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The two most popular tree models used in phylogenetics are the birthdeath (BD) and the Kingman coalescent (KC). These two models differ in several respects, notably: (i) population size is random in the BD versus fixed in the KC, (ii) the BD makes assumptions about the way samples are collected, while the KC conditions on the number of samples and the collection times, thus bypassing the need to describe the sampling procedure. These two models have been applied to different contexts: the BD in macroevolutive studies of clades of species, and the KC for populations. The exception is the field of phylogenetic epidemiology which uses both models. It then asks the question of how such different models can be used in the same context. In this paper, we study large-population limits of the BD, in a search for a mathematical link between the BD and the KC. We show that the KC is the large-population limit of a BD conditioned on a given population trajectory, and we provide the formula for the parameter θ of the limiting KC. This formula appears in earlier studies, but the present article is the first to show formally how the correspondence arises as a large-population limit, and that the BD needs to be conditioned for the KC to arise. Besides these fundamentally mathematical results, we demonstrate how our findings can be used practically in phylogenetic inference. In particular, we propose a new method for phylogenetic epidemiology, ensuing from our results. We conjecture that this new method, used in conjunction with auxiliary data, should allow to estimate important epidemiological parameters (e.g. the prevalence and the effective reproduction number), in a way that is robust to the data-generating model and the sampling procedure. Future studies will be needed to put our claims to the test.

Introduction

The field of phylogenetics makes ample use of tree models to obtain a probability distribution of a tree given an evolutionary model. Tree models may be used as tree priors in Bayesian phylogenetic inference (e.g. [START_REF] Rannala | Gene genealogy in a population of variable size[END_REF][START_REF] Drummond | Bayesian Coalescent Inference of Past Population Dynamics from Molecular Sequences[END_REF][START_REF] Möller | Impact of the tree prior on estimating clock rates during epidemic outbreaks[END_REF] or fitted to pre-estimated phylogenies in order to estimate evolutionary parameters [START_REF] Stadler | Recovering speciation and extinction dynamics based on phylogenies[END_REF]. In either case, the choice of tree model is determined by the type of object that the phylogenetic tree represents.

The overwhelming majority of phylogenetic applications of tree models resorts to two canonical models: the birth-death (BD, 5) and the Kingman coalescent (KC, 6). The BD is typically used in macroevolution where the phylogenetic tree represents a species tree [START_REF] Nee | Birth-death models in macroevolution[END_REF][START_REF] F L Condamine | Macroevolutionary perspectives to environmental change[END_REF][START_REF] Pyron | Phylogenetic estimates of speciation and extinction rates for testing ecological and evolutionary hypotheses[END_REF]. It makes the simplification that speciation and extinction are instantaneous phenomena, whose frequency is governed by speciation (birth) and extinction (death) rates. In macroevolutionary studies, the BD is used to study the dynamics of species diversification across space [START_REF] D L Rabosky | An inverse latitudinal gradient in speciation rate for marine fishes[END_REF][START_REF] Rolland | Faster Speciation and Reduced Extinction in the Tropics Contribute to the Mammalian Latitudinal Diversity Gradient[END_REF], time [START_REF] Morlon | Reconciling molecular phylogenies with the fossil record[END_REF][START_REF] B T Kopperud | Rapidly changing speciation and extinction rates can be inferred in spite of nonidentifiability[END_REF], taxa [START_REF] Cornuault | Timing and number of colonizations but not diversification rates affect diversity patterns in hemosporidian lineages on a remote oceanic archipelago[END_REF], habitats [START_REF] Sorenson | The effect of habitat on modern shark diversification[END_REF][START_REF] Rabosky | Speciation rate and the diversity of fishes in freshwaters and the oceans[END_REF], etc... In contrast, the KC is generally used in population studies, where a phylogeny is taken to represent the genealogy of gene copies, borne by individuals in a population [START_REF] Nordborg | Coalescent Theory[END_REF][START_REF] Stephens | Inference Under the Coalescent[END_REF]. Its unique parameter is the instantaneous effective population size θ(t), which determines the rate of coalescence of any two gene copies. The KC has been most popular to study populations in part because of its robustness, as many population models converge to the KC in the limit of large population size [START_REF] Möhle | Robustness Results for the Coalescent[END_REF]. Its most popular application has been for demographic inference, in particular for estimating temporal variations of the effective population size [START_REF] Drummond | Bayesian Coalescent Inference of Past Population Dynamics from Molecular Sequences[END_REF][START_REF] Marchi | Demographic inference[END_REF].

Thus, as a rule, the two tree models are used in different contexts: the BD for clades of species and the KC for populations of individuals [START_REF] Macpherson | Unifying Phylogenetic Birth-Death Models in Epidemiology and Macroevolution[END_REF][START_REF] Cornuault | A road map for phylogenetic models of species trees[END_REF], but see 23 who applied the KC to a species tree). A notable exception to this schism is the phylogenetic study of epidemics, wherein the object of study is a population of infected hosts. Both the BD and the KC have been found suitable to model the phylogenetic relationships among pathogens borne by hosts [START_REF] Stadler | How well can the exponential-growth coalescent approximate constant-rate birth-death population dynamics[END_REF][START_REF] L A Featherstone | Epidemiological inference from pathogen genomes: A review of phylodynamic models and applications[END_REF]. On the one hand, it makes sense to assume that populations of pathogens too have an effective population size that governs the rate of coalescence of pathogens' gene copies, justifying the use of the KC [START_REF] O G Pybus | The Epidemiology and Iatrogenic Transmission of Hepatitis C Virus in Egypt: A Bayesian Coalescent Approach[END_REF][START_REF] Koelle | Rates of coalescence for common epidemiological models at equilibrium[END_REF][START_REF] Dearlove | Coalescent inference for infectious disease: metaanalysis of hepatitis C[END_REF]. On the other hand, the transmission of a pathogen to an uninfected host (aka the "birth" of a new infected host) and the death (or recovery) of an infected host are seemly modeled with birth and death rates, justifying the use of the BD [START_REF] Stadler | Estimating the basic reproductive number from viral sequence data[END_REF][START_REF] Stadler | Birth-death skyline plot reveals temporal changes of epidemic spread in HIV and hepatitis C virus (HCV)[END_REF][START_REF] Kühnert | Simultaneous reconstruction of evolutionary history and epidemiological dynamics from viral sequences with the birth-death SIR model[END_REF].

Given that the BD and the KC are both used in an epidemiological context, it makes sense to ponder why two models with such different mathematical foundations can be applied to the same object of study. The KC models the coalescence of the branches in the phylogeny of a sample from present to past. It is parametrized with a single function θ(t), and the coalescence of any two branches occurs at rate 1/θ(t). Importantly, the KC is the large-population limit of population models whereby the census population size N (t) is represented by a deterministic function of time [START_REF] Möhle | Robustness Results for the Coalescent[END_REF]. In con-trast, the BD unravels from past to present and considers that N (t) is random: N (t) is increased (decreased) by births (deaths) occurring randomly at per-capita rate λ(t) (µ(t)). A phylogenetic tree of the sample is obtained by pruning unsampled lineages off of the entire population tree [START_REF] Stadler | On incomplete sampling under birth-death models and connections to the sampling-based coalescent[END_REF]. The fact that population size is represented by a deterministic function in the KC and a random variable in the BD is certainly a serious obstacle to the identification of mathematical bridges between the two models.

Nonetheless, previous studies reported that, if the BD population size were known at some time t, any two branches in the tree should coalesce at that time at a rate given by 2λ(t)/N (t) [START_REF] Stadler | How well can the exponential-growth coalescent approximate constant-rate birth-death population dynamics[END_REF][START_REF] Volz | Complex Population Dynamics and the Coalescent Under Neutrality[END_REF][START_REF] Volz | Sampling through time and phylodynamic inference with coalescent and birth-death models[END_REF]. This suggests the following equivalence between the parameter of the KC and quantities of the BD:

θ(t) ≡ N (t) 2λ(t)
To remedy the inconsistency of having a deterministic left-hand side and a random right-hand side in this equivalence relation, a deterministic function may be substituted for N (t) to try and have the KC match the BD as closely as possible. For instance, one may evaluate whether a KC with θ(t) = E[N (t)|λ,µ] 2λ(t)

matches the corresponding BD (e.g. [START_REF] Stadler | How well can the exponential-growth coalescent approximate constant-rate birth-death population dynamics[END_REF]. The mere inspection of the formulae for the probability density of a tree under the two models indicates that the two models remain different, no matter what parametrization of θ(t) is chosen.

In the present paper, we build on this previous work and demonstrate a mathematical link between the BD and the KC. To do so we note that, if the BD population size were (approximately) known at all times (e.g. with y(t) a non-random function, N (t) ≈ y(t) is given), then the branches of a BD tree should coalesce indeed at a rate close to 2λ(t)/y(t) at time t. This is a hint that the BD must be conditioned on the population size following some trajectory for the KC to arise. We thus study a BD conditioned on its population size being close to some curve (hereafter a conditional BD, in opposition to an unconditional BD without a condition on population size), and show that the KC arises as the large-population limit of the conditional BD. Beyond this fundamentally mathematical result, we demonstrate how this finding can be applied in an epidemiological context to estimate parameters of interest such as a pathogen prevalence or reproduction number with the KC (seen as the limit of a conditional BD). Importantly, the advantages of the KC (agnostic to the sampling procedure) and of the BD (whose parameters can be transformed into epidemiologically meaningful quantities) are combined into this new modelling approach.

The paper is structured as follows. After outlining the BD model, we consider various limits of the (un)conditional BD. First, we study the limit of the unconditional BD with fixed λ(t) and µ(t) and with an initial number of individuals n going to infinity. We argue that the limit of this model is the trivial KC with θ(t) = ∞. Second, we consider the unconditional BD with fixed λ1(t) := λn(t)/n and r(t) = λn(t)-µn(t) and show that as n → ∞ the BD converges to something else than a KC. Third, we show that the conditional BD with fixed λ1(t) and r(t) converges as n → ∞ to a non-trivial KC, which constitutes the main result of this paper. After this mathematical section, we demonstrate how our results can be applied to the inference of epidemiological parameters from a phylogenetic tree.

Outline of the birth-death parameters and random outcomes

The variable t denotes the time before present. We consider a BD process starting at time T with n individuals. Each individual gives birth at rate λ(t) and dies at rate µ(t). The growth rate is r(t) = λ(t) -µ(t). We denote by N (t) the integer random population size at time t, and by N := N (t) t the value of N (t) at all times. Initially, N (T ) = n. We call N the population process. We call a realization of the population process a population trajectory. At the present, Z(0) individuals are sampled randomly, each with probability ρ (Bernoulli sampling), and Z(t) denotes the random number of ancestors of the sampled individuals at time t. We denote Z := Z(t) t the value of Z(t) at all times and call Z the sample process. A valid realization z = z(t) t of Z is a decreasing integer-valued function of time with unit decrements. A value z induces a set α(z) of coalescent times, which are the time points at which z decreases.

Our purpose is to study the limiting distributions as n → ∞ of some random outcomes of the BD process, namely the relative population size N/n and the sample process Z, and in particular to determine in which case Z converges to a KC.

Various limits of the BD process

The unconditional BD with fixed λ(t) and µ(t) as n → ∞

The most obvious large-population limit of the BD is to keep λ(t) and µ(t) fixed and have n → ∞. We study here the limits of N (t)/n and Z and argue that, if Z does converge to a KC, it converges to the trivial KC with θ(t) = ∞. The BD process considered here is called unconditional, as no condition on N is assumed.

Limit of the relative population size N (t)/n

The first result is that, as shown in Lemma C.5 in the Appendix, N (t)/n converges in probability to E[N (t)|N (T ) = n]/n = exp T t r(s)ds as n → ∞, uniformly on [0, T ] (see Figure 1 for an illustration), that is inf

t∈[0,T ] P N (t) n - E[N (t)|N (T ) = n] n < N (T ) = n ----→ n→∞ 1
This immediately implies that N (t)/E[N (t)|N (T ) = n] converges in probability to 1 as n → ∞. Hence, N (t)/n becomes deterministic in the limit of large population size. 

Limit of the sample process Z

We now turn to the distribution of Z given Z(0) = z0 (because the KC is expressed conditionally on the sample size, the BD must also be conditioned on the sample size if the two models are to be matched). In Section J.1 of the Appendix, we provide a heuristic suggesting that the pairwise coalescent rate under the BD is given by (see also [START_REF] Stadler | How well can the exponential-growth coalescent approximate constant-rate birth-death population dynamics[END_REF][START_REF] Volz | Complex Population Dynamics and the Coalescent Under Neutrality[END_REF][START_REF] Volz | Sampling through time and phylodynamic inference with coalescent and birth-death models[END_REF] ωBD N (t), t = 2λ(t)

N (t)
This rate is random, since N (t) is random under the BD.

Given that N (t)/E[N (t)|N (T ) = n]

p ----→ n→∞ 1, if the BD converges to a KC, it must be to the KC with parameter θ(t

) = E[N (t)|N (T ) = n]/ 2λ(t) , whose pairwise coalescent rate is ωKC (t) = 1 θ(t) = 2λ(t) E[N (t)|N (T ) = n] and is deterministic.
Indeed we have that the ratio of the two models' coalescent rates converges to 1 in probability:

ωKC (t) ωBD N (t) = N (t) E[N (t)|N (T ) = n] p ----→ n→∞ 1 (1)
It is however important to note that the matching KC has a null coalescent rate in the limit n → ∞, since

ωKC (t) = 2λ(t) E[N (t)|N (T ) = n] = 2λ(t) n exp T t r(s)ds ----→ n→∞ 0
As shown in Figure 2, this limit is not useful, as the limiting process is the process whereby the outcome ∀t ∈ [0, T ] Z(t) = z0 has probability 1. . We see that, as n increases, although the two distributions get more similar, coalescences are ever rarer, and they would not happen at all in the limit n → ∞.

Summary

There are good arguments to reckon that the pairwise coalescent rate of the BD is given by 2λ(t)/N (t) at time t (see Section J.1 of the Appendix and [START_REF] Stadler | How well can the exponential-growth coalescent approximate constant-rate birth-death population dynamics[END_REF][START_REF] Volz | Complex Population Dynamics and the Coalescent Under Neutrality[END_REF][START_REF] Volz | Sampling through time and phylodynamic inference with coalescent and birth-death models[END_REF]. Then the obvious problem for matching the BD with a KC is that this rate is random under the BD (since N (t) is random). Yet, the convergence in probability of

N (t)/E[N (t)|N (T ) = n] to 1 as n → ∞ could imply that the BD converges to a KC with coalescent rate 2λ(t)/E[N (t)|N (T ) = n] as n → ∞.
Unfortunately, this limiting process is uninteresting since it has a null coalescent rate.

The unconditional BD with fixed λ 1 (t) and r(t) as n → ∞

We now study the BD parametrized with ρ1, λ1(t) and r(t) such that

λ(t) = λn(t) = λ1(t)n µ(t) = µn(t) = λn(t) -r(t) ρ = ρn = ρ1/n
with ρ1 ∈ (0, 1], and with on [0, T ]: (i) λ1(t) > 0, (ii) λ1(t) and r(t) uniformly continuous and (iii) λ1(t) ≥ r(t). We consider this parametrization because the BD coalescent rate, as we shall see below, does not vanish as n → ∞, yielding non-trivial limiting processes.

We show that N/n remains random as n → ∞, and that Z converges in distribution to a random process Ż which is not a KC. In other words, N (t)/n does not converge in probability to its mean but remains random instead (see Figure 3 for an illustration). We notice that under the current parametrization, the BD coalescent rate does not vanish as n → ∞. Indeed, we have

Limit of the relative population size

N (t)/n Lemma D.1 shows that ∀n ∈ N>0 E N (t) n N (T ) = n = exp T t r ( 
2λ(t) N (t) = 2λ1(t) N (t)/n
and N (t)/n is stochastically bounded, since (using Bishop [START_REF] Bishop | Asymptotic methods[END_REF]'s Theorem 14.4-1 and the Op(•) notation defined therein):

N (t) n = E[N (t)/n|N (T ) = n] + Op Var[N (t)/n|N (T ) = n] 1 2 = exp T t r(s)ds + Op Var[N (t)/n|N (T ) = n] 1 2
with Var[N (t)/n|N (T ) = n] bounded since it reaches a limit.

Also, the BD coalescent rate remains random as n → ∞, since Var[N (t)/n|N (T ) = n] does not vanish. This suggests that the KC, which has a deterministic coalescent rate, will not be recovered as the limit of Z, as shown in the next section.

Limit of the sample process Z

Lemma D.3 shows that Z converges in distribution to a random process Ż with density

f Ż (z) := lim n→∞ fZ (z) = z(0) -1 ! z(T ) -1 !z(T )! ρ1D(0, T ) 1 + ρ1B1(0, T ) 2 z(T ) × exp -ρ1D(0, T ) 1 + ρ1B1(0, T ) t∈α(z) λ1(t)ρ1D(0, t) (1 + ρ1B1(0, t)) 2 (2) 
with z = z(t) t a valid trajectory of the sample process (i.e. a decreasing integervalued function with unit decrements), α(z) the set of coalescent times induced by z and with D(t1, t2) := exp

t 2 t 1 r(s)ds B1(t1, t2) := t 2 t 1 λ1(s)D(s, t2)ds
Furthermore, Lemma D.4 in the Appendix shows that this implies that Z|Z(0) = z0 converges to a random process Ż| Ż(0) = z0 with density function

f Ż (z| Ż(0) = z0) ∝ f Ż (z) (3) 
Figure 4 shows the distribution of Z given Z(0) = z0 for different values of n. . We see that, as n increases, the two distributions do not get more similar, illustrating that the limiting BD distribution of Z is not a KC.

Importantly, the limiting density of Z conditioned on Z(0) = z0 (Eq. 3), is different from the KC density, which is of the form

f KC Z (z) = exp T t z(0)-z(T ) z(T ) 2 θ(s)ds z(0)-z(T ) i=1 z(0)-i+1 2 θ(ti) exp t i t i-1 z(0)-i+1 2 θ(s)ds (4) 
with t0 := 0 and with ∀i ∈ {1, ..., z(0) -z(T )}, ti ∈ α(z), ti > ti-1. Indeed, it can be verified that there does not exist a parametrization of θ(t) in terms of ρ1, λ1(t) and r(t) such that Eq. ( 4) reduces into Eq. (3).

Summary

The parametrization considered here is interesting because the BD coalescent rate does not vanish as n → ∞, contrarily to the limit with fixed λ(t) and µ(t) considered in the previous section. However, the BD coalescent rate remains random in the limit, which logically implies that the limiting sample process is not a KC.

