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Abstract: Many devices, including touchscreens and robotic hands, involve frictional contacts. 

Optimizing those devices requires fine control of the interface’s friction law. We lack systematic 

methods to create dry contact interfaces whose frictional behaviour satisfies preset specifications. 

We propose a generic surface design strategy to prepare dry rough interfaces that have predefined 

relationships between normal and friction forces. Such metainterfaces circumvent the usual 

multiscale challenge of tribology, by considering simplified surface topographies as assemblies of 

spherical asperities. Optimizing the individual asperities’ heights enables specific friction laws to 

be targeted. Through various centimeter-scaled elastomer-glass metainterfaces, we illustrate three 

types of achievable friction laws, including linear laws with a specified friction coefficient and 

unusual non-linear laws. This design strategy represents a scale- and material-independent, 

chemical-free pathway toward energy-saving and adaptable smart interfaces. 

 

One-Sentence Summary: Multicontact interfaces are designed to provide on-demand friction 

coefficients and meet unnatural friction specifications. 
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Main Text:  

Despite centuries of investigations, a comprehensive understanding of friction is still lacking. For 

instance, predicting from first principles the value of the friction force, F, of a given dry contact 

interface remains out of reach, mainly because of the multiscale character of surfaces and the multi-

physics nature of contact interactions (1). Thus, time- and resource-consuming experimental tests 

remain necessary to calibrate the frictional behavior of a contact interface as soon as any change 

is brought to the material pair, shape of the solids, loading conditions, surface finish or 

environmental conditions. This inability to master friction is a major obstacle to the optimization 

of devices whose function relies on dry contact interfaces. For soft interfaces, these devices include 

sport accessories [e.g., racket coatings (2), shoe soles (3, 4)], robotic grasping devices (5–7), haptic 

feedback tools for virtual reality (8), and conveyor belts (9). 

At the present time, surface functionalization is the main approach that is followed worldwide to 

provide contact interfaces with improved frictional capabilities (1, 10). It often consists of creating 

a certain surface topography at various length scales or adding a homogeneous or heterogeneous 

thin coating at the solid surface. Unfortunately, despite many successes in a variety of specific 

cases (11–15), this approach is still based on trial and error. It does not offer a general, systematic 

design strategy to convert a set of frictional specifications into an actual interface that offers the 

expected behavior. By circumventing the main pitfalls that make it difficult to understand friction 

in natural interfaces, we propose and validate a general design strategy to prepare multicontact 

interfaces with on-demand frictional features. 

 

RESULTS 

General interface design strategy 

To bypass the multiscale and multiphysics challenges of friction along rough interfaces, we 

propose a compromise between simplicity and richness in the surface description, by considering 

flat-flat contact interfaces between a smooth and a rough surface. Once the material pair is fixed, 

the designable feature of the interface is the topography of the rough surface, which is built as an 

ensemble of individual microasperities, with both well-controlled geometrical properties and 

calibrated contact and friction behaviors against the smooth counter surface. The richness of the 

emerging macroscale behavior stems from the countless possible combinations of geometrical 

properties of all individual asperities. 

Just as the microstructures of the materials can be engineered to provide metamaterials with 

macroscale properties that are rarely found in nature [see (16–19) for mechanical metamaterials], 

we propose a design strategy (Fig. 1) to prepare contact interfaces with complex predefined 

frictional behavior. We denote these as metainterfaces. The strategy starts with a target friction 

law expressed as the macroscopic relationship Ftarget(P) between the normal load P applied to the 

interface and the target macroscopic friction force Ftarget. This law is the input of an inversion step, 

the output of which is a geometrical description of the surface’s topography, including the number 

of necessary asperities and the list of their individual properties (shape, size, height, position). The 

inversion is based on two main ingredients. First, the indentation and frictional behaviors of a 

single microcontact are obtained through a preliminary calibration (top-right illustration in Fig. 1) 

which may, but need not, be captured by an existing tribological model. Crucially, those calibrated 

behaviors contain any specific effect due to the manufacturing process, interface physico-

chemistry or surface contamination. Second, a suitable asperity-based friction model, able to 
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predict the global frictional behavior as the collective response of the population of asperities, is 

identified. Depending on the expected relevant physics, the model can range from analytical (20–

22) to numerical (23), through artificial intelligence [e.g., by extending the approaches of previous 

work (24, 25) to asperity-based descriptions of surface topography]. Based on the inverted 

asperities’ geometries, a corresponding sample can be manufactured. The material, and 

characteristic size of the prescribed asperities contribute to the selection of the relevant 

manufacturing method. Finally, shearing tests against the smooth counter surface enable 

determination of the resulting friction law, F(P), and, through direct comparison with Ftarget(P), 

assessment of the overall reliability of the workflow. Discrepancies with respect to the target 

friction law may arise from an incomplete calibration of the single asperity behavior, incorrect 

assumptions in the friction model, or manufacturing imperfections. 

