth rate is proportional to the number of susceptibles, which
decreases during the course of the epidemic. As a result, the predicted curve for θ
is shifted in time with respect to N . In this case, the estimate of θ obtained with
the skyline KC method should not be an accurate estimate of the relative population
trajectory. Figure 8 shows that our method is accurate for estimating both N and
Re (in the sense that the range of estimated curves overall covers the true curves).
In comparison, the skyline KC method provides an accurate estimate of θ, which is
however not an accurate estimate of the relative population trajectory. In general, θ
cannot be conflated with the relative population size. For instance, lockdown measures
immediately decrease the transmission rate (i.e. the realized birth rate), but the
resulting decrease in prevalence is delayed. Probably the skyline KC method would
reveal the immediate decrease of θ, but would be unable to measure the delay of the
effect of the lockdown on prevalence. Finally, the skyline KC method has the drawback
that it does not provide an estimate of Re. The precision is lower towards the present
with both methods, due to less frequent coalescences in the recent past in the datasets
analyzed.
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Figure 8: Comparison of the skyline KC approach with our new method. The
population trajectory was simulated under an SIS model. The sampling proce-
dure assumed a fixed per-capita sampling rate. a) Estimate of θ with the skyline
KC method. Black curve (left y-axis), true population trajectory. Blue curve
(right y-axis), true (realized) value of θ. Red solid curve, median of estimates
for θ across the 100 inferences. Red ribbon, .025 to the .975 percentiles of the θ
estimates. If N ∝ θ is assumed, the estimate of θ may be taken for an estimate
of the relative population trajectory. In this example, it is inaccurate because
N ∝ θ is untrue. b) Estimate of the population trajectory with our method.
Black curve, true population trajectory. Red curve, median of the estimates for
N . Red ribbon, .025 to the .975 percentiles of these estimates. c) Estimate of
the effective reproduction number with our method. Black curve, true (realized)
value of Re. Red curve, median of the estimates for Re. Red ribbon, .025 to the
.975 percentiles. Re cannot be estimated with the skyline KC approach. The
gray shaded areas in all panels are the distribution of the coalescence times.
The death rate curve was fixed to a pre-estimated value for inference with our
method.

For the second comparison, the population trajectory was again simulated with an
SIS model. Population trajectories typical of the SIS model reach a plateau when new
infections and recoveries balance out. In contrast, typical curves of the SIR model
reach a peak and then decrease. Importantly, there is no parametrization of an SIR

19



model that predicts population trajectories with a plateau. Therefore, we expect that
an SIR-based mechanistic KC approach, which assumes that θ is proportional to a
deterministic SIR population trajectory, performs inaccurately. Figure 8 shows that
the estimates obtained with our method are again accurate. The estimates of N fol-
low closely the true curve, which reaches a plateau towards the present (Fig. 8b).
The plateau further shows in the estimates of Re, which decrease to about 1 near the
present (Fig. 8d). For the SIR mechanistic approach, we fixed the proportionality
constant between N and θ to 1, as we found that this constant, the time of origin of
the process, and the size of the whole population (i.e. the combined number of suscep-
tible, infectious and recovered individuals) were not separately identifiable. Therefore,
we assessed whether the estimates for θ reflect the relative population trajectory. We
see that the estimated θ curves show a clear peak around time 3 (Figure 8a). This
further shows in the estimates for Re, which tell with confidence that Re goes below
1 around time 3 (Figure 8d). Based on this result, an investigator would conclude
that the epidemic is presently recessing, which is incorrect. Of course, in practice, an
investigator would carry out model selection if they do not know that their study sys-
tem approximately obeys a particular model. But delineating a good set of candidate
models may not be an easy task, in particular if exogenous factors induce temporal
variations of the epidemiological parameters. In contrast, since our approach is valid
for a large set of models, it does not require model selection.
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Figure 9: Comparison of the SIR mechanistic KC approach with our new
method. The population trajectory was simulated under an SIS model. The
sampling procedure assumed a fixed per-capita sampling rate. This figure reads
as Figure 8. The death rate curve was fixed to the same pre-estimated value for
both methods (see Appendix I).

For the third comparison, we used the same simulated population trajectory as for
the second comparison. However, instead of drawing sampling times based on a con-
stant sampling rate, we drew a fixed number of samples at three fixed times: 71
samples at time 0.1, 66 samples at time 0.5, and 26 samples at time 1. This sam-
pling procedure mimics punctual sampling campaigns carried out for other purposes
than phylogenetics. Such a distribution of sampling times is at odds with the expec-
tations of a constant-rate-based sampling procedure. As a consequence, we expect
the BDS method to fail if it assumes a constant sampling rate. Figure 10 shows that
our method still performs accurately, for estimating both N and Re. The precision
decreases rapidly looking into the past, as the sampling procedure used in this ex-
ample yielded coalescent times concentrated in the recent past. In contrast, the BDS
parametrized with a constant sampling rate (ψ(t) = ψ) performs very inaccurately,
inferring an exponential growth that accelerates dramatically in the recent past, a
scenario which is totally different from the truth. We put this failure down to the
erroneous specification of the sampling procedure in the BDS, as the same analyses
with the data of Figure 9 (wherein sampling times were drawn based on a constant
rate) work very well (see Appendix K). We acknowledge that a thorough investigator
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would not analyze data sampled from three points in time with a model assuming a
constant sampling rate, but this example highlights the fact that the misspecification
of the sampling procedure when using the BDS can have dramatic effects on the re-
sults. In contrast, our method, being based on the KC, conditions on the sampling
times and does not assume a sampling procedure.

Figure 10: Comparison of the BDS approach with our new method. The pop-
ulation trajectory was simulated under an SIS model. The sampling procedure
assumed that fixed numbers of samples were taken at three fixed points in time.
This figure reads as Figure 9, except that a) here shows the estimates of the pop-
ulation trajectory rather than estimates of θ, since θ is not a parameter of the
BDS model. Appendix I explains how an estimate for the population trajectory
is obtained from estimates of λ, µ and ψ under the BDS. The death rate curve
was fixed to the same pre-estimated value for both methods (see Appendix I).

Conclusion

This paper outlines a mathematical bridge between the BD and the KC by showing
that the KC is the large-population limit of a BD conditioned on a given population
trajectory. Earlier studies have searched to link the BD and the KC, and have found
the same formula as us for the BD coalescent rate (24, 33, 34, 48). However, the present
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study is the first, to our knowledge, to formally demonstrate this formula and to show
that, besides the assumption of a large population size, it is required that the BD be
conditioned on a population trajectory to obtain a KC. This is a reminder that the
KC does not assume that the population size is deterministic: it conditions on a given
population trajectory. We further demonstrate how the mathematical relationship
between the two models may be leveraged to improve phylogenetic inference with the
KC, in particular in the context of pathogen phylodynamics: we present a new method
which may be able to estimate accurately important epidemiological parameters. Like
its BD pendant (the BDS model), this new method requires external information to
identify the parameters, and is intended to be used in conjunction with auxiliary
epidemiological data. In principle, this new method should be robust with regard to
the data-generating model and the sampling procedure. Simulation studies dedicated
to testing these claims will be warranted.
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Appendix

After introducing the definitions and notations needed for our proofs in Section A,
we present in Section B an overview of the proof of the central result of this paper
(Theorem F.1). Sections C through to E derive the proofs needed for Theorem F.1.
In Section C we provide general results about the BD. In Section D we provide results
about the scaled BD (i.e. parametrized such that λ(t) is proportional to n). In
Section E, we provide results about the scaled BD, conditioned on Z(0) = z0 and on
the population process taking certain values. Section F provides the formal statement
of the central result of the paper, along with its proof. Then, Section G gives the proof
of the convergence in probability of N(t)/n to u(t), for the conditional scaled BD.

The rest of the appendix gives the details of the phylogenetic inferences carried out
with the BDS, the skyline KC approach, the SIR-based mechanistic approach, and our
new method. Section H gives details about the data simulation procedure. Section I
gives details about the inference methods. Finally, Section J provides details about
our method.

A Preliminaries

The following functions will be used frequently:

D(t1, t2) := exp

∫ t2

t1

r(t)dt

B(t1, t2) :=

∫ t2

t1

λ(t)D(t, t2)dt

B1(t1, t2) :=
B(t1, t2)

n
=

∫ t2

t1

λ1(t)D(t, t2)dt

We use the O(·) and o(·) notations as follows (where y may represent several variables).

• h(x, y) = O(f(x)) as x → 0 (resp. x → ∞) means that there exist a constant
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C > 0 and a number X such that ∀x ∈ (0, X] (resp. ∀x ≥ X)

sup
y
|h(x, y)| ≤ Cf(x)

• h(x, y) = Oy(f(x)) as x→ 0 (resp. x→∞) means that, for fixed y, there exist
a constant Cy > 0 and a number Xy such that ∀x ∈ (0, Xy] (resp. ∀x ≥ Xy)

|h(x, y)| ≤ Cyf(x)

• h(x, y) = o(f(x)) as x→ 0 (resp. x→∞) means that for any choice of C > 0,
there exists a number X such that ∀x ∈ (0, X] (resp. ∀x ≥ X)

sup
y
|h(x, y)| ≤ Cf(x)

• h(x, y) = oy(f(x)) as x → 0 (resp. x → ∞) means that, for fixed y, for
any choice of C > 0, there exists a number Xy such that ∀x ∈ (0, Xy] (resp.
∀x ≥ Xy)

|h(x, y)| ≤ Cf(x)

Importantly, all the variables on which a function O(f(x)) or o(f(x)) depends (besides
x) are listed as indices, so that the absence from the list of indices of any one variable
means that the function does not depend on the variable. NB: the index p is reserved
for the notation Op(·)/op(·), which means order in probability.

The BD process

Time (t) runs backwards, from present to past, with t = 0 the present.

A BD process starts at time T and is parametrized with a birth rate λ(t), a growth
rate r(t) ≤ λ(t) and an initial number of individuals n. The death rate is given by
µ(t) = λ(t)− r(t).

The BD process unravels in continuous time and is defined by the probability distri-
bution of the number ζt of offspring at time t− dt of one individual at time t:

P(ζt = 0) = µ(t)dt+ o(dt)

P(ζt = 1) = 1−
(
λ(t) + µ(t)

)
dt+ o(dt)

P(ζt = 2) = λ(t)dt+ o(dt)

P(ζt = r) = o(dt) (r > 2)

as dt→ 0.

The offspring distribution is the same for all individuals: the individuals are exchange-
able.

Finally, at the present, a random number Z(0) of individuals are sampled. We will
specify which sampling procedure is assumed where relevant.

28



Random outcomes

Counting individuals induces the random population process N := (N(t))t∈[0,T ],
where N(t) is the number of individuals (the population size) at time t. The initial
state is N(T ) = n.

Labelling the initial n individuals, and keeping track of which individuals give birth
and die, induces the complete forest, that is a totally ordered set of n ordered time
trees. Removing from the complete forest the vertices and edges that do not have any
descendants in the sample then induces the sample forest, denoted Ψ := (Γi)i=1,...,n,
where Γi is the ordered time tree generated by individual i, whose leaves are individ-
uals in the sample. Note that Γi may be the order-zero tree if individual i has no
descendants in the sample.

Labelling the Z(0) sampled individuals and keeping track (from the present to time T )
of the ancestry relationships among sampled individuals and their ancestors induces
the random ancestral process, denoted R := (R(t))t∈[0,T ]. R(t) is the equivalence
relation which contains the pair (i, j) if and only if the i-th and the j-th sampled
individuals have a common ancestor at time t. The initial state is R(0) =

{
(i, i)|i ∈

{1, . . . , Z(0)}
}

. Notice that R can be represented as a forest of |R(T )| leaf-labelled
time trees.

We denote Z(t) the number of ancestors at time t of the Z(0) sampled individuals.
Z(t) is the number of edges in Ψ at time t, as well as the number of equivalence classes
in R(t). We call the curve Z := (Z(t))t∈[0,T ] the sample process.

We denote α(Z) the set of coalescent times induced by Z, that is the times when
Z(t) decreases (when two ancestors coalesce into one). We further denote ᾱ(Γi) the
node ages of Γi. Then, given a realisation z := (z(t))t∈[0,T ] of the sample process,
there exist not one, but a set Sn(z) of forests that induce z. Specifically, a given forest
ψ = (γi)i=1,...,n belongs to Sn(z) if and only if ∪i=1,...,nᾱ(γi) = α(z) (i.e. Sn(z) is the
set of forests with node ages matching the coalescent times of z). Similarly, a number
of different realisations of the ancestral process induce the same value z, all of which
have in common that R(0) =

{
(i, i)|i ∈ {1, . . . , z(0)}

}
and that transitions between

different states occur at times α(z).

In this paper we are interested in the distribution of Z, but the above definitions of the
other types of random outcomes (N , Ψ and R) will be needed to derive results about
Z. Notably, our main focus is the distribution of Z under some condition about N . We
will come across Ψ because the literature about the BD, especially in phylogenetics,
often focuses on the distribution of Ψ (oftentimes with n = 1, in which case Ψ = Γ1 is
a tree, e.g. (12, 47, 49)). And we will come across R because many results about the
Kingman coalescent concern the ancestral process (e.g. (6, 19)).
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B Overview of the proof of the convergence of
the conditional BD to the Kingman coales-
cent

The central result of this paper is that, for fixed λ1(t) := λ(t)/n and r(t), the sample
process Z of the BD, conditioned on Z(0) = z0 and on N ∈ Ωn (with Ωn a set of
population trajectories defined in such a way that N ∈ Ωn implies that N(t)/n→ u(t)
as n→∞), converges to a Kingman coalescent with z0 samples and with parameter

θ(t) =
u(t)

2λ1(t)

This result is formally enunciated in Theorem F.1 of Section F below, wherein sufficient
conditions on λ1(t), r(t) and u(t) for Theorem F.1 to apply are provided.

Here, we only briefly explain the rationale leading to Theorem F.1. The following is
not a mathematical proof, and is only intended to provide an intuition of how Theorem
F.1 arises.

B.1 The conditional BD process is a Cannings model

The definition of Ωn is such that the condition N ∈ Ωn fixes the population size every
g units of time, with g ∝ 1/n. Specifically, ∀t ∈ {0, g, 2g, . . . , T}, N(t) = y(t). Hence,
the conditional BD process reduces into a discrete-time model with fixed population
sizes. Furthermore, the individuals in a BD process are exchangeable. These are the
characteristics of a (time-heterogeneous) Cannings model. Therefore, the conditional
BD process, when observed at the discrete times t ∈ {0, g, 2g, . . . , T}, is a Cannings
model. We can then use one of the existing theorems that show the convergence of
Cannings models to the KC (hereafter a convergence theorem).

B.2 Convergence to the KC

We then have to verify that the conditional BD process verifies the conditions of
application of a convergence theorem. The most important such condition concerns the
probability cn(t) of coalescence of two individuals in [t−g, t], defined ∀t ∈ {g, 2g, . . . , T}
as

cn(t) := P
(
Z(t) = 1|Z(t− g) = 2, N(t) = y(t), N(t− g) = y(t− g)

)
The expression of this probability is given by Möhle (19):

cn(t) =
y(t)

y(t− g)(y(t− g)− 1)

× E
[
νgt1(νgt1 − 1)|N(t) = y(t), N(t− g) = y(t− g)

]
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where νgt1 is the number of descendants at time t− g of an individual existing at time
t.

The central condition for convergence theorems to apply is that cn(t)/g reach a limit
as n→∞. This limit is the coalescent rate of the limiting KC process, that is 1/θ(t).
For the conditional BD model, we find that

1

θ(t)
= lim
n→∞

cn(t)/g =
2λ1(t)

u(t)

To obtain this limit, we showed that (Lemma E.6)

1

g
· y(t)

y(t− g)(y(t− g)− 1)
−−−−→
n→∞

1

u(t)g1

which was easily done.

Then we showed that (Lemma E.7)

E
[
νgt1(νgt1 − 1)|N(t) = y(t), N(t− g) = y(t− g)

]
−−−−→
n→∞

2λ1(t)g1

which, to us, was much more involved and necessitated a long list of preliminary
lemmas (in Sections C-E).

C General results concerning the birth-death

In this section we consider a BD process parametrized with λ(t), r(t) and n. A
Bernoulli sampling procedure with probability ρ is assumed where relevant. It is not
assumed that the parameters are scaled by n, as opposed to the scaled BD process
considered in Section D, nor that the population process is conditioned, like in Section
E. The goal of this section is to establish some notation and derive useful formulae for
the following sections.

C.1 Number of (sampled) descendants of one individual

In this section we give the distribution of the number of sampled individuals Z(0)
given N(T ) = 1, along with the distribution of the population size N(t1), given a
population size N(t2) = 1 at an earlier time. The provided formulae are known (see
(47)), and our goal here is to translate them into our notation.

Lemma C.1. Assuming a Bernoulli sampling procedure with sampling probability ρ,
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the distribution of Z(0) given N(T ) = 1 is

P
(
Z(0) = 0|N(T ) = 1

)
= 1− ρD(0, T )

1 + ρB(0, T )

P
(
Z(0) = k|N(T ) = 1

)
=

ρD(0, T )(
1 + ρB(0, T )

)2( ρB(0, T )

1 + ρB(0, T )

)k−1

k ≥ 1

Proof. This distribution is given by Louca and Pennel ((47), Eq. 65). After setting
τ0 = T in Louca’s and Pennel’s expression, rearranging, and using the definitions of
D and B given earlier, we obtain the formula of the present lemma.

Lemma C.2. The distribution of N(t1) given N(t2) = 1, with t1, t2 ∈ [0, T ], t2 ≥ t1
is

P
(
N(t1) = 0|N(t2) = 1

)
= 1− D(t1, t2)

1 +B(t1, t2)

P
(
N(t1) = k|N(t2) = 1

)
=

D(t1, t2)(
1 +B(t1, t2)

)2( B(t1, t2)

1 +B(t1, t2)

)k−1

, k ≥ 1

Proof. If ρ = 1, then Z(0) = N(0) with probability 1. Therefore, Lemma C.1 with
ρ = 1 gives P

(
N(0)|N(T ) = 1

)
. Then, setting T = t2 − t1 in the formula of Lemma

C.1, and changing variables from t to t′ = t + t1 yields the formula of the present
lemma.

C.2 Number of sampled descendants of several individuals

In this section we give the distribution of the number of sampled descendants Z(0) of
N(T ) = n individuals (a generalization of Lemma C.1).