The conditional BD with fixed λ 1 (t) and r(t) as n → ∞

We now consider the same limit as in the previous section, with fixed λ1(t) and r(t) (ρ will be irrelevant here), but we condition N on belonging to some set Ωn of population trajectories such that N (t)/n converges in probability to some deterministic function u(t) as n → ∞. In this case, the BD coalescent rate is given by 2λ(t)

N (t) = 2λ1(t)n N (t) = 2λ1(t) N (t)/n p ----→ n→∞ 2λ1(t) u(t) > 0,
becomes deterministic and does not vanish as n → ∞. As we show below, this means that the limiting sample process of the BD is a non-trivial KC.

For Ωn we chose the set of population trajectories defined as follows. Given u(t) any function of time such that, on [0, T ]: (i) u(t) is continuous (ii) u (t) exists and is bounded, (iii) u(t) > 0 and (iv) u(T ) = 1, we define

y(t) = yn(t) := u(t)n
We further introduce g1 : T g 1 ∈ N>0, define g := g 1 n , and define the set Ωn such that N ∈ Ωn if and only if

∀t ∈ {0, g, 2g, ..., T } N (t) = y(t) (5) 
We call the conditional BD the BD process conditioned on N ∈ Ωn. This condition means that N (t) is constrained to be equal to y(t) every g units of time, with g ∝ 1 n (see Figure 5). Notice that all the trajectories in Ωn that are not valid BD trajectories (BD trajectories are step functions with unit increments/decrements) have probability 0. In this example λ 1 (t) = 0.1, r(t) 0.069, g 1 = 10, T = 10 and u(t) is illustrated in Figure 6.

Limit of the relative population size N (t)/n

We show in Theorem G.3 in the Appendix that the condition N ∈ Ωn implies that the relative population size N (t)/n converges in probability to u(t) as n → ∞, uniformly on [0, T ] (see Figure 6), that is, for any > 0 inf 

t∈[0,T ] P N (t) n -u(t) < N ∈ Ωn ----→ n→∞ 1

Limit of the sample process Z

The main result of this study is given in Theorem F.1 (see also Section B of the Appendix for an overview of the proof) and shows that the sample process Z, conditional on N ∈ Ωn and on Z(0) = z0, converges (in terms of finite-dimensional distributions) to the KC with a sample size z0 and with parameter

θ(t) = u(t) 2λ1(t) (6) 
See Figure 7 for an example. Importantly, θ(t) is finite, and since the coalescent rate of the limiting process depends on u(t) and λ1(t), non-trivial limiting processes, which may or may not coalesce by time T , can be studied.

We acknowledge that the conditional BD process considered here, if observed every g units of time (i.e. for t ∈ {0, g, 2g, . . . , T }), is in effect a (time-inhomogeneous) Cannings process. It is therefore expected that the limiting process be the KC, given the previous literature which shows that Cannings processes converge to the KC in the limit of large population size (e.g. [START_REF] Kingman | On the genealogy of large populations[END_REF][START_REF] Möhle | Robustness Results for the Coalescent[END_REF]. However, the demonstration that the parameter of the limiting KC is given by the formula in Eq. ( 6) is far from trivial (see the proofs in the Appendix), and to our knowledge original.

We further acknowledge that our proof is specific to our choice of definition of Ωn, although we conjecture that our result would hold for Ωn defined as any set of population trajectories such that

N (t) n |N ∈ Ωn p ----→ n→∞ u(t).

Summary

We observe that two ingredients are necessary for the BD to converge to a KC. First, one must condition the population process in such a way that the relative population size N (t)/n converges in probability to a deterministic function u(t) as n → ∞. This ensures that, in the limit, the BD coalescent rate becomes deterministic, like for the KC. Second, the birth rate must be proportional to n (actually our theorems could probably be generalized to the case where λn(t)/n reaches a positive limit). This ensures that the BD coalescent rate does not vanish as n → ∞, as the numerator and the denominator of the BD coalescent rate remain of the same order.

In the next section we show how considering a KC with θ(t) = u(t)/ 2λ1(t) as the large-population limit of a BD conditioned in such a way that

N (t)/n p ----→ n→∞ u(t)
provides new avenues for phylogenetic inference with the KC.

Application to the phylogenetic study of epidemics

The present section aims to serve as a proof of concept for the practical usefulness of our main result (Theorem F.1 and Eq. 6) for the statistical inference of evolutionary parameters from an observation z = z(t) t of the sample process. We focus on the epidemiological context and consider using z as data to estimate a pathogen prevalence (i.e. its population size N (t)) and effective reproduction number Re(t).

After reviewing briefly the methods most commonly used in phylogenetic epidemiology, we present a new method ensuing from the main result of this paper. We argue that this new method is robust with regard to the sampling procedure and the data-generating model. We illustrate this robustness by showing examples where the new method is accurate while some of the traditional methods fail.

Classical methods in phylogenetic epidemiology

As explained in the introduction, both the BD and the KC are used for the phylogenetic study of epidemics. Because pathogen samples are collected at various points in time, the BD has been extended to model the sampling procedure. This has given rise to the "birth-death sampling" (BDS) model [START_REF] Stadler | Estimating the basic reproductive number from viral sequence data[END_REF][START_REF] Stadler | Birth-death skyline plot reveals temporal changes of epidemic spread in HIV and hepatitis C virus (HCV)[END_REF], whereby each individual pathogen is sampled at rate ψ(t). There are two main appeals of the BDS: (i) the parameters of the BDS are readily converted into meaningful epidemiological parameters such as the prevalence or the effective reproduction number [START_REF] Stadler | Estimating the basic reproductive number from viral sequence data[END_REF][START_REF] Stadler | Birth-death skyline plot reveals temporal changes of epidemic spread in HIV and hepatitis C virus (HCV)[END_REF], and (ii) if the chosen parametrization for the function ψ(t) fits well the observed sampling times, the BDS leverages the information of the sampling times to gain precision [START_REF] Volz | Sampling through time and phylodynamic inference with coalescent and birth-death models[END_REF]. On the other hand, the main drawback of the BDS is its lack of robustness to the misspecification of ψ(t) (see 34 and our example below). In contrast to the BD, the KC conditions on sampling times, and should therefore be robust with regard to the sampling procedure.

Uses of the KC in epidemiology can be classified into two main approaches. First, the "skyline" approach sets θ(t) = f (t), with f (t) a piecewise function (e.g. [START_REF] V F Carrington | Invasion and Maintenance of Dengue Virus Type 2 and Type 4 in the Americas[END_REF][START_REF] Rambaut | The genomic and epidemiological dynamics of human influenza A virus[END_REF][START_REF] Aldunate | Evidence of increasing diversification of Zika virus strains isolated in the American continent[END_REF]. Such KC models can fit the data well, provided f (t) has enough free parameters. However, the estimate of θ is hardly interpretable, since f is a phenomenological representation of θ. Importantly, θ is not, in general, proportional to the census population size N (25). In the case of the BD, for instance, θ(t) N (t)/(2λ(t)), so that proportionality holds only under the assumption that the birth rate is constant through time, which is violated by most epidemiological models (e.g. 39). Thus, with this approach, little can be inferred about demographic or epidemiological parameters (although θ does reflect the genetic diversity and the potential for adaptation, 40). The second category of KC models falls into the "mechanistic" approach, which sets θ(t) ∝ f (t), with f (t) the population size expected under some deterministic epidemiological model (e.g. [START_REF] Dearlove | Coalescent inference for infectious disease: metaanalysis of hepatitis C[END_REF][START_REF] V F Carrington | Invasion and Maintenance of Dengue Virus Type 2 and Type 4 in the Americas[END_REF][START_REF] O G Pybus | The epidemic behavior of the hepatitis C virus[END_REF][START_REF] Fraser | Pandemic potential of a strain of influenza A (H1N1): Early findings[END_REF]. For instance, Pybus et al. [START_REF] O G Pybus | The epidemic behavior of the hepatitis C virus[END_REF] studied the Hepatitis C virus using the KC, setting f (t) to the number of infections predicted by a deterministic SIS model. Contrarily to the skyline approach, and similarly to the BDS approach, the mechanistic approach has the advantage that epidemiological parameters are readily obtained. However, as we show below, it is not robust to the misspecification of the data-generating model (e.g. the estimates obtained assuming an SIR model are inaccurate if the true model was more like an SIS model). Furthermore, the same problem as for the skyline approach remains: θ is not, in general, proportional to N , so that the prevalence may not be inferred. Finally, the KC has been criticized for its assuming that the population size is deterministic (e.g. [START_REF] Stadler | How well can the exponential-growth coalescent approximate constant-rate birth-death population dynamics[END_REF][START_REF] Boskova | Inference of Epidemiological Dynamics Based on Simulated Phylogenies Using Birth-Death and Coalescent Models[END_REF], spawning extensions of the KC to accommodate a random population size (e.g. [START_REF] Rasmussen | Inference for Nonlinear Epidemiological Models Using Genealogies and Time Series[END_REF][START_REF] D A Rasmussen | Phylodynamic Inference for Structured Epidemiological Models[END_REF]. Given our results, we would instead argue that the KC does not assume that population size is deterministic: it conditions on a given population trajectory (i.e. on one realization of an otherwise random population process) in order to estimate it. In line with this, the KC is known to be the limit of Cannings models, which are Galton-Watson processes (with a random population size) conditioned on a population trajectory [START_REF] Lambert | Population dynamics and random genealogies[END_REF].

Our new method

We propose a new method for epidemiological phylogenetics, ensuing from our main result (Theorem F.1 and Eq. 6) in that it consists of a KC seen as the large-population limit of a conditional BD. Its purpose is to gain insight into the historical progress of an epidemic from an observation of the sample process. We argue that our method combines the three following advantages: (i) it is robust with regard to the datagenerating process (i.e. whether the epidemic unfolded as predicted by an SIS, SIR, SIRV, etc... model), (ii) important epidemiological parameters can be estimated, in particular the prevalence, effective reproduction number, transmission rate and duration of infections, and (iii) it is robust with regard to the sampling procedure (i.e. whether samples are collected homogeneously through time, punctually, erratically...).

Before presenting our new method, we here define a class of models, called BD-type models, because we will argue that our method performs well for all the models of this class. We define a BD-type model as a model whose population process is such that, in any sufficiently small interval of time, every individual of the population can give birth to at most one new individual or can be removed from the population. Moreover, individuals are exchangeable at all times. This body of models notably encompasses the BD model with deterministic per-capita rates which we studied in this paper, and also the stochastic versions of many compartmental models used in epidemiology, which are BD models with random per-capita rates (e.g. in the SIR model, the percapita birth rate of infectious individuals is proportional to the random number of susceptible individuals).

Finally, we will now define Ñ (t), λ(t) and μ(t), which are phenomenological functions representing respectively the realized population trajectory, and what we call the realized birth and death rates, and which our method will aim at inferring. For any BD-type model, the population size is given by N (t) = N (0) -B(t) + D(t), where B(t) and D(t) are the random cumulative number of births and deaths, respectively, between the present and time t. To any population at study correspond fixed realizations N = ν, B = β and D = δ of these random processes, which we would like to estimate. To do so, we represent β and δ with differentiable functions B and D and logically we represent ν with a function Ñ = Ñ (0) -B + D. We define the realized birth and death rates as λ := B / Ñ and μ := D / Ñ . Understandably λ(t) represents the per-capita birth rate in action at time t, given that the number of births that occurred by time t is β(t) ≈ B(t) = t 0 λ(s) Ñ (s)ds, and similarly for deaths and μ(t). We call these rates "realized", because they describe the accumulation of births and deaths in a realization of the population process.

Our method consists of a KC parametrized with

θ(t) = Ñ (t) 2 λ(t) = Ñ (0) exp t 0 μ(s) -λ(s) ds 2 λ(t) ,
that is parametrized in terms of important epidemiological parameters: Ñ (the realized population trajectory, or prevalence), λ (the realized transmission rate), μ (the realized inverse of the average duration of infections), and also Re = λ/μ (the realized effective reproduction number) can be deduced. We will now explain how this parametrization of θ arises and why we think it should be robust.

Robustness with regard to the data-generating model. We have shown in this paper that, for the BD with deterministic rates, after conditioning the population process in such a way that N (t)/n p -→ u(t) as n → ∞, the sample process Z converges to a KC with θ(t) = u(t) 2λ 1 (t) . Given that λ1(t) = λ(t)/n and that N (t)/n p -→ u(t), we have that t) . This can be phrased informally as follows. For some function u(t), for sufficiently large n, we should have that a KC with θ

N (t) 2λ(t) = N (t)/n 2λ(t)/n p -→ u(t) 2λ 1 (
(t) = N (t) 2λ(t)
is a good approximation to the BD distribution of Z, conditioned on N (t)/n ≈ u(t). Hence, our proposed method is a KC parametrized with θ(t) = N (t) 2λ(t) . While our result is specific to the BD with deterministic rates, we argue heuristically in Appendix J.1 that our method should perform well for all BD-type models. Very briefly, for all BD-type models, given realizations ν and β of N and B, the probability that a pair of individuals do not coalesce in [0, t] is given by (see notably 46)

P (t) = β(t) i=1 1 - 1 ν(t i ) 2
where ti is the time of the i-th birth from present to past. In Appendix J.1, we suggest that, provided that ν is sufficiently large in [0, t], the following approximation should hold:

P (t) ≈ exp - t 0 2 λ(s) Ñ (s) ds
The latter expression is equal to the probability of a pair of individuals not coalescing in [0, t] under a KC with θ = Ñ/(2 λ) and, importantly, it should hold for all the BD-type models, given that our heuristic did not use any more assumptions than the absence of multiple births, the exchangeability of individuals, and large population size (see Appendix J.1).

Important epidemiological parameters can be inferred. Without further considerations, fitting a KC with θ = Ñ/(2 λ), for some parametrizations of the curves Ñ and λ, would not allow to estimate interesting parameters. Obviously, the scales of the two curves cannot be separately identified, and μ and Re cannot be derived.

To remedy this, we notice that, given the above definitions of λ and μ, then Ñ = Ñ (0) -B + D implies that (see Appendix J.2)

Ñ (t) = Ñ (0) exp t 0 μ(s) -λ(s) ds
This makes μ appear as a parameter, and consequently Re = λ/μ too. We thus have θ parametrized in terms of all the parameters that we wish to estimate. Still, these parameters cannot be identified, since an infinite number of combinations of λ, μ and Ñ (0) can yield the same θ, and hence the same likelihood. Actually, letting a triple λ, μ, Ñ (0) define a "model", and calling an equivalence class of models a set of models yielding the same θ, we show in Appendix J.3 that the equivalence classes for our method are the same as the equivalence classes defined in Louca and Pennell [START_REF] Louca | Extant timetrees are consistent with a myriad of diversification histories[END_REF] for the Bernoulli-sampled BD model. Therefore, our method cannot be used without the use of auxiliary data to inform at least one of the curves λ, μ or Ñ . This must be kept in mind as an important subject of study in the future, but identifiability shall not be our primary concern here. Our purpose is only to show that, provided that an external estimate of λ, μ or Ñ can be obtained, the other parameters can be inferred.

In the remaining of this section, we will thus assume that μ is fixed to a value inferred by other means than phylogenetics, and the phylogenetic analysis then comes to bring additional information about the epidemic. Appendix I gives more detail about this, and explains the chosen parametrization for the remaining free curve λ.

Robustness with regard to the sampling procedure. Because the KC conditions on sampling times, it does not need to assume a particular sampling procedure. This contrasts with the BDS approach, which is sensitive to the misspecification of the sampling procedure.

Comparison of our new method with classical methods

In sum, in the previous section, we argued that our method of using a KC parametrized with

θ(t) = Ñ (t) 2 λ(t) = Ñ (0) exp t 0 μ(s) -λ(s) ds 2 λ(t)
provides estimators of important epidemiological quantities such as the prevalence Ñ , or the effective reproduction number Re, in a way that is robust with regard to the data-generating process and the sampling procedure. To properly test our claims, a dedicated simulation study will be warranted. Here, we merely want to illustrate our words with a few worked examples. We disclose that we have actively searched for examples of failures of the methods other than ours, and we do not claim that these methods fail in general. We assert that in the process of looking for examples, we have not come across a case where our method was inaccurate.

We present the results of three pairs of analyses. For each pair, the same simulated datasets are analysed with (i) our method and (ii) one of the classical methods (i.e. the skyline KC, the mechanistic KC, and the BDS approaches described above). For each pair of analyses, we simulated a single population trajectory, and then simulated 100 realizations of the sample process, conditional on the simulated population trajectory.

Each dataset was analyzed with the two methods being compared (i.e. parameter estimates were obtained by maximum likelihood). All the details of the simulations and inferences are given in Appendices H and I.

For the first comparison, we simulated the population trajectory using an SIS model whose parameters have been chosen so that the predicted curve for θ is not proportional to N , because of important temporal variations of the birth rate. Indeed, with an SIS model, the per-capita birth rate is proportional to the number of susceptibles, which decreases during the course of the epidemic. As a result, the predicted curve for θ is shifted in time with respect to N . In this case, the estimate of θ obtained with the skyline KC method should not be an accurate estimate of the relative population trajectory. Figure 8 shows that our method is accurate for estimating both N and Re (in the sense that the range of estimated curves overall covers the true curves).

In comparison, the skyline KC method provides an accurate estimate of θ, which is however not an accurate estimate of the relative population trajectory. In general, θ cannot be conflated with the relative population size. For instance, lockdown measures immediately decrease the transmission rate (i.e. the realized birth rate), but the resulting decrease in prevalence is delayed. Probably the skyline KC method would reveal the immediate decrease of θ, but would be unable to measure the delay of the effect of the lockdown on prevalence. Finally, the skyline KC method has the drawback that it does not provide an estimate of Re. The precision is lower towards the present with both methods, due to less frequent coalescences in the recent past in the datasets analyzed. The death rate curve was fixed to a pre-estimated value for inference with our method.

For the second comparison, the population trajectory was again simulated with an SIS model. Population trajectories typical of the SIS model reach a plateau when new infections and recoveries balance out. In contrast, typical curves of the SIR model reach a peak and then decrease. Importantly, there is no parametrization of an SIR model that predicts population trajectories with a plateau. Therefore, we expect that an SIR-based mechanistic KC approach, which assumes that θ is proportional to a deterministic SIR population trajectory, performs inaccurately. Figure 8 shows that the estimates obtained with our method are again accurate. The estimates of N follow closely the true curve, which reaches a plateau towards the present (Fig. 8b).