 

Fig. 1. Flowchart of the design strategy. Shown at the top right is an illustration of a single 

microcontact submitted to a normal force p and a friction force f. An illustration of a metainterface 

submitted to normal and friction forces, P and F, is shown at the middle right. Dark gray ellipses 

represent real contact regions. The topography is made of N asperities, each with specifically 

designed geometrical properties (here spherical caps of height hi and curvature radius R). At the 

bottom right is an image of a typical centimetric elastomer-based realization of such a textured 

sample. Photographs of metainterfaces can be found in Figs. 3 to 5. 
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Applying the strategy to centimetric elastomer/glass interfaces 

Although the generic flowchart shown in Fig. 1 is expected to be applicable to a large variety of 

frictional interfaces, the following scientific and technological choices represent only one example 

of how our design strategy can be implemented. First, we chose to work with contacts between 

polydimethylsiloxane (PDMS) and glass (26), a widely used pair of materials in contact mechanics 

and friction studies (1,11). The behavior of sheared PDMS-glass, single sphere-plane contacts has 

been extensively characterized recently (27–30), which provides useful insights into the single-

asperity laws that should be used in the friction model. In particular, the friction force, F, is found 

to be proportional to the contact area, A, through F=σA, where σ is the frictional strength of the 

PDMS-glass interface. Predicting the macroscale friction force F is thus substantially simplified 

because, for a given σ, predicting F reduces to predicting the total contact area A of all 

microcontacts. 

Second, as illustrated in Fig. 1, we chose to use a square lattice of 64 asperities as spherical caps, 

with a common radius of curvature R=526±5 µm and distributed summit heights hi. We obtained 

them by molding a PDMS slab onto an aluminum mold prepared with deterministic spherical holes 

using a sphere-ended cutting tool in a micro milling machine (26) (for a typical image of a PDMS 

textured sample, see Fig. 1). This method of preparing populations of spherical PDMS asperities 

has been successfully applied in the literature (31–33), but not used to design interfaces with 

predefined friction laws, as is done in this work. We have calibrated the indentation and shear 

behavior of single such microcontacts (26). Their normal indentation is well-captured by the 

classical Hertz model of a linear-elastic sphere-rigid plane contact (34) (Fig. 2B), with a composite 

elastic modulus E∗ (𝐸∗ =
𝐸

1−𝜈2
, where E and ν are the Young’s modulus and Poisson’s ratio of the 

PDMS, respectively). Consistent with previous work (27–30), the contact region is initially 

circular with an area a0 but decreases anisotropically under shear, by ∼10 to 15%, down to an area 

af (Fig. 2A) at the onset of sliding (static friction). The ratio B=af/a0 thus represents the fraction of 

the initial contact area that remains when the contact is sheared and just about to slide. We found 

B to be independent of a0 (Fig. 2C). We also confirmed the proportionality between the contact 

area and static friction force, f=σaf (Fig. 2D). 

The third choice we made was the type of friction model to be inverted. For the present proof of 

concept, we found that a very simple linear-elastic asperity-based model was sufficient. We 

considered N spherical linear-elastic asperities with common curvature radius, R, and composite 

elastic modulus, E∗, but distributed summit heights, hi. This population of asperities is brought into 

contact with a rigid smooth plane, forming a number of microcontacts, which are each assumed to 

obey both Hertz’s model (34) under pure compression, and the calibrated friction behavior under 

shear. Microcontacts are assumed to be independent [see (26) for justification], such that their 

individual in-plane locations become irrelevant. The area of the ith microcontact is expressed as 

𝑎0,𝑖 = π𝑅(ℎ𝑖 − δ) if hi≥δ and a0,i=0 if hi<δ, where δ is the separation between the rigid indenting 

plane and the base plane that supports the asperities. The macroscopic quantities are simple sums: 