Lemma C.3. Assuming a Bernoulli sampling procedure with sampling probability ρ,
we have

P(Z(0) = z0|N(T ) = n)

=


Qn0 , z0 = 0∑z0
zT =1

(
n
zT

)
Qn−zT0

(
z0−1
z0−zT

)(
1− Q1

1−Q0

)z0−zT
QzT1 , z0 ≥ 1

with Qk ≡ Qρk(T ) := P(Z(0) = k|N(T ) = n).
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Proof. For z0 = 0, trivially,

P(Z(0) = 0|N(T ) = n) = Qn0

For z0 ≥ 1, denoting Li the number of sampled descendants of individual i existing at
time T , we have

P(Z(0) = z0, Z(T ) = zT |N(T ) = n)

= P(Z(T ) = zT |N(T ) = n) P(Z(0) = z0|Z(T ) = zT )

=

(
n

zT

)
(1−Q0)zTQn−zT0 P

( zT∑
i=1

Li = z0|∀i Li ≥ 1
)

=

(
n

zT

)
(1−Q0)zTQn−zT0 P

( zT∑
i=1

(Li − 1) = z0 − zT |∀i Li − 1 ≥ 0
)

Using Lemma C.1, and noticing that ∀i ∈ {1, . . . , zT } P(Li = li) = P(Z(0) =
li|N(T ) = 1), we have ∀i ∈ {1, . . . , zT }

P(Li − 1 = k|Li − 1 ≥ 0) = P(Li = k + 1|Li ≥ 1)

=
P(Li = k + 1)

1− P(Li = 0)

=
P(Z(0) = k + 1|N(T ) = 1)

1− P(Z(0) = 0|N(T ) = 1)

=
Q1

1−Q0

(
1− Q1

1−Q0

)k+1−1

=
Q1

1−Q0

(
1− Q1

1−Q0

)k

showing that Li−1|Li−1 ≥ 0 for i = 1, . . . , zT are iid. geometric random variables with
parameter Q1

1−Q0
. Given that the sum of zT geometric variables with parameter Q1

1−Q0

is a negative-binomial random variable with parameters zT the number of successes
and Q1

1−Q0
the probability of success, we have that

P
( zT∑
i=1

(Li − 1) = z0 − zT |∀i Li − 1 ≥ 0
)

=

(
z0 − zT + zT − 1

z0 − zT

)(
1− Q1

1−Q0

)z0−zT( Q1

1−Q0

)zT
=

(
z0 − 1

z0 − zT

)(
1− Q1

1−Q0

)z0−zT( Q1

1−Q0

)zT
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It then follows that, for z0 ≥ 1,

P(Z(0) = z0|N(T ) = n)

=

z0∑
zT =1

P(Z(0) = z0, Z(T ) = zT |N(T ) = n)

=

z0∑
zT =1

(
n

zT

)
(1−Q0)zTQn−zT0

(
z0 − 1

z0 − zT

)(
1− Q1

1−Q0

)z0−zT( Q1

1−Q0

)zT
=

z0∑
zT =1

(
n

zT

)
Qn−zT0

(
z0 − 1

z0 − zT

)(
1− Q1

1−Q0

)z0−zT
QzT1

C.3 Mean and variance of the population size N(t)

Kendall (5) gave the formulae for the mean and variance of N(t) of a BD process in
forward time. In this paper we always use backward time, and the purpose of this
section is to translate Kendall’s formulae from forward to backward time.

Lemma C.4. For a BD process starting at time T before the present, the formulae
for the mean and variance of N(t) in backward time are

E
[
N(t)|N(T ) = 1

]
= exp

(∫ T

t

r(s)ds

)
E
[
N(t)|N(T ) = n

]
= n exp

(∫ T

t

r(s)ds

)
Var
[
N(t)|N(T ) = 1

]
= exp

(
2

∫ T

t

r(s)ds

)∫ T

t

2λ(s)− r(s)
exp

( ∫ T
s
r(u)du

)ds
Var
[
N(t)|N(T ) = n

]
= n exp

(
2

∫ T

t

r(s)ds

)∫ T

t

2λ(s)− r(s)
exp

( ∫ T
s
r(u)du

)ds

Proof. We denote q the forward time, and t the backward time. We set the origin of
q at backward time T , so that q = T − t and t = T − q. This yields dq = −dt.

Our functions λ(t) and r(t) take backward time as their argument. We define λ̃(q) :=
λ(T − q) and r̃(q) := r(T − q) their equivalent in forward time. We also have µ(t) =
λ(t)− µ(t) and µ̃(q) = λ̃(q)− r̃(q) = µ(T − q).

We denote

M(T, t) := E
[
N(t)|N(T ) = 1

]
W (T, t) := Var

[
N(t)|N(T ) = 1

]
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and M̃(q) := M(T, T − q) and W̃ (q) := W (T, T − q) their forward-time equivalents.
The functions M̃(q) and W̃ (q) are those given by Kendall (5), and our purpose is here
to derive M(T, t) and W (T, t).

Below we will use τ as a specific value of backward time and thus save the symbol t
for inside the integrals. This way it is clear that when there is dq inside the integral,
we integrate over forward time, and when there is dt we integrate over backward time.
When integrals are nested, we also use ds for backward time.

From Kendall ((5), Eq. 13), we have for τ ∈ [0, T ]:

M(T, τ) = M̃(T − τ)

= exp

∫ T−τ

0

r̃(q)dq

= exp

∫ T−τ

0

r(T − q)dq

(7)

We proceed to a change of variable from q to t, giving

E
[
N(τ)|N(T ) = 1

]
=: M(T, τ) = exp

∫ τ

T

−r(t)dt

= exp

∫ T

τ

r(t)dt

(8)

From Kendall ((5), Eq. 14c), we have

W (T, τ) = W̃ (T − τ)

= M̃(T − τ)2

∫ T−τ

0

(
λ̃(q) + µ̃(q)

)
M̃(q)

dq

= M(T, τ)2

∫ T−τ

0

(
λ(T − q) + µ(T − q)

)
M(T, T − q) dq

(9)

We proceed to a change of variable from q to t in the integral, giving

Var
[
N(τ)|N(T ) = 1

]
=: W (T, τ) = M(T, τ)2

∫ τ

T

−
(
λ(t) + µ(t)

)
M(T, t)

dt

= M(T, τ)2

∫ T

τ

(
λ(t) + µ(t)

)
M(T, t)

dt

= exp

(
2

∫ T

τ

r(t)dt

)∫ T

τ

(
2λ(t)− r(t)

)
exp

( ∫ T
t
r(s)ds

)dt
(10)

Then, because the number of descendants of different individuals existing at time T
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are independent, we have

E
[
N(τ)|N(T ) = n

]
= n exp

∫ T

τ

r(t)dt

Var
[
N(τ)|N(T ) = n

]
= n exp

(
2

∫ T

τ

r(t)dt

)∫ T

τ

(
2λ(t)− r(t)

)
exp

( ∫ T
t
r(s)ds

)dt

C.4 Convergence of the relative population size N(t)/n

This section gives the proof that, under a BD model with fixed λ(t) and r(t), the

relative population size N(t)/n converges in probability to
∫ T
t
r(s)ds as n→∞.

Lemma C.5. Given fixed functions λ(t) and r(t) bounded on [0, T ], the relative pop-

ulation size N(t)/n given N(T ) = n converges uniformly in probability to
∫ T
t
r(s)ds

as n→∞.

Proof. As per Bishop (35)’s Theorem 14.4-1, using Bishop’s Op(·) and op(·) notation,
we have that(

N(t)

n

∣∣∣N(T ) = n

)
= E

[
N(t)

n

∣∣∣N(T ) = n

]
+Op

(
Var

[
N(t)

n

∣∣∣N(T ) = n

] 1
2

)

Using Lemma C.4 we have

E
[
N(t)

n

∣∣∣N(T ) = n

]
=

1

n
· E
[
N(t)|N(T ) = n

]
= exp

(∫ T

t

r(s)ds

)
and

Var

[
N(t)

n

∣∣∣N(T ) = n

]
=

1

n2
·Var

[
N(t)|N(T ) = n

]
=

1

n
exp

(
2

∫ T

t

r(s)ds

)∫ T

t

2λ(s)− r(s)
exp

( ∫ T
s
r(u)du

)ds
Provided that r(t) and λ(t) are bounded on [0, T ], we have

Var

[
N(t)

n

∣∣∣N(T ) = n

]
= O(1/n)

We thus obtain (
N(t)

n

∣∣∣N(T ) = n

)
= exp

(∫ T

t

r(s)ds

)
+Op(1/

√
n)

= exp

(∫ T

t

r(s)ds

)
+ op(1)
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which concludes the proof.

C.5 Unconditional distribution of the sample process Z

The following lemma provides the unconditional BD density fZ(z|N(T ) = n). This
density has been established elsewhere (see (12, 47)) for n = 1. Here, we establish the
general formula for any n.

Lemma C.6. Assuming a Bernoulli sampling procedure with sampling probability ρ,
the density of Z given N(T ) = n is

fZ
(
z|N(T ) = n

)
=

(
z(0)− 1

)
!(

z(T )− 1
)
!

(
n

z(T )

)
Qρ0(T )n−z(T )Qρ1(T )z(T )

∏
t∈α(z)

λ(t)Qρ1(t)

with
Qρk(t) := P

(
Z(0) = k|N(t) = 1

)
and with α(z) the set of coalescent times induced by z.

Proof. We recall that a BD process starting at time T with n labelled individuals and
where Z(0) individuals have been sampled induces a sample forest Ψ := (Γi)i=1,...,n,
with Γi the ordered time tree comprising the ancestors of the sample descending from
individual i existing at time T . Given that the n trees composing the sample forest
are iid. under the Bernoulli-sampled BD, it follows that

fΨ(ψ) =

n∏
i=1

fΓ(γi)

with γi a given value of Γi and ψ = (γi)i=1,...,n a given value of Ψ.

Consider a realisation Z = z of the sample process and recall that Sn(z) is the set of
sample forests with n trees that induce Z = z, i.e. all the sample forests with n trees,
with z(0) leaves and with branching times α(z). We have

fZ
(
z|N(T ) = n

)
=

∑
ψ∈Sn(z)

fΨ(ψ) =
∑

ψ∈Sn(z)

n∏
i=1

fΓ(γi)

Denote Li the number of leaves of Γi, denote Ξ0(Ψ) the set of initial individuals
without sampled descendants (i.e. i ∈ Ξ0(Ψ) iff Li = 0), and Ξ>0(Ψ) the set of initial
individuals with sampled descendants (i.e. i ∈ Ξ>0(Ψ) iff Li > 0). Notice that, for
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some realization z, and for some forest ψ ∈ Sn(z), Card
(
Ξ0(ψ)

)
= n − z(T ) and

Card
(
Ξ>0(ψ)

)
= z(T ). We thus have

fZ
(
z|N(T ) = n

)
=

∑
ψ∈Sn(z)

( ∏
i∈Ξ0(ψ)

fΓ(γi)

)
×

( ∏
i∈Ξ>0(ψ)

fΓ(γi)

)

=
∑

ψ∈Sn(z)

( ∏
i∈Ξ0(ψ)

Qρ0(T )

)
×

( ∏
i∈Ξ>0(ψ)

fΓ(γi)

)

=
∑

ψ∈Sn(z)

Qρ0(T )n−z(T ) ×
∏

i∈Ξ>0(ψ)

fΓ(γi)

Recalling that ᾱ(γ) denotes the set of branching times of tree γ, Louca and Pennel
((47), Eq. 16 in the Supporting Information) give the density

fΓ(γ|L > 0) =
Qρ1(T )

1−Qρ0(T )

∏
t∈ᾱ(γ)

λ(t)Qρ1(t)

since ρΨ(0, t) and E(t) in Louca’s and Pennel’s notation are respectively equivalent to
Qρ1(t) and Qρ0(t) in our notation. Then we have that ∀i ∈ Ξ>0(ψ)

fΓ(γi) = fΓ(γi|L > 0)P(L > 0)

= fΓ(γi|L > 0)(1−Qρ0(T ))

= Qρ1(T )
∏

t∈ᾱ(γi)

λ(t)Qρ1(t)

Recalling that ψ ∈ Sn(z) implies that
⋃
i∈Ξ>0(ψ) ᾱ(γi) = α(z), we then have

fZ
(
z|N(T ) = n

)
=

∑
ψ∈Sn(z)

Qρ0(T )n−z(T ) ×
∏

i∈Ξ>0(ψ)

Qρ1(T )
∏

t∈ᾱ(γi)

λ(t)Qρ1(t)

=
∑

ψ∈Sn(z)

Qρ0(T )n−z(T ) ×Qρ1(T )z(T )
∏

i∈Ξ>0(ψ)

∏
t∈ᾱ(γi)

λ(t)Qρ1(t)

=
∑

ψ∈Sn(z)

Qρ0(T )n−z(T ) ×Qρ1(T )z(T )
∏

t∈α(z)

λ(t)Qρ1(t)

= Qρ0(T )n−z(T ) ×Qρ1(T )z(T )
∏

t∈α(z)

λ(t)Qρ1(t)
∑

ψ∈Sn(z)

1

There then only remains to count the number of elements in Sn(z):∑
ψ∈Sn(z)

1 =

(
n

z(T )

) (
z(0)− 1

)
!(

z(T )− 1
)
!

where
(
n

z(T )

)
is the number of ways of choosing the z(T ) individuals with sampled

descendants among n individuals, and where

(
z(0)−1

)
!(

z(T )−1
)

!
is the number of orderings of

a forest of z(T ) trees (each with at least one leaf) with a total of z(0) leaves.
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D Results for the scaled BD model

In this section, we consider the scaled BD process, parametrized with n, λ1(t) and r(t)
such that

λ(t) = λn(t) = λ1(t)n

µ(t) = µn(t) = λn(t)− r(t)

We recall that we have set the conditions that on [0, T ]: (i) λ1(t) > 0, (ii) λ1(t) and r(t)
are uniformly continuous (and thus bounded above and below) and (iii) λ1(t) ≥ r(t).

Where relevant, a Bernoulli sampling with probability ρ = ρ1/n is assumed.

Contrarily to Section E, it is not assumed that the population process is conditioned.

D.1 Results for the distribution of N(t) and Z(t) in the
limit n→∞

The purpose of this section is to derive the limits of certain quantities as n→∞, and
it can be verified that these limits do not depend on n, as they should. All limits may
indeed depend only on r(t), λ1(t), D(t1, t2), B1(t1, t2), ρ1 and on some realization z
of Z, all of which are independent of n.

Lemma D.1. The expected relative population size is given by, ∀n ∈ N>0

E
[
N(t)

n

∣∣∣N(T ) = n

]
= exp

∫ T

t

r(s)ds

Proof. This lemma’s claim follows trivially from Lemma C.4.

Lemma D.2. The variance of the relative population size reaches the following limit

Var

[
N(t)

n

∣∣∣N(T ) = n

]
−−−−→
n→∞

exp

(
2

∫ T

t

r(s)ds

)∫ T

t

2λ1(s)ds

exp
( ∫ T

s
r(u)du

)
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Proof. Using Lemma C.4, we have

Var

[
N(t)

n

∣∣∣N(T ) = n

]
=

1

n2
·Var

[
N(t)|N(T ) = n

]
=

1

n2
· n exp

(
2

∫ T

t

r(s)ds

)∫ T

t

(
2λ(s)− r(s)

)
exp

( ∫ T
s
r(u)du

)ds
= exp

(
2

∫ T

t

r(s)ds

)(
1

n

∫ T

t

2λ1(s)n ds

exp
( ∫ T

s
r(u)du

) − 1

n

∫ T

t

r(s)ds

exp
( ∫ T

s
r(u)du

))

= exp

(
2

∫ T

t

r(s)ds

)(∫ T

t

2λ1(s)ds

exp
( ∫ T

s
r(u)du

) − 1

n

∫ T

t

r(s)ds

exp
( ∫ T

s
r(u)du

))

−−−−→
n→∞

exp

(
2

∫ T

t

r(s)ds

)∫ T

t

2λ1(s)ds

exp
( ∫ T

s
r(u)du

)

Lemma D.3. Assuming a Bernoulli sampling procedure with sampling probability
ρ = ρ1

n
, the density of Z given N(T ) = n reaches the following limit as n→∞.

∀z : z(0) > 0,

fZ(z|N(T ) = n) −−−−→
n→∞

(
z(0)− 1

)
!(

z(T )− 1
)
!z(T )!

(
ρ1D(0, T )(

1 + ρ1B1(0, T )
)2
)z(T )

× exp

(
−ρ1D(0, T )

1 + ρ1B1(0, T )

) ∏
t∈α(z)

λ1(t)ρ1D(0, t)

(1 + ρ1B1(0, t))2

with α(z) the set of coalescent times induced by z.

Proof. By Lemma C.6,

fZ
(
z|N(T ) = n

)
=

(
z(0)− 1

)
!(

z(T )− 1
)
!

(
n

z(T )

)
Qρ0(T )n−z(T )Qρ1(T )z(T )

∏
t∈α(z)

λ(t)Qρ1(t)

with
Qρk(t) := P

(
Z(0) = k|N(t) = 1

)
We will now show that

Qρ0(T )n−z(T ) −−−−→
n→∞

exp

(
−ρ1D(0, T )

1 + ρ1B1(0, T )

)
(11)(

n

z(T )

)
Qρ1(T )z(T ) −−−−→

n→∞

1

z(T )!

(
ρ1D(0, T )

(1 + ρ1B1(0, T ))2

)z(T )

(12)

λ(t)Qρ1(t) =
λ1(t)ρ1D(0, t)

(1 + ρ1B1(0, t))2
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hence proving the lemma.

Notice that

ρB(0, t) = ρ

∫ t

0

λ(s)D(s, t)ds =
ρ1

n

∫ t

0

λ1(s)nD(s, t)ds

= ρ1

∫ t

0

λ1(s)D(s, t)ds = ρ1B1(0, t)

Using Lemma C.1,

Qρ0(T )n−z(T ) =

(
1− ρD(0, T )

1 + ρB(0, T )

)n−z(T )

=

(
1− 1

n
· ρ1D(0, T )

1 + ρ1B1(0, T )

)n−z(T )

−−−−→
n→∞

exp

(
−ρ1D(0, T )

1 + ρ1B1(0, T )

)

(
n

z(T )

)
Qρ1(T )z(T ) =

(
n

z(T )

)(
ρD(0, T )

(1 + ρB(0, T ))2

)z(T )

=

(
n

z(T )

)
1

nz(T )

(
ρ1D(0, T )

(1 + ρ1B1(0, T ))2

)z(T )

=
1

z(T )!
·

(
n−z(T )+1

n

)z(T )

(n−z(T ))!(n−z(T )+1)z(T )

n!