The plateau further shows in the estimates of Re, which decrease to about 1 near the present (Fig. 8d). For the SIR mechanistic approach, we fixed the proportionality constant between N and θ to 1, as we found that this constant, the time of origin of the process, and the size of the whole population (i.e. the combined number of susceptible, infectious and recovered individuals) were not separately identifiable. Therefore, we assessed whether the estimates for θ reflect the relative population trajectory. We see that the estimated θ curves show a clear peak around time 3 (Figure 8a). This further shows in the estimates for Re, which tell with confidence that Re goes below 1 around time 3 (Figure 8d). Based on this result, an investigator would conclude that the epidemic is presently recessing, which is incorrect. Of course, in practice, an investigator would carry out model selection if they do not know that their study system approximately obeys a particular model. But delineating a good set of candidate models may not be an easy task, in particular if exogenous factors induce temporal variations of the epidemiological parameters. In contrast, since our approach is valid for a large set of models, it does not require model selection. For the third comparison, we used the same simulated population trajectory as for the second comparison. However, instead of drawing sampling times based on a constant sampling rate, we drew a fixed number of samples at three fixed times: 71 samples at time 0.1, 66 samples at time 0.5, and 26 samples at time 1. This sampling procedure mimics punctual sampling campaigns carried out for other purposes than phylogenetics. Such a distribution of sampling times is at odds with the expectations of a constant-rate-based sampling procedure. As a consequence, we expect the BDS method to fail if it assumes a constant sampling rate. Figure 10 shows that our method still performs accurately, for estimating both N and Re. The precision decreases rapidly looking into the past, as the sampling procedure used in this example yielded coalescent times concentrated in the recent past. In contrast, the BDS parametrized with a constant sampling rate (ψ(t) = ψ) performs very inaccurately, inferring an exponential growth that accelerates dramatically in the recent past, a scenario which is totally different from the truth. We put this failure down to the erroneous specification of the sampling procedure in the BDS, as the same analyses with the data of Figure 9 (wherein sampling times were drawn based on a constant rate) work very well (see Appendix K). We acknowledge that a thorough investigator would not analyze data sampled from three points in time with a model assuming a constant sampling rate, but this example highlights the fact that the misspecification of the sampling procedure when using the BDS can have dramatic effects on the results. In contrast, our method, being based on the KC, conditions on the sampling times and does not assume a sampling procedure.

Figure 10: Comparison of the BDS approach with our new method. The population trajectory was simulated under an SIS model. The sampling procedure assumed that fixed numbers of samples were taken at three fixed points in time. This figure reads as Figure 9, except that a) here shows the estimates of the population trajectory rather than estimates of θ, since θ is not a parameter of the BDS model. Appendix I explains how an estimate for the population trajectory is obtained from estimates of λ, µ and ψ under the BDS. The death rate curve was fixed to the same pre-estimated value for both methods (see Appendix I).

Conclusion

This paper outlines a mathematical bridge between the BD and the KC by showing that the KC is the large-population limit of a BD conditioned on a given population trajectory. Earlier studies have searched to link the BD and the KC, and have found the same formula as us for the BD coalescent rate [START_REF] Stadler | How well can the exponential-growth coalescent approximate constant-rate birth-death population dynamics[END_REF][START_REF] Volz | Complex Population Dynamics and the Coalescent Under Neutrality[END_REF][START_REF] Volz | Sampling through time and phylodynamic inference with coalescent and birth-death models[END_REF][START_REF] Volz | Viral Phylodynamics[END_REF]. However, the present study is the first, to our knowledge, to formally demonstrate this formula and to show that, besides the assumption of a large population size, it is required that the BD be conditioned on a population trajectory to obtain a KC. This is a reminder that the KC does not assume that the population size is deterministic: it conditions on a given population trajectory. We further demonstrate how the mathematical relationship between the two models may be leveraged to improve phylogenetic inference with the KC, in particular in the context of pathogen phylodynamics: we present a new method which may be able to estimate accurately important epidemiological parameters. Like its BD pendant (the BDS model), this new method requires external information to identify the parameters, and is intended to be used in conjunction with auxiliary epidemiological data. In principle, this new method should be robust with regard to the data-generating model and the sampling procedure. Simulation studies dedicated to testing these claims will be warranted.

C > 0 and a number X such that ∀x ∈ (0, X] (resp. ∀x ≥ X)

sup y |h(x, y)| ≤ Cf (x)
• h(x, y) = Oy(f (x)) as x → 0 (resp. x → ∞) means that, for fixed y, there exist a constant Cy > 0 and a number Xy such that ∀x ∈ (0, Xy] (resp. ∀x ≥ Xy)

|h(x, y)| ≤ Cyf (x) • h(x, y) = o(f (x)) as x → 0 (resp.
x → ∞) means that for any choice of C > 0, there exists a number X such that ∀x ∈ (0, X] (resp. ∀x ≥ X)

sup y |h(x, y)| ≤ Cf (x)
• h(x, y) = oy(f (x)) as x → 0 (resp. x → ∞) means that, for fixed y, for any choice of C > 0, there exists a number Xy such that ∀x ∈ (0, Xy] (resp.

∀x ≥ Xy) |h(x, y)| ≤ Cf (x)
Importantly, all the variables on which a function O(f (x)) or o(f (x)) depends (besides x) are listed as indices, so that the absence from the list of indices of any one variable means that the function does not depend on the variable. NB: the index p is reserved for the notation Op(•)/op(•), which means order in probability.

The BD process

Time (t) runs backwards, from present to past, with t = 0 the present.

A BD process starts at time T and is parametrized with a birth rate λ(t), a growth rate r(t) ≤ λ(t) and an initial number of individuals n. The death rate is given by µ(t) = λ(t) -r(t).

The BD process unravels in continuous time and is defined by the probability distribution of the number ζt of offspring at time t -dt of one individual at time t:

P(ζt = 0) = µ(t)dt + o(dt) P(ζt = 1) = 1 -λ(t) + µ(t) dt + o(dt) P(ζt = 2) = λ(t)dt + o(dt) P(ζt = r) = o(dt) (r > 2)
as dt → 0.

The offspring distribution is the same for all individuals: the individuals are exchangeable.

Finally, at the present, a random number Z(0) of individuals are sampled. We will specify which sampling procedure is assumed where relevant.

Random outcomes

Counting individuals induces the random population process

N := (N (t)) t∈[0,T ] ,
where N (t) is the number of individuals (the population size) at time t. The initial state is N (T ) = n.

Labelling We denote Z(t) the number of ancestors at time t of the Z(0) sampled individuals. Z(t) is the number of edges in Ψ at time t, as well as the number of equivalence classes in R(t). We call the curve Z := (Z(t)) t∈[0,T ] the sample process.

We denote α(Z) the set of coalescent times induced by Z, that is the times when Z(t) decreases (when two ancestors coalesce into one). We further denote ᾱ(Γi) the node ages of Γi. Then, given a realisation z := (z(t)) t∈[0,T ] of the sample process, there exist not one, but a set Sn(z) of forests that induce z. Specifically, a given forest ψ = (γi)i=1,...,n belongs to Sn(z) if and only if ∪i=1,...,n ᾱ(γi) = α(z) (i.e. Sn(z) is the set of forests with node ages matching the coalescent times of z). Similarly, a number of different realisations of the ancestral process induce the same value z, all of which have in common that R(0) = (i, i)|i ∈ {1, . . . , z(0)} and that transitions between different states occur at times α(z).

In this paper we are interested in the distribution of Z, but the above definitions of the other types of random outcomes (N , Ψ and R) will be needed to derive results about Z. Notably, our main focus is the distribution of Z under some condition about N . We will come across Ψ because the literature about the BD, especially in phylogenetics, often focuses on the distribution of Ψ (oftentimes with n = 1, in which case Ψ = Γ1 is a tree, e.g. [START_REF] Morlon | Reconciling molecular phylogenies with the fossil record[END_REF][START_REF] Louca | Extant timetrees are consistent with a myriad of diversification histories[END_REF][START_REF] Stadler | How can we improve accuracy of macroevolutionary rate estimates?[END_REF]). And we will come across R because many results about the Kingman coalescent concern the ancestral process (e.g. [START_REF] Kingman | On the genealogy of large populations[END_REF][START_REF] Möhle | Robustness Results for the Coalescent[END_REF]).

B Overview of the proof of the convergence of the conditional BD to the Kingman coalescent

The central result of this paper is that, for fixed λ1(t) := λ(t)/n and r(t), the sample process Z of the BD, conditioned on Z(0) = z0 and on N ∈ Ωn (with Ωn a set of population trajectories defined in such a way that N ∈ Ωn implies that N (t)/n → u(t) as n → ∞), converges to a Kingman coalescent with z0 samples and with parameter

θ(t) = u(t) 2λ1(t)
This result is formally enunciated in Theorem F.1 of Section F below, wherein sufficient conditions on λ1(t), r(t) and u(t) for Theorem F.1 to apply are provided.

Here, we only briefly explain the rationale leading to Theorem F.1. The following is not a mathematical proof, and is only intended to provide an intuition of how Theorem F.1 arises.

B.1 The conditional BD process is a Cannings model

The definition of Ωn is such that the condition N ∈ Ωn fixes the population size every g units of time, with g ∝ 1/n. Specifically, ∀t ∈ {0, g, 2g, . . . , T }, N (t) = y(t). Hence, the conditional BD process reduces into a discrete-time model with fixed population sizes. Furthermore, the individuals in a BD process are exchangeable. These are the characteristics of a (time-heterogeneous) Cannings model. Therefore, the conditional BD process, when observed at the discrete times t ∈ {0, g, 2g, . . . , T }, is a Cannings model. We can then use one of the existing theorems that show the convergence of Cannings models to the KC (hereafter a convergence theorem).

B.2 Convergence to the KC

We then have to verify that the conditional BD process verifies the conditions of application of a convergence theorem. The most important such condition concerns the probability cn(t) of coalescence of two individuals in [t-g, t], defined ∀t ∈ {g, 2g, . . . , T } as

cn(t) := P Z(t) = 1|Z(t -g) = 2, N (t) = y(t), N (t -g) = y(t -g)
The expression of this probability is given by Möhle [START_REF] Möhle | Robustness Results for the Coalescent[END_REF]:

cn(t) = y(t) y(t -g)(y(t -g) -1) × E νgt1(νgt1 -1)|N (t) = y(t), N (t -g) = y(t -g)
where νgt1 is the number of descendants at time t -g of an individual existing at time t.

The central condition for convergence theorems to apply is that cn(t)/g reach a limit as n → ∞. This limit is the coalescent rate of the limiting KC process, that is 1/θ(t).

For the conditional BD model, we find that

1 θ(t) = lim n→∞ cn(t)/g = 2λ1(t) u(t)
To obtain this limit, we showed that (Lemma E.6)

1 g • y(t) y(t -g)(y(t -g) -1) ----→ n→∞ 1 u(t)g1
which was easily done.

Then we showed that (Lemma E.7)

E νgt1(νgt1 -1)|N (t) = y(t), N (t -g) = y(t -g) ----→ n→∞ 2λ1(t)g1
which, to us, was much more involved and necessitated a long list of preliminary lemmas (in Sections C-E).

C General results concerning the birth-death

In this section we consider a BD process parametrized with λ(t), r(t) and n. A Bernoulli sampling procedure with probability ρ is assumed where relevant. It is not assumed that the parameters are scaled by n, as opposed to the scaled BD process considered in Section D, nor that the population process is conditioned, like in Section E. The goal of this section is to establish some notation and derive useful formulae for the following sections.

C.1 Number of (sampled) descendants of one individual

In this section we give the distribution of the number of sampled individuals Z(0) given N (T ) = 1, along with the distribution of the population size N (t1), given a population size N (t2) = 1 at an earlier time. The provided formulae are known (see [START_REF] Louca | Extant timetrees are consistent with a myriad of diversification histories[END_REF]), and our goal here is to translate them into our notation.

Lemma C.1. Assuming a Bernoulli sampling procedure with sampling probability ρ, the distribution of Z(0) given N (T ) = 1 is

P Z(0) = 0|N (T ) = 1 = 1 - ρD(0, T ) 1 + ρB(0, T ) P Z(0) = k|N (T ) = 1 = ρD(0, T ) 1 + ρB(0, T ) 2 ρB(0, T ) 1 + ρB(0, T ) k-1 k ≥ 1
Proof. This distribution is given by Louca and Pennel ((47), Eq. 65). After setting τ0 = T in Louca's and Pennel's expression, rearranging, and using the definitions of D and B given earlier, we obtain the formula of the present lemma. 

Lemma C.2. The distribution of N (t1) given N (t2) = 1, with t1, t2 ∈ [0, T ], t2 ≥ t1 is P N (t1) = 0|N (t2) = 1 = 1 - D(t1, t2) 1 + B(t1, t2) P N (t1) = k|N (t2) = 1 = D(t1, t2) 1 + B(t1, t2) 2 B(t1, t2) 1 + B(t1, t2) k-1 , k ≥ 1 Proof. If ρ = 1, then Z(0) = N ( 

C.2 Number of sampled descendants of several individuals

In this section we give the distribution of the number of sampled descendants Z(0) of N (T ) = n individuals (a generalization of Lemma C.1).

Lemma C.3. Assuming a Bernoulli sampling procedure with sampling probability ρ, we have

P(Z(0) = z0|N (T ) = n) =    Q n 0 , z0 = 0 z 0 z T =1 n z T Q n-z T 0 z 0 -1 z 0 -z T 1 -Q 1 1-Q 0 z 0 -z T Q z T 1 , z0 ≥ 1 with Q k ≡ Q ρ k (T ) := P(Z(0) = k|N (T ) = n).
Proof. For z0 = 0, trivially,

P(Z(0) = 0|N (T ) = n) = Q n 0
For z0 ≥ 1, denoting Li the number of sampled descendants of individual i existing at time T , we have

P(Z(0) = z0, Z(T ) = zT |N (T ) = n) = P(Z(T ) = zT |N (T ) = n) P(Z(0) = z0|Z(T ) = zT ) = n zT (1 -Q0) z T Q n-z T 0 P z T i=1 Li = z0|∀i Li ≥ 1 = n zT (1 -Q0) z T Q n-z T 0 P z T i=1 (Li -1) = z0 -zT |∀i Li -1 ≥ 0
Using Lemma C.1, and noticing that ∀i ∈ {1, . . . , zT } P(Li = li) = P(Z(0) = li|N (T ) = 1), we have ∀i ∈ {1, . . . , zT }

P(Li -1 = k|Li -1 ≥ 0) = P(Li = k + 1|Li ≥ 1) = P(Li = k + 1) 1 -P(Li = 0) = P(Z(0) = k + 1|N (T ) = 1) 1 -P(Z(0) = 0|N (T ) = 1) = Q1 1 -Q0 1 - Q1 1 -Q0 k+1-1 = Q1 1 -Q0 1 - Q1 1 -Q0 k
showing that Li-1|Li-1 ≥ 0 for i = 1, . . . , zT are iid. geometric random variables with parameter Q 1 1-Q 0 . Given that the sum of zT geometric variables with parameter Q 1 1-Q 0 is a negative-binomial random variable with parameters zT the number of successes and Q 1 1-Q 0 the probability of success, we have that

P z T i=1 (Li -1) = z0 -zT |∀i Li -1 ≥ 0 = z0 -zT + zT -1 z0 -zT 1 - Q1 1 -Q0 z 0 -z T Q1 1 -Q0 z T = z0 -1 z0 -zT 1 - Q1 1 -Q0 z 0 -z T Q1 1 -Q0 z T
It then follows that, for z0 ≥ 1,

P(Z(0) = z0|N (T ) = n) = z 0 z T =1 P(Z(0) = z0, Z(T ) = zT |N (T ) = n) = z 0 z T =1 n zT (1 -Q0) z T Q n-z T 0 z0 -1 z0 -zT 1 - Q1 1 -Q0 z 0 -z T Q1 1 -Q0 z T = z 0 z T =1 n zT Q n-z T 0 z0 -1 z0 -zT 1 - Q1 1 -Q0 z 0 -z T Q z T 1 C.3
Mean and variance of the population size N (t) Kendall (5) gave the formulae for the mean and variance of N (t) of a BD process in forward time. In this paper we always use backward time, and the purpose of this section is to translate Kendall's formulae from forward to backward time. Proof. We denote q the forward time, and t the backward time. We set the origin of q at backward time T , so that q = T -t and t = T -q. This yields dq = -dt.

Our functions λ(t) and r(t) take backward time as their argument. We define λ(q) := λ(T -q) and r(q) := r(T -q) their equivalent in forward time. We also have µ(t) = λ(t) -µ(t) and μ(q) = λ(q) -r(q) = µ(T -q). We denote

M (T, t) := E N (t)|N (T ) = 1 W (T, t) := Var N (t)|N (T ) = 1
and M (q) := M (T, T -q) and W (q) := W (T, T -q) their forward-time equivalents. The functions M (q) and W (q) are those given by Kendall [START_REF] Kendall | On the generalized " Birth-and-Death " process[END_REF], and our purpose is here to derive M (T, t) and W (T, t).

Below we will use τ as a specific value of backward time and thus save the symbol t for inside the integrals. This way it is clear that when there is dq inside the integral, we integrate over forward time, and when there is dt we integrate over backward time. When integrals are nested, we also use ds for backward time.

From Kendall ((5), Eq. 13), we have for τ ∈ [0, T ]:

M (T, τ ) = M (T -τ ) = exp T -τ 0 r(q)dq = exp T -τ 0 r(T -q)dq (7)
We proceed to a change of variable from q to t, giving

E N (τ )|N (T ) = 1 =: M (T, τ ) = exp τ T -r(t)dt = exp T τ r(t)dt (8) 
From Kendall ((5), Eq. 14c), we have

W (T, τ ) = W (T -τ ) = M (T -τ ) 2 T -τ 0 λ(q) + μ(q) M (q) dq = M (T, τ ) 2 T -τ 0 λ(T -q) + µ(T -q) M (T, T -q) dq (9) 
We proceed to a change of variable from q to t in the integral, giving 

Var N (τ )|N (T ) = 1 =: W (T, τ ) = M (T, τ ) 2 τ T - λ(t) + µ(t) M (T, t) dt = M (T, τ ) 2 T τ λ(t) + µ(t) M (T, t) dt = exp 2 T τ r(t)dt T τ 2λ(t) -r(t)
N (t) n N (T ) = n = E N (t) n N (T ) = n + Op Var N (t) n N (T ) = n 1 2
Using Lemma C. [START_REF] Stadler | Recovering speciation and extinction dynamics based on phylogenies[END_REF] we have We thus obtain

E N (t) n N (T ) = n = 1 n • E N (t)|N (T ) = n = exp T t r(s)ds and Var N (t) n N (T ) = n = 1 n 2 • Var N (t)|N (T ) = n = 1 n exp 2 T t r ( 
N (t) n N (T ) = n = exp T t r(s)ds + Op(1/ √ n) = exp T t r(s)ds + op(1)
which concludes the proof.

C.5 Unconditional distribution of the sample process Z

The following lemma provides the unconditional BD density fZ (z|N (T ) = n). This density has been established elsewhere (see [START_REF] Morlon | Reconciling molecular phylogenies with the fossil record[END_REF][START_REF] Louca | Extant timetrees are consistent with a myriad of diversification histories[END_REF]) for n = 1. Here, we establish the general formula for any n.