𝐴0 = ∑ 𝑎0,𝑖
𝑁
𝑖=1 ,  𝐴f = ∑ 𝑎f,𝑖

𝑁
𝑖=1 , 𝑃 = ∑

4𝐸∗

3π3 2⁄ 𝑅
𝑎0,𝑖
3 2⁄𝑁

𝑖=1  (Hertz’s model), and 𝐹 = ∑ 𝑓𝑖
𝑁
𝑖=1 = σ𝐴f, 

where Af = BA0. The model parameter values were experimentally calibrated (26). Inverting the 

above friction model consists in determining a suitable list of heights hi such that the predicted 

friction law satisfies specifications set a priori. 
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Fig. 2. Tribological calibration of single microcontacts. Illustrations for PDMS batch 1. (A) 

Images of a microcontact under normal load p=0.061 N with no shear, initial area a0 (dark central 

region) (left) and at the onset of sliding, area af (tangential force applied upward in the image 

plane) (right). (B) a0 versus p2/3, for three indentation experiments using three different samples 

(data points). The solid line is Hertz’s prediction 𝑎0 = π(
3𝑅𝑝

4𝐸∗
)
2/3

 for R=526 µm and E*=1.36 MPa 

[see (26) for information about how those values were determined]. (C) Typical evolution of af as 

a function of a0 (data points). The solid line is the linear fit showing the existence of a constant 

area reduction ratio B=af/a0. (D) Typical friction force f versus af (data points). The solid line is 

the linear fit showing the existence of a constant friction strength σ=f/af. Error bars are ±5 mN for 

p, ±(1 mN+0.01f) for f, and ±2.8√π𝑎 × 10−6 m² for a0 and af. 

 

Interestingly, in the model, the friction law F(P) can be rescaled as 
𝐹

𝜎𝐵
 versus 

𝑃

𝐸∗
, where the function 

relating 
𝐹

𝜎𝐵
 and 

𝑃

𝐸∗
 depends only on the geometrical parameters of the asperities, R and hi, and not 

on the material parameters, σ, B and E∗. Thus, in the following three examples, we illustrate the 

success of our design strategy using the material-independent relationship 
𝐹

𝜎𝐵
(
𝑃

𝐸∗
). This rescaled 

friction law characterizes solely the effect of surface topography, which is the actual interfacial 

quantity on which the design is performed. 
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Building a friction law from operating points 

 

Fig. 3. Designing an interface that reaches three preset frictional operating points. The green, 

blue, and red disks represent targeted operating points. The black points represent measured 

friction law 
𝐹

σ𝐵
 versus 

𝑃

𝐸∗
. Error bars are calculated as described in (26). The solid line is the model 

prediction. Dashed lines are continuations of the two first branches of the solid line if the 

subsequent height levels of the asperities had not been populated. The top-left inset shows a full 

image of the unsheared contact under P=0.92 N. Asperities at each of the three height levels 

(h1>h2>h3) are circled with the same color as their associated operating point (main panel). Scale 

bar is 1.5 mm. The bottom-right inset shows a magnified view of the real contact of nine 

microcontacts (the region outlined by the dashed line in the top-left inset).  

 

For our first example, we consider specifications in terms of a list of operating points (
𝑃𝑖

𝐸∗
,
𝐹𝑖

𝜎𝐵
) 

through which the friction law 
𝐹

𝜎𝐵
(
𝑃

𝐸∗
) must pass. An infinity of suitable lists of asperity heights hi 

exist as the solution to this problem, each giving a different shape of the friction law between 

operating points. For pedagogical purposes, we adopted an inversion strategy (26) in which each 

operating point is reached using a single level of asperity height (fig. S1). To pass from the first 

(trivial) operating point (0,0) to the next, one evaluates the maximum number of asperities with 

identical heights (first height level) required to approach the operating point from below and adds 
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a single adjustment asperity whose height is selected to reach exactly the desired operating point. 

The procedure is repeated as many times as the number of additional operating points. As a result, 

upon normal loading, a prescribed number of new asperities enter the contact as soon as the 

previous operating point is reached. We applied this procedure to design a metainterface with a 

predicted three-branched friction behavior passing through three non-aligned operating points 

(Fig. 3). Our measurement points delineate a friction law that closely approaches the three target 

friction forces, to better than 5% (2.5% for the first two points). This agreement shows that the 

design strategy can be used successfully to prepare real-life metainterfaces that target a non-trivial 

list of friction forces. 

The latter design strategy can be extended to an arbitrary number of operating points (although 

sufficiently smaller than the number N of available asperities), opening the way to the design of 

interfaces with friction laws defined by many operating points. We expect that inversion 

procedures that are more versatile than the pedagogical one we present will be developed, for 

instance, those that invert not only hi but also other geometrical quantities such as the curvature 

radius of each asperity. 