(
ρ1D(0, T )

(1 + ρ1B1(0, T ))2

)z(T )

Trivially, (
n− z(T ) + 1

n

)z(T )

−−−−→
n→∞

1

Also, using Euler’s infinite-product definition of the factorial (see (50)):

lim
n→∞

(n− z(T ))!(n− z(T ) + 1)z(T )

n!
= lim

m=n−z(T )
m→∞

m!(m+ 1)z(T )

(m+ z(T ))!
= 1

Therefore, (
n

z(T )

)
Qρ1(T )z(T ) −−−−→

n→∞

1

z(T )!

(
ρ1D(0, T )

(1 + ρ1B1(0, T ))2

)z(T )
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Finally, using Lemma C.1,

λ(t)Qρ1(t) = λ(t)
ρD(0, t)

(1 + ρB(0, t))2
=

λ1(t)ρ1D(0, t)

(1 + ρ1B1(0, t))2

is independent of n.

Lemma D.4. Assuming a Bernoulli sampling procedure with sampling probability
ρ = ρ1

n
, the density of Z given N(T ) = n and Z(0) = z0 ∈ N>0 reaches a non-zero

limit as n→∞.

Proof.

∀z : z(0) = z0 ∈ N>0 fZ(z|N(T ) = n,Z(0) = z0) =
fZ(z|N(T ) = n)

P(Z(0) = z0|N(T ) = n)

By Lemma D.3, we know that fZ(z|N(T ) = n) reaches a non-zero limit as n → ∞.
There therefore remains to prove that, for a given z0, P(Z(0) = z0|N(T ) = n) reaches
a non-zero limit to prove this lemma.

We write Qk ≡ Qρk(T ) := P(Z(0) = k|N(T ) = n).

Using Lemma C.3, we have for z0 ≥ 1

P(Z(0) = z0|N(T ) = n)

=

z0∑
zT =1

(
n

zT

)
Qn−zT0

(
z0 − 1

z0 − zT

)(
1− Q1

1−Q0

)z0−zT
QzT1

We notice that (using Lemma C.1)

1− Q1

1−Q0
= 1−

ρD(0,T )

(1+ρB(0,T ))2

ρD(0,T )
1+ρB(0,T )

= 1− 1

1 + ρB(0, T )
= 1− 1

1 + ρ1B1(0, T )
=

ρ1B1(0, T )

1 + ρ1B1(0, T )

is independent of n. Then, plugging in the limits as n → ∞ of
(
n
zT

)
QzT1 and Qn−zT0

(given in Eqs. 11,12), we obtain

P(Z(0) = z0|N(T ) = n)

−−−−→
n→∞

z0∑
zT =1

{(
z0 − 1

z0 − zT

)(
ρ1B1(0, T )

1 + ρ1B1(0, T )

)z0−zT
× exp

(
−ρ1D(0, T )

1 + ρ1B1(0, T )

)
1

zT !

(
ρ1D(0, T )

(1 + ρ1B1(0, T ))2

)zT}
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D.2 Results for the distribution of the number of descen-
dants of one individual after g units of time.

In this section we derive a number of results that will be important for the study
of the conditional scaled BD tackled in Section E. In particular, since the condition
considered in Section E constrains the population size every g = g1/n units of time,
we will need some results about the distribution of the number of descendants at time
t− g of a single individual existing at time t. Given some number N(t) of individuals
existing at time t, we denote νgti the random number of descendants at time t− g of
the i-th individual (with i = 1, . . . , N(t)). Given that under the BD process the νgti’s
are iid., we consider here the distribution of νgt1 without loss of generality.

Given that g = g1/n and n ∈ N>0, the values of interest of g are comprised in the
set { g1

1
, g1

2
, g1

3
, . . . }, and the domain of t is [g, T ]. However, since the BD unravels in

continuous time, the distribution of νgt1 is defined continuously for g ∈ (0, g1] and for
t ∈ [g, T ]. Furthermore, as we will see, the limiting distribution of νgt1 as g → 0 exists,
so we will consider [0, g1] as the domain of g, and [g, T ] as the domain of t.

Notice that in this section we will derive some results in the limit g → 0, which is
equivalent to the limit n→∞, the focus of this paper, since g := g1/n. Notice that our
notation does not always explicitly mention the dependency of variables or functions
on g (equivalently on n), so as not to encumber formulae.

Lemma D.5. The distribution of νgt1 is given by

P
(
νgt1 = 0

)
= 1− D(t− g, t)

1 +B(t− g, t)

P
(
νgt1 = k

)
=

D(t− g, t)(
1 +B(t− g, t)

)2( B(t− g, t)
1 +B(t− g, t)

)k−1

k ≥ 1

with mean A(g, t) and variance V (g, t) given by

A(g, t) = D(t− g, t)

V (g, t) = 2A(g, t)B(t− g, t) +A(g, t)−A(g, t)2

Proof. Given that νgt1 is equivalent by definition to N(t−g)|N(t) = 1, the distribution
of νgt1 is obtained immediately by setting t1 = t− g and t2 = t in Lemma C.2.
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Then we have

A(g, t) =
D(t− g, t)(

1 +B(t− g, t)
)2 · ∞∑

k=1

k

(
B(t− g, t)

1 +B(t− g, t)

)k−1

=
D(t− g, t)(

1 +B(t− g, t)
)2 · 1(

1− B(t−g,t)
1+B(t−g,t)

)2

= D(t− g, t)

V (g, t) =
D(t− g, t)(

1 +B(t− g, t)
)2 · ∞∑

k=1

k2

(
B(t− g, t)

1 +B(t− g, t)

)k−1

−A(g, t)2

=
D(t− g, t)(

1 +B(t− g, t)
)2 · 1 + B(t−g,t)

1+B(t−g,t)(
1− B(t−g,t)

1+B(t−g,t)

)3 −A(g, t)2

= D(t− g, t)
(
1 + 2B(t− g, t)

)
−A(g, t)2

= 2A(g, t)B(t− g, t) +A(g, t)−A(g, t)2

Lemma D.6. Defining ν0t1 as the random variable with distribution

P
(
ν0t1 = k

)
:= lim

g→0
P
(
νgt1 = k

)
,

ν0t1 has distribution

P
(
ν0t1 = 0

)
= 1− 1

1 + λ1(t)g1

P
(
ν0t1 = k

)
=

1(
1 + λ1(t)g1

)2( λ1(t)g1

1 + λ1(t)g1

)k−1

k ≥ 1

with mean A(0, t) and variance V (0, t) given by

A(0, t) = 1

V (0, t) = 2λ1(t)g1

Proof. We note that, since λ1(t) and r(t) are continuous on [0, T ],

R(t) :=

∫ t

0

r(s)ds and Λ1(t) :=

∫ t

0

λ1(s)ds

are continuous and differentiable on [0, T ].

Therefore, by the mean-value theorem, ∃s ∈ [t− g, t] such that

R(t)−R(t− g) = r(s)g

Λ1(t)− Λ1(t− g) = λ1(s)g
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Hence, ∃s ∈ [t− g, t] such that

D(t− g, t) = exp

∫ t

t−g
r(u)du = exp

(
R(t)−R(t− g)

)
= exp

(
r(s)g

)
= 1 +O(r(s)g)

= 1 +O(g) −−−→
g→0

1

where we have used the fact that O(r(s)g) = O(g) since r(t) is bounded on [0, T ].

Also, ∃s ∈ [t− g, t] such that

B(t− g, t) =

∫ t

t−g
λ(u)D(u, t)du =

∫ t

t−g
λ(u)

(
1 +O(g)

)
du

=
(
1 +O(g)

) ∫ t

t−g
λ(u)du =

(
1 +O(g)

)g1

g

∫ t

t−g
λ1(u)du

=
(
1 +O(g)

)g1

g

(
Λ1(t)− Λ1(t− g)

)
=
(
1 +O(g)

)g1

g

(
λ1(s)g

)
=
(
1 +O(g)

)
g1λ1(s)

Then, given that λ1(t) is uniformly continuous, λ1(s) = λ1(t) + o(1) as t − s → 0, or
equivalently as g → 0, since t− s ≤ g. Hence,

B(t− g, t) =
(
1 +O(g)

)
g1(λ1(t) + o(1))

= λ1(t)g1 + o(1)

−−−→
g→0

λ1(t)g1

where we have used the fact that λ1(t)O(g) = O(g) since λ1(t) is bounded on [0, T ].

Plugging the limiting values of D(t−g, t) and B(t−g, t) into the expressions of Lemma
D.5 yields this lemma’s statement.

Lemma D.7.
P
(
νgt1 = k

)
= P

(
ν0t1 = k

)
+ ok(1)

as g → 0.

Proof. In the proof of Lemma D.6 we have seen that

D(t− g, t) = 1 +O(g)

B(t− g, t) = λ1(t)g1 + o(1)

as g → 0.
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Hence, using the fact that λ1(t) is bounded on [0, T ], for k = 0

P
(
νgt1 = 0

)
= 1− D(t− g, t)

1 +B(t− g, t) = 1− 1 +O(g)

1 + λ1(t)g1 + o(1)

= 1− 1

1 + λ1(t)g1
+ o(1)

= P
(
ν0t1 = 0

)
+ o(1)

and for k ≥ 1

P
(
νgt1 = k

)
=

D(t− g, t)(
1 +B(t− g, t)

)2( B(t− g, t)
1 +B(t− g, t)

)k−1

=
1 +O(g)(

1 + λ1(t)g1 + o(1)
)2( λ1(t)g1 + o(1)

1 + λ1(t)g1 + o(1)

)k−1

=
1 +O(g)(

1 + λ1(t)g1

)2
+ o(1)

(
λ1(t)g1

1 + λ1(t)g1
+ o(1)

)k−1

=

(
1(

1 + λ1(t)g1

)2 + o(1)

)(
λ1(t)g1

1 + λ1(t)g1
+ o(1)

)k−1

=

(
1(

1 + λ1(t)g1

)2 + o(1)

)((
λ1(t)g1

1 + λ1(t)g1

)k−1

+ (k − 1)o(1)

)

=
1(

1 + λ1(t)g1

)2( λ1(t)g1

1 + λ1(t)g1

)k−1

+ ok(1)

= P
(
ν0t1 = k

)
+ ok(1)

Lemma D.8.
A(g, t) = 1 +O(g)

as g → 0.

Proof. By Lemma D.5, A(g, t) = D(t − g, t). Furthermore, in the proof to Lemma
D.6, we have seen that D(t− g, t) = 1 +O(g).

Lemma D.9. Given

η(g, t) := 1− p(1)

1− p(0)

with p(k) := P(νgt1 = k), there exist η̌ > 0 and η̂ < 1 such that ∀g ∈ [0, g1] and
∀t ∈ [g, T ]

η̌ ≤ η(g, t) ≤ η̂
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Proof. By Lemma D.5, for g ∈ (0, g1]

η(g, t) =
B(t− g, t)

1 +B(t− g, t)

with

B(t− g, t) :=

∫ t

t−g
λ1(t)

g1

g
D(s, t)ds

and with

D(s, t) := exp

∫ t

s

r(u)du

First we will show that ∃Ď > 0, ∃D̂ < ∞ such that ∀g ∈ (0, g1], ∀t ∈ [g, T ] and
∀s ∈ [0, t]

Ď ≤ D(s, t) ≤ D̂ (13)

Denote ř := inft∈[0,T ] r(t) and r̂ := supt∈[0,T ] r(t). Both ř and r̂ exist since r(t) is
bounded on [0, T ].

The following will hold ∀g ∈ (0, g1], ∀t ∈ [g, T ] and ∀s ∈ [0, t].

We have

D(s, t) ≥ exp

∫ t

s

řdu = exp
(
ř(t− s)

)
If ř < 0, then

exp
(
ř(t− s)

)
≥ exp(řT ) = exp(−|ř|T )

If ř ≥ 0, then
exp

(
ř(t− s)

)
≥ exp(0) ≥ exp(−|ř|T )

Hence,
D(s, t) ≥ exp(−|ř|T ) =: Ď > 0

We also have

D(s, t) ≤ exp

∫ t

s

r̂du = exp
(
r̂(t− s)

)
If r̂ ≤ 0, then

exp
(
r̂(t− s)

)
≤ exp(0) ≤ exp(|r̂|T )

If r̂ > 0, then
exp

(
r̂(t− s)

)
≤ exp(r̂T ) = exp(|r̂|T )

Hence,
D(s, t) ≤ exp(|r̂|T ) =: D̂ <∞

Now we will show that ∃B̌ > 0, ∃B̂ <∞ such that ∀g ∈ (0, g1] and ∀t ∈ [g, T ]

B̌ ≤ B(t− g, t) ≤ B̂ (14)
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Denote λ̌1 := inft∈[0,T ] λ1(t) and λ̂1 := supt∈[0,T ] λ1(t). Given that λ1(t) is bounded

and > 0 on [0, T ], we have 0 < λ̌1 ≤ λ̂1 <∞.

We have ∀g ∈ (0, g1] and ∀t ∈ [g, T ]

B(t− g, t) ≥
∫ t

t−g
λ̌1
g1

g
Ďds = λ̌1g1Ď =: B̌ > 0

and

B(t− g, t) ≤
∫ t

t−g
λ̂1
g1

g
D̂ds = λ̂1g1D̂ =: B̂ <∞

From this it follows that ∀g ∈ (0, g1] and ∀t ∈ [g, T ]

0 <
B̌

1 + B̌
≤ η(g, t) ≤ B̂

1 + B̂
< 1

For g = 0, using Lemma D.6, we have η(0, t) = λ1(t)g1
1+λ1(t)g1

. Hence, ∀t ∈ [0, T ]

0 <
λ̌1g1

1 + λ̌1g1

≤ η(0, t) ≤ λ̂1g1

1 + λ̂1g1

< 1

Hence, setting

η̌ := min

(
B̌

1 + B̌
,

λ̌1g1

1 + λ̌1g1

)
> 0

η̂ := max

(
B̂

1 + B̂
,

λ̂1g1

1 + λ̂1g1

)
< 1

we obtain the lemma’s claim.

Lemma D.10. There exists V̌ > 0 such that ∀g ∈ [0, g1] and ∀t ∈ [g, T ]

V (g, t) ≥ V̌

Proof. The following will hold ∀g ∈ (0, g1] and ∀t ∈ [g, T ].

By Lemma D.5, we have

A(g, t) = D(t− g, t) = exp

∫ t

t−g
r(s)ds

V (g, t) = A(g, t)
(
2B(t− g, t) + 1−A(g, t)

)
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with

B(t− g, t) =

∫ t

t−g
λ(s)D(s, t)ds

By Eq. (13), there exists Ď > 0 such that, ∀s ∈ [0, t]

D(s, t) ≥ Ď

Hence, since t− g ∈ [0, t], we have that

A(g, t) = D(t− g, t) ≥ Ď > 0

Noticing that

∂

∂s
D(s, t) = −r(s)D(s, t)

we have

1−A(g, t) = 1−D(t− g, t) = D(t, t)−D(t− g, t)

=

∫ t

t−g

∂

∂s
D(s, t)ds =

∫ t

t−g
−r(s)D(s, t)ds

We thus have

2B(t− g, t) + 1−A(g, t) = B(t− g, t) +B(t− g, t) + 1−A(g, t)

= B(t− g, t) +

∫ t

t−g
λ(s)D(s, t)ds−

∫ t

t−g
r(s)D(s, t)ds

= B(t− g, t) +

∫ t

t−g

(
λ(s)− r(s)

)
D(s, t)ds

Given that λ(s)− r(s) ≥ 0, that D(s, t) > 0, and using Eq. (14), we have

2B(t− g, t) + 1−A(g, t) ≥ B(t− g, t) ≥ B̌ > 0

Therefore, ∀g ∈ (0, g1] and ∀t ∈ [g, T ]

V (g, t) ≥ ĎB̌ > 0

Then, for g = 0 and ∀t ∈ [0, T ], by Lemma D.6 we have

V (0, t) = 2λ1(t)g1 ≥ 2λ̌1g1 > 0

where λ̌1 := inft∈[0,T ] λ1(t) > 0 since λ1(t) is bounded and > 0 on [0, T ].

Hence, ∀g ∈ [0, g1] and ∀t ∈ [g, T ]

V (g, t) ≥ min(ĎB̌, 2λ̌1g1) =: V̌ > 0
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Lemma D.11. For all k ∈ N>0, there exists a sequence (Mkm)m such that ∀g ∈ [0, g1]
and ∀t ∈ [g, T ]

P
(
νgt1 = 0

)
≤Mk0 mkP

(
νgt1 = m

)
≤Mkm Mk :=

∞∑
m=0

Mkm <∞

Proof. Let Mk0 = 1 and obviously ∀g ∈ [0, g1] and ∀t ∈ [g, T ]

P
(
νgt1 = 0

)
≤Mk0

For m ≥ 1, by Lemmas D.5 and D.6, ∀g ∈ [0, g1] and ∀t ∈ [g, T ]

P(νgt1 = m) = P(νgt1 = 1)η(g, t)m−1

with

η(g, t) = 1− P(νgt1 = 1)

1− P(νgt1 = 0)

By Lemma D.9, ∀g ∈ [0, g1] and ∀t ∈ [g, T ]

0 < η̌ ≤ η(g, t) ≤ η̂ < 1

Hence,
mkP(νgt1 = m) = mkP(νgt1 = 1)η(g, t)m−1 ≤ mkη̂m−1 =: Mkm

We then have

Mk :=

∞∑
m=0

Mkm = 1 +
1

η̂

∞∑
m=1

mkη̂m = 1 +
Li−k(η̂)

η̂

where Li−k(z) is the polylogarithm of order −k of z, which exists for |z| < 1. Given
that |η̂| < 1, then Li−k(η̂) exists. Given that η̂ > 0, then

Mk <∞

for all k ∈ N>0.