Lemma C.6. Assuming a Bernoulli sampling procedure with sampling probability ρ, the density of Z given

N (T ) = n is fZ z|N (T ) = n = z(0) -1 ! z(T ) -1 ! n z(T ) Q ρ 0 (T ) n-z(T ) Q ρ 1 (T ) z(T ) t∈α(z) λ(t)Q ρ 1 (t) with Q ρ k (t) := P Z(0) = k|N (t) = 1
and with α(z) the set of coalescent times induced by z.

Proof. We recall that a BD process starting at time T with n labelled individuals and where Z(0) individuals have been sampled induces a sample forest Ψ := (Γi)i=1,...,n, with Γi the ordered time tree comprising the ancestors of the sample descending from individual i existing at time T . Given that the n trees composing the sample forest are iid. under the Bernoulli-sampled BD, it follows that

fΨ(ψ) = n i=1 fΓ(γi)
with γi a given value of Γi and ψ = (γi)i=1,...,n a given value of Ψ.

Consider a realisation Z = z of the sample process and recall that Sn(z) is the set of sample forests with n trees that induce Z = z, i.e. all the sample forests with n trees, with z(0) leaves and with branching times α(z). We have

fZ z|N (T ) = n = ψ∈Sn(z) fΨ(ψ) = ψ∈Sn(z) n i=1 fΓ(γi)
Denote Li the number of leaves of Γi, denote Ξ0(Ψ) the set of initial individuals without sampled descendants (i.e. i ∈ Ξ0(Ψ) iff Li = 0), and Ξ>0(Ψ) the set of initial individuals with sampled descendants (i.e. i ∈ Ξ>0(Ψ) iff Li > 0). Notice that, for some realization z, and for some forest ψ ∈ Sn(z), Card Ξ0(ψ) = n -z(T ) and Card Ξ>0(ψ) = z(T ). We thus have

fZ z|N (T ) = n = ψ∈Sn(z) i∈Ξ 0 (ψ) fΓ(γi) × i∈Ξ >0 (ψ) fΓ(γi) = ψ∈Sn(z) i∈Ξ 0 (ψ) Q ρ 0 (T ) × i∈Ξ >0 (ψ) fΓ(γi) = ψ∈Sn(z) Q ρ 0 (T ) n-z(T ) × i∈Ξ >0 (ψ) fΓ(γi)
Recalling that ᾱ(γ) denotes the set of branching times of tree γ, Louca and Pennel ((47), Eq. 16 in the Supporting Information) give the density

fΓ(γ|L > 0) = Q ρ 1 (T ) 1 -Q ρ 0 (T ) t∈ ᾱ(γ) λ(t)Q ρ 1 (t)
since ρΨ(0, t) and E(t) in Louca's and Pennel's notation are respectively equivalent to Q ρ 1 (t) and Q ρ 0 (t) in our notation. Then we have that ∀i ∈ Ξ>0(ψ)

fΓ(γi) = fΓ(γi|L > 0)P(L > 0) = fΓ(γi|L > 0)(1 -Q ρ 0 (T )) = Q ρ 1 (T ) t∈ ᾱ(γ i ) λ(t)Q ρ 1 (t)
Recalling that ψ ∈ Sn(z) implies that i∈Ξ >0 (ψ) ᾱ(γi) = α(z), we then have

fZ z|N (T ) = n = ψ∈Sn(z) Q ρ 0 (T ) n-z(T ) × i∈Ξ >0 (ψ) Q ρ 1 (T ) t∈ ᾱ(γ i ) λ(t)Q ρ 1 (t) = ψ∈Sn(z) Q ρ 0 (T ) n-z(T ) × Q ρ 1 (T ) z(T ) i∈Ξ >0 (ψ) t∈ ᾱ(γ i ) λ(t)Q ρ 1 (t) = ψ∈Sn(z) Q ρ 0 (T ) n-z(T ) × Q ρ 1 (T ) z(T ) t∈α(z) λ(t)Q ρ 1 (t) = Q ρ 0 (T ) n-z(T ) × Q ρ 1 (T ) z(T ) t∈α(z) λ(t)Q ρ 1 (t) ψ∈Sn(z) 1 
There then only remains to count the number of elements in Sn(z):

ψ∈Sn(z) 1 = n z(T ) z(0) -1 ! z(T ) -1 !
where n z(T ) is the number of ways of choosing the z(T ) individuals with sampled descendants among n individuals, and where

z(0)-1 ! z(T )-1 !
is the number of orderings of a forest of z(T ) trees (each with at least one leaf) with a total of z(0) leaves.

D Results for the scaled BD model

In this section, we consider the scaled BD process, parametrized with n, λ1(t) and r(t) such that

λ(t) = λn(t) = λ1(t)n µ(t) = µn(t) = λn(t) -r(t)
We recall that we have set the conditions that on [0, T ]: (i) λ1(t) > 0, (ii) λ1(t) and r(t) are uniformly continuous (and thus bounded above and below) and (iii) λ1(t) ≥ r(t).

Where relevant, a Bernoulli sampling with probability ρ = ρ1/n is assumed.

Contrarily to Section E, it is not assumed that the population process is conditioned.

D.1 Results for the distribution of N (t) and Z(t) in the limit n → ∞

The purpose of this section is to derive the limits of certain quantities as n → ∞, and it can be verified that these limits do not depend on n, as they should. All limits may indeed depend only on r(t), λ1(t), D(t1, t2), B1(t1, t2), ρ1 and on some realization z of Z, all of which are independent of n. n , the density of Z given N (T ) = n reaches the following limit as n → ∞. ∀z : z(0) > 0,

fZ (z|N (T ) = n) ----→ n→∞ z(0) -1 ! z(T ) -1 !z(T )! ρ1D(0, T ) 1 + ρ1B1(0, T ) 2 z(T ) × exp -ρ1D(0, T ) 1 + ρ1B1(0, T ) t∈α(z) λ1(t)ρ1D(0, t) (1 + ρ1B1(0, t)) 2
with α(z) the set of coalescent times induced by z.

Proof. By Lemma C.6,

fZ z|N (T ) = n = z(0) -1 ! z(T ) -1 ! n z(T ) Q ρ 0 (T ) n-z(T ) Q ρ 1 (T ) z(T ) t∈α(z) λ(t)Q ρ 1 (t) with Q ρ k (t) := P Z(0) = k|N (t) = 1
We will now show that 

Q ρ 0 (T ) n-z(T ) ----→ n→∞ exp -ρ1D(0, T ) 1 + ρ1B1(0, T ) (11) n z(T ) Q ρ 1 (T ) z(T ) ----→ n→∞ 1 z(T )! ρ1D(0, T ) (1 + ρ1B1(0, T )) 2 z(T ) (12) λ(t)Q ρ 1 (t) = λ1(t)ρ1D(0, t) (1 + ρ1B1(0, t)) 2
Q ρ 0 (T ) n-z(T ) = 1 - ρD(0, T ) 1 + ρB(0, T ) n-z(T ) = 1 - 1 n • ρ1D(0, T ) 1 + ρ1B1(0, T ) n-z(T ) ----→ n→∞ exp -ρ1D(0, T ) 1 + ρ1B1(0, T ) n z(T ) Q ρ 1 (T ) z(T ) = n z(T ) ρD(0, T ) (1 + ρB(0, T )) 2 z(T ) = n z(T ) 1 n z(T ) ρ1D(0, T ) (1 + ρ1B1(0, T )) 2 z(T ) = 1 z(T )! • n-z(T )+1 n z(T ) (n-z(T ))!(n-z(T )+1) z(T ) n! ρ1D(0, T ) (1 + ρ1B1(0, T )) 2 z(T ) Trivially, n -z(T ) + 1 n z(T ) ----→ n→∞ 1
Also, using Euler's infinite-product definition of the factorial (see ( 50)):

lim n→∞ (n -z(T ))!(n -z(T ) + 1) z(T ) n! = lim m=n-z(T ) m→∞ m!(m + 1) z(T ) (m + z(T ))! = 1 Therefore, n z(T ) Q ρ 1 (T ) z(T ) ----→ n→∞ 1 z(T )! ρ1D(0, T ) (1 + ρ1B1(0, T )) 2 z(T )
Finally, using Lemma C.1,

λ(t)Q ρ 1 (t) = λ(t) ρD(0, t) (1 + ρB(0, t)) 2 = λ1(t)ρ1D(0, t) (1 + ρ1B1(0, t)) 2 is independent of n.
Lemma D.4. Assuming a Bernoulli sampling procedure with sampling probability ρ = ρ 1 n , the density of Z given N (T ) = n and Z(0) = z0 ∈ N>0 reaches a non-zero limit as n → ∞.

Proof.

∀z : z(0) = z0 ∈ N>0 fZ (z|N (T ) = n, Z(0) = z0) = fZ (z|N (T ) = n) P(Z(0) = z0|N (T ) = n)
By Lemma D.3, we know that fZ (z|N (T ) = n) reaches a non-zero limit as n → ∞.

There therefore remains to prove that, for a given z0, P(Z(0) = z0|N (T ) = n) reaches a non-zero limit to prove this lemma.

We write

Q k ≡ Q ρ k (T ) := P(Z(0) = k|N (T ) = n).
Using Lemma C.3, we have for z0 ≥ 1

P(Z(0) = z0|N (T ) = n) = z 0 z T =1 n zT Q n-z T 0 z0 -1 z0 -zT 1 - Q1 1 -Q0 z 0 -z T Q z T 1
We notice that (using Lemma C.1)

1- Q1 1 -Q0 = 1- ρD(0,T ) (1+ρB(0,T )) 2 ρD(0,T ) 1+ρB(0,T ) = 1- 1 1 + ρB(0, T ) = 1- 1 1 + ρ1B1(0, T ) = ρ1B1(0, T ) 1 + ρ1B1(0, T ) is independent of n. Then, plugging in the limits as n → ∞ of n z T Q z T 1 and Q n-z T 0
(given in Eqs. 11,12), we obtain

P(Z(0) = z0|N (T ) = n) ----→ n→∞ z 0 z T =1 z0 -1 z0 -zT ρ1B1(0, T ) 1 + ρ1B1(0, T ) z 0 -z T × exp -ρ1D(0, T ) 1 + ρ1B1(0, T ) 1 zT ! ρ1D(0, T ) (1 + ρ1B1(0, T )) 2 z T D.2
Results for the distribution of the number of descendants of one individual after g units of time.

In this section we derive a number of results that will be important for the study of the conditional scaled BD tackled in Section E. In particular, since the condition considered in Section E constrains the population size every g = g1/n units of time, we will need some results about the distribution of the number of descendants at time t -g of a single individual existing at time t. Given some number N (t) of individuals existing at time t, we denote νgti the random number of descendants at time t -g of the i-th individual (with i = 1, . . . , N (t)). Given that under the BD process the νgti's are iid., we consider here the distribution of νgt1 without loss of generality.

Given that g = g1/n and n ∈ N>0, the values of interest of g are comprised in the set { g 1 1 , g 1 2 , g 1 3 , . . . }, and the domain of t is [g, T ]. However, since the BD unravels in continuous time, the distribution of νgt1 is defined continuously for g ∈ (0, g1] and for t ∈ [g, T ]. Furthermore, as we will see, the limiting distribution of νgt1 as g → 0 exists, so we will consider [0, g1] as the domain of g, and [g, T ] as the domain of t.

Notice that in this section we will derive some results in the limit g → 0, which is equivalent to the limit n → ∞, the focus of this paper, since g := g1/n. Notice that our notation does not always explicitly mention the dependency of variables or functions on g (equivalently on n), so as not to encumber formulae.

Lemma D.5. The distribution of νgt1 is given by

P νgt1 = 0 = 1 - D(t -g, t) 1 + B(t -g, t) P νgt1 = k = D(t -g, t) 1 + B(t -g, t) 2 B(t -g, t) 1 + B(t -g, t) k-1 k ≥ 1
with mean A(g, t) and variance V (g, t) given by A(g, t) = D(t -g, t)

V (g, t) = 2A(g, t)B(t -g, t) + A(g, t) -A(g, t) 2 Proof. Given that νgt1 is equivalent by definition to N (t-g)|N (t) = 1, the distribution of νgt1 is obtained immediately by setting t1 = t -g and t2 = t in Lemma C.2.

Hence, ∃s ∈ [t -g, t] such that

D(t -g, t) = exp t t-g r(u)du = exp R(t) -R(t -g) = exp r(s)g = 1 + O(r(s)g) = 1 + O(g) ---→ g→0 1
where we have used the fact that O(r(s

)g) = O(g) since r(t) is bounded on [0, T ]. Also, ∃s ∈ [t -g, t] such that B(t -g, t) = t t-g λ(u)D(u, t)du = t t-g λ(u) 1 + O(g) du = 1 + O(g) t t-g λ(u)du = 1 + O(g) g1 g t t-g λ1(u)du = 1 + O(g) g1 g Λ1(t) -Λ1(t -g) = 1 + O(g) g1 g λ1(s)g = 1 + O(g) g1λ1(s)
Then, given that λ1(t) is uniformly continuous, λ1(s) = λ1(t) + o(1) as t -s → 0, or equivalently as g → 0, since t -s ≤ g. Hence,

B(t -g, t) = 1 + O(g) g1(λ1(t) + o(1)) = λ1(t)g1 + o(1) ---→ g→0 λ1(t)g1
where we have used the fact that

λ1(t)O(g) = O(g) since λ1(t) is bounded on [0, T ].
Plugging the limiting values of D(t-g, t) and B(t-g, t) into the expressions of Lemma D.5 yields this lemma's statement.

Lemma D.7.

P νgt1 = k = P ν0t1 = k + o k (1) as g → 0.
Proof. In the proof of Lemma D.6 we have seen that

D(t -g, t) = 1 + O(g) B(t -g, t) = λ1(t)g1 + o(1)
as g → 0.

Hence, using the fact that λ1(t) is bounded on [0, T ], for k = 0

P νgt1 = 0 = 1 - D(t -g, t) 1 + B(t -g, t) = 1 - 1 + O(g) 1 + λ1(t)g1 + o(1) = 1 - 1 1 + λ1(t)g1
+ o(1)

= P ν0t1 = 0 + o(1)
and for k ≥ 1

P νgt1 = k = D(t -g, t) 1 + B(t -g, t) 2 B(t -g, t) 1 + B(t -g, t) k-1 = 1 + O(g) 1 + λ1(t)g1 + o(1) 2 λ1(t)g1 + o(1) 1 + λ1(t)g1 + o(1) k-1 = 1 + O(g) 1 + λ1(t)g1 2 + o(1) λ1(t)g1 1 + λ1(t)g1 + o(1) k-1 = 1 1 + λ1(t)g1 2 + o(1) λ1(t)g1 1 + λ1(t)g1 + o(1) k-1 = 1 1 + λ1(t)g1 2 + o(1) λ1(t)g1 1 + λ1(t)g1 k-1 + (k -1)o(1) = 1 1 + λ1(t)g1 2 λ1(t)g1 1 + λ1(t)g1 k-1 + o k (1) = P ν0t1 = k + o k (1) Lemma D.8. A(g, t) = 1 + O(g)
as g → 0.

Proof. By Lemma D.5, A(g, t) = D(t -g, t). Furthermore, in the proof to Lemma D.6, we have seen that D(t -g, t) = 1 + O(g). We also have

D(s, t) ≤ exp t s rdu = exp r(t -s) If r ≤ 0, then exp r(t -s) ≤ exp(0) ≤ exp(|r|T ) If r > 0, then exp r(t -s) ≤ exp(rT ) = exp(|r|T ) Hence, D(s, t) ≤ exp(|r|T ) =: D < ∞ Now we will show that ∃ B > 0, ∃ B < ∞ such that ∀g ∈ (0, g1] and ∀t ∈ [g, T ] B ≤ B(t -g, t) ≤ B ( 14 
)
with

B(t -g, t) = t t-g λ(s)D(s, t)ds
By Eq. ( 13), there exists Ď > 0 such that, ∀s ∈ [0, t] D(s, t) ≥ Ď Hence, since t -g ∈ [0, t], we have that

A(g, t) = D(t -g, t) ≥ Ď > 0 Noticing that ∂ ∂s D(s, t) = -r(s)D(s, t)
we have

1 -A(g, t) = 1 -D(t -g, t) = D(t, t) -D(t -g, t) = t t-g ∂ ∂s D(s, t)ds = t t-g -r(s)D(s, t)ds
We thus have Given that λ(s) -r(s) ≥ 0, that D(s, t) > 0, and using Eq. ( 14), we have

2B(t -g, t) + 1 -A(g, t) = B(t -g, t) + B(t -g, t) + 1 -A(g, t) = B(t
2B(t -g, t) + 1 -A(g, t) ≥ B(t -g, t) ≥ B > 0 Therefore, ∀g ∈ (0, g1] and ∀t ∈ [g, T ] V (g, t) ≥ Ď B > 0
Then, for g = 0 and ∀t ∈ [0, T ], by Lemma D.6 we have

V (0, t) = 2λ1(t)g1 ≥ 2 λ1g1 > 0 where λ1 := inf t∈[0,T ] λ1(t) > 0 since λ1(t) is bounded and > 0 on [0, T ].
Hence, ∀g ∈ [0, g1] and ∀t ∈ [g, T ]

V (g, t) ≥ min( Ď B, 2 λ1g1) =: V > 0 Lemma D.11. For all k ∈ N>0, there exists a sequence (M km )m such that ∀g ∈ [0, g1] and ∀t ∈ [g, T ]

P νgt1 = 0 ≤ M k0 m k P νgt1 = m ≤ M km M k := ∞ m=0 M km < ∞
Proof. Let M k0 = 1 and obviously ∀g ∈ [0, g1] and ∀t ∈ [g, T ]

P νgt1 = 0 ≤ M k0
For m ≥ 1, by Lemmas D.5 and D.6, ∀g ∈ [0, g1] and ∀t ∈ [g, T ]

P(νgt1 = m) = P(νgt1 = 1)η(g, t) m-1 with η(g, t) = 1 - P(νgt1 = 1) 1 -P(νgt1 = 0) By Lemma D.9, ∀g ∈ [0, g1] and ∀t ∈ [g, T ] 0 < η ≤ η(g, t) ≤ η < 1 Hence, m k P(νgt1 = m) = m k P(νgt1 = 1)η(g, t) m-1 ≤ m k ηm-1 =: M km
We then have

M k := ∞ m=0 M km = 1 + 1 η ∞ m=1 m k ηm = 1 + Li -k (η) η
where Li -k (z) is the polylogarithm of order -k of z, which exists for |z| < 1. Given that |η| < 1, then Li -k (η) exists. Given that η > 0, then

M k < ∞ for all k ∈ N>0. Corollary D.11.1. For all k ∈ N>0 sup g∈[0,g 1 ] sup t∈[g,T ] E[ν k gt1 ] < ∞ Proof. ∀k ∈ N>0, ∀g ∈ [0, g1] and ∀t ∈ [g, T ] E[ν k gt1 ] = ∞ m=1 m k P(νgt1 = 1)η m-1 ≤ ∞ m=1 m k ηm-1 = M k -1 < ∞ Lemma D.12. There exist V < ∞ and X < ∞ such that, ∀g ∈ [0, g1], ∀t ∈ [g, T ] V (g, t) ≤ V X(g, t) := E |νgt1 -Eνgt1| 3 ≤ X Proof.
Define the Lp norm of random variable J as ||J||p := E |J| p 1/p . Notice that

||Eνgt1||p = E E[νgt1] p 1/p = E[νgt1] p 1/p = Eνgt1
By Minkowski's inequality, we have

||νgt1 -Eνgt1||p ≤ ||νgt1||p + || -Eνgt1||p = ||νgt1||p + ||Eνgt1||p = ||νgt1||p + Eνgt1
Since νgt1 ≥ 0 and x p is convex for x ≥ 0, by Jensen's inequality we have

E[νgt1] p ≤ E[ν p gt1 ] Eνgt1 ≤ E[ν p gt1 ] 1/p = ||νgt1||p
Hence,

||νgt1 -Eνgt1||p ≤ ||νgt1||p + Eνgt1 ≤ 2||νgt1||p Therefore, V (g, t) = E |νgt1 -Eνgt1| 2 ] = ||νgt1 -Eνgt1||2 2 ≤ 2||νgt1||2 2 = 4E ν 2 gt1 X(g, t) = E |νgt1 -Eνgt1| 3 ] = ||νgt1 -Eνgt1||3 3 ≤ 2||νgt1||3 3 = 8E ν 3 gt1
Using Corollary D.11.1, we can set

V = 4 • sup g∈[0,g 1 ] sup t∈[g,T ] E ν 2 gt1 < ∞ X = 8 • sup g∈[0,g 1 ] sup t∈[g,T ] E ν 3 gt1 < ∞
which completes the proof.