 

Specifying the friction coefficient at a constant material pair 

For our second example, we acknowledged that the most classical descriptor of the frictional 

properties of an interface is the value of its friction coefficient, µ. Commonly considered to be a 

characteristic of a pair of materials in contact, the friction coefficient does not relate to a particular 

operating point but rather to the global shape of the friction law. Indeed, unlike the curve shown 

in Fig. 3, in most natural or human-made interfaces, the friction law F(P) is found to be linear 

[Amontons-Coulomb friction (1, 35)], with µ being the slope of the law. Hence, we targeted linear 

friction laws with tunable slopes. 

For surface topographies made of spherical asperities that obey Hertz’s indentation law, as in our 

metainterfaces, a statistical framework relating the contact area A0 to the normal load P exists [see 

Greenwood and Williamson’s model (20)]. This framework predicts a linear A0(P) relationship 

when the asperities’ heights, hi, follow a probability distribution that is exponential (e-h//, where 

 is the scale parameter of the exponential). We adapted this model to account for the existence of 

a maximum asperity height hm due to the finite number of asperities, and extended it to predict 

linear-like friction laws [details in (26)]. In particular, we derived the value of the slope of 
𝐹

σ𝐵
(
𝑃

𝐸∗
) 

for large P: 𝑚 = √
π𝑅

𝜆

1−e−𝑥

erf(√𝑥)−
2

√π
√𝑥e−𝑥

, where x=hm/. m is a rescaled estimator for the friction 

coefficient of the interface (𝑚 ≈
𝐸∗

σ𝐵
μ). 

For illustrative purposes, we fixed R and hm and we targeted two different slopes m. Using the 

above expression of m, we identified the two λ that were suitable to generate two metainterfaces, 

each with one of the target slopes (26). The two friction laws that we obtained are linear and their 

slopes match the predictions to better than 2.1% (Fig. 4). This agreement validates that our design 

strategy quantitatively enables the prescription of the slope of a linear friction law [after a nonlinear 

part at small P that is due to the finite value of hm/λ and is responsible for a nonvanishing intercept; 

see (26)]. The slopes m that we achieved for the rescaled friction law 
𝐹

σ𝐵
(
𝑃

𝐸∗
) differ by a ratio of 

1.42 (1.60 for the friction coefficients μ ≈
σ𝐵

𝐸∗
𝑚). For a discussion about the range of achievable 
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friction coefficients, see (26). We emphasize that the results provide a practical way to tune the 

friction coefficient of a contact interface by manipulating the surface topography only, that is, 

without bringing any change to the bulk materials or physicochemistry of their surfaces. 

 

Fig. 4. Specifying the friction coefficient at a constant material pair. Experimental friction laws 

(data points) of two metainterfaces with exponential-like distributions of asperity heights (see table 

S1 and (26)). Error bars are as described in Fig. 3. Lines are linear fits of the data [over the last 12 

(7) points for the blue (red) data]. The red and blue shaded regions around the lines represent the 

68% confidence interval on the linear regression. The fitted slopes mf of the rescaled laws, 

6.73±0.22 (red) and 9.53±0.25 (blue) [which correspond to friction coefficients μ ≈
σ𝐵

𝐸∗
𝑚f=1.51 

and 2.41, typical of PDMS-glass rough contacts (27, 29)), match the targeted slopes (dashed lines) 

mt=6.87 (red) and 9.43 (blue), to better than 2.1%. The insets show typical photographs of the two 

metainterfaces under pure normal force P=0.39 N (blue) or 0.93 N (red). Scale bars are 1.5 mm. 

 

Building friction laws with multiple specified linear branches 

For our third example, we show that unnatural, non-linear-shaped friction laws can also be 

designed, enabling one to go beyond Amontons-Coulomb-like friction. As an illustration, we 

targeted a succession of two linear branches with specified slopes, m1 and m2, and a crossover at a 

specified critical normal load, Pc/E∗. We first describe how such a friction law can be obtained 

[see (26)], using a weighted exponential distribution of heights, which generates two sub-
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populations of asperities. We then explain how to invert the law and find a suitable list of asperity 

heights, hi [see (26)]. 

We demonstrate that such bilinear-shaped friction laws can indeed be achieved (Fig. 5) through 

two different realizations. As targeted, both realizations share the same two slopes, which are 

different by a ratio of 1.75, but have two different cross-over normal loads, Pc/E∗
 (ratio 1.94). The 

slopes values are fulfilled by better than 5.2% (10% for the ratio of Pc/E∗), further demonstrating 

experimentally the success of our design strategy in satisfying quantitatively non-trivial friction 

prescriptions. 