Corollary D.11.1. For all k ∈ N>0

sup
g∈[0,g1]

sup
t∈[g,T ]

E[νkgt1] <∞

Proof. ∀k ∈ N>0, ∀g ∈ [0, g1] and ∀t ∈ [g, T ]

E[νkgt1] =

∞∑
m=1

mkP(νgt1 = 1)ηm−1 ≤
∞∑
m=1

mkη̂m−1 = Mk − 1 <∞
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Lemma D.12. There exist V̂ <∞ and X̂ <∞ such that, ∀g ∈ [0, g1], ∀t ∈ [g, T ]

V (g, t) ≤ V̂ X(g, t) := E
[
|νgt1 − Eνgt1|3

]
≤ X̂

Proof. Define the Lp norm of random variable J as ||J ||p := E
[
|J |p

]1/p
. Notice that

||Eνgt1||p = E
[
E[νgt1]p

]1/p
=
(
E[νgt1]p

)1/p
= Eνgt1

By Minkowski’s inequality, we have

||νgt1 − Eνgt1||p ≤ ||νgt1||p + || − Eνgt1||p = ||νgt1||p + ||Eνgt1||p = ||νgt1||p + Eνgt1

Since νgt1 ≥ 0 and xp is convex for x ≥ 0, by Jensen’s inequality we have

E[νgt1]p ≤ E[νpgt1]

Eνgt1 ≤ E[νpgt1]1/p = ||νgt1||p

Hence,

||νgt1 − Eνgt1||p ≤ ||νgt1||p + Eνgt1 ≤ 2||νgt1||p

Therefore,

V (g, t) = E
[
|νgt1 − Eνgt1|2] =

(
||νgt1 − Eνgt1||2

)2

≤
(

2||νgt1||2
)2

= 4E
[
ν2
gt1

]
X(g, t) = E

[
|νgt1 − Eνgt1|3] =

(
||νgt1 − Eνgt1||3

)3

≤
(

2||νgt1||3
)3

= 8E
[
ν3
gt1

]
Using Corollary D.11.1, we can set

V̂ = 4 · sup
g∈[0,g1]

sup
t∈[g,T ]

E
[
ν2
gt1

]
<∞

X̂ = 8 · sup
g∈[0,g1]

sup
t∈[g,T ]

E
[
ν3
gt1

]
<∞

which completes the proof.

Lemma D.13. Let ϕ(g, t, s) := E
[
eisνgt1

]
be the characteristic function of νgt1. We

have

ϕ(g, t, s) = p(0) + p(1) · eis

1− η(g, t)eis

and ∣∣ϕ(g, t, s)
∣∣2 = p(0)2 +

2p(0)p(1)
(

cos(s)− η(g, t)
)

+ p(1)2

1− 2η(g, t) cos(s) + η(g, t)2

with p(k) := P
(
νgt1 = k

)
and η(g, t) := 1− p(1)

1−p(0)
.
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Proof. For simplicity, let η = η(g, t) in this proof.

By Lemmas D.5 and D.6 we have for k ≥ 1

p(k) = p(1)ηk−1

We then have

ϕ(g, t, s) =

∞∑
k=0

eiskp(k) = p(0) +

∞∑
k=1

eiskp(k)

= p(0) +

∞∑
k=1

eiskp(1)ηk−1

= p(0) + p(1)eis
∞∑
k=1

eis(k−1)ηk−1

= p(0) + p(1)eis
∞∑
k=0

(
eisη

)k
We have |eis| ≤ 1 and by Lemma D.9 |η| < 1, so that |eisη| < 1. We can thus use the
formula for convergent geometric series and obtain

ϕ(g, t, s) = p(0) + p(1)eis · 1

1− ηeis

Then, using Euler’s formula and doing some rearrangements, we obtain

ϕ(g, t, s) = p(0) +
p(1)

(
cos(s)− η

)
1− 2η cos(s) + η2

+ i
p(1) sin(s)

1− 2η cos(s) + η2

Then we obtain∣∣ϕ(g, t, s)
∣∣2 =

(
p(0) +

p(1)
(

cos(s)− η
)

1− 2η cos(s) + η2

)2

+

(
p(1) sin(s)

1− 2η cos(s) + η2

)2

= p(0)2 +
2p(0)p(1)

(
cos(s)− η

)
+ p(1)2

1− 2η cos(s) + η2

after some rearrangements.

Lemma D.14. For any l ∈ (0, π], ∀s ∈ [l, π]∣∣ϕ(g, t, s)
∣∣ ≤ ϕ̂0 + o(1)

as g → 0, with ϕ̂0 < 1.
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Proof. First we show that

ϕ̂2
0 := sup

t∈[0,T ]

sup
s∈[l,π]

∣∣ϕ(0, t, s)
∣∣2 < 1

From Lemma D.13 we have∣∣ϕ(0, t, s)
∣∣2 = p0(0)2 +

2p0(0)p0(1)
(

cos(s)− η0

)
+ p0(1)2

1− 2η0 cos(s) + η2
0

with (see Lemma D.6)

p0(0) := P
(
ν0t1 = 0

)
=

λ1(t)g1

1 + λ1(t)g1

p0(1) := P
(
ν0t1 = 1

)
=

1(
1 + λ1(t)g1

)2
η0 = η(0, t) := 1− p0(1)

1− p0(0)
=

λ1(t)g1

1 + λ1(t)g1

We have
∂

∂s

∣∣ϕ(0, t, s)
∣∣2 = − sin(s) ·

2p0(1)
(
p0(0)(1− η2

0) + p0(1)η0

)(
1− 2η0 cos(s) + η2

0

)2
By Lemma D.9, ∀t ∈ [0, T ], 0 < η0 < 1, which immediately implies that p0(1) > 0.
These then imply that ∀s ∈ (0, π)

∂

∂s

∣∣ϕ(0, t, s)
∣∣2 < 0

so that, ∀t ∈ [0, T ],
∣∣ϕ(0, t, s)

∣∣2 strictly decreases with s on [0, π], from a maximum at
s = 0, which is easily verified to be 1. We thus have ∀t ∈ [0, T ]

sup
s∈[l,π]

∣∣ϕ(0, t, s)
∣∣2 =

∣∣ϕ(0, t, l)
∣∣2 < ∣∣ϕ(0, t, 0)

∣∣2 = 1

Given that λ1(t) is continuous on [0, T ], then
∣∣ϕ(0, t, l)

∣∣2 is continuous on [0, T ]. Con-
sequently, by the extreme-value theorem, there exists τ ∈ [0, T ] such that

ϕ̂2
0 := sup

t∈[0,T ]

sup
s∈[l,π]

∣∣ϕ(0, t, s)
∣∣2 = sup

t∈[0,T ]

∣∣ϕ(0, t, l)
∣∣2 =

∣∣ϕ(0, τ, l)
∣∣2 < ∣∣ϕ(0, τ, 0)

∣∣2 = 1

Now we proceed to the demonstration of the lemma’s claim. We recall that by Lemma
D.13 ∣∣ϕ(g, t, s)

∣∣2 = p(0)2 +
2p(0)p(1)

(
cos(s)− η

)
+ p(1)2

1− 2η cos(s) + η2

with p(r) := P(νgt1 = r) and η = η(g, t) := 1− p(1)
1−p(0)

.
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By Lemma D.7 we have that

p(0) = p0(0) + o(1)

p(1) = p0(1) + o(1)

as g → 0, which induces

η = 1− p0(1) + o(1)

1− p0(0) + o(1)
= η0 + o(1)

as g → 0.

We then obtain, ∀s ∈ [l, π]∣∣ϕ(g, t, s)
∣∣2 =

(
p0(0) + o(1)

)2
+

2
(
p0(0) + o(1)

)(
p0(1) + o(1)

)(
cos(s)− η0 + o(1)

)
+
(
p0(1) + o(1)

)2
1− 2

(
η0 + o(1)

)
cos(s) +

(
η0 + o(1)

)2
= p0(0)2 +

2p0(0)p0(1)
(

cos(s)− η0

)
+ p0(1)2

1− 2η0 cos(s) + η2
0

+ o(1)

=
∣∣ϕ(0, t, s)

∣∣2 + o(1)

≤ ϕ̂2
0 + o(1)

as g → 0.

Therefore, given that
√
C + x =

√
C +O(x) as x→ 0, we have∣∣ϕ(g, t, s)

∣∣ ≤ ϕ̂0 + o(1)

as g → 0.

E Results for the conditional scaled BD process

In this section, we consider the scaled BD process, parametrized with n, λ1(t) and r(t)
such that

λ(t) = λn(t) = λ1(t)n

µ(t) = µn(t) = λn(t)− r(t)

We recall that we have set the conditions that on [0, T ]: (i) λ1(t) > 0, (ii) λ1(t) and r(t)
are uniformly continuous (and thus bounded above and below) and (iii) λ1(t) ≥ r(t).

We consider this process conditioned on Z(0) = z0 and on N ∈ Ωn, with Ωn defined
such that N ∈ Ωn if and only if, for g1 : T

g1
∈ N>0 and with g := g1

n

∀t ∈ {0, g, 2g, ..., T} N(t) = yn(t)
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where
y(t) = yn(t) := du(t)ne

with u(t) any function of time such that, on [0, T ]: (i) u(t) is continuous (ii) u′(t)
exists and is bounded, (iii) u(t) > 0 and (iv) u(T ) = 1.

We notice that, given that u(t) is bounded on [0, T ], then y(t) = O(n) as n → ∞, or
equivalently y(t) = O(1/g) as g → 0.

E.1 Pairwise coalescent probability

We denote cn(t) the “pairwise coalescent probability”, that is the probability that two
ancestors at time t−g have a common ancestor at time t, under the condition N ∈ Ωn:

cn(t) := P
(
Z(t) = 1|Z(t− g) = 2, N ∈ Ωn

)
for t ∈ {g, 2g, . . . , T}.

In the time interval [t− g, t], the conditional scaled BD is represented by the random

vector νgt = (νgti)i, i = 1, . . . , y(t), of fixed sum
∑y(t)
i=1 νgti = N(t − g) = y(t − g).

(Hence the condition N ∈ Ωn reduces to the condition N(t−g) = y(t−g)∧N(t) = y(t)
in the interval [t− g, t].)

We note two properties of the conditional scaled BD:

1. Because of the Markov property of the BD process, and the fact that individuals
are exchangeable, νgt is conditionally independent of νgs for any s ≥ t+g, given
N(t) = y(t).

2. Because the individuals are exchangeable, then, given νgt, any assignment of the
y(t − g) offspring to the y(t) parents are equally likely (provided these assign-
ments are compatible with νgt).

These two properties are those assumed by Möhle in (19), allowing us to apply Möhle’s
results to the conditional scaled BD. In particular, Möhle gives the expression for cn(t)
(denoted cr in his paper):

cn(t)

=
1

y(t− g)(y(t− g)− 1)

y(t)∑
i=1

E
[
νgti(νgti − 1)|N(t− g) = y(t− g), N(t) = y(t)

]

=
1

y(t− g)(y(t− g)− 1)

y(t)∑
i=1

E
[
νgt1(νgt1 − 1)|N(t− g) = y(t− g), N(t) = y(t)

]
=

y(t)

y(t− g)(y(t− g)− 1)
E
[
νgt1(νgt1 − 1)|N(t− g) = y(t− g), N(t) = y(t)

]
(15)
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where we have used the fact that ∀i

E
[
νgti(νgti − 1)|N(t− g) = y(t− g), N(t) = y(t)

]
= E

[
νgt1(νgt1 − 1)|N(t− g) = y(t− g), N(t) = y(t)

]
since individuals are exchangeable.

Notice that, since the distribution of νgt1, y(t) and y(t−g) are all defined continuously
for t ∈ [g, T ], cn(t) is also actually defined continuously on [g, T ]. Thus, for simplicity,
we shall consider below that the function cn(t) has a continuous domain, although
ultimately we are only interested in the discrete domain t ∈ {g, 2g, . . . , T}.

E.2 Limit as n → ∞ of the discrete-time pairwise coales-
cent rate of the conditional scaled BD

We define the “discrete-time pairwise coalescent rate” as

hn(t) :=
cn(t)

g
= cn(t)

n

g1

which measures the (average) density of a coalescence event over [t− g, t].

The purpose of this section is to derive the “limiting coalescent rate”, defined as

h(t) := lim
n→∞

hn(t)

which will be central for showing that the conditional scaled BD converges to the
Kingman coalescent.

Specifically, we will show that (Lemma E.8 below)

h(t) =
2λ1(t)

u(t)

and that
sup
t∈[g,T ]

|hn(t)− h(t)| −−−−→
n→∞

0

E.2.1 Preliminary results

In this section we derive some results necessary for studying the limit of hn(t).
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Lemma E.1.∣∣∣∣∣√V (g, t)y(t)·P
(
N(t− g) = y(t− g)|N(t) = y(t)

)
− φ

(
y(t− g)− y(t)A(g, t)√

V (g, t)y(t)

)∣∣∣∣∣ = O(
√
g)∣∣∣∣∣√V (g, t)

(
y(t)− 1

)
·P
(
N(t− g) = y(t− g)− r|N(t) = y(t)− 1

)
− φ

(
y(t− g)− r −

(
y(t)− 1

)
A(g, t)√

V (g, t)
(
y(t)− 1

) )∣∣∣∣∣ = O(
√
g)

as g → 0.

Proof. Obviously,∣∣∣∣∣√V (g, t)y(t) · P
(
N(t− g) = y(t− g)|N(t) = y(t)

)
− φ

(
y(t− g)− y(t)A(g, t)√

V (g, t)y(t)

)∣∣∣∣∣
≤ sup

k

∣∣∣∣∣√V (g, t)y(t) · P
(
N(t− g) = k|N(t) = y(t)

)
− φ

(
k − y(t)A(g, t)√

V (g, t)y(t)

)∣∣∣∣∣
We will show that the RHS of this inequality is O(

√
g) as g → 0, hence proving the

first claim of the present lemma.

By Doney’s Lemma 3 in (51),

sup
k

∣∣∣∣∣P(N(t− g) = k|N(t) = y(t)
)
− 1√

V (g, t)y(t)
φ

(
k − y(t)A(g, t)√

V (g, t)y(t)

)∣∣∣∣∣
≤ CX(g, t)

y(t)V (g, t)2
+ d(g, t)

where C is an absolute constant, where X(g, t) := E
[
|νgt1 − Eνgt1|3

]
and where

d(g, t) := 2

∫ π

l(g,t)

exp
(
− y(t)(1− |ϕ(g, t, s)|)

)
ds

with l(g, t) = V (g,t)
4X(g,t)

and with ϕ(g, t, s) the characteristic function of νgt1.

Multiplying by y(t)
√
V (g, t), we obtain√

y(t) · sup
k

∣∣∣∣∣√V (g, t)y(t) · P
(
N(t− g) = k|N(t) = y(t)

)
− φ

(
k − y(t)A(g, t)√

V (g, t)y(t)

)∣∣∣∣∣
≤ CX(g, t)

V (g, t)3/2
+ y(t)

√
V (g, t) · d(g, t)

≤ CX̂

V̌ 3/2
+ y(t)

√
V (g, t) · d(g, t) (16)
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with (see Lemmas D.10 and D.12)

0 < V̌ ≤ inf
g∈[0,g1]

inf
t∈[g,T ]

V (g, t)

sup
g∈[0,g1]

sup
t∈[g,T ]

X(g, t) ≤ X̂ <∞

Given that
√
y(t) = O(1/

√
g), we need to show that the two terms of the RHS of Eq.

(16) are bounded above by a function that is O(1) as g → 0 to prove the lemma’s first
claim. This is the case for the first term, since it is an absolute constant. We will now
proceed to show that this is also the case for the second term.

We note that

l(g, t) ≥ V̌

4X̂
=: l > 0

We thus have

y(t)
√
V (g, t) · d(g, t) ≤ 2y(t)

√
V (g, t)

∫ π

l

exp
(
− y(t)(1− |ϕ(g, t, s)|)

)
ds

given that the integrand is non-negative.

If l > π, the integral is non-positive, whatever the values of g or t, and therefore

y(t)
√
V (g, t) · d(g, t) ≤ 0 = O(1)

as g → 0.

If l ≤ π, by Lemma D.14, we have that |ϕ(g, t, s)| ≤ ϕ̂0 + o(1) as g → 0, with ϕ̂0 < 1,
provided s ∈ [l, π]. Hence,

y(t)
√
V (g, t) · d(g, t) ≤ 2y(t)

√
V̂

∫ π

l

exp
(
− y(t)

(
1− ϕ̂0 + o(1)

))
ds

= 2y(t)
√
V̂ (π − l) exp

(
o(1)

)
exp

(
− y(t)(1− ϕ̂0)

)
= 2y(t)

√
V̂ (π − l)

(
1 + o(1)

)
exp

(
− y(t)(1− ϕ̂0)

)
= O(1)y(t) exp

(
− y(t)(1− ϕ̂0)

)
as g → 0, with (see Lemma D.12)

sup
g∈[0,g1]

sup
t∈[g,T ]

V (g, t) ≤ V̂ <∞

It is then straightforward to verify that, given that 1− ϕ̂0 > 0,

y(t) exp
(
− y(t)(1− ϕ̂0)

)
≤ exp(−1)

1− ϕ̂0
= O(1)

as g → 0.

The second claim of the lemma is proven in exactly the same way.
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Lemma E.2.

y(t− g)−A(g, t)y(t) = O(1)

∀m y(t− g)−m−A(g, t)
(
y(t)− 1

)
= Om(1)

as g → 0.

Proof. We recall that

y(t) :=

⌈
u(t)g1

g

⌉
with u(t) > 0 bounded on [0, T ] and with u′(t) bounded on [0, T ].

First we show that y(t− g)− y(t) = O(1) as g → 0.

We denote

εt,g := y(t)− u(t)g1

g
=

⌈
u(t)g1

g

⌉
− u(t)g1

g

εt−g,g := y(t− g)− u(t− g)g1

g
=

⌈
u(t− g)g1

g

⌉
− u(t− g)g1

g

and note that εt,g, εt−g,g ∈ [0, 1).