Lemma D.13. Let ϕ(g, t, s) := E e isν gt1 be the characteristic function of νgt1. We have

ϕ(g, t, s) = p(0) + p(1) • e is 1 -η(g, t)e is and ϕ(g, t, s) 2 = p(0) 2 + 2p(0)p(1) cos(s) -η(g, t) + p(1) 2 1 -2η(g, t) cos(s) + η(g, t) 2
with p(k) := P νgt1 = k and η(g, t) := 1 -p(1) 1-p(0) .

Proof. For simplicity, let η = η(g, t) in this proof.

By Lemmas D.5 and D.6 we have for k ≥ 1

p(k) = p(1)η k-1
We then have

ϕ(g, t, s) = ∞ k=0 e isk p(k) = p(0) + ∞ k=1 e isk p(k) = p(0) + ∞ k=1 e isk p(1)η k-1 = p(0) + p(1)e is ∞ k=1 e is(k-1) η k-1 = p(0) + p(1)e is ∞ k=0 e is η k
We have |e is | ≤ 1 and by Lemma D.9 |η| < 1, so that |e is η| < 1. We can thus use the formula for convergent geometric series and obtain

ϕ(g, t, s) = p(0) + p(1)e is • 1 1 -ηe is
Then, using Euler's formula and doing some rearrangements, we obtain ϕ(g, t, s) = p(0) + p(1) cos(s) -η 1 -2η cos(s) + η 2 + i p(1) sin(s) 1 -2η cos(s) + η 2

Then we obtain ϕ(g, t, s)

2 = p(0) + p(1) cos(s) -η 1 -2η cos(s) + η 2 2 + p(1) sin(s) 1 -2η cos(s) + η 2 2 = p(0) 2 + 2p(0)p(1) cos(s) -η + p(1) 2 1 -2η cos(s) + η 2
after some rearrangements.

Lemma D.14. For any l ∈ (0, π], ∀s ∈ [l, π] ϕ(g, t, s) ≤ φ0 + o(1)

as g → 0, with φ0 < 1.

By Lemma D.7 we have that

p(0) = p0(0) + o(1) p(1) = p0(1) + o(1)
as g → 0, which induces

η = 1 - p0(1) + o(1) 1 -p0(0) + o(1) = η0 + o(1)
as g → 0.

We then obtain, ∀s ∈ [l, π] ϕ(g, t, s)

2 = p0(0) + o(1) 2 + 2 p0(0) + o(1) p0(1) + o(1) cos(s) -η0 + o(1) + p0(1) + o(1) 2 1 -2 η0 + o(1) cos(s) + η0 + o(1) 2 = p0(0) 2 + 2p0(0)p0(1) cos(s) -η0 + p0(1) 2 1 -2η0 cos(s) + η 2 0 + o(1) = ϕ(0, t, s) 2 + o(1) ≤ φ2 0 + o(1)
as g → 0.

Therefore, given that

√ C + x = √ C + O(x) as x → 0, we have ϕ(g, t, s) ≤ φ0 + o(1)
as g → 0.

E Results for the conditional scaled BD process

In this section, we consider the scaled BD process, parametrized with n, λ1(t) and r(t) such that

λ(t) = λn(t) = λ1(t)n µ(t) = µn(t) = λn(t) -r(t)
We recall that we have set the conditions that on [0, T ]: (i) λ1(t) > 0, (ii) λ1(t) and r(t) are uniformly continuous (and thus bounded above and below) and (iii) λ1(t) ≥ r(t).

We consider this process conditioned on Z(0) = z0 and on N ∈ Ωn, with Ωn defined such that N ∈ Ωn if and only if, for g1 : T g 1 ∈ N>0 and with g :

= g 1 n ∀t ∈ {0, g, 2g, ..., T } N (t) = yn(t)
where

y(t) = yn(t) := u(t)n
with u(t) any function of time such that, on [0, T ]: (i) u(t) is continuous (ii) u (t) exists and is bounded, (iii) u(t) > 0 and (iv) u(T ) = 1.

We notice that, given that u(t) is bounded on [0, T ], then y(t) = O(n) as n → ∞, or equivalently y(t) = O(1/g) as g → 0.

E.1 Pairwise coalescent probability

We denote cn(t) the "pairwise coalescent probability", that is the probability that two ancestors at time t-g have a common ancestor at time t, under the condition N ∈ Ωn:

cn(t) := P Z(t) = 1|Z(t -g) = 2, N ∈ Ωn for t ∈ {g, 2g, . . . , T }.
In the time interval [t -g, t], the conditional scaled BD is represented by the random vector νgt = (νgti)i, i = 1, . . . , y(t), of fixed sum y(t) i=1 νgti = N (t -g) = y(t -g). (Hence the condition N ∈ Ωn reduces to the condition

N (t-g) = y(t-g)∧N (t) = y(t) in the interval [t -g, t].)
We note two properties of the conditional scaled BD:

1. Because of the Markov property of the BD process, and the fact that individuals are exchangeable, νgt is conditionally independent of νgs for any s ≥ t + g, given N (t) = y(t).

2. Because the individuals are exchangeable, then, given νgt, any assignment of the y(t -g) offspring to the y(t) parents are equally likely (provided these assignments are compatible with νgt).

These two properties are those assumed by Möhle in [START_REF] Möhle | Robustness Results for the Coalescent[END_REF], allowing us to apply Möhle's results to the conditional scaled BD. In particular, Möhle gives the expression for cn(t) (denoted cr in his paper):

cn(t) = 1 y(t -g)(y(t -g) -1) y(t) i=1 E νgti(νgti -1)|N (t -g) = y(t -g), N (t) = y(t) = 1 y(t -g)(y(t -g) -1) y(t) i=1 E νgt1(νgt1 -1)|N (t -g) = y(t -g), N (t) = y(t) = y(t) y(t -g)(y(t -g) -1) E νgt1(νgt1 -1)|N (t -g) = y(t -g), N (t) = y(t) (15) 
with (see Lemmas D.10 and D.12)

0 < V ≤ inf g∈[0,g 1 ] inf t∈[g,T ] V (g, t) sup g∈[0,g 1 ] sup t∈[g,T ] X(g, t) ≤ X < ∞ Given that y(t) = O(1/ √ g),
we need to show that the two terms of the RHS of Eq. ( 16) are bounded above by a function that is O(1) as g → 0 to prove the lemma's first claim. This is the case for the first term, since it is an absolute constant. We will now proceed to show that this is also the case for the second term.

We note that

l(g, t) ≥ V 4 X =: l > 0
We thus have

y(t) V (g, t) • d(g, t) ≤ 2y(t) V (g, t) π l exp -y(t)(1 -|ϕ(g, t, s)|) ds
given that the integrand is non-negative.

If l > π, the integral is non-positive, whatever the values of g or t, and therefore

y(t) V (g, t) • d(g, t) ≤ 0 = O(1)
as g → 0.

If l ≤ π, by Lemma D.14, we have that |ϕ(g, t, s)| ≤ φ0 + o(1) as g → 0, with φ0 < 1, provided s ∈ [l, π]. Hence,

y(t) V (g, t) • d(g, t) ≤ 2y(t) V π l exp -y(t) 1 -φ0 + o(1) ds = 2y(t) V (π -l) exp o(1) exp -y(t)(1 -φ0) = 2y(t) V (π -l) 1 + o(1) exp -y(t)(1 -φ0) = O(1)y(t) exp -y(t)(1 -φ0)
as g → 0, with (see Lemma D.12)

sup g∈[0,g 1 ] sup t∈[g,T ] V (g, t) ≤ V < ∞
It is then straightforward to verify that, given that 1 -φ0 > 0,

y(t) exp -y(t)(1 -φ0) ≤ exp(-1) 1 -φ0 = O(1)
as g → 0.

The second claim of the lemma is proven in exactly the same way.

Lemma E.2.

y(t -g) -A(g, t)y(t) = O(1) ∀m y(t -g) -m -A(g, t) y(t) -1 = Om(1)
as g → 0.

Proof. We recall that y(t) := u(t)g1 g with u(t) > 0 bounded on [0, T ] and with u (t) bounded on [0, T ].

First we show that y(t -g) -y(t) = O(1) as g → 0.

We denote t,g := y(t) -

u(t)g1 g = u(t)g1 g - u(t)g1 g t-g,g := y(t -g) - u(t -g)g1 g = u(t -g)g1 g - u(t -g)g1 g
and note that t,g , t-g,g ∈ [0, 1).

We then have

|y(t -g) -y(t)| = u(t -g)g1 g - u(t)g1 g + t-g,g -t,g ≤ u(t -g) -u(t) g g1 + | t-g,g -t,g |
Then, because u (t) is bounded, there exists C > 0 such that for all g ∈ (0, g1] and

t ∈ [g, T ] u(t -g) -u(t) g ≤ C Also, | t-g,g -t,g | < 1
, so that for all g ∈ (0, g1] and t ∈ [g, T ]

|y(t -g) -y(t)| ≤ Cg1 + 1 Hence, y(t -g) -y(t) = O(1)
as g → 0.

Now we show that y(t -g) -y(t)A(g, t) = O(1) as g → 0.

Using Lemma D.8

y(t -g) -y(t)A(g, t) = y(t -g) -y(t) + y(t) 1 -A(g, t) = O(1) + y(t)O(g)
as g → 0. Then, given that u(t) is bounded on [0, T ], y(t) = O(1/g) as g → 0, yielding

y(t -g) -y(t)A(g, t) = O(1) + O(1/g)O(g) = O(1)
as g → 0.

Similarly,

y(t -g) -m -A(g, t) y(t) -1 = y(t -g) -y(t)A(g, t) + A(g, t) -m = O(1) + 1 + O(g) -m = Om(1)
as g → 0.

Lemma E.3. ∀m ∈ N P N (t -g) = y(t -g) -m|N (t) = y(t) -1 P N (t -g) = y(t -g)|N (t) = y(t) = 1 + Om √ g as g → 0.
Proof. In this proof, when we use the O(•) and o(•) notation, "as g → 0" is implicit.

For conciseness we write

P (i, j) := P N (t -g) = j|N (t) = i
We have

P y(t) -1, y(t -g) -m P y(t), y(t -g) = y(t) y(t) -1 • (y(t) -1)V (g, t) • P y(t) -1, y(t -g) -m y(t)V (g, t) • P y(t), y(t -g)
We have

y(t) y(t) -1 = u(t) g 1 g + t,g u(t) g 1 g + t,g -1 = 1 + g t,g u(t)g 1 1 + g t,g -1 u(t)g 1
Given that u(t) is continuous and > 0 on [0, T ], inf t∈[0,T ] u(t) > 0. Furthermore, t,g ∈ [0, 1). We thus have

y(t) y(t) -1 = 1 + O(g) 1 + O(g) = 1 + O(g)
Then, given that √ 1 + x = 1 + O(x) as x → 0, we have

y(t) y(t) -1 = 1 + O(g) (17) 
Then, using Lemma E.1, we have

(y(t) -1)V (g, t) • P y(t) -1, y(t -g) -m = (y(t) -1)V (g, t) • P y(t) -1, y(t -g) -m -φ y(t -g) -m -(y(t) -1)A(g, t) (y(t) -1)V (g, t) +φ y(t -g) -m -(y(t) -1)A(g, t) (y(t) -1)V (g, t) = O( √ g) + φ y(t -g) -m -(y(t) -1)A(g, t) (y(t) -1)V (g, t)
By Lemma D.10 we have that ∀g ∈ [0, g1], ∀t ∈ [g, T ], V (g, t) ≥ V > 0, by Lemma E.2 we have that y(t -g) -m -(y(t) -1)A(g, t) = Om(1), and also y(t) = O(1/g) and 1/ y(t) -1 = O(g). Therefore

y(t -g) -m -(y(t) -1)A(g, t) (y(t) -1)V (g, t) 2 ≤ 1 V y(t) -1 y(t -g) -m -(y(t) -1)A(g, t) 2 = 1 V O(g)Om(1) = Om(g) Then, φ y(t -g) -m -(y(t) -1)A(g, t) (y(t) -1)V (g, t) = 1 √ 2π exp - 1 2 
y(t -g) -m -(y(t) -1)A(g, t) (y(t) -1)V (g, t) 2 = 1 √ 2π exp Om(g) = 1 √ 2π 1 + Om(g) = 1 √ 2π + Om(g) This yields (y(t) -1)V (g, t) • P y(t) -1, y(t -g) -m = O( √ g) + 1 √ 2π + Om(g) = 1 √ 2π + Om( √ g)
Noting that by Lemma E.2 y(t -g) -A(g, t)y(t) = O(1), by the same rationale we obtain y(t)V (g, t)

• P y(t), y(t -g) = 1 √ 2π + O( √ g) (18) 
Finally, we get

P y(t) -1, y(t -g) -m P y(t), y(t -g) = 1 + O(g) • 1 √ 2π + Om( √ g) 1 √ 2π + O( √ g) = 1 + Om( √ g) Lemma E.4. P N (t -g) = y(t -g) -m|N (t) = y(t) -1 P N (t -g) = y(t -g)|N (t) = y(t) = O(1)
as g → 0.

Proof. For conciseness we write

P (i, j) := P N (t -g) = j|N (t) = i
We have

φ y(t -g) -m -(y(t) -1)A(g, t) (y(t) -1)V (g, t) ≤ φ(0) = O(1)
as g → 0.

Using this result and Lemma E.1 yields

(y(t) -1)V (g, t) • P y(t) -1, y(t -g) -m = (y(t) -1)V (g, t) • P y(t) -1, y(t -g) -m -φ y(t -g) -m -(y(t) -1)A(g, t) (y(t) -1)V (g, t) +φ y(t -g) -m -(y(t) -1)A(g, t) (y(t) -1)V (g, t) = O( √ g) + O(1) = O(1)
as g → 0.

Then, using Eqs. [START_REF] Nordborg | Coalescent Theory[END_REF][START_REF] Stephens | Inference Under the Coalescent[END_REF], we obtain

P y(t) -1, y(t -g) -m P y(t), y(t -g) = y(t) y(t) -1 • (y(t) -1)V (g, t) • P y(t) -1, y(t -g) -m y(t)V (g, t) • P y(t), y(t -g) = 1 + O(g) • O(1) 1 √ 2π + O( √ g) = 1 + O(g) • O(1) = O(1)
as g → 0.

Theorem E.5.

sup t∈[g,T ] E νgt1(νgt1 -1)|N (t -g) = y(t -g), N (t) = y(t) -E ν0t1(ν0t1 -1) ---→ g→0 0 
Proof. To simplify notation, we write

P1(m) := P N (t -g) = y(t -g) -m|N (t) = y(t) -1 P2 := P N (t -g) = y(t -g)|N (t) = y(t) p(m) := P(νgt1 = m) p0(m) := P(ν0t1 = m)
and we write sup t for sup t∈[g,T ] and sup g for sup g∈(0,g 1 ] , unless specified otherwise.

We have

E νgt1(νgt1 -1)|N (t -g) = y(t -g), N (t) = y(t) = y(t-g) m=0 m(m -1)p(m) P1(m) P2 = ∞ m=0 m(m -1)p(m) P1(m) P2
where the last line is obtained after noticing that ∀m > y(t -g), P1(m) = 0.

Furthermore,

E ν0t1(ν0t1 -1) = ∞ m=0 m(m -1)p0(m)
Hence, the present theorem's statement is equivalent to

lim g→0 sup t ∞ m=0 m(m -1)p(m) P1(m) P2 -m(m -1)p0(m) = 0 First we note that lim g→0 sup t ∞ m=0 m(m -1)p(m) P1(m) P2 -m(m -1)p0(m) ≤ lim g→0 ∞ m=0 sup t m(m -1)p(m) P1(m) P2 -m(m -1)p0(m)
Using Lemmas D.11 and E.4, we have sup

g,t m(m -1)p(m) P1(m) P2 -m(m -1)p0(m) ≤ sup g,t m(m -1)p(m) P1(m) P2 + sup g,t m(m -1)p0(m) ≤ sup g,t m 2 p(m) P1(m) P2 + sup g,t m 2 p0(m) ≤ M2m sup g,t P1(m) P2 + M2m = M2mO(1)
By the definition of O(1), there exist C > 0 and G ∈ (0, g1] such that sup

g∈(0,G] sup t m(m -1)p(m) P1(m) P2 -m(m -1)p0(m) ≤ M2mC
Furthermore, by Lemma D.11 we have

∞ m=0 M2mC = C ∞ m=0 M2m < ∞
The two last equations together imply, by the Weierstrass M-test, that the series

∞ m=0 sup t m(m -1)p(m) P1(m) P2 -m(m -1)p0(m)
converges uniformly for g ∈ (0, G]. By the Moore-Osgood theorem, this allows us to swap the limits and write

lim g→0 ∞ m=0 sup t m(m -1)p(m) P1(m) P2 -m(m -1)p0(m) = ∞ m=0 lim g→0 sup t m(m -1)p(m) P1(m) P2 -m(m -1)p0(m)
Now we will show that each term of this last sum is equal to 0, hence proving the theorem.