We then have

|y(t− g)− y(t)| =
∣∣∣∣u(t− g)g1

g
− u(t)g1

g
+ εt−g,g − εt,g

∣∣∣∣
≤
∣∣∣∣u(t− g)− u(t)

g

∣∣∣∣g1 + |εt−g,g − εt,g|

Then, because u′(t) is bounded, there exists C > 0 such that for all g ∈ (0, g1] and
t ∈ [g, T ] ∣∣∣∣u(t− g)− u(t)

g

∣∣∣∣ ≤ C
Also, |εt−g,g − εt,g| < 1, so that for all g ∈ (0, g1] and t ∈ [g, T ]

|y(t− g)− y(t)| ≤ Cg1 + 1

Hence,
y(t− g)− y(t) = O(1)

as g → 0.

Now we show that y(t− g)− y(t)A(g, t) = O(1) as g → 0.
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Using Lemma D.8

y(t− g)− y(t)A(g, t) = y(t− g)− y(t) + y(t)
(
1−A(g, t)

)
= O(1) + y(t)O(g)

as g → 0. Then, given that u(t) is bounded on [0, T ], y(t) = O(1/g) as g → 0, yielding

y(t− g)− y(t)A(g, t) = O(1) +O(1/g)O(g)

= O(1)

as g → 0.

Similarly,

y(t− g)−m−A(g, t)
(
y(t)− 1

)
= y(t− g)− y(t)A(g, t) +A(g, t)−m
= O(1) + 1 +O(g)−m
= Om(1)

as g → 0.

Lemma E.3. ∀m ∈ N

P
(
N(t− g) = y(t− g)−m|N(t) = y(t)− 1

)
P
(
N(t− g) = y(t− g)|N(t) = y(t)

) = 1 +Om
(√
g
)

as g → 0.

Proof. In this proof, when we use the O(·) and o(·) notation, “as g → 0” is implicit.

For conciseness we write

P (i, j) := P
(
N(t− g) = j|N(t) = i

)
We have

P
(
y(t)− 1, y(t− g)−m

)
P
(
y(t), y(t− g)

)
=

√
y(t)√

y(t)− 1
·
√

(y(t)− 1)V (g, t) · P
(
y(t)− 1, y(t− g)−m

)√
y(t)V (g, t) · P

(
y(t), y(t− g)

)
We have

y(t)

y(t)− 1
=

u(t) g1
g

+ εt,g

u(t) g1
g

+ εt,g − 1
=

1 + g
εt,g
u(t)g1

1 + g
εt,g−1

u(t)g1

60



Given that u(t) is continuous and > 0 on [0, T ], inft∈[0,T ] u(t) > 0. Furthermore,
εt,g ∈ [0, 1). We thus have

y(t)

y(t)− 1
=

1 +O(g)

1 +O(g)
= 1 +O(g)

Then, given that
√

1 + x = 1 +O(x) as x→ 0, we have√
y(t)

y(t)− 1
= 1 +O(g) (17)

Then, using Lemma E.1, we have √
(y(t)− 1)V (g, t) · P

(
y(t)− 1, y(t− g)−m

)
=
√

(y(t)− 1)V (g, t) · P
(
y(t)− 1, y(t− g)−m

)
− φ

(
y(t− g)−m− (y(t)− 1)A(g, t)√

(y(t)− 1)V (g, t)

)
+φ

(
y(t− g)−m− (y(t)− 1)A(g, t)√

(y(t)− 1)V (g, t)

)
= O(

√
g) + φ

(
y(t− g)−m− (y(t)− 1)A(g, t)√

(y(t)− 1)V (g, t)

)

By Lemma D.10 we have that ∀g ∈ [0, g1], ∀t ∈ [g, T ], V (g, t) ≥ V̌ > 0, by Lemma E.2
we have that y(t − g) −m − (y(t) − 1)A(g, t) = Om(1), and also y(t) = O(1/g) and
1/
(
y(t)− 1

)
= O(g). Therefore(

y(t− g)−m− (y(t)− 1)A(g, t)√
(y(t)− 1)V (g, t)

)2

≤ 1

V̌
(
y(t)− 1

)(y(t− g)−m− (y(t)− 1)A(g, t)
)2

=
1

V̌
O(g)Om(1) = Om(g)

Then,

φ

(
y(t− g)−m− (y(t)− 1)A(g, t)√

(y(t)− 1)V (g, t)

)

=
1√
2π

exp

(
− 1

2

(
y(t− g)−m− (y(t)− 1)A(g, t)√

(y(t)− 1)V (g, t)

)2
)

=
1√
2π

exp
(
Om(g)

)
=

1√
2π

(
1 +Om(g)

)
=

1√
2π

+Om(g)

This yields√
(y(t)− 1)V (g, t) · P

(
y(t)− 1, y(t− g)−m

)
= O(

√
g) +

1√
2π

+Om(g)

=
1√
2π

+Om(
√
g)
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Noting that by Lemma E.2 y(t − g) − A(g, t)y(t) = O(1), by the same rationale we
obtain √

y(t)V (g, t) · P
(
y(t), y(t− g)

)
=

1√
2π

+O(
√
g) (18)

Finally, we get

P
(
y(t)− 1, y(t− g)−m

)
P
(
y(t), y(t− g)

) =
(
1 +O(g)

)
·

1√
2π

+Om(
√
g)

1√
2π

+O(
√
g)

= 1 +Om(
√
g)

Lemma E.4.

P
(
N(t− g) = y(t− g)−m|N(t) = y(t)− 1

)
P
(
N(t− g) = y(t− g)|N(t) = y(t)

) = O(1)

as g → 0.

Proof. For conciseness we write

P (i, j) := P
(
N(t− g) = j|N(t) = i

)
We have

φ

(
y(t− g)−m− (y(t)− 1)A(g, t)√

(y(t)− 1)V (g, t)

)
≤ φ(0) = O(1)

as g → 0.

Using this result and Lemma E.1 yields √
(y(t)− 1)V (g, t) · P

(
y(t)− 1, y(t− g)−m

)
=
√

(y(t)− 1)V (g, t) · P
(
y(t)− 1, y(t− g)−m

)
− φ

(
y(t− g)−m− (y(t)− 1)A(g, t)√

(y(t)− 1)V (g, t)

)
+φ

(
y(t− g)−m− (y(t)− 1)A(g, t)√

(y(t)− 1)V (g, t)

)
= O(

√
g) +O(1)

= O(1)

as g → 0.
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Then, using Eqs. (17,18), we obtain

P
(
y(t)− 1, y(t− g)−m

)
P
(
y(t), y(t− g)

)
=

√
y(t)√

y(t)− 1
·
√

(y(t)− 1)V (g, t) · P
(
y(t)− 1, y(t− g)−m

)√
y(t)V (g, t) · P

(
y(t), y(t− g)

)
=
(
1 +O(g)

)
· O(1)

1√
2π

+O(
√
g)

=
(
1 +O(g)

)
·O(1)

= O(1)

as g → 0.

Theorem E.5.

sup
t∈[g,T ]

∣∣∣∣∣E[νgt1(νgt1 − 1)|N(t− g) = y(t− g), N(t) = y(t)
]

−E
[
ν0t1(ν0t1 − 1)

]∣∣∣∣∣ −−−→g→0
0

Proof. To simplify notation, we write

P1(m) := P
(
N(t− g) = y(t− g)−m|N(t) = y(t)− 1

)
P2 := P

(
N(t− g) = y(t− g)|N(t) = y(t)

)
p(m) := P(νgt1 = m)

p0(m) := P(ν0t1 = m)

and we write supt for supt∈[g,T ] and supg for supg∈(0,g1], unless specified otherwise.

We have

E
[
νgt1(νgt1 − 1)|N(t− g) = y(t− g), N(t) = y(t)

]
=

y(t−g)∑
m=0

m(m− 1)p(m)
P1(m)

P2

=

∞∑
m=0

m(m− 1)p(m)
P1(m)

P2

where the last line is obtained after noticing that ∀m > y(t− g), P1(m) = 0.

63



Furthermore,

E
[
ν0t1(ν0t1 − 1)

]
=

∞∑
m=0

m(m− 1)p0(m)

Hence, the present theorem’s statement is equivalent to

lim
g→0

sup
t

∣∣∣∣∣
∞∑
m=0

m(m− 1)p(m)
P1(m)

P2
−m(m− 1)p0(m)

∣∣∣∣∣ = 0

First we note that

lim
g→0

sup
t

∣∣∣∣∣
∞∑
m=0

m(m− 1)p(m)
P1(m)

P2
−m(m− 1)p0(m)

∣∣∣∣∣
≤ lim
g→0

∞∑
m=0

sup
t

∣∣∣∣∣m(m− 1)p(m)
P1(m)

P2
−m(m− 1)p0(m)

∣∣∣∣∣
Using Lemmas D.11 and E.4, we have

sup
g,t

∣∣∣∣∣m(m− 1)p(m)
P1(m)

P2
−m(m− 1)p0(m)

∣∣∣∣∣
≤ sup

g,t

∣∣∣∣∣m(m− 1)p(m)
P1(m)

P2

∣∣∣∣∣+ sup
g,t

∣∣∣∣∣m(m− 1)p0(m)

∣∣∣∣∣
≤ sup

g,t

∣∣∣∣∣m2p(m)
P1(m)

P2

∣∣∣∣∣+ sup
g,t

∣∣∣∣∣m2p0(m)

∣∣∣∣∣
≤M2m sup

g,t

∣∣∣∣∣P1(m)

P2

∣∣∣∣∣+M2m

= M2mO(1)

By the definition of O(1), there exist C > 0 and G ∈ (0, g1] such that

sup
g∈(0,G]

sup
t

∣∣∣∣∣m(m− 1)p(m)
P1(m)

P2
−m(m− 1)p0(m)

∣∣∣∣∣ ≤M2mC

Furthermore, by Lemma D.11 we have

∞∑
m=0

M2mC = C

∞∑
m=0

M2m <∞

The two last equations together imply, by the Weierstrass M-test, that the series

∞∑
m=0

sup
t

∣∣∣∣∣m(m− 1)p(m)
P1(m)

P2
−m(m− 1)p0(m)

∣∣∣∣∣
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converges uniformly for g ∈ (0, G]. By the Moore-Osgood theorem, this allows us to
swap the limits and write

lim
g→0

∞∑
m=0

sup
t

∣∣∣∣∣m(m− 1)p(m)
P1(m)

P2
−m(m− 1)p0(m)

∣∣∣∣∣
=

∞∑
m=0

lim
g→0

sup
t

∣∣∣∣∣m(m− 1)p(m)
P1(m)

P2
−m(m− 1)p0(m)

∣∣∣∣∣
Now we will show that each term of this last sum is equal to 0, hence proving the
theorem.

We recall that, by Lemma D.7,

p(m) = p0(m) + om(1)

as g → 0.

We recall that, by Lemma E.3,

P1(m)

P2
= 1 +Om(

√
g)

as g → 0.

We thus have

m(m− 1)p(m)
P1(m)

P2
−m(m− 1)p0(m)

= m(m− 1)

(
p(m)

P1(m)

P2
− p0(m)

)
= m(m− 1)

((
p0(m) + om(1)

)(
1 +Om(

√
g)
)
− p0(m)

)
= m(m− 1)om(1)

as g → 0.

The last line is equivalent to

lim
g→0

sup
t

∣∣∣∣∣m(m− 1)p(m)
P1(m)

P2
−m(m− 1)p0(m)

∣∣∣∣∣ = 0

for any fixed m.

E.2.2 Actual limit

This section gives the limit of hn(t) as n→∞, in the form of Lemma E.8.
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We define

Un(t) :=
y(t)

y(t− g)(y(t− g)− 1)
· n
g1

En(t) := E
[
νgt1(νgt1 − 1)|N(t− g) = y(t− g), N(t) = y(t)

]
so that

hn(t) = Un(t)En(t)

Lemma E.6.

Un(t) =
1

u(t)g1
+O(1/n)

as n→∞.

Proof. Denote

εt,g := y(t)− u(t)n

εt−g,g := y(t− g)− u(t− g)n

and note that εt,g, εt−g,g ∈ [0, 1).

Recalling that u(t) is bounded on [0, T ], we have

Un(t) :=
y(t)

y(t− g)
(
y(t− g)− 1

) · n
g1

=
u(t)n+ εt,g(

u(t− g)n+ εt−g,g
)(
u(t− g)n+ εt−g,g − 1

) · n
g1

=
u(t) + εt,g/n(

u(t− g) + εt−g,g/n
)(
u(t− g) + (εt−g,g − 1)/n

) · 1

g1

=
u(t) +O(1/n)(

u(t− g) +O(1/n)
)(
u(t− g) +O(1/n)

) · 1

g1

=
u(t) +O(1/n)

u(t− g)2 +O(1/n)
· 1

g1

=
u(t)

u(t− g)2
· 1

g1
+O(1/n)

=

(
u(t)− u(t− g)

u(t− g)
+ 1

)2

· 1

g1u(t)
+O(1/n)

Also, because u′(t) is bounded on [0, T ], then u(t) − u(t − g) = O(g) as g → 0, and
equivalently u(t)− u(t− g) = O(1/n) as n→∞. Thus, because u(t) is bounded and
> 0 on [0, T ], we have

u(t)− u(t− g)

u(t− g)
= O(1/n)
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as n→∞. Hence,

Un(t) =
(
O(1/n) + 1

)2 · 1

g1u(t)
+O(1/n)

=
1

g1u(t)
+O(1/n)

as n→∞.

Lemma E.7.
En(t) = 2λ1(t)g1 + o(1)

as n→∞.

Proof. By Theorem E.5, we have that

sup
t∈[g,T ]

∣∣∣E[νgt1(νgt1 − 1)|N(t− g) = y(t− g), N(t) = y(t)
]
− E

[
ν0t1(ν0t1 − 1)

]∣∣∣
=: sup

t∈[g,T ]

∣∣∣En(t)− E
[
ν0t1(ν0t1 − 1)

]∣∣∣ −−−−→
n→∞

0

(since n→∞ is equivalent to g → 0), which writes equivalently

En(t) = E
[
ν0t1(ν0t1 − 1)

]
+ o(1)

as n→∞. Using Lemma D.6, we obtain

En(t) = Var[ν0t1] + Eν0t1(Eν0t1 − 1) + o(1) = 2λ1(t)g1 + o(1)

as n→∞.

Lemma E.8.
hn(t) = h(t) + o(1)

as n→∞, with

h(t) := lim
n→∞

hn(t) =
2λ1(t)

u(t)

Proof. Using the facts that u(t) is bounded and > 0 and that λ1(t) is bounded on
[0, T ], and using Lemmas E.6 and E.7, we have

hn(t) = Un(t)En(t)

=

(
1

g1u(t)
+O(1/n)

)(
2λ1(t)g1 + o(1)

)
=

2λ1(t)

u(t)
+ o(1)

67



Corollary E.8.1.
cn(t) = O(1/n)

as n→∞.

Proof. We recall that

hn(t) :=
cn(t)

g
= cn(t)

n

g1

Hence by Lemma E.8 we have

hn(t) = h(t) + o(1)

cn(t)
n

g1
= h(t) + o(1)

cn(t) =
g1

n
h(t) + o(1/n)

Given that λ1(t) is bounded on [0, T ] and that u(t) is bounded and > 0 on [0, T ], then

h(t) =
2λ1(t)

u(t)

is bounded on [0, T ]. Therefore,

cn(t) = O(1/n)

F Convergence of the sample process of the con-
ditional scaled BD to the Kingman coalescent

Theorem F.1 below constitutes the main result of this paper, about the convergence of
the conditional scaled BD to the Kingman coalescent. The proof to Theorem F.1 relies
on lemmas and theorems derived in earlier sections of this appendix. The proofs to
these previous lemmas and theorems are valid conditionally on a series of assumptions,
which we recall here as sufficient conditions for the applicability of Theorem F.1.

Sufficient conditions for the applicability of Theorem F.1. We recall
that the scaled BD process is a BD process starting at time T with N(T ) = n indi-
viduals and parametrized with λ1(t) and r(t) such that

λ(t) = λn(t) = λ1(t)n

µ(t) = µn(t) = λn(t)− r(t)
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The conditional scaled BD process is the scaled BD process conditioned on Z(0) = z0

and on N ∈ Ωn, with Ωn a set of population trajectories defined such that N ∈ Ωn if
and only if, for g1 : T

g1
∈ N>0 and with g := g1

n
,

∀t ∈ {0, g, 2g, ..., T} N(t) = yn(t)

where
y(t) = yn(t) := du(t)ne

The following conditions on λ1(t), r(t) and u(t) have been assumed throughout earlier
sections of this appendix and constitute sufficient conditions for the applicability of
Theorem F.1:

• ∀t ∈ [0, T ], λ1(t) > 0

• λ1(t) is uniformly continuous on [0, T ]

• r(t) is uniformly continuous on [0, T ]

• ∀t ∈ [0, T ], λ1(t) ≥ r(t)
• u(T ) = 1

• ∀t ∈ [0, T ], u(t) > 0

• u(t) is continuous on [0, T ]

• ∀t ∈ [0, T ], u′(t) exists

• u′(t) is bounded on [0, T ]

Introduction to Theorem F.1. Consider the discrete-time ancestral process(
R(dt/ge)

)
t∈[0,T ]

of the conditional scaled BD. Because of the condition Z(0) = z0,

R(0) =
{

(i, i)|i ∈ {1, . . . , z0}
}

=: ∆

Let
(
K(t)

)
t∈[0,T ]

denote the ancestral process of the Kingman coalescent with θ(t) =
u(t)

2λ1(t)
, restricted to t ∈ [0, T ], with initial state K(0) = ∆.

Theorem F.1.
(
R(dt/ge)

)
t∈[0,T ]

converges to
(
K(t)

)
t∈[0,T ]

as n → ∞ in terms of

finite-dimensional distributions.

Proof. Define

Λ(t) =

∫ t

0

2λ1(s)

u(s)
ds

Notice that, since the integrand is strictly positive, Λ strictly increases, and its inverse
Λ−1 exists and strictly increases.
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Consider the time scaling x = Λ(t). We have(
R(dt/ge)

)
t∈[0,T ]

=
(
R(dΛ−1(x)/ge)

)
x∈[0,Λ(T )]

and (
K(t)

)
t∈[0,T ]

=
(
K(Λ−1(x))

)
x∈[0,Λ(T )]

=
(
K1(x)

)
x∈[0,Λ(T )]

where
(
K1(x)

)
x

denotes the ancestral process of the Kingman coalescent with θ(x) =
1.

By Möhle’s Theorem 1 in (19), if the conditions stated below are verified, then(
R(dΛ−1(x)/ge)

)
x∈[0,Λ(T )]

converges to
(
K1(x)

)
x∈[0,Λ(T )]

as n→∞ in terms of finite-

dimensional distributions, which proves the present theorem.

We thus need to prove that the conditions of application of Möhle’s theorem are
satisfied by the conditional scaled BD. These conditions read as follows in our notation.

• Condition 1 For all x ∈ [0,Λ(T )]

lim
n→∞

dΛ−1(x)/ge∑
m=1

cn(mg) = x

• Condition 2 For all x ∈ [0,Λ(T )]

lim
n→∞

sup
m≤dΛ−1(x)/ge

cn(mg) = 0

which is implied in our case by the following stronger condition (given that cn(t)
is defined continuously on [g, T ]):

lim
n→∞

sup
t∈[g,T ]

cn(t) = 0

• Condition 3 For all x ∈ [0,Λ(T )] and for all k ∈ N>0

0 = lim
n→∞

sup
m≤dΛ−1(x)/ge

(
1

y
(
(m− 1)g

)3
cn(mg)

×
y(mg)∑
i=1

E
[
νg,mg,i(νg,mg,i − 1)νkg,mg,i|N

(
(m− 1)g

)
= y
(
(m− 1)g

)
, N
(
mg
)

= y
(
mg
)])

which is implied in our case by the following stronger condition. For all k ∈ N>0:

0 = lim
n→∞

sup
t∈[g,T ]

(
1

y(t− g)3cn(t)

×
y(t)∑
i=1

E
[
νgti(νgti − 1)νkgti|N(t− g) = y(t− g), N(t) = y(t)

])
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• Condition 4 For all x ∈ [0,Λ(T )]

0 = lim
n→∞

sup
m≤dΛ−1(x)/ge

(
1

y
(
(m− 1)g

)4
cn(mg)

×
y(mg)∑
i,j=1

E
[
νg,mg,i(νg,mg,i − 1)ν2

g,mg,j |N
(
(m− 1)g

)
= y
(
(m− 1)g

)
, N
(
mg
)

= y
(
mg
)])

which is implied in our case by the following stronger condition:

0 = lim
n→∞

sup
t∈[g,T ]

(
1

y(t− g)4cn(t)

×
y(t)∑
i,j=1

E
[
νgti(νgti − 1)ν2

gtj |N(t− g) = y(t− g), N(t) = y(t)
])

Proof of Condition 1.

Notice that, since Λ−1(x) strictly increases, for x ∈ [0,Λ(T )], Λ−1(x) ≤ Λ−1(Λ(T )) =
T is bounded.

By Lemma E.8, with h(t) = 2λ1(t)
u(t)

, we have

hn(t) = h(t) + o(1)

as n→∞ (or, equivalently, as g → 0).

Then, recalling that hn(t) := cn(t)/g, we have for all x ∈ [0,Λ(T )]

dΛ−1(x)/ge∑
m=1

cn(mg) =

dΛ−1(x)/ge∑
m=1

hn(mg)g

=

dΛ−1(x)/ge∑
m=1

(
h(mg) + o(1)

)
g (as g → 0)

=

dΛ−1(x)/ge∑
m=1

h(mg)g +

dΛ−1(x)/ge∑
m=1

o(1)g

=

dΛ−1(x)/ge∑
m=1

h(mg)g + dΛ−1(x)/geo(1)g

=

dΛ−1(x)/ge∑
m=1

h(mg)g + o(1) (because Λ−1(x) is bounded)

−−−→
g→0

∫ Λ−1(x)

0

h(t)dt =

∫ Λ−1(x)

0

2λ1(t)

u(t)
dt = Λ(Λ−1(x)) = x

which proves Condition 1, recalling that g → 0 is equivalent to n→∞.
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Proof of Condition 2.

Condition 2 follows immediately from Corollary E.8.1.

Proof of Condition 3.

Given that individuals are exchangeable, we have

1

y(t− g)3cn(t)
·
y(t)∑
i=1

E
[
νgti(νgti − 1)νkgti|N(t− g) = y(t− g), N(t) = y(t)

]

=
1

y(t− g)3cn(t)
·
y(t)∑
i=1

E
[
νgt1(νgt1 − 1)νkgt1|N(t− g) = y(t− g), N(t) = y(t)

]
=

y(t)

y(t− g)3cn(t)
· E
[
νgt1(νgt1 − 1)νkgt1|N(t− g) = y(t− g), N(t) = y(t)

]

Given that y(t) = O(n) and that, by Corollary E.8.1, cn(t) = O(1/n), we have

y(t)

y(t− g)3cn(t)
= O(1/n)

as n→∞.

Therefore, there remains to show that

E
[
νgt1(νgt1 − 1)νkgt1|N(t− g) = y(t− g), N(t) = y(t)

]
= ok(n)

as n→∞ to prove Condition 3.

We have

E
[
νgt1(νgt1 − 1)νkgt1|N(t− g) = y(t− g), N(t) = y(t)

]
=

y(t−g)∑
m=0

m(m− 1)mkP(νgt1 = m)
P
(
N(t− g) = y(t− g)−m|N(t) = y(t)− 1

)
P
(
N(t− g) = y(t− g)|N(t) = y(t)

)
Lemma E.4 shows that

P
(
N(t− g) = y(t− g)−m|N(t) = y(t)− 1

)
P
(
N(t− g) = y(t− g)|N(t) = y(t)

) = O(1)

as n→∞. Therefore,

E
[
νgt1(νgt1 − 1)νkgt1|N(t− g) = y(t− g), N(t) = y(t)

]
= O(1)

y(t−g)∑
m=0

m(m− 1)mkP(νgt1 = m)

≤ O(1)

∞∑
m=0

mk+2P(νgt1 = m)

= O(1)E
[
νk+2
gt1

]
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as n→∞. By Corollary D.11.1, for any given k,

sup
g∈[0,g1]

sup
t∈[g,T ]

E
[
νk+2
gt1

]
<∞

Hence,

E
[
νgt1(νgt1 − 1)νkgt1|N(t− g) = y(t− g), N(t) = y(t)

]
= Ok(1) = ok(n)

as n→∞.

Proof of Condition 4.

Given that individuals are exchangeable, we have

1

y(t− g)4cn(t)

y(t)∑
i,j=1

E
[
νgti(νgti − 1)ν2

gtj |N(t− g) = y(t− g), N(t) = y(t)
]

=
1

y(t− g)4cn(t)

y(t)∑
i,j=1

E
[
νgt1(νgt1 − 1)ν2

gt2|N(t− g) = y(t− g), N(t) = y(t)
]

=
y(t)2

y(t− g)4cn(t)
· E
[
νgt1(νgt1 − 1)ν2

gt2|N(t− g) = y(t− g), N(t) = y(t)
]

By the Cauchy-Schwarz inequality, we have

y(t)2

y(t− g)4cn(t)
· E
[
νgt1(νgt1 − 1)ν2

gt2|N(t− g) = y(t− g), N(t) = y(t)
]

≤ y(t)2

y(t− g)4cn(t)
· E
[(
νgt1(νgt1 − 1)

)2|N(t− g) = y(t− g), N(t) = y(t)
]1/2

×E
[
ν4
gt2|N(t− g) = y(t− g), N(t) = y(t)

]1/2
By the same arguments as for Condition 3, we have that

y(t)2

y(t− g)4cn(t)
= O(1/n)

as n→∞, and there thus remains to show that

E
[(
νgt1(νgt1 − 1)

)2|N(t− g) = y(t− g), N(t) = y(t)
]1/2

×E
[
ν4
gt2|N(t− g) = y(t− g), N(t) = y(t)

]1/2
= o(n)

as n→∞.

Using the same arguments as for Condition 3, we have that

E
[(
νgt1(νgt1 − 1)

)2|N(t− g) = y(t− g), N(t) = y(t)
]1/2

×E
[
ν4
gt2|N(t− g) = y(t− g), N(t) = y(t)

]1/2
= O(1) = o(n)
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as n→∞.

G Convergence of the relative population size
of the conditional scaled BD to the function
u(t)

Theorem G.3 below shows that, under the conditioned scaled BD, the relative popu-
lation size N(t)/n converges in probability to the function u(t) as n→∞. This gives
a meaning to the function u(t): it is the relative population size of the conditional
BD when population size is large. This meaning is particularly useful for interpreting
the parameter u(t) in statistical inference with the conditional BD, as the equivalence
u(t) ≈ N(t)/n can be assumed for sufficiently large n.

Lemma G.1. For any time x ∈ [0, T ]

Var

[
N(x)

n

∣∣∣N ∈ Ωn

]
= O(1/

√
n)

as n→∞.

Proof. In this proof, all O(·)’s are as n→∞.

For some fixed g ∈ (0, g1], for any t ∈ {g, 2g, . . . , T} and for all x ∈ (t− g, t], because
of the Markov property of the BD, we have that

(
N(x)|N ∈ Ωn

)
=
(
N(x)|N(t− g) =

y(t− g), N(t) = y(t)
)
, and therefore

Var

[
N(x)

n

∣∣∣N ∈ Ωn

]
= Var

[
N(x)

n

∣∣∣N(t− g) = y(t− g), N(t) = y(t)

]

By the law of total variance, we have

Var

[
N(x)

n

∣∣∣N(t) = y(t)

]
= E

[
Var

[
N(x)

n

∣∣∣N(t− g), N(t) = y(t)

]]

+ Var

[
E
[
N(x)

n

∣∣∣N(t− g), N(t) = y(t)

]]

so that

E

[
Var

[
N(x)

n

∣∣∣N(t− g), N(t) = y(t)

]]
≤ Var

[
N(x)

n

∣∣∣N(t) = y(t)

]
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We then have

Var

[
N(x)

n

∣∣∣N ∈ Ωn

]
P
(
N(t− g) = y(t− g)|N(t) = y(t)

)
= Var

[
N(x)

n

∣∣∣N(t− g) = y(t− g), N(t) = y(t)

]
P
(
N(t− g) = y(t− g)|N(t) = y(t)

)
≤
∞∑
k=0

Var

[
N(x)

n

∣∣∣N(t− g) = k,N(t) = y(t)

]
P
(
N(t− g) = k|N(t) = y(t)

)
= E

[
Var

[
N(x)

n

∣∣∣N(t− g), N(t) = y(t)

]]

≤ Var

[
N(x)

n

∣∣∣N(t) = y(t)

]

Hence,

Var

[
N(x)

n

∣∣∣N ∈ Ωn

]
≤

Var
[
N(x)
n

∣∣N(t) = y(t)
]

P
(
N(t− g) = y(t− g)|N(t) = y(t)

)
=

1

n2
·

Var
[
N(x)|N(t) = y(t)

]
P
(
N(t− g) = y(t− g)|N(t) = y(t)

) (19)

Eq. (19) holds for some fixed g ∈ (0, g1], for any t ∈ {g, 2g, . . . , T} and for all x ∈
(t − g, t]. However, for some fixed time x ∈ [0, T ], as n → ∞ and g → 0, eventually
x 6∈ (t− g, t]. Therefore, for some fixed time x ∈ (0, T ], we define

αn = αn(x) := min
{
t ∈ {g, 2g, . . . , T}|t ≥ x

}
so that ∀n ∈ N>0, x ∈ (αn − g, αn] and the following holds ∀n ∈ N>0 and ∀x ∈ (0, T ]

Var

[
N(x)

n

∣∣∣N ∈ Ωn

]
≤ 1

n2
·

Var
[
N(x)|N(αn) = y(αn)

]
P
(
N(αn − g) = y(αn − g)|N(αn) = y(αn)

)
We then write

Var

[
N(x)

n

∣∣∣N ∈ Ωn

]
≤ 1

n2
·

√
y(αn)V (g, αn) ·Var

[
N(x)|N(αn) = y(αn)

]√
y(αn)V (g, αn) · P

(
N(αn − g) = y(αn − g)|N(αn) = y(αn)

)
By Lemma D.12, we have that

√
V (g, t) = O(1), and also

√
y(t) = O(

√
n). In the

following of this proof, we will show that ∀x ∈ (0, T ]

Var
[
N(x)|N(αn) = y(αn)

]
= O(n)

and that(√
y(αn)V (g, αn) · P

(
N(αn − g) = y(αn − g)|N(αn) = y(αn)

))−1

= O(1)
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which concludes the proof for x ∈ (0, T ]. Then, for x = 0, we trivially have that

Var

[
N(0)

n

∣∣∣N ∈ Ωn

]
= Var

[
N(0)

n

∣∣∣N(0) = y(0)

]
= 0

By Lemma C.4, we have that

Var
[
N(x)|N(αn) = y(αn)

]
= y(αn) exp

(
2

∫ αn

x

r(s)ds

)∫ αn

x

2λ(s)− r(s)
exp

( ∫ αn

s
r(u)du

)ds
Noticing that αn − x ≤ g = O(1/n) by definition of αn, we have that

2

∫ αn

x

r(s)ds ≤ 2

∫ αn

x

r̂ds = 2r̂(αn − x) = O(1/n)

with r̂ := supt∈[0,T ] r(t), so that exp
(
2
∫ αn

x
r(s)ds

)
= 1 +O(1/n) = O(1).

Similarly, for s ∈ [x, αn] (implying that αn − s = O(1/n)), we have

−
∫ αn

s

r(u)du ≤ −
∫ αn

x

řdu = −ř(αn − s) = O(1/n)

with ř := inft∈[0,T ] r(t), so that exp
(
−
∫ αn

s
r(u)du

)
= 1 +O(1/n) = O(1).

Then, ∫ αn

x

2λ(s)

exp
( ∫ αn

s
r(u)du

)ds = n

∫ αn

x

2λ1(s)

exp
( ∫ αn

s
r(u)du

)ds
≤ n

∫ αn

x

2λ̂1O(1)ds

= n(αn − x)2λ̂1O(1)

= nO(1/n)O(1)

= O(1)

with λ̂1 := supt∈[0,T ] λ1(t). Also,

−
∫ αn

x

r(s)

exp
( ∫ αn

s
r(u)du

)ds ≤ −∫ αn

x

řO(1)ds

= −(αn − x)řO(1)

= O(1/n)O(1)

= O(1/n)

Given that y(αn) = O(n), we thus conclude that

Var
[
N(x)|N(αn) = y(αn)

]
= O(n)O(1)

(
O(1) +O(1/n)

)
= O(n) (20)

76



Finally, in the proof to Lemma E.3, we have see that (Eq. 18)√
y(αn)V (g, αn) · P

(
N(αn − g) = y(αn − g)|N(αn) = y(αn)

)
=

1√
2π

+O(1/
√
n)

so that (√
y(αn)V (g, αn) · P

(
N(αn − g) = y(αn − g)|N(αn) = y(αn)

))−1

=
√

2π +O(1/
√
n) = O(1)

(21)

Lemma G.2. For any time x ∈ [0, T ]

E
[
N(x)

n

∣∣∣ N ∈ Ωn

]
− u(x) = O(1/ 4

√
n)

as n→∞.

Proof. In this proof, all O(·)’s are as n→∞.

For some fixed g ∈ (0, g1], for any t ∈ {g, 2g, . . . , T} and for all x ∈ (t− g, t], because
of the Markov property of the BD, we have that

(
N(x)|N ∈ Ωn

)
=
(
N(x)|N(t− g) =

y(t− g), N(t) = y(t)
)
, and therefore∣∣∣∣∣E

[
N(x)

n

∣∣∣ N ∈ Ωn

]
− u(x)

∣∣∣∣∣
=

∣∣∣∣∣E
[
N(x)

n

∣∣∣ N(t− g) = y(t− g), N(t) = y(t)

]
− u(x)

∣∣∣∣∣
We then have (using the triangle and Jensen’s inequalities)∣∣∣∣∣E

[
N(x)

n

∣∣∣ N ∈ Ωn

]
− u(x)

∣∣∣∣∣
=

∣∣∣∣∣E
[
N(x)

n
− u(x)

∣∣∣ N ∈ Ωn

]∣∣∣∣∣
≤ E

[∣∣∣∣N(x)

n
− u(x)

∣∣∣∣ ∣∣∣ N(t− g) = y(t− g), N(t) = y(t)

]

≤ E

[(
N(x)

n
− u(x)

)2 ∣∣∣ N(t− g) = y(t− g), N(t) = y(t)

] 1
2
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Then, by the law of total expectation, we have

E

[(
N(x)

n
− u(x)

)2 ∣∣∣∣ N(t) = y(t)

]

= E

[
E
[(

N(x)

n
− u(x)

)2 ∣∣∣∣ N(t− g), N(t) = y(t)

]]

=

∞∑
k=0

{
E
[(

N(x)

n
− u(x)

)2 ∣∣∣∣ N(t− g) = k,N(t) = y(t)

]

× P
(
N(t− g) = k|N(t) = y(t)

)}

≥ E
[(

N(x)

n
− u(x)

)2 ∣∣∣∣ N(t− g) = y(t− g), N(t) = y(t)

]
× P

(
N(t− g) = y(t− g)|N(t) = y(t)

)
Hence, ∣∣∣∣∣E

[
N(x)

n

∣∣∣ N ∈ Ωn

]
− u(x)

∣∣∣∣∣
≤

( E
[(

N(x)
n
− u(x)

)2 ∣∣∣ N(t) = y(t)
]

P
(
N(t− g) = y(t− g)|N(t) = y(t)

)) 1
2

(22)

Eq. (22) holds for some fixed g ∈ (0, g1], for any t ∈ {g, 2g, . . . , T} and for all x ∈
(t − g, t]. However, for some fixed time x ∈ [0, T ], as n → ∞ and g → 0, eventually
x 6∈ (t− g, t]. Therefore, for some fixed time x ∈ (0, T ], we define

αn = αn(x) := min
{
t ∈ {g, 2g, . . . , T}|t ≥ x

}
so that ∀n ∈ N>0, x ∈ (αn − g, αn] and the following holds ∀n ∈ N>0 and ∀x ∈ (0, T ]∣∣∣∣∣E

[
N(x)

n

∣∣∣ N ∈ Ωn

]
− u(x)

∣∣∣∣∣
≤

( E
[(

N(x)
n
− u(x)

)2 ∣∣∣ N(αn) = y(αn)
]

P
(
N(αn − g) = y(αn − g)|N(αn) = y(αn)

)) 1
2

We then write∣∣∣∣∣E
[
N(x)

n

∣∣∣ N ∈ Ωn

]
− u(x)

∣∣∣∣∣
≤

( √
y(αn)V (g, αn) · E

[(
N(x)
n
− u(x)

)2 ∣∣∣ N(αn) = y(αn)
]

√
y(αn)V (g, αn) · P

(
N(αn − g) = y(αn − g)|N(αn) = y(αn)

)) 1
2
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By Lemma D.12, we have that
√
V (g, t) = O(1), and also

√
y(t) = O(

√
n). We have

also seen in the proof to Lemma G.1 that (Eq. 21)(√
y(αn)V (g, αn) · P

(
N(αn − g) = y(αn − g)|N(αn) = y(αn)

))−1

= O(1)

In the following of this proof, we will show that ∀x ∈ (0, T ]

E

[(
N(x)

n
− u(x)

)2 ∣∣∣∣ N(αn) = y(αn)

]
= O(1/n)

which concludes the proof for x ∈ (0, T ]. The case for x = 0 will be dealt with at the
end.