We recall that, by Lemma D.7,

p(m) = p0(m) + om(1)
as g → 0.

We recall that, by Lemma E.3,

P1(m) P2 = 1 + Om( √ g)
as g → 0.

We thus have

m(m -1)p(m) P1(m) P2 -m(m -1)p0(m) = m(m -1) p(m) P1(m) P2 -p0(m) = m(m -1) p0(m) + om(1) 1 + Om( √ g) -p0(m) = m(m -1)om(1)
as g → 0.

The last line is equivalent to

lim g→0 sup t m(m -1)p(m) P1(m) P2 -m(m -1)p0(m) = 0
for any fixed m.

E.2.2 Actual limit

This section gives the limit of hn(t) as n → ∞, in the form of Lemma E.8.

Corollary E.8.1.

cn(t) = O(1/n) as n → ∞.
Proof. We recall that

hn(t) := cn(t) g = cn(t) n g1
Hence by Lemma E.8 we have

hn(t) = h(t) + o(1) cn(t) n g1 = h(t) + o(1) cn(t) = g1 n h(t) + o(1/n)
Given that λ1(t) is bounded on [0, T ] and that u(t) is bounded and > 0 on [0, T ], then

h(t) = 2λ1(t) u(t) is bounded on [0, T ]. Therefore, cn(t) = O(1/n)
F Convergence of the sample process of the conditional scaled BD to the Kingman coalescent Theorem F.1 below constitutes the main result of this paper, about the convergence of the conditional scaled BD to the Kingman coalescent. The proof to Theorem F.1 relies on lemmas and theorems derived in earlier sections of this appendix. The proofs to these previous lemmas and theorems are valid conditionally on a series of assumptions, which we recall here as sufficient conditions for the applicability of Theorem F.1.

Sufficient conditions for the applicability of Theorem F.1. We recall that the scaled BD process is a BD process starting at time T with N (T ) = n individuals and parametrized with λ1(t) and r(t) such that

λ(t) = λn(t) = λ1(t)n µ(t) = µn(t) = λn(t) -r(t)
The conditional scaled BD process is the scaled BD process conditioned on Z(0) = z0 and on N ∈ Ωn, with Ωn a set of population trajectories defined such that N ∈ Ωn if and only if, for g1 : T g 1 ∈ N>0 and with g :

= g 1 n , ∀t ∈ {0, g, 2g, ..., T } N (t) = yn(t)
where

y(t) = yn(t) := u(t)n
The following conditions on λ1(t), r(t) and u(t) have been assumed throughout earlier sections of this appendix and constitute sufficient conditions for the applicability of Theorem F.1: Notice that, since the integrand is strictly positive, Λ strictly increases, and its inverse Λ -1 exists and strictly increases.

• ∀t ∈ [0, T ], λ1(t) > 0 • λ1(t) is uniformly continuous on [0, T ] • r(t) is uniformly continuous on [0, T ] • ∀t ∈ [0, T ], λ1(t) ≥ r(t) • u(T ) = 1 • ∀t ∈ [0, T ], u(t) > 0 • u(t) is continuous on [0, T ] • ∀t ∈ [0, T ], u (t) exists • u (t)
Consider the time scaling x = Λ(t). We have

R( t/g ) t∈[0,T ] = R( Λ -1 (x)/g ) x∈[0,Λ(T )]
and

K(t) t∈[0,T ] = K(Λ -1 (x)) x∈[0,Λ(T )] = K 1 (x) x∈[0,Λ(T )]
where K 1 (x) x denotes the ancestral process of the Kingman coalescent with θ(x) = 1.

By Möhle's Theorem 1 in [START_REF] Möhle | Robustness Results for the Coalescent[END_REF], if the conditions stated below are verified, then

R( Λ -1 (x)/g ) x∈[0,Λ(T )] converges to K 1 (x) x∈[0,Λ(T )]
as n → ∞ in terms of finitedimensional distributions, which proves the present theorem.

We thus need to prove that the conditions of application of Möhle's theorem are satisfied by the conditional scaled BD. These conditions read as follows in our notation.

• E νg,mg,i(νg,mg,i -1)ν 2 g,mg,j |N (m -1)g = y (m -1)g , N mg = y mg which is implied in our case by the following stronger condition:

0 = lim n→∞ sup t∈[g,T ] 1 y(t -g) 4 cn(t) × y(t) i,j=1 E νgti(νgti -1)ν 2 gtj |N (t -g) = y(t -g), N (t) = y(t)
Proof of Condition 1.

Notice that, since Λ -1 (x) strictly increases, for

x ∈ [0, Λ(T )], Λ -1 (x) ≤ Λ -1 (Λ(T )) = T is bounded.
By Lemma E.8, with h(t) = 2λ 1 (t) u(t) , we have

hn(t) = h(t) + o(1)
as n → ∞ (or, equivalently, as g → 0).

Then, recalling that hn(t) := cn(t)/g, we have for all x ∈ [0, Λ(T )]

Λ -1 (x)/g m=1 cn(mg) = Λ -1 (x)/g m=1 hn(mg)g = Λ -1 (x)/g m=1 h(mg) + o(1) g (as g → 0) = Λ -1 (x)/g m=1 h(mg)g + Λ -1 (x)/g m=1 o(1)g = Λ -1 (x)/g m=1 h(mg)g + Λ -1 (x)/g o(1)g = Λ -1 (x)/g m=1 h(mg)g + o(1) (because Λ -1 (x) is bounded) ---→ g→0 Λ -1 (x) 0 h(t)dt = Λ -1 (x) 0 2λ1(t) u(t) dt = Λ(Λ -1 (x)) = x which proves Condition 1, recalling that g → 0 is equivalent to n → ∞.
Proof of Condition 2.

Condition 2 follows immediately from Corollary E.8.1.

Proof of Condition 3.

Given that individuals are exchangeable, we have

1 y(t -g) 3 cn(t) • y(t) i=1 E νgti(νgti -1)ν k gti |N (t -g) = y(t -g), N (t) = y(t) = 1 y(t -g) 3 cn(t) • y(t) i=1 E νgt1(νgt1 -1)ν k gt1 |N (t -g) = y(t -g), N (t) = y(t) = y(t) y(t -g) 3 cn(t) • E νgt1(νgt1 -1)ν k gt1 |N (t -g) = y(t -g), N (t) = y(t)
Given that y(t) = O(n) and that, by Corollary E.8.1, cn(t) = O(1/n), we have

y(t) y(t -g) 3 cn(t) = O(1/n) as n → ∞.
Therefore, there remains to show that

E νgt1(νgt1 -1)ν k gt1 |N (t -g) = y(t -g), N (t) = y(t) = o k (n)
as n → ∞ to prove Condition 3.

We have

E νgt1(νgt1 -1)ν k gt1 |N (t -g) = y(t -g), N (t) = y(t) = y(t-g) m=0 m(m -1)m k P(νgt1 = m) P N (t -g) = y(t -g) -m|N (t) = y(t) -1 P N (t -g) = y(t -g)|N (t) = y(t) Lemma E.4 shows that P N (t -g) = y(t -g) -m|N (t) = y(t) -1 P N (t -g) = y(t -g)|N (t) = y(t) = O(1)
as n → ∞. Therefore,

E νgt1(νgt1 -1)ν k gt1 |N (t -g) = y(t -g), N (t) = y(t) = O(1) y(t-g) m=0 m(m -1)m k P(νgt1 = m) ≤ O(1) ∞ m=0 m k+2 P(νgt1 = m) = O(1)E ν k+2 gt1
as n → ∞. By Corollary D.11.1, for any given k,

sup g∈[0,g 1 ] sup t∈[g,T ] E ν k+2 gt1 < ∞ Hence, E νgt1(νgt1 -1)ν k gt1 |N (t -g) = y(t -g), N (t) = y(t) = O k (1) = o k (n)
as n → ∞.

Proof of Condition 4.

Given that individuals are exchangeable, we have 1 y(t -g) 4 cn(t)

y(t) i,j=1 E νgti(νgti -1)ν 2 gtj |N (t -g) = y(t -g), N (t) = y(t) = 1 y(t -g) 4 cn(t) y(t) i,j=1 E νgt1(νgt1 -1)ν 2 gt2 |N (t -g) = y(t -g), N (t) = y(t) = y(t) 2 y(t -g) 4 cn(t) • E νgt1(νgt1 -1)ν 2 gt2 |N (t -g) = y(t -g), N (t) = y(t)
By the Cauchy-Schwarz inequality, we have y(t) 2 y(t -g) 4 cn(t)

• E νgt1(νgt1 -1)ν 2 gt2 |N (t -g) = y(t -g), N (t) = y(t) ≤ y(t) 2 y(t -g) 4 cn(t)

• E νgt1(νgt1 -1) 2 |N (t -g) = y(t -g), N (t) = y(t)

1/2 ×E ν 4 gt2 |N (t -g) = y(t -g), N (t) = y(t) 1/2
By the same arguments as for Condition 3, we have that

y(t) 2 y(t -g) 4 cn(t) = O(1/n)
as n → ∞, and there thus remains to show that

E νgt1(νgt1 -1) 2 |N (t -g) = y(t -g), N (t) = y(t) 1/2 ×E ν 4 gt2 |N (t -g) = y(t -g), N (t) = y(t) 1/2 = o(n)
as n → ∞.

Using the same arguments as for Condition 3, we have that 

E νgt1(νgt1 -1) 2 |N (t -g) = y(t -g), N (t) = y(t) 1/2 ×E ν 4 gt2 |N (t -g) = y(t -g), N (t) = y(t)
Finally, in the proof to Lemma E.3, we have see that (Eq. 18)

y(αn)V (g, αn) • P N (αn -g) = y(αn -g)|N (αn) = y(αn)

= 1 √ 2π + O(1/ √ n) so that y(αn)V (g, αn) • P N (αn -g) = y(αn -g)|N (αn) = y(αn) -1 = √ 2π + O(1/ √ n) = O(1) (21) 
Lemma G.2. For any time x ∈ [0, T ]

E N (x) n N ∈ Ωn -u(x) = O(1/ 4 √ n)
as n → ∞.

Proof. In this proof, all O(•)'s are as n → ∞.

For some fixed g ∈ (0, g1], for any t ∈ {g, 2g, . . . , T } and for all x ∈ (t -g, t], because of the Markov property of the BD, we have that N (x)|N ∈ Ωn = N (x)|N (t -g) = y(t -g), N (t) = y(t) , and therefore

E N (x) n N ∈ Ωn -u(x) = E N (x) n N (t -g) = y(t -g), N (t) = y(t) -u(x)
We then have (using the triangle and Jensen's inequalities)

E N (x) n N ∈ Ωn -u(x) = E N (x) n -u(x) N ∈ Ωn ≤ E N (x) n -u(x) N (t -g) = y(t -g), N (t) = y(t) ≤ E N (x) n -u(x) 2 N (t -g) = y(t -g), N (t) = y(t) 1 2
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Then, by the law of total expectation, we have

E N (x) n -u(x) 2 N (t) = y(t) = E E N (x) n -u(x) 2 N (t -g), N (t) = y(t) = ∞ k=0 E N (x) n -u(x) 2 N (t -g) = k, N (t) = y(t) × P N (t -g) = k|N (t) = y(t) ≥ E N (x) n -u(x) 2 N (t -g) = y(t -g), N (t) = y(t) × P N (t -g) = y(t -g)|N (t) = y(t)
Hence,

E N (x) n N ∈ Ωn -u(x) ≤ E N (x) n -u(x) 2 N (t) = y(t) P N (t -g) = y(t -g)|N (t) = y(t) 1 2 (22) 
Eq. ( 22) holds for some fixed g ∈ (0, g1], for any t ∈ {g, 2g, . . . , T } and for all x ∈ (t -g, t]. However, for some fixed time x ∈ [0, T ], as n → ∞ and g → 0, eventually x ∈ (t -g, t]. Therefore, for some fixed time x ∈ (0, T ], we define αn = αn(x) := min t ∈ {g, 2g, . . . , T }|t ≥ x so that ∀n ∈ N>0, x ∈ (αn -g, αn] and the following holds ∀n ∈ N>0 and ∀x ∈ (0, T ]

E N (x) n N ∈ Ωn -u(x) ≤ E N (x) n -u(x) 2 N (αn) = y(αn) P N (αn -g) = y(αn -g)|N (αn) = y(αn) 1 2
We then write By Lemma D.12, we have that V (g, t) = O(1), and also y(t) = O( √ n). We have also seen in the proof to Lemma G.1 that (Eq. 21) y(αn)V (g, αn) • P N (αn -g) = y(αn -g)|N (αn) = y(αn)

E N (x) n N ∈ Ωn -u(x) ≤ y(αn)V (g, αn) • E N (x) n -u(x)
-1 = O(1)
In the following of this proof, we will show that ∀x ∈ (0, T ]

E N (x) n -u(x) 2 N (αn) = y(αn) = O(1/n)
which concludes the proof for x ∈ (0, T ]. The case for x = 0 will be dealt with at the end.

We have

E N (x) n -u(x) 2 N (αn) = y(αn) = Var N (x) n -u(x) N (αn) = y(αn) -E N (x) n -u(x) N (αn) = y(αn) 2 = 1 n 2 Var N (x) N (αn) = y(αn) - 1 n 2 E N (x) N (αn) = y(αn) -nu(x) 2 
In the proof to Lemma G.1 we have seen that (Eq. 20)

Var We recall that y(αn) = nu(αn) = nu(αn)+ with 0 ≤ < 1 and that u(t) is bounded on [0, T ]. We have seen in the proof to Lemma G.1 that exp

αn x r(s)ds = 1+O(1/n). Furthermore, because u (t) is bounded, u(t)-u(x) /(t-x) = O(1). Also, by definition of αn, αn -x < g = O(1/n). We then have E N (x) N (αn) = y(αn) -nu(x) = nu(αn) + 1 + O(1/n) -nu(x) = nu(αn) -nu(x) + O(1) = n(αn -x) u(αn) -u(x) αn -x + O(1) = O(1) u(αn) -u(x) αn -x + O(1) = O(1)
We thus obtain

E N (x) n -u(x) 2 N (αn) = y(αn) = 1 n 2 O(n) - 1 n 2 O(1) = O(1/n)
concluding the proof for x ∈ (0, T ].

For x = 0, with := y(0) -nu(0) = nu(0) -nu(0) ∈ [0, 1), we have ∀n ∈ N>0

E N (0) n N ∈ Ωn -u(0) = E N (0) n N (0) = y(0) -u(0) = y(0) n -u(0) = 1 n nu(0) + -u(0) = u(0) + n -u(0) = O(1/n) = O(1/ 4 √ n)
Theorem G.3. 

N (t) n |N ∈ Ωn = E N (t) n N ∈ Ωn + Op Var N (t) n N ∈ Ωn 1 2
Given that, by Lemma G.1,

Var N (t) n N ∈ Ωn = O(1/ √ n)
and that by Lemma G.2

E N (t) n N ∈ Ωn = u(t) + O(1/ 4 √ n) we have N (t) n |N ∈ Ωn = u(t) + O(1/ 4 √ n) + Op(1/ 4 √ n) = u(t) + o(1) + op(1)
which concludes the proof.

of events is given by η I(t) = λ I(t) I(t) + µI(t), so the waiting time w I(t) until the next event is an exponential random variable with rate η I(t In the comparison of Figure 10, we deterministically took 71 samples at time 0.1, 66 samples at time 0.5, and 26 samples at time 1.0, for all 100 datasets. Parameters used for the three sets of simulations For all simulations, T = 10. The population trajectory of Figure 8 was simulated with the parameters X = 1000, β = 2 and µ = 0.5, with initial condition N (T ) = 1. The sampling times were drawn based on a rate ψ = 0.05. The population trajectory of Figure 9 was simulated with the parameters X = 10, 000, β ≈ 20.02 and µ ≈ 18.62, with initial condition N (T ) = 10. The sampling times were drawn based on a rate ψ = 0.06. For Figure 10, the same population trajectory was used as for Figure 9, but the sampling times were set deterministically.

Simulation of coalescence times

Estimates of the death rate As explained below, our method and the BDS method cannot identify all the parameters they use. Hence, phylogenetic inference with either method requires that we fix some parameter(s) to a pre-estimated value during inference. In epidemiology, the death rate is probably the easiest parameter to estimate from auxiliary data, as the death rate is the inverse of the expected duration of infections. Hence, we chose to fix the death rate curve to a value summarizing the temporal variation of the realized death rate, an information that is contained in the realized population trajectory ν. We proceeded as follows.

Above we have detailed how we simulated ν using a Gillespie algorithm, using λ I(t) I(t)+ µI(t) as the total rate of events, and drawing waiting times in between events in an exponential distribution. Hence, switching to inference mode, we can estimate ζ = λ + µ by fitting an exponential distribution with rate ζν(t) to the waiting times of ν (i.e. the periods of times when ν is constant). We divided the interval [0, T ] into five time intervals (defined such that each interval contained 20% of the coalescence times of the 100 simulated realizations of the sample process), and obtained five estimates of ζ: { ζi}i=1,...,5. Then, counting the numbers of deaths and births in interval i as per ν, we obtained an estimate μi for the i-th interval as μi = ζi • # deaths in interval i # deaths in interval i + # births in interval i

I Parametrization of the various inference methods I.1 Fixing the death rate curve

For our method, as explained in Section J.3 below, the parameters are not separately identifiable unless a curve is fixed. The same is true for the BDS method [START_REF] Louca | Fundamental Identifiability Limits in Molecular Epidemiology[END_REF]. Therefore, we fixed the death rate curve to a pre-estimated value for both these methods.

In Section H, we explained how we derived estimates of the death rate in five time intervals. We denote these estimates {μi}i=1,...,5. During inference with our method or the BDS, we fixed the death rate curve to the following pairwise constant function:

m(t) = μi if t ∈ [ti, ti+1)
with {ti}i=2,...,5 the times separating the five intervals, t1 = 0 and t6 = T .

I.2 Parametrization of our method

We fixed μ(t) = m(t).

Rather than parametrizing λ and deduce Ñ , we chose to parametrize Ñ and deduce λ, as this resulted in smoother curves overall. We parametrized Ñ as Ñ (t) = exp P (t) with P (t) a polynomial of degree 6.

Then solving exp P (t) = Ñ (0) exp t 0 μ(s) -λ(s) ds for λ yields λ(t) = μ(t) -P (t)

In sum, we parametrized θ as

θ(t) = Ñ (t) 2 λ(t) = Ñ (0) exp t 0 μ(s) -λ(s) ds 2 λ(t) = exp P (t) 2 m(t) -P (t)
The estimated curve for Ñ is exp P and the estimated curve for λ is m -P .

There are seven free parameters: the coefficients of P (t).

I.3 Parametrization of the BDS method

We fixed μ(t) = m(t).

We parametrized λ as

λ(t) = ai + bit if t ∈ [ti, ti+1)
with bi = λ t i+1 -λ t i t i+1 -t i , ai = λt i -biti, with {ti}i=2,...,5 delineating the same five intervals used to define m(t), and with t1 = 0 and t6 = T . In other words, λ(t) is a continuous piecewise linear function passing through the points {(ti, λt i )}i=1,...,6.

The sampling rate was fixed to a constant: ψ(t) = ψ.

There are seven free parameters: {λt i )}i=1,...,6 and ψ.

It can be verified that the BDS model parametrized in this way is identifiable, i.e. no two sets of parameters yield models in the same equivalence class (congruence class sensu Louca et al. ( 52)). However, to any model parametrized as outlined above, there exist infinitely many other congruent BDS models (with other parametrizations of the curves λ and ψ).

The likelihood of this model is implemented in the R package castor (function fit hbds model parametric() ). We used κ = 1 (i.e. sampled individuals are put back in the population).

For the BDS, we used the deterministic population size as an estimate of the realized population size, calculated as

N (t) = N (0) exp t 0 µ(s) -λ(s) ds
With an estimate of λ and with µ = m, we can only calculate the relative population size. To obtain an estimate of the absolute population size, we must derive an estimate of N (0). We proceeded as follows. Given that we used κ = 1, our model assumes that sampling does not impact population size. Hence, the total deterministic sampling rate is ψN (t), and the deterministic sampling procedure of the BDS is a time-inhomogeneous Poisson point process (PPP). The waiting times in between sampling events thus contain information about the absolute value of N (t), and fitting a PPP to the sampling waiting times allows to estimate N (0). Specifically, given estimates λ and ψ, the probability density of a sampling event at time t1 given the last sampling event was at time t2 ≥ t1 is ψN (0) exp With the skyline KC method, the only curve to parametrize is θ. We parametrized θ as θ(t) = ai + bit if t ∈ [ti, ti+1)

with bi = θ t i+1 -θ t i t i+1 -t i , ai = θt i -biti, with {ti}i=2,...,5 delineating the same five intervals used to define m(t) for our method, and with t1 = 0 and t6 = T . In other words, θ(t) is a continuous piecewise linear function passing through the points {(ti, θt i )}i=1,...,6.

There is no death rate curve in the skyline KC method, so we do not use the preestimated curve m(t). However, to allow a fair comparison of the skyline KC with our method, we use the same time intervals to define the pieces of θ(t) in the skyline KC method as we use to define λ(t) and μ(t) in our method.

I.5 Parametrization of the SIR-based mechanistic KC method

The SIR model is defined by the following system of ODEs (expressed in forward time, denoted τ ):

S (τ ) = -β I(τ ) X S(τ ) I (τ ) = β S(τ ) X I(τ ) -µI(τ ) R (τ ) = µI(τ )
where S(τ ) is the number of susceptibles, I(τ ) is the number of infectious individuals, R(τ ) is the number of removed individuals, and X = S(τ ) + I(τ ) + R(τ ) is the total population size. We use for initial conditions S(0) = X -1, I(0) = 1 and R(0) = 0.

We integrated numerically the above system of equations from τ = 0 to τ = T ≥ T , where T is the (backward) time of origin of the SIR process. This yields a numerical For all BD-type models, the probability P (t) of a pair of individuals not coalescing in [0, t] is given exactly by

P (t) = β(t) i=1 1 - 1 ν(t i ) 2 (23) 
Indeed, at time ti when the i-th birth happened, there were ν(ti) individuals in the population and therefore ν(t i ) 2 pairs of individuals. The probability that a specific pair of individuals coalesces at time ti is the probability that these two individuals are the two offspring of the i-th birth event, that is 1/ ν(t i )

2

. At all times when a birth did not happen, coalescences have probability 0. The above equality is true only for models whereby births spawn only two offspring. For instance, if at time ti the birth spawned k offspring, then the probability of coalescence of a specific pair of lineages would be k 2 / ν(t i ) 2

, because there are k 2 pairs in the whole population that coalesce at time ti.

Our purpose here is to show that the large-population limit (as x → 0) of P (t) is the corresponding probability under the KC with θ = Ñ/(2 λ). Now let's write

-ln P (t) = - β(t) i=1 ln 1 - 1 ν(t i ) 2 = - t/x -1 j=0 β(t j+1 )-β(t j ) k=1 ln 1 - 1 ν(t jk ) 2
where ∀j ∈ {0, . . . , t/x -1}, tj = jx and t t/x = t and where t jk is the time of the k-th birth in [tj, tj+1].

The following will be for all s ∈ [0, t].

We have Now we deal with the second term of Eq. ( 24). We have -ln P (t) = Thus, in the large-population limit x → 0, the probability P (t) that a pair of lineages do not coalesce is the corresponding probability under a KC with θ = Ñ 2 λ . Notice that this limit is only interesting if it is further assumed that Ñ/ λ = O(1), otherwise the coalescence rate goes to 0 as x → 0. Provided the assumptions mentioned at the beginning of this section are met, this result applies to all BD-type models, since the initial equation (Eq. 23) is true for all such models (but untrue as soon as multiple concomitant births can happen or if individuals are not exchangeable).

We do not consider the above as a formal demonstration of the convergence of BDtype models to the KC, because it focuses on the probability of coalescence of two individuals (i.e. when Z(t) = 2). In contrast, a formal proof must consider the case Z(t) = k and in our particular case here, we would need to show that in the limit coalescences happen at rate k 2 2 λ(t) Ñ (t) when Z(t) = k. This is more involved, and the existing theorems of convergence to the KC, such as that of Möhle (19) that we used in Theorem F.1, cannot be used as they assume that the curve of the cumulative number of births is unknown, unlike in this section where it is fixed.

In sum, Theorem F.1 constitutes our formal proof that a BD model with deterministic rates converges to a KC, while we consider the present section as a heuristic that suggests that the convergence should apply to all BD-type models.

J.2 Expression of the realized population trajectory

Here we explain why we have parametrized Ñ as the following function of the realized rates λ and μ:

Ñ (t) = Ñ (0) exp t 0 μ(s) -λ(s) ds (25) 
We recall that N (t) is the random population size, B(t) the random cumulative number of births from the present to time t, and D(t) the random cumulative number of deaths. We consider specific realizations of these random processes, which we denote ν for N , β for B, and δ for D. These step functions are represented phenomenologically by continuous and differentiable functions Ñ for ν, B for β, and D for δ. We have defined the realized rates as λ = B / Ñ and μ = D / Ñ .

Obviously, the random processes N , B and D are linked by the equation N (t) = N (0) -B(t) + D(t), which is also verified by any specific set of realizations: ν(t) = ν(0) -β(t) + δ(t). Hence, the phenomenological representations of these realizations should also respect this relation: Ñ (t) = Ñ (0) -B(t) + D(t). By the definitions of the realized rates, given that B(0) = D(0) = 0, we have that B(t) = Integrating on both sides yields Eq. [START_REF] L A Featherstone | Epidemiological inference from pathogen genomes: A review of phylodynamic models and applications[END_REF].

yielding

θ(t) = M (t) 2 2M (t) (28) 
Importantly, all the Bernoulli-sample BD models in a given equivalence class sensu Louca and Pennell (47) yield the same function M , and hence the same function θ.

It is also easily verified that, for a given function θ, there is a single function M that satisfies Eq. ( 28). Hence, θ defines the equivalence classes of Louca and Pennell [START_REF] Louca | Extant timetrees are consistent with a myriad of diversification histories[END_REF] in the same way that M or λp do.

In conclusion, according to the equivalences λ ≡ λ, μ ≡ µ and Ñ (0) ≡ N (0) between the parameters of our model and those of the Bernoulli-sampled BD, the equivalence classes of our model and those of the Bernoulli-sampled BD model are the same and defined by θ, the latter being defined by Eq. ( 26) in our model, and by Eq. ( 27) in the Bernoulli-sampled BD model.

J.3.2 Identifiability of the chosen parametrization of our method

Due to the identifiability issues outlined above, we have to bring external information about some parameter(s) of our model. We chose to fix μ = m. We have also parametrized our model with a polynomial P , parametrizing Ñ as Ñ = exp P , which yields λ = m -P . We think that our model thus parametrized is identifiable, i.e. there are no two different parametrizations of the polynomial P yielding the same θ.

However, to any one model parametrized with Ñ = exp P and μ = m, correspond infinitely many equivalent models with μ = m and with Ñ of a different form than Ñ = exp P .

Specifically, given μ = m, and given that Ñ (t) = Ñ (0) exp t 0 μ(s) -λ(s) ds, we have that λ = m -Ñ / Ñ . Hence, for a given P = P (0) , yielding Ñ = Ñ (0) and θ = θ (0) , all the models with Ñ such that 

In the above equation, Ñ (t) has one free parameter: Ñ (0). Hence, there are as many equivalent models to the model with Ñ (0) = exp P (0) as there are valid values of Ñ (0). A valid value of Ñ (0) is such that Ñ (0) ≥ 0, and also such that the resulting birth rate λ = m -Ñ / Ñ is positive on [0, T ]. 

Figure 1 :

 1 Figure 1: Distribution of the relative population size N (t)/n for the unconditional BD, for different values of n, with fixed λ(t) = 1 and r(t) 0.069. The black line is the expected value (equal to exp T t r(s)ds) and the ribbon ranges from the .025 to the .975 quantile. The distribution narrows as n increases, illustrating the convergence in probability of N (t)/n to the deterministic function exp T t r(s)ds.

Figure 2 :

 2 Figure 2: Distribution of the sample process Z given Z(0) = z 0 = 9 for the unconditional BD (black solid line and grey ribbon), for different values of n, with fixed λ(t) = 1 and r(t) 0.069. The thick line is the expected value and the ribbon ranges from the .025 to the .975 quantile. For comparison, the red dashed line and red ribbon show the distribution of Z under a KC with θ(t) = E[N (t)|N (T ) = n]/(2λ(t)). We see that, as n increases, although the two distributions get more similar, coalescences are ever rarer, and they would not happen at all in the limit n → ∞.

Figure 3 :

 3 Figure 3: Distribution of the relative population size N (t)/n for the unconditional BD, for different values of n, with fixed λ 1 (t) = 0.1 and r(t)0.069. The black line is the expected value and the ribbon ranges from the .025 to the .975 quantile. The distribution barely changes as n → ∞, illustrating that it reaches a limit.

Figure 4 :

 4 Figure 4: Distribution of the sample process Z given Z(0) = z 0 = 9 for the unconditional BD, for different values of n, with fixed λ 1 (t) = 0.1 and r(t) 0.069. The black line is the expected value and the grey ribbon ranges from the .025 to the .975 quantile. The distribution barely changes as n → ∞, illustrating the limit. For comparison, the red dashed line and red ribbon show the distribution of Z under a KC with θ = E[N (t)|N (T ) = n]/(2λ(t)). We see that, as n increases, the two distributions do not get more similar, illustrating that the limiting BD distribution of Z is not a KC.

Figure 5 :

 5 Figure 5: Valid population trajectories belonging to the set Ω n . The red line is the function y(t), and the grey lines are ten random trajectories belonging to Ω n , i.e. conditioned on N (t) = y(t) every g = g 1 /n units of time. The figure shows the interval [5, 5 + 3g]. Red dots delineate the three intervals of length g. In this example λ 1 (t) = 0.1, r(t) 0.069, g 1 = 10, T = 10 and u(t) is illustrated in Figure 6.

Figure 6 :

 6 Figure 6: Same example population trajectories belonging to the set Ω n as in Figure 5, but scaled by n and shown on [0, T ], with T = 10. The blue line is the function u(t), and the grey lines are ten random trajectories. We see how the trajectories in Ω n , scaled by n, narrow around u(t) as n → ∞, illustrating the convergence in probability of N (t)/n | N ∈ Ω n to u(t).

Figure 7 :

 7 Figure7: Distribution of the sample process Z given Z(0) = z 0 = 9 for the conditional BD (black lines and grey ribbons), for different values of n, with fixed λ 1 (t) = 0.1, r(t) 0.069, g 1 = 10 and u(t) as in Figure6. The thick line is the expected value and the ribbon ranges from the .025 to the .975 quantile. For comparison, the red dashed lines and red ribbons show the limiting distribution of Z, i.e. that of a KC with θ(t) = u(t)/(2λ 1 (t)). We see that, as n increases, the two distributions get more similar, contrarily to Figure4, and coalescences do not become rarer as n increases, contrarily to Figure2.

Figure 8 :

 8 Figure 8: Comparison of the skyline KC approach with our new method. The population trajectory was simulated under an SIS model. The sampling procedure assumed a fixed per-capita sampling rate. a) Estimate of θ with the skyline KC method. Black curve (left y-axis), true population trajectory. Blue curve (right y-axis), true (realized) value of θ. Red solid curve, median of estimates for θ across the 100 inferences. Red ribbon, .025 to the .975 percentiles of the θ estimates.If N ∝ θ is assumed, the estimate of θ may be taken for an estimate of the relative population trajectory. In this example, it is inaccurate because N ∝ θ is untrue. b) Estimate of the population trajectory with our method. Black curve, true population trajectory. Red curve, median of the estimates for N . Red ribbon, .025 to the .975 percentiles of these estimates. c) Estimate of the effective reproduction number with our method. Black curve, true (realized) value of R e . Red curve, median of the estimates for R e . Red ribbon, .025 to the .975 percentiles. R e cannot be estimated with the skyline KC approach. The gray shaded areas in all panels are the distribution of the coalescence times. The death rate curve was fixed to a pre-estimated value for inference with our method.

Figure 9 :

 9 Figure 9: Comparison of the SIR mechanistic KC approach with our new method. The population trajectory was simulated under an SIS model. The sampling procedure assumed a fixed per-capita sampling rate. This figure reads as Figure 8. The death rate curve was fixed to the same pre-estimated value for both methods (see Appendix I).

  0) with probability 1. Therefore, Lemma C.1 with ρ = 1 gives P N (0)|N (T ) = 1 . Then, setting T = t2 -t1 in the formula of Lemma C.1, and changing variables from t to t = t + t1 yields the formula of the present lemma.

Lemma C. 4 .

 4 For a BD process starting at time T before the present, the formulae for the mean and variance of N (t) in backward time are E N (t)|N (T ) = 1 = exp T t r(s)ds E N (t)|N (T ) = n = n exp T t r(s)ds Var N (t)|N (T ) = 1 = exp 2 Var N (t)|N (T ) = n = n exp 2

C. 4

 4 the number of descendants of different individuals existing at time T are independent, we have E N (τ )|N (T ) = n = n exp T τ r(t)dt Var N (τ )|N (T ) = n = n exp 2 Convergence of the relative population size N (t)/n This section gives the proof that, under a BD model with fixed λ(t) and r(t), the relative population size N (t)/n converges in probability to T t r(s)ds as n → ∞. Lemma C.5. Given fixed functions λ(t) and r(t) bounded on [0, T ], the relative population size N (t)/n given N (T ) = n converges uniformly in probability to T t r(s)ds as n → ∞. Proof. As per Bishop (35)'s Theorem 14.4-1, using Bishop's Op(•) and op(•) notation, we have that

  r(t) and λ(t) are bounded on [0, T ], we haveVar N (t) n N (T ) = n = O(1/n)

Lemma D. 1 .Lemma D. 2 . 2 • 1 n 2 • n exp 2 3 .

 1221223 The expected relative population size is given by, ∀n ∈ This lemma's claim follows trivially from Lemma C.4. The variance of the relative population size reaches the following limit Var N Var N (t)|N (T ) = n = Assuming a Bernoulli sampling procedure with sampling probability ρ = ρ 1

  )D(s, t)ds = ρ1B1(0, t)Using Lemma C.1,

Lemma D. 9 .

 9 Given η(g, t) := 1 -p(1) 1 -p(0) with p(k) := P(νgt1 = k), there exist η > 0 and η < 1 such that ∀g ∈ [0, g1] and ∀t ∈ [g, T ] η ≤ η(g, t) ≤ ηProof. By Lemma D.5, for g ∈ (0, g1]η(g, t) = B(t -g, t) 1 + B(t -g, t) with B(t -g, t) First we will show that ∃ Ď > 0, ∃ D < ∞ such that ∀g ∈ (0, g1], ∀t ∈ [g, T ] and ∀s ∈ [0, t] Ď ≤ D(s, t) ≤ D (13)Denote ř := inf t∈[0,T ] r(t) and r := sup t∈[0,T ] r(t). Both ř and r exist since r(t) is bounded on [0, T ].The following will hold ∀g ∈ (0, g1], ∀t ∈ [g, T ] and ∀s ∈ [0, t].We have D(s, t) ≥ exp t s řdu = exp ř(t -s) If ř < 0, then exp ř(t -s) ≥ exp(řT ) = exp(-|ř|T ) If ř ≥ 0, then exp ř(t -s) ≥ exp(0) ≥ exp(-|ř|T ) Hence, D(s, t) ≥ exp(-|ř|T ) =: Ď > 0

  is bounded on [0, T ] Introduction to Theorem F.1. Consider the discrete-time ancestral process R( t/g ) t∈[0,T ] of the conditional scaled BD. Because of the condition Z(0) = z0, R(0) = (i, i)|i ∈ {1, . . . , z0} =: ∆ Let K(t) t∈[0,T ] denote the ancestral process of the Kingman coalescent with θ(t) = u(t) 2λ 1 (t) , restricted to t ∈ [0, T ], with initial state K(0) = ∆. Theorem F.1. R( t/g ) t∈[0,T ] converges to K(t) t∈[0,T ] as n → ∞ in terms of finite-dimensional distributions.

Condition 1 • Condition 2 • Condition 3 1 y (m - 1 EE• Condition 4

 123114 For all x ∈ [0, Λ(T )] lim n→∞ Λ -1 (x)/g m=1 cn(mg) = x For all x ∈ [0, Λ(T )] lim n→∞ sup m≤ Λ -1 (x)/g cn(mg) = 0 which is implied in our case by the following stronger condition (given that cn(t) is defined continuously on [g, T ]): lim n→∞ sup t∈[g,T ]cn(t) = 0 For all x ∈ [0, Λ(T )] and for all k ∈ N>0 0 = lim n→∞ sup m≤ Λ -1 (x)/g νg,mg,i(νg,mg,i -1)ν k g,mg,i |N (m -1)g = y (m -1)g , N mg = y mg which is implied in our case by the following stronger condition. For all k ∈ N>0: νgti(νgti -1)ν k gti |N (t -g) = y(t -g), N (t) = y(t) For all x ∈ [0, Λ(T )]

1 / 2 =

 12 O(1) = o(n) which concludes the proof for x ∈ (0, T ]. Then, for x = 0, we trivially have that Var N (0) n N ∈ Ωn = Var N (0) n N (0) = y(0) = 0 By Lemma C.4, we have that Var N (x)|N (αn) = y(αn) Noticing that αn -x ≤ g = O(1/n) by definition of αn, we have that 2 αn x r(s)ds ≤ 2 αn x rds = 2r(αn -x) = O(1/n)with r := sup t∈[0,T ] r(t), so that exp 2αn x r(s)ds = 1 + O(1/n) = O(1). Similarly, for s ∈ [x, αn] (implying that αn -s = O(1/n)), we have ř(αn -s) = O(1/n) with ř := inf t∈[0,T ] r(t), so that exp -αn s r(u)du = 1 + O(1/n) = O(1). αn -x)2 λ1O(1) = nO(1/n)O(1) = O(1)with λ1 := sup t∈[0,T ] λ1(t). Also, Given that y(αn) = O(n), we thus conclude that Var N (x)|N (αn) = y(αn) = O(n)O(1) O(1) + O(1/n) = O(n)

2 N

 2 (αn) = y(αn) y(αn)V (g, αn) • P N (αn -g) = y(αn -g)|N (αn) = y(αn)1 2

  N (x) N (αn) = y(αn) = O(n) Using Lemma C.4, we have E N (x) N (αn) = y(αn) -nu(x) = y(αn) exp αn x r(s)ds -nu(x)

2 / ν(b k ) 2 .