We have

E

[(
N(x)

n
− u(x)

)2 ∣∣∣∣ N(αn) = y(αn)

]

= Var

[
N(x)

n
− u(x)

∣∣∣∣ N(αn) = y(αn)

]
− E

[
N(x)

n
− u(x)

∣∣∣∣ N(αn) = y(αn)

]2

=
1

n2
Var
[
N(x)

∣∣ N(αn) = y(αn)
]
− 1

n2

(
E
[
N(x)

∣∣ N(αn) = y(αn)
]
− nu(x)

)2

In the proof to Lemma G.1 we have seen that (Eq. 20)

Var
[
N(x)

∣∣ N(αn) = y(αn)
]

= O(n)

Using Lemma C.4, we have

E
[
N(x)

∣∣ N(αn) = y(αn)
]
− nu(x) = y(αn) exp

(∫ αn

x

r(s)ds

)
− nu(x)

We recall that y(αn) = dnu(αn)e = nu(αn)+ε with 0 ≤ ε < 1 and that u(t) is bounded
on [0, T ]. We have seen in the proof to Lemma G.1 that exp

( ∫ αn

x
r(s)ds

)
= 1+O(1/n).

Furthermore, because u′(t) is bounded,
(
u(t)−u(x)

)
/(t−x) = O(1). Also, by definition

of αn, αn − x < g = O(1/n). We then have

E
[
N(x)

∣∣ N(αn) = y(αn)
]
− nu(x) =

(
nu(αn) + ε

)(
1 +O(1/n)

)
− nu(x)

= nu(αn)− nu(x) +O(1)

= n(αn − x)
u(αn)− u(x)

αn − x
+O(1)

= O(1)
u(αn)− u(x)

αn − x
+O(1)

= O(1)
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We thus obtain

E

[(
N(x)

n
− u(x)

)2 ∣∣∣∣ N(αn) = y(αn)

]
=

1

n2
O(n)− 1

n2
O(1) = O(1/n)

concluding the proof for x ∈ (0, T ].

For x = 0, with ε := y(0)− nu(0) = dnu(0)e − nu(0) ∈ [0, 1), we have ∀n ∈ N>0∣∣∣∣∣E
[
N(0)

n

∣∣∣ N ∈ Ωn

]
− u(0)

∣∣∣∣∣
=

∣∣∣∣∣E
[
N(0)

n

∣∣∣ N(0) = y(0)

]
− u(0)

∣∣∣∣∣
=

∣∣∣∣∣y(0)

n
− u(0)

∣∣∣∣∣
=

∣∣∣∣∣ 1n(nu(0) + ε
)
− u(0)

∣∣∣∣∣
=

∣∣∣∣∣u(0) +
ε

n
− u(0)

∣∣∣∣∣
= O(1/n) = O(1/ 4

√
n)

Theorem G.3.
(
N(t)
n
|N ∈ Ωn

)
converges uniformly in probability to u(t) as n→∞.

Proof. Using Bishop’s Op(·) and op(·) notation, we have by Bishop (35)’s Theorem
14.4-1 that(

N(t)

n
|N ∈ Ωn

)
= E

[
N(t)

n

∣∣∣N ∈ Ωn

]
+Op

(
Var

[
N(t)

n

∣∣∣N ∈ Ωn

] 1
2

)

Given that, by Lemma G.1,

Var

[
N(t)

n

∣∣∣N ∈ Ωn

]
= O(1/

√
n)

and that by Lemma G.2

E
[
N(t)

n

∣∣∣N ∈ Ωn

]
= u(t) +O(1/ 4

√
n)

we have(
N(t)

n
|N ∈ Ωn

)
= u(t) +O(1/ 4

√
n) +Op(1/

4
√
n) = u(t) + o(1) + op(1)

which concludes the proof.
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H Simulation procedure

For each comparison of two methods presented in the main text, we simulated 100
datasets, each consisting of a realization z =

(
z(t)

)
t∈[0,T ]

of the sample process Z.

A simulation of 100 datasets for one comparison of two methods proceeded in three
steps:

1. Simulate a single realization of the population processN , denoted ν =
(
ν(t)

)
t∈[0,T ]

.

ν is a left-continuous step function with unit increments/decrements.

2. Given ν, a set of sampling times is drawn, represented by an increasing step
function s(t). The function s(t) represents the cumulative number of samples
taken between times 0 and t. If, at time t = x, k samples were taken, then s(t)
increases by k at time x. We sample 100 sets of sampling times: {si(t)}i=1,...,100.

3. Given ν and si(t), we draw a set of coalescence times, represented by an increas-
ing step function ci(t). The function ci(t) represents the cumulative number of
coalescences between times 0 and t. There cannot be two concomitant coales-
cences, since our procedure to simulate ν is such that several concomitant births
cannot happen. We sample 100 sets of coalescence times, one for each simulated
si(t), yielding the set {ci(t)}i=1,...,100.

The i-th realization of the sample process is obtained as zi(t) = si(t)− ci(t).

Simulation of a population trajectory In all three comparisons presented in
the main text, we simulated the population process of an SIS model. The deterministic
SIS model obeys the following system of ODEs (in backward time):

S′(t) = β
I(t)

X
S(t)− µI(t)

I ′(t) = −β S(t)

X
I(t) + µI(t)

where S(t) is the number of susceptibles, I(t) is the number of infectious individuals,
and X = S(t) + I(t) is the size of the whole population, assumed constant. β is the
transmission rate and µ the recovery rate. Because samples of the pathogen are taken
only from the population of infectious individuals, the number of infectious individuals
represents our population process: I(t) ≡ N(t). Because S(t) = X − I(t), obviously,
the above system of ODEs can be reduced to a single equation. We thus have:

I ′(t) = −βX − I(t)

X
I(t) + µI(t)

The stochastic version of the SIS model is obtained by noting that new infections arise
at rate λ

(
I(t)

)
= βX−I(t)

X
and infections terminate at rate µ, per infectious individual.

Hence, I(t) follows a density-dependent BD model. This model can be simulated using
a Gillespie algorithm, proceeding forward in time as follows. At time t, the total rate
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of events is given by η
(
I(t)

)
= λ

(
I(t)

)
I(t) + µI(t), so the waiting time w

(
I(t)

)
until

the next event is an exponential random variable with rate η
(
I(t)

)
. Drawing w

(
I(t)

)
gives the time t′ = t−w

(
I(t)

)
when the next event happens. If t′ < 0, the simulation

is finished. If t′ > 0, then the type of event e(t′) is a Bernoulli random variable with
probability λ

(
I(t)

)
I(t)/η

(
I(t)

)
that the event is a birth. Looking forward in time, if

e(t′) = 1, then I is increased by 1 at time t′, and if e(t′) = 0, I is decreased by 1 at
time t′. Starting at time T from the initial condition I(T ) and proceeding by drawing
births and deaths as outlined above yields a complete population trajectory on [0, T ],
denoted ν.

Simulation of sampling times In the comparisons of Figures 8 and 9, sampling
times were drawn by assuming a constant per-capita sampling rate ψ. Individuals
were placed back into the population after sampling. Hence, the rate-based sampling
procedure is a time-inhomogeneous Poisson point process, which can be simulated as
follows. Denote tk, with k = 1, . . . , d the time of the k-th event (birth or death) from
present to past as per ν (i.e. the set {tk}k=1,...,d are the points of discontinuity of
ν), and define t0 = 0 and td+1 = T . In [tk, tk+1], the population size is constant and
equal to ν

(
tk+1

)
. Hence, in [tk, tk+1], the total sampling rate is constant and equal to

Ψk = ψν
(
tk+1

)
. Therefore, the waiting times in between sampling events in [tk, tk+1]

are exponentially distributed with rate Ψk. Waiting times are drawn iteratively in
[tk, tk+1] until the sum of all waiting times is greater than tk+1 − tk, rejecting the
last waiting time. The procedure is repeated for k = 0, . . . , d, yielding a set {xj}j of
sampling times. Then, s(t) is constructed as the step function that increases by one
when t ∈ {xj}j . We repeated the procedure 100 times, yielding {si(t)}i=1,...,100.

In the comparison of Figure 10, we deterministically took 71 samples at time 0.1, 66
samples at time 0.5, and 26 samples at time 1.0, for all 100 datasets.

Simulation of coalescence times Denote {bk}k=1,...,B the times of births as
per ν (i.e. all the time points at which ν(t) decreases), with bk the time of the k-th
birth from present to past, and B the total number of births in [0, T ]. Define b0 = 0
and bB+1 = T . For a given sampling times function si(t), denote γik a random variable
which is 1 if a coalescence happens at time bk and 0 otherwise. Denote Γik =

∑k−1
j=1 γik

and define Γi0 = 0. γik is Bernoulli distributed with probability
(
si(bk)−Γik

2

)
/
(
ν(bk)

2

)
.

The γik’s are drawn iteratively for k = 1, . . . , B. Then, ci(t) is constructed as the step
function ci(t) = Γik for t ∈ [bk, bk+1].

Parameters used for the three sets of simulations For all simulations,
T = 10. The population trajectory of Figure 8 was simulated with the parameters
X = 1000, β = 2 and µ = 0.5, with initial condition N(T ) = 1. The sampling times
were drawn based on a rate ψ = 0.05. The population trajectory of Figure 9 was
simulated with the parameters X = 10, 000, β ≈ 20.02 and µ ≈ 18.62, with initial
condition N(T ) = 10. The sampling times were drawn based on a rate ψ = 0.06. For
Figure 10, the same population trajectory was used as for Figure 9, but the sampling
times were set deterministically.
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Estimates of the death rate As explained below, our method and the BDS
method cannot identify all the parameters they use. Hence, phylogenetic inference
with either method requires that we fix some parameter(s) to a pre-estimated value
during inference. In epidemiology, the death rate is probably the easiest parameter to
estimate from auxiliary data, as the death rate is the inverse of the expected duration
of infections. Hence, we chose to fix the death rate curve to a value summarizing the
temporal variation of the realized death rate, an information that is contained in the
realized population trajectory ν. We proceeded as follows.

Above we have detailed how we simulated ν using a Gillespie algorithm, using λ
(
I(t)

)
I(t)+

µI(t) as the total rate of events, and drawing waiting times in between events in an ex-
ponential distribution. Hence, switching to inference mode, we can estimate ζ = λ+µ
by fitting an exponential distribution with rate ζν(t) to the waiting times of ν (i.e.
the periods of times when ν is constant). We divided the interval [0, T ] into five time
intervals (defined such that each interval contained 20% of the coalescence times of
the 100 simulated realizations of the sample process), and obtained five estimates of
ζ: {ζ̂i}i=1,...,5. Then, counting the numbers of deaths and births in interval i as per
ν, we obtained an estimate µ̂i for the i-th interval as

µ̂i = ζ̂i ·
# deaths in interval i

# deaths in interval i + # births in interval i

I Parametrization of the various inference meth-
ods

I.1 Fixing the death rate curve

For our method, as explained in Section J.3 below, the parameters are not separately
identifiable unless a curve is fixed. The same is true for the BDS method (52). There-
fore, we fixed the death rate curve to a pre-estimated value for both these methods.
In Section H, we explained how we derived estimates of the death rate in five time
intervals. We denote these estimates {µ̂i}i=1,...,5. During inference with our method
or the BDS, we fixed the death rate curve to the following pairwise constant function:

m(t) = µ̂i if t ∈ [ti, ti+1)

with {ti}i=2,...,5 the times separating the five intervals, t1 = 0 and t6 = T .

I.2 Parametrization of our method

We fixed µ̃(t) = m(t).

Rather than parametrizing λ̃ and deduce Ñ , we chose to parametrize Ñ and deduce
λ̃, as this resulted in smoother curves overall. We parametrized Ñ as

Ñ(t) = expP (t)
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with P (t) a polynomial of degree 6.

Then solving

expP (t) = Ñ(0) exp

∫ t

0

(
µ̃(s)− λ̃(s)

)
ds

for λ̃ yields
λ̃(t) = µ̃(t)− P ′(t)

In sum, we parametrized θ as

θ(t) =
Ñ(t)

2λ̃(t)
=
Ñ(0) exp

∫ t
0

(
µ̃(s)− λ̃(s)

)
ds

2λ̃(t)
=

expP (t)

2
(
m(t)− P ′(t)

)
The estimated curve for Ñ is exp P̂ and the estimated curve for λ̃ is m− P̂ ′.

There are seven free parameters: the coefficients of P (t).

I.3 Parametrization of the BDS method

We fixed µ̃(t) = m(t).

We parametrized λ as
λ(t) = ai + bit if t ∈ [ti, ti+1)

with bi =
λti+1

−λti

ti+1−ti
, ai = λti−biti, with {ti}i=2,...,5 delineating the same five intervals

used to define m(t), and with t1 = 0 and t6 = T . In other words, λ(t) is a continuous
piecewise linear function passing through the points {(ti, λti)}i=1,...,6.

The sampling rate was fixed to a constant: ψ(t) = ψ.

There are seven free parameters: {λti)}i=1,...,6 and ψ.

It can be verified that the BDS model parametrized in this way is identifiable, i.e. no
two sets of parameters yield models in the same equivalence class (congruence class
sensu Louca et al. (52)). However, to any model parametrized as outlined above, there
exist infinitely many other congruent BDS models (with other parametrizations of the
curves λ and ψ).

The likelihood of this model is implemented in the R package castor (function fit hbds model parametric()
). We used κ = 1 (i.e. sampled individuals are put back in the population).

For the BDS, we used the deterministic population size as an estimate of the realized
population size, calculated as

N(t) = N(0) exp

∫ t

0

(
µ(s)− λ(s)

)
ds
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With an estimate of λ and with µ = m, we can only calculate the relative popula-
tion size. To obtain an estimate of the absolute population size, we must derive an
estimate of N(0). We proceeded as follows. Given that we used κ = 1, our model
assumes that sampling does not impact population size. Hence, the total determin-
istic sampling rate is ψN(t), and the deterministic sampling procedure of the BDS
is a time-inhomogeneous Poisson point process (PPP). The waiting times in between
sampling events thus contain information about the absolute value of N(t), and fit-
ting a PPP to the sampling waiting times allows to estimate N(0). Specifically, given
estimates λ̂ and ψ̂, the probability density of a sampling event at time t1 given the
last sampling event was at time t2 ≥ t1 is

ψ̂N(0) exp

(∫ t1

0

(
m(t)− λ̂(t)

)
dt

)
exp

(
−
∫ t2

t1

dtψ̂N(0) exp

∫ t

0

(
m(s)− λ̂(s)

)
ds

)

I.4 Parametrization of the skyline KC method

With the skyline KC method, the only curve to parametrize is θ. We parametrized θ
as

θ(t) = ai + bit if t ∈ [ti, ti+1)

with bi =
θti+1

−θti
ti+1−ti

, ai = θti − biti, with {ti}i=2,...,5 delineating the same five intervals

used to define m(t) for our method, and with t1 = 0 and t6 = T . In other words, θ(t)
is a continuous piecewise linear function passing through the points {(ti, θti)}i=1,...,6.

There is no death rate curve in the skyline KC method, so we do not use the pre-
estimated curve m(t). However, to allow a fair comparison of the skyline KC with our
method, we use the same time intervals to define the pieces of θ(t) in the skyline KC
method as we use to define λ̃(t) and µ̃(t) in our method.

I.5 Parametrization of the SIR-based mechanistic KC method

The SIR model is defined by the following system of ODEs (expressed in forward time,
denoted τ):

S′(τ) = −β I(τ)

X
S(τ)

I ′(τ) = β
S(τ)

X
I(τ)− µI(τ)

R′(τ) = µI(τ)

where S(τ) is the number of susceptibles, I(τ) is the number of infectious individuals,
R(τ) is the number of removed individuals, and X = S(τ) + I(τ) + R(τ) is the total
population size. We use for initial conditions S(0) = X − 1, I(0) = 1 and R(0) = 0.

We integrated numerically the above system of equations from τ = 0 to τ = T ′ ≥ T ,
where T ′ is the (backward) time of origin of the SIR process. This yields a numerical
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solution for I(τ) in forward time, that is It(t) = I(T ′ − t) in backward time. The
phylogeny being made up of only infectious individuals, It(t) is the equivalent of what
we call “population size” in this paper: It(t) ≡ N(t).

With the SIR-based mechanistic approach, we parametrize θ as

θ(t) = kIt(t) ≡ kN(t)

with k a proportionality constant.

The parameters of the SIR-based mechanistic approach are X, β, µ, T ′ and k. We
found that X, T ′ and k are at best weakly identifiable, so we fixed k = 1. Furthermore,
to allow a fair comparison with our method, we fixed µ to the mean of {µi}i=1,...,5.
This way, both methods are informed about the true death rate. There results a model
with three free parameters: X, β and T ′.

J Details on our new method

J.1 Coalescence rate of BD-type models

Let ν be a realization of the population process N and β be the corresponding curve of
the cumulative number of births. Define x := sups∈[0,t] 1/ν(s) so that 1/ν(s) = O(x)
as x→ 0. Every use of the O/o notation in this section is as x→ 0.

We consider continuous and differentiable functions B̃ and Ñ as phenomenological
representations of β and ν, respectively. We define the realized birth rate λ̃ = B̃′/Ñ .