 22 Denote {b k } k=1,...,B the times of births as per ν (i.e. all the time points at which ν(t) decreases), with b k the time of the k-th birth from present to past, and B the total number of births in [0, T ]. Define b0 = 0 and bB+1 = T . For a given sampling times function si(t), denote γ ik a random variable which is 1 if a coalescence happens at time b k and 0 otherwise. Denote Γ ik = k-1 j=1 γ ik and define Γi0 = 0. γ ik is Bernoulli distributed with probability s i (b k )-Γ ik The γ ik 's are drawn iteratively for k = 1, . . . , B. Then, ci(t) is constructed as the step function ci(t) = Γ ik for t ∈ [b k , b k+1 ].

t 1 0

 1 m(t) -λ(t) dt exp -) -λ(s) ds I.4 Parametrization of the skyline KC method

1 ν

 1 tj) Ñ (tj)x Ñ (tj) 2 1 + o(1) + o(x 2 )

= O(x 4 )=

 4 ) -B(tj) = O(x 4 ) t/x -1 j=0 λ(tj) Ñ (tj)x + o(x) = O(x 4 ) t/x -1 j=0 λ(tj) Ñ (tj) Ñ (tj) 2 x + o(x) O(x 4 )O(1/x)O(1/x) = O(x 2 )Putting the two terms back into Eq. (24) yields -ln P (t) =

  ) = -λ(t) Ñ (t) + μ(t) Ñ (t) Ñ (t) Ñ (t) = -λ(t) + μ(t)

  -Ñ / Ñ ) = θ (0)are equivalent to the model with Ñ (0) = exp P (0) . Solving the previous equation for Ñ

Figure 12 :

 12 Figure 12: Equivalent models for the datasets of Figure 9. This figure reads as Figure 11. We see that, contrarily to the example of Figure 11, here, considering the equivalent models does not lower precision, except in the very recent past.

  

  

  

  

  the initial n individuals, and keeping track of which individuals give birth and die, induces the complete forest, that is a totally ordered set of n ordered time trees. Removing from the complete forest the vertices and edges that do not have any descendants in the sample then induces the sample forest, denoted Ψ := (Γi)i=1,...,n, where Γi is the ordered time tree generated by individual i, whose leaves are individuals in the sample. Note that Γi may be the order-zero tree if individual i has no descendants in the sample.

Labelling the Z(0) sampled individuals and keeping track (from the present to time T ) of the ancestry relationships among sampled individuals and their ancestors induces the random ancestral process, denoted R := (R(t)) t∈[0,T ] . R(t) is the equivalence relation which contains the pair (i, j) if and only if the i-th and the j-th sampled individuals have a common ancestor at time t. The initial state is R(0) = (i, i)|i ∈ {1, . . . , Z(0)} . Notice that R can be represented as a forest of |R(T )| leaf-labelled time trees.

  ) . Drawing w I(t) gives the time t = t -w I(t) when the next event happens. If t < 0, the simulation is finished. If t > 0, then the type of event e(t ) is a Bernoulli random variable with probability λ I(t) I(t)/η I(t) that the event is a birth. Looking forward in time, if e(t ) = 1, then I is increased by 1 at time t , and if e(t ) = 0, I is decreased by 1 at time t . Starting at time T from the initial condition I(T ) and proceeding by drawing births and deaths as outlined above yields a complete population trajectory on [0, T ], denoted ν.Simulation of sampling timesIn the comparisons of Figures8 and 9, sampling times were drawn by assuming a constant per-capita sampling rate ψ. Individuals were placed back into the population after sampling. Hence, the rate-based sampling procedure is a time-inhomogeneous Poisson point process, which can be simulated as follows. Denote t k , with k = 1, . . . , d the time of the k-th event (birth or death) from present to past as per ν (i.e. the set {t k } k=1,...,d are the points of discontinuity of ν), and define t0 = 0 and t d+1 = T . In [t k , t k+1 ], the population size is constant and equal to ν t k+1 . Hence, in [t k , t k+1 ], the total sampling rate is constant and equal to Ψ k = ψν t k+1 . Therefore, the waiting times in between sampling events in [t k , t k+1 ] are exponentially distributed with rate Ψ k . Waiting times are drawn iteratively in [t k , t k+1 ] until the sum of all waiting times is greater than t k+1 -t

k , rejecting the last waiting time. The procedure is repeated for k = 0, . . . , d, yielding a set {xj}j of sampling times. Then, s(t) is constructed as the step function that increases by one when t ∈ {xj}j. We repeated the procedure 100 times, yielding {si(t)}i=1,...,100.
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Appendix

After introducing the definitions and notations needed for our proofs in Section A, we present in Section B an overview of the proof of the central result of this paper (Theorem F.1). Sections C through to E derive the proofs needed for Theorem F. 1. In Section C we provide general results about the BD. In Section D we provide results about the scaled BD (i.e. parametrized such that λ(t) is proportional to n). In Section E, we provide results about the scaled BD, conditioned on Z(0) = z0 and on the population process taking certain values. Section F provides the formal statement of the central result of the paper, along with its proof. Then, Section G gives the proof of the convergence in probability of N (t)/n to u(t), for the conditional scaled BD.

The rest of the appendix gives the details of the phylogenetic inferences carried out with the BDS, the skyline KC approach, the SIR-based mechanistic approach, and our new method. Section H gives details about the data simulation procedure. Section I gives details about the inference methods. Finally, Section J provides details about our method.

A Preliminaries

The following functions will be used frequently:

We use the O(•) and o(•) notations as follows (where y may represent several variables).

• h(x, y) = O(f (x)) as x → 0 (resp. x → ∞) means that there exist a constant Then we have A(g, t) = D(t -g, t)

1+B(t-g,t) 2 = D(t -g, t)

V (g, t) = D(t -g, t)

1+B(t-g,t)

1 -B(t-g,t)

Lemma D.6. Defining ν0t1 as the random variable with distribution

ν0t1 has distribution

with mean A(0, t) and variance V (0, t) given by

Proof. We note that, since λ1(t) and r(t) are continuous on [0, T ], Therefore, by the mean-value theorem, ∃s ∈ [t -g, t] such that

Denote λ1 := inf t∈[0,T ] λ1(t) and λ1 := sup t∈[0,T ] λ1(t). Given that λ1(t) is bounded and > 0 on [0, T ], we have 0 < λ1 ≤ λ1 < ∞.

We have ∀g ∈ (0, g1] and ∀t ∈ [g, T ]

From this it follows that ∀g ∈ (0, g1] and ∀t ∈ [g, T ]

For g = 0, using Lemma D.6, we have η(0, t)

Hence, setting

we obtain the lemma's claim.

Lemma D.10. There exists V > 0 such that ∀g ∈ [0, g1] and ∀t ∈ [g, T ]

V (g, t) ≥ V

Proof. The following will hold ∀g ∈ (0, g1] and ∀t ∈ [g, T ].

By Lemma D.5, we have

Proof. First we show that

From Lemma D.13 we have ϕ(0, t, s)

We have

By Lemma D.9, ∀t ∈ [0, T ], 0 < η0 < 1, which immediately implies that p0(1) > 0. These then imply that ∀s ∈ (0, π) ∂ ∂s ϕ(0, t, s) 2 < 0 so that, ∀t ∈ [0, T ], ϕ(0, t, s) 2 strictly decreases with s on [0, π], from a maximum at s = 0, which is easily verified to be 1. We thus have ∀t ∈

Given that λ1(t) is continuous on [0, T ], then ϕ(0, t, l) 2 is continuous on [0, T ]. Consequently, by the extreme-value theorem, there exists τ ∈ [0, T ] such that

Now we proceed to the demonstration of the lemma's claim. We recall that by Lemma D.13 ϕ(g, t, s)

with p(r) := P(νgt1 = r) and η = η(g, t) := 1 -p(1) 1-p(0) .

where we have used the fact that ∀i

since individuals are exchangeable.

Notice that, since the distribution of νgt1, y(t) and y(t -g) are all defined continuously for t ∈ [g, T ], cn(t) is also actually defined continuously on [g, T ]. Thus, for simplicity, we shall consider below that the function cn(t) has a continuous domain, although ultimately we are only interested in the discrete domain t ∈ {g, 2g, . . . , T }.

E.2 Limit as n → ∞ of the discrete-time pairwise coalescent rate of the conditional scaled BD

We define the "discrete-time pairwise coalescent rate" as

which measures the (average) density of a coalescence event over [t -g, t].

The purpose of this section is to derive the "limiting coalescent rate", defined as

which will be central for showing that the conditional scaled BD converges to the Kingman coalescent.

Specifically, we will show that (Lemma E.8 below)

and that sup

Preliminary results

In this section we derive some results necessary for studying the limit of hn(t).

Lemma E.1.

as g → 0.

Proof. Obviously,

We will show that the RHS of this inequality is O( √ g) as g → 0, hence proving the first claim of the present lemma. By Doney's Lemma 3 in (51),

where C is an absolute constant, where X(g, t) := E |νgt1 -Eνgt1| 3 and where

4X(g,t) and with ϕ(g, t, s) the characteristic function of νgt1.

Multiplying by y(t) V (g, t), we obtain

We define

Lemma E. [START_REF] Kingman | On the genealogy of large populations[END_REF].

and note that t,g , t-g,g ∈ [0, 1).

Recalling that u(t) is bounded on [0, T ], we have

as n → ∞. Hence,

Lemma E. [START_REF] Nee | Birth-death models in macroevolution[END_REF].

as n → ∞.

Proof. By Theorem E.5, we have that

, which writes equivalently

as n → ∞. Using Lemma D.6, we obtain

as n → ∞.

Lemma E.8.

as n → ∞, with

Proof. Using the facts that u(t) is bounded and > 0 and that λ1(t) is bounded on [0, T ], and using Lemmas E.6 and E.7, we have

as n → ∞.

G Convergence of the relative population size of the conditional scaled BD to the function u(t)

Theorem G.3 below shows that, under the conditioned scaled BD, the relative population size N (t)/n converges in probability to the function u(t) as n → ∞. This gives a meaning to the function u(t): it is the relative population size of the conditional BD when population size is large. This meaning is particularly useful for interpreting the parameter u(t) in statistical inference with the conditional BD, as the equivalence u(t) ≈ N (t)/n can be assumed for sufficiently large n.

Lemma G.1.

as n → ∞.

Proof. In this proof, all O(•)'s are as n → ∞.

For some fixed g ∈ (0, g1], for any t ∈ {g, 2g, . . . , T } and for all x ∈ (t -g, t], because of the Markov property of the BD, we have that N (x)|N ∈ Ωn = N (x)|N (t -g) = y(t -g), N (t) = y(t) , and therefore

By the law of total variance, we have

so that

We then have

Hence,

Eq. ( 19) holds for some fixed g ∈ (0, g1], for any t ∈ {g, 2g, . . . , T } and for all x ∈ (t -g, t]. However, for some fixed time x ∈ [0, T ], as n → ∞ and g → 0, eventually x ∈ (t -g, t]. Therefore, for some fixed time x ∈ (0, T ], we define αn = αn(x) := min t ∈ {g, 2g, . . . , T }|t ≥ x so that ∀n ∈ N>0, x ∈ (αn -g, αn] and the following holds ∀n ∈ N>0 and ∀x ∈ (0, T ]

We then write

By Lemma D.12, we have that V (g, t) = O(1), and also y(t) = O( √ n). In the following of this proof, we will show that ∀x ∈ (0, T ]

and that y(αn)V (g, αn) • P N (αn -g) = y(αn -g)|N (αn) = y(αn)

H Simulation procedure

For each comparison of two methods presented in the main text, we simulated 100 datasets, each consisting of a realization z = z(t) t∈[0,T ] of the sample process Z.

A simulation of 100 datasets for one comparison of two methods proceeded in three steps:

1. Simulate a single realization of the population process

ν is a left-continuous step function with unit increments/decrements.

2. Given ν, a set of sampling times is drawn, represented by an increasing step function s(t). The function s(t) represents the cumulative number of samples taken between times 0 and t. If, at time t = x, k samples were taken, then s(t) increases by k at time x. We sample 100 sets of sampling times: {si(t)}i=1,...,100.

3. Given ν and si(t), we draw a set of coalescence times, represented by an increasing step function ci(t). The function ci(t) represents the cumulative number of coalescences between times 0 and t. There cannot be two concomitant coalescences, since our procedure to simulate ν is such that several concomitant births cannot happen. We sample 100 sets of coalescence times, one for each simulated si(t), yielding the set {ci(t)}i=1,...,100.

The i-th realization of the sample process is obtained as zi(t) = si(t) -ci(t).

Simulation of a population trajectory In all three comparisons presented in

the main text, we simulated the population process of an SIS model. The deterministic SIS model obeys the following system of ODEs (in backward time):

where S(t) is the number of susceptibles, I(t) is the number of infectious individuals, and X = S(t) + I(t) is the size of the whole population, assumed constant. β is the transmission rate and µ the recovery rate. Because samples of the pathogen are taken only from the population of infectious individuals, the number of infectious individuals represents our population process: I(t) ≡ N (t). Because S(t) = X -I(t), obviously, the above system of ODEs can be reduced to a single equation. We thus have:

The stochastic version of the SIS model is obtained by noting that new infections arise at rate λ I(t) = β X-I(t)

X

and infections terminate at rate µ, per infectious individual. Hence, I(t) follows a density-dependent BD model. This model can be simulated using a Gillespie algorithm, proceeding forward in time as follows. At time t, the total rate solution for I(τ ) in forward time, that is It(t) = I(T -t) in backward time. The phylogeny being made up of only infectious individuals, It(t) is the equivalent of what we call "population size" in this paper:

With the SIR-based mechanistic approach, we parametrize θ as

with k a proportionality constant.

The parameters of the SIR-based mechanistic approach are X, β, µ, T and k. We found that X, T and k are at best weakly identifiable, so we fixed k = 1. Furthermore, to allow a fair comparison with our method, we fixed µ to the mean of {µi}i=1,...,5. This way, both methods are informed about the true death rate. There results a model with three free parameters: X, β and T .

J Details on our new method J.1 Coalescence rate of BD-type models

Let ν be a realization of the population process N and β be the corresponding curve of the cumulative number of births. Define x := sup s∈[0,t] 1/ν(s) so that 1/ν(s) = O(x) as x → 0. Every use of the O/o notation in this section is as x → 0.

We consider continuous and differentiable functions B and Ñ as phenomenological representations of β and ν, respectively. We define the realized birth rate λ = B / Ñ . We make the following assumptions, ∀s ∈ [0, t]:

The first two assumptions mean that we represent the realizations β and ν by some phenomenological functions B and Ñ that are proportionally closer to β and ν as we consider greater population sizes (as x → 0). The third assumption implies that sup s∈[0,t] ν(s)/ inf s∈[0,t] ν(s) is bounded, and therefore the same is true for Ñ . The fourth assumption means that Ñ , and therefore ν, does not vary faster than an exponential function. The fifth assumption indicates that the per-capita birth rate is at most of the same order as the population size.

Hence,

Hence,

) and that ln(1 + z) = z + O(z 2 ), we have

We now deal with the first term of the RHS of the previous equation. 

We also have that

We thus have

Then, by Taylor's theorem we have that

Our method is a KC with

The function θ is known to be identifiable. However, there are infinitely many models, each defined by a triple μ, λ, Ñ (0) , that yield the same θ. All the models yielding the same θ are called "equivalent" (they yield the same KC likelihood, for any dataset), and an equivalence class is defined by a function θ. For a given dataset with Z(0) = z0, the equivalence classes of our model are the same as the equivalence classes defined by Louca and Pennell [START_REF] Louca | Extant timetrees are consistent with a myriad of diversification histories[END_REF] for the BD model with Bernoulli sampling.

Specifically, consider a Bernoulli-sampled BD model, with birth rate λ(t), death rate µ(t) and sampling probability ρ. As per Eq. ( 2) in [START_REF] Louca | Extant timetrees are consistent with a myriad of diversification histories[END_REF], the deterministic population size is defined as

We can then define θ for a Bernoulli-sampled BD model as

Then, as per Eqs. [START_REF] Möller | Impact of the tree prior on estimating clock rates during epidemic outbreaks[END_REF][START_REF] F L Condamine | Macroevolutionary perspectives to environmental change[END_REF] in [START_REF] Louca | Extant timetrees are consistent with a myriad of diversification histories[END_REF], we have

where M is the "deterministic LTT plot", λp is the "pulled birth rate", and E the probability that a lineage existing at time t has no sampled descendants.

We then obtain

Then, as per Eq. ( 7) in [START_REF] Louca | Extant timetrees are consistent with a myriad of diversification histories[END_REF],

Future studies will be necessary to determine if the set of equivalent models are very different from a given estimated model with Ñ = exp P . In the meantime, we present in Figures 11-13 below the equivalent models for the analyses carried out in the main text, and note that the equivalent models differ significantly from the estimated models only in the time periods where few coalescences were observed.

Finally, for future uses of our method, we note that an estimate of either Ñ or λ at a single time point completely identifies the model. 

K BDS inference with correct sampling rate

In Figure 10 of the main text, we showed the result of fitting the BDS with a constant sampling rate ψ(t) = ψ to datasets where the samples were taken at three determined points in time. The BDS performed very badly on such datasets, and we reckon that this is due to the fact that the simulated sampling procedure is at odds with the fitted sampling procedure. In Figure 14 below, we show the results of fitting the constant-sampling-rate BDS to datasets simulated with a constant sampling rate (i.e. the sampling procedure assumed in inference is the correct one). We see that indeed the BDS performs accurately in this case. The simulated population trajectory is the same here as in Figure 10 in the main text. The difference is that here the sampling procedure assumed in inference (i.e. a constant sampling rate) is the one used for simulations. We observe that the BDS performs well when it assumes the correct sampling procedure.