We make the following assumptions, ∀s ∈ [0, t]:

1. B̃(s)/β(s) = 1 + o(1)

2. Ñ(s)/ν(s) = 1 + o(1)

3. ν(s) = O(1/x)

4. Ñ ′(s)/Ñ(s) = O(1)

5. λ̃(s)/Ñ(s) = O(1)

The first two assumptions mean that we represent the realizations β and ν by some
phenomenological functions B̃ and Ñ that are proportionally closer to β and ν as
we consider greater population sizes (as x → 0). The third assumption implies that
sups∈[0,t] ν(s)/ infs∈[0,t] ν(s) is bounded, and therefore the same is true for Ñ . The

fourth assumption means that Ñ , and therefore ν, does not vary faster than an ex-
ponential function. The fifth assumption indicates that the per-capita birth rate is at
most of the same order as the population size.
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For all BD-type models, the probability P (t) of a pair of individuals not coalescing in
[0, t] is given exactly by

P (t) =

β(t)∏
i=1

(
1− 1(

ν(ti)
2

)) (23)

Indeed, at time ti when the i-th birth happened, there were ν(ti) individuals in the
population and therefore

(
ν(ti)

2

)
pairs of individuals. The probability that a specific

pair of individuals coalesces at time ti is the probability that these two individuals are
the two offspring of the i-th birth event, that is 1/

(
ν(ti)

2

)
. At all times when a birth

did not happen, coalescences have probability 0. The above equality is true only for
models whereby births spawn only two offspring. For instance, if at time ti the birth
spawned k offspring, then the probability of coalescence of a specific pair of lineages
would be

(
k
2

)
/
(
ν(ti)

2

)
, because there are

(
k
2

)
pairs in the whole population that coalesce

at time ti.

Our purpose here is to show that the large-population limit (as x→ 0) of P (t) is the
corresponding probability under the KC with θ = Ñ/(2λ̃).

Now let’s write

− lnP (t) = −
β(t)∑
i=1

ln

(
1− 1(

ν(ti)
2

))

= −
dt/xe−1∑
j=0

β(tj+1)−β(tj)∑
k=1

ln

(
1− 1(

ν(tjk)
2

))
where ∀j ∈ {0, . . . , dt/xe − 1}, tj = jx and tdt/xe = t and where tjk is the time of the
k-th birth in [tj , tj+1].

The following will be for all s ∈ [0, t].

We have

1(
ν(s)

2

) =
2

ν(s)2
(
1− 1/ν(s)

) =
2

ν(s)2
(
1 +O(x)

)
=

2

ν(s)2

(
1 +O(x)

)
=

2

ν(s)2
+O(x3)

Also, (
Ñ(s)

ν(s)

)2

=
(
1 + o(1)

)2
= 1 + o(1)

Also,

1

Ñ(s)
=

1

ν(s)

1
N(s)
ν(s)

= O(x)
1

1 + o(1)
= O(x)

(
1 + o(1)

)
= O(x)
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Hence,

1(
ν(s)

2

) =

(
Ñ(s)

ν(s)

)2
2

Ñ(s)2
+O(x3) =

2

Ñ(s)2

(
1 + o(1)

)
+O(x3)

=
2

Ñ(s)2
+

2

Ñ(s)2
o(1) +O(x3) =

2

Ñ(s)2
+ o(x2)

Hence,

− lnP (t) = −
dt/xe−1∑
j=0

β(tj+1)−β(tj)∑
k=1

ln

(
1− 2

Ñ(tjk)2
+ o(x2)

)

Given that − 2

Ñ(s)2
+ o(x2) = O(x2) and that ln(1 + z) = z +O(z2), we have

− lnP (t) = −
dt/xe−1∑
j=0

β(tj+1)−β(tj)∑
k=1

(
− 2

Ñ(tjk)2
+O(x4)

)

=

dt/xe−1∑
j=0

β(tj+1)−β(tj)∑
k=1

2

Ñ(tjk)2
+

dt/xe−1∑
j=0

β(tj+1)−β(tj)∑
k=1

O(x4) (24)

We now deal with the first term of the RHS of the previous equation.

By Taylor’s theorem and given that Ñ ′/Ñ = O(1) we have that

Ñ(tjk) = Ñ(tj) + Ñ ′(tj)O(x) + o(x)

Ñ(tjk)

Ñ(tj)
= 1 +

Ñ ′(tj)

Ñ(tj)
O(x) + o(x) = 1 +O(x)(

Ñ(tjk)

Ñ(tj)

)2

=
(
1 +O(x)

)2
= 1 +O(x)(

Ñ(tj)

Ñ(tjk)

)2

=
1

1 +O(x)
= 1 +O(x)

We also have that

β(tj+1)− β(tj) =
β(tj+1)

B(tj+1)
B(tj+1)− β(tj)

B(tj)
B(tj)

=
(
1 + o(1)

)(
B(tj+1)−B(tj)

)
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We thus have

dt/xe−1∑
j=0

β(tj+1)−β(tj)∑
k=1

2

Ñ(tjk)2

=

dt/xe−1∑
j=0

β(tj+1)−β(tj)∑
k=1

2

Ñ(tj)2

(
1 +O(x)

)
=

dt/xe−1∑
j=0

2
(
β(tj+1)− β(tj)

)
Ñ(tj)2

(
1 +O(x)

)
=

dt/xe−1∑
j=0

2
(
B̃(tj+1)− B̃(tj)

)(
1 + o(1)

)
Ñ(tj)2

(
1 +O(x)

)
=

dt/xe−1∑
j=0

2
(
B̃(tj+1)− B̃(tj)

)
Ñ(tj)2

(
1 + o(1)

)

Then, by Taylor’s theorem we have that

B̃(tj+1)− B̃(tj) = B̃′(tj)x+ o(x) = λ̃(tj)Ñ(tj)x+ o(x)
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We obtain

dt/xe−1∑
j=0

β(tj+1)−β(tj)∑
k=1

2

Ñ(tjk)2

=

dt/xe−1∑
j=0

2
(
λ̃(tj)Ñ(tj)x+ o(x)

)
Ñ(tj)2

(
1 + o(1)

)
=

dt/xe−1∑
j=0

2λ̃(tj)Ñ(tj)x

Ñ(tj)2

(
1 + o(1)

)
+

dt/xe−1∑
j=0

o(x)

Ñ(tj)2

=

dt/xe−1∑
j=0

2λ̃(tj)Ñ(tj)x

Ñ(tj)2

(
1 + o(1)

)
+

dt/xe−1∑
j=0

o(x3)

=

dt/xe−1∑
j=0

2λ̃(tj)Ñ(tj)x

Ñ(tj)2

(
1 + o(1)

)
+ o(x2)

=

dt/xe−1∑
j=0

2λ̃(tj)x

Ñ(tj)
+

( dt/xe−1∑
j=0

λ̃(tj)o(x)

Ñ(tj)

)
+ o(x2)

=

dt/xe−1∑
j=0

2λ̃(tj)x

Ñ(tj)
+

( dt/xe−1∑
j=0

o(x)

)
+ o(x2)

=

dt/xe−1∑
j=0

2λ̃(tj)x

Ñ(tj)
+ o(1)

=

∫ t

0

2λ̃(s)ds

Ñ(s)
+O(x) + o(1)

=

∫ t

0

2λ̃(s)ds

Ñ(s)
+ o(1)
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Now we deal with the second term of Eq. (24). We have

− lnP (t) =

dt/xe−1∑
j=0

β(tj+1)−β(tj)∑
k=1

O(x4)

= O(x4)

dt/xe−1∑
j=0

β(tj+1)− β(tj)

= O(x4)

dt/xe−1∑
j=0

(
B̃(tj+1)− B̃(tj)

)(
1 + o(1)

)
= O(x4)

dt/xe−1∑
j=0

(
B̃(tj+1)− B̃(tj)

)
= O(x4)

dt/xe−1∑
j=0

λ̃(tj)Ñ(tj)x+ o(x)

= O(x4)

dt/xe−1∑
j=0

λ̃(tj)

Ñ(tj)
Ñ(tj)

2x+ o(x)

= O(x4)

dt/xe−1∑
j=0

O(1)O(1/x2)O(x) + o(x)

= O(x4)

dt/xe−1∑
j=0

O(1/x) + o(x)

= O(x4)

dt/xe−1∑
j=0

O(1/x)

= O(x4)O(1/x)O(1/x)

= O(x2)

Putting the two terms back into Eq. (24) yields

− lnP (t) =

∫ t

0

2λ̃(s)ds

Ñ(s)
+ o(1) +O(x2) =

∫ t

0

2λ̃(s)ds

Ñ(s)
+ o(1)

And therefore

P (t) = exp

(
−
∫ t

0

2λ̃(s)ds

Ñ(s)
+ o(1)

)
= exp

(
−
∫ t

0

2λ̃(s)ds

Ñ(s)

)
+ o(1)

Thus, in the large-population limit x→ 0, the probability P (t) that a pair of lineages

do not coalesce is the corresponding probability under a KC with θ = Ñ

2λ̃
. Notice

that this limit is only interesting if it is further assumed that Ñ/λ̃ = O(1), otherwise
the coalescence rate goes to 0 as x → 0. Provided the assumptions mentioned at the
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beginning of this section are met, this result applies to all BD-type models, since the
initial equation (Eq. 23) is true for all such models (but untrue as soon as multiple
concomitant births can happen or if individuals are not exchangeable).

We do not consider the above as a formal demonstration of the convergence of BD-
type models to the KC, because it focuses on the probability of coalescence of two
individuals (i.e. when Z(t) = 2). In contrast, a formal proof must consider the case
Z(t) = k and in our particular case here, we would need to show that in the limit

coalescences happen at rate
(
k
2

) 2λ̃(t)

Ñ(t)
when Z(t) = k. This is more involved, and the

existing theorems of convergence to the KC, such as that of Möhle (19) that we used in
Theorem F.1, cannot be used as they assume that the curve of the cumulative number
of births is unknown, unlike in this section where it is fixed.

In sum, Theorem F.1 constitutes our formal proof that a BD model with deterministic
rates converges to a KC, while we consider the present section as a heuristic that
suggests that the convergence should apply to all BD-type models.

J.2 Expression of the realized population trajectory

Here we explain why we have parametrized Ñ as the following function of the realized
rates λ̃ and µ̃:

Ñ(t) = Ñ(0) exp

∫ t

0

(
µ̃(s)− λ̃(s)

)
ds (25)

We recall thatN(t) is the random population size, B(t) the random cumulative number
of births from the present to time t, and D(t) the random cumulative number of deaths.
We consider specific realizations of these random processes, which we denote ν for N ,
β for B, and δ for D. These step functions are represented phenomenologically by
continuous and differentiable functions Ñ for ν, B̃ for β, and D̃ for δ. We have defined
the realized rates as λ̃ = B̃′/Ñ and µ̃ = D̃′/Ñ .

Obviously, the random processes N , B and D are linked by the equation N(t) =
N(0) − B(t) + D(t), which is also verified by any specific set of realizations: ν(t) =
ν(0) − β(t) + δ(t). Hence, the phenomenological representations of these realizations
should also respect this relation: Ñ(t) = Ñ(0)− B̃(t) + D̃(t). By the definitions of the
realized rates, given that B̃(0) = D̃(0) = 0, we have that B̃(t) =

∫ t
0
λ̃(s)Ñ(s)ds and

D̃(t) =
∫ t

0
µ̃(s)Ñ(s)ds. We thus obtain

Ñ(t) = Ñ(0)−
∫ t

0

λ̃(s)Ñ(s)ds+

∫ t

0

µ̃(s)Ñ(s)ds

Ñ ′(t) = −λ̃(t)Ñ(t) + µ̃(t)Ñ(t)

Ñ ′(t)

Ñ(t)
= −λ̃(t) + µ̃(t)

Integrating on both sides yields Eq. (25).
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J.3 Identifiability of the parameters of our new method

J.3.1 Correspondence between the equivalence classes for our method,
and those of the Bernoulli-sampled BD model

Our method is a KC with

θ(t) =
Ñ(0) exp

∫ t
0

(
µ̃(s)− λ̃(s)

)
ds

2λ̃(t)
(26)

The function θ is known to be identifiable. However, there are infinitely many models,
each defined by a triple

(
µ̃, λ̃, Ñ(0)

)
, that yield the same θ. All the models yielding the

same θ are called “equivalent” (they yield the same KC likelihood, for any dataset),
and an equivalence class is defined by a function θ. For a given dataset with Z(0) = z0,
the equivalence classes of our model are the same as the equivalence classes defined by
Louca and Pennell (47) for the BD model with Bernoulli sampling.

Specifically, consider a Bernoulli-sampled BD model, with birth rate λ(t), death rate
µ(t) and sampling probability ρ. As per Eq. (2) in (47), the deterministic population
size is defined as

N(t) = N(0) exp

∫ t

0

(
µ(s)− λ(s)

)
ds

with N(0) = z0/ρ.

We can then define θ for a Bernoulli-sampled BD model as

θ(t) =
N(t)

2λ(t)
(27)

Then, as per Eqs. (3,8) in (47), we have

N(t) =
M(t)

1− E(t)

λ(t) =
λp(t)

1− E(t)

where M is the “deterministic LTT plot”, λp is the “pulled birth rate”, and E the
probability that a lineage existing at time t has no sampled descendants.

We then obtain

θ(t) =
M(t)

2λp(t)

Then, as per Eq. (7) in (47),

λp(t) = −M
′(t)

M(t)
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yielding

θ(t) =
M(t)2

2M ′(t)
(28)

Importantly, all the Bernoulli-sample BD models in a given equivalence class sensu
Louca and Pennell (47) yield the same function M , and hence the same function θ.
It is also easily verified that, for a given function θ, there is a single function M that
satisfies Eq. (28). Hence, θ defines the equivalence classes of Louca and Pennell (47)
in the same way that M or λp do.

In conclusion, according to the equivalences λ̃ ≡ λ, µ̃ ≡ µ and Ñ(0) ≡ N(0) between
the parameters of our model and those of the Bernoulli-sampled BD, the equivalence
classes of our model and those of the Bernoulli-sampled BD model are the same and
defined by θ, the latter being defined by Eq. (26) in our model, and by Eq. (27) in
the Bernoulli-sampled BD model.

J.3.2 Identifiability of the chosen parametrization of our method

Due to the identifiability issues outlined above, we have to bring external informa-
tion about some parameter(s) of our model. We chose to fix µ̃ = m. We have also
parametrized our model with a polynomial P , parametrizing Ñ as Ñ = expP , which
yields λ̃ = m − P ′. We think that our model thus parametrized is identifiable, i.e.
there are no two different parametrizations of the polynomial P yielding the same θ.

However, to any one model parametrized with Ñ = expP and µ̃ = m, correspond
infinitely many equivalent models with µ̃ = m and with Ñ of a different form than
Ñ = expP .

Specifically, given µ̃ = m, and given that Ñ(t) = Ñ(0) exp
∫ t

0

(
µ̃(s)− λ̃(s)

)
ds, we have

that λ̃ = m− Ñ ′/Ñ .

Hence, for a given P = P (0), yielding Ñ = Ñ (0) and θ = θ(0), all the models with Ñ
such that

θ =
Ñ

2(m− Ñ ′/Ñ)
= θ(0)

are equivalent to the model with Ñ (0) = expP (0). Solving the previous equation for
Ñ yields

Ñ(t) =
exp

∫ t
0
m(s)ds

1

Ñ(0)
+
∫ t

0
ds

2θ(0)(s)
exp

∫ s
0
m(u)du

(29)

In the above equation, Ñ(t) has one free parameter: Ñ(0). Hence, there are as many
equivalent models to the model with Ñ (0) = expP (0) as there are valid values of Ñ(0).
A valid value of Ñ(0) is such that Ñ(0) ≥ 0, and also such that the resulting birth
rate λ̃ = m− Ñ ′/Ñ is positive on [0, T ].
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Future studies will be necessary to determine if the set of equivalent models are very
different from a given estimated model with Ñ = expP . In the meantime, we present
in Figures 11-13 below the equivalent models for the analyses carried out in the main
text, and note that the equivalent models differ significantly from the estimated models
only in the time periods where few coalescences were observed.

Finally, for future uses of our method, we note that an estimate of either Ñ or λ̃ at a
single time point completely identifies the model.

Figure 11: Equivalent models for the datasets of Figure 8. a,c) Estimates of
Ñ and R̃e with our method, i.e. with Ñ = expP and P a polynomial of
degree 6 (same as Figure 8). The black line is the true value, the red solid
line is the median of estimates and the red ribbon ranges from the 0.025 to the
0.975 percentile of estimates. For each estimate obtained with the constraint
Ñ = expP , we obtained a set of equivalent estimates of Ñ , using Eq. (29) with

Ñ(0) ∈ [ ˆ̃N(0)/20, 20 ˆ̃N(0)] (panel b). From these equivalent estimates of Ñ , we
derived equivalent estimates for λ̃ as λ̃ = m−Ñ ′/Ñ , and equivalent estimates of
R̃e as R̃e = λ̃/m (panel d). We see that considering equivalent models decreases
precision significantly in the most recent period when coalescences events are
rarer.
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Figure 12: Equivalent models for the datasets of Figure 9. This figure reads as
Figure 11. We see that, contrarily to the example of Figure 11, here, considering
the equivalent models does not lower precision, except in the very recent past.
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Figure 13: Equivalent models for the datasets of Figure 10. This figure reads
as Figure 11. Like for the example of Figure 12, precision is lowered only in the
very recent past.

K BDS inference with correct sampling rate

In Figure 10 of the main text, we showed the result of fitting the BDS with a constant
sampling rate ψ(t) = ψ to datasets where the samples were taken at three determined
points in time. The BDS performed very badly on such datasets, and we reckon
that this is due to the fact that the simulated sampling procedure is at odds with
the fitted sampling procedure. In Figure 14 below, we show the results of fitting the
constant-sampling-rate BDS to datasets simulated with a constant sampling rate (i.e.
the sampling procedure assumed in inference is the correct one). We see that indeed
the BDS performs accurately in this case.
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Figure 14: Inference with the BDS method (assuming a constant sampling rate)
for datasets for which sample times were drawn according to a constant sampling
rate. a) Estimates of the population size. Black curve, the true population size.
Red line, median of estimates. The red ribbon ranges from the .025 to the .975
percentiles of the estimates. b) Estimates of the effective reproduction number,
reads as a). The simulated population trajectory is the same here as in Figure 10
in the main text. The difference is that here the sampling procedure assumed
in inference (i.e. a constant sampling rate) is the one used for simulations.
We observe that the BDS performs well when it assumes the correct sampling
procedure.
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