 

Fig. 5. Friction law made of two specified linear branches. Two experimental realizations of 

bilinear friction laws (data points), based on height distributions given by eq. 6 (table S2). Error 

bars are as described in Figs. 3 and 4. Solid lines are linear fits of each branch [six (four) first data 

points for the first branch of the blue (red) curve; eight (seven) last data points for the second 

branch of the blue (red) curve]. The fitted slopes mf of both linear-like branches in each curve 

match the target slopes mt (dashed black lines), 7.15 and 12.52, to better than 5.2%. Vertical lines 

show target (Pc,t/E∗, dashed lines) and observed (Pc,f/E∗, solid lines) crossover normal loads (in the 

same colors as the corresponding curves). Insets show typical photographs of the metainterfaces 

that underlie both friction laws under pure normal force P=0.23 N (red) or 0.34 N (blue). The 

frame color refers to that of the corresponding friction law. Scale bars are 1.5 mm. See movie S1 

for a qualitative illustration experiment on analogous metainterfaces.  

 



10 

 

DISCUSSION 

Understanding friction in its generality remains a formidable challenge and has been for centuries. 

Thus, controlling friction based on generic principles is often considered unreachable. Our work 

demonstrates that the friction of dry elastomer-based metainterfaces can actually be finely tuned, 

when the surface topography is designed according to our proposed strategy (Fig. 1). We 

emphasize that our three examples far from exhaust the myriad possible variations around our 

design strategy, which provides a simple framework that enables friction-control opportunities, 

starting from, but not limited to, the universally used friction coefficient. Such topography-based 

control confirms in particular that the static friction coefficient is not a constant for a given pair of 

materials, as predicted by models (22, 23, 36) and observed in stick-slip experiments (37). 

The potentially accessible friction laws F(P) are countless, in terms of both their nonlinear shape 

and the way specifications are expressed (forces, slopes, etc.). Those alternative, richer 

prescriptions likely require the inversion of more topographic features than the individual 

asperities’ heights, including their individual radii of curvature and in-plane locations. Such 

additional degrees of freedom should prompt the development and use of advanced friction models 

(22, 38) and inversion tools (25, 39) that are not limited to the analytical approaches proposed here 

as pedagogical illustrations. 

Static friction is not the only possible target functionality, because the design strategy can 

presumably be adapted to control other topography-related quantities, including interfacial 

stiffnesses and adhesion forces. Such extensions require different types of calibrations of 

individual microcontacts that are dedicated to those target properties. In this respect, note that in 

our experiments, the friction design strategy can be applied indifferently to the static friction force 

(as in Figs. 3 to 5) or sliding friction force [see (26)]. 

Our design strategy should be applicable to other materials pairs than PDMS/glass. For materials 

whose contact remains elastic (see (26) for a criterion), the approach developed in our examples 

should hold, with material changes being accounted for by the rescaled, material-independent 

version of the friction law, 
𝐹

𝜎𝐵
(
𝑃

𝐸∗
). For non-elastic materials, qualitative changes might need to be 

brought to the calibrated microcontact behavior laws, friction model, and related inversions. For 

instance, for elastoplastic contacts, enriched asperity-based friction models are required (40, 41). 

In addition, the plasticity-induced irreversible modifications of the topography will likely affect 

all successive uses of the metainterface such that the friction law is no longer a constant but rather 

a loading-history-dependent function.  

Irreversible changes of the topography may also arise as a result of wear-induced loss of material. 

Upon sliding, various wear mechanisms may occur, including progressive material removal that 

leads to blunted asperities, and asperity-sized debris formation due to fracture processes (42). With 

such alterations of the surface topography, the behavior of metainterfaces will progressively 

deviate from the target one. In this context, evaluating the lifetime of metainterfaces as a function 

of the materials, roughness and loading conditions will be an important step before use in any 

specific engineering application. 

We expect our design strategy to be applicable over a large variety of length-scales. We used 

asperities with a sub-millimetric radius of curvature that was obtained using micromilling. Larger 

asperities can be obtained in the same way or, for example, through 3D-printing (43). For smaller 

scales, other well-established methods might be suitable, from laser ablation for asperities down 

to the micrometer scale (44) to micro- or nanolithography techniques at submicrometer scales (45). 
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In all cases, experimental challenges include the reproducibility of the shapes of asperities (for 

microcontact calibration to be relevant), the level of accuracy of the manufactured asperity heights 

with respect to their prescribed values and the potential misalignment between the two surfaces 

during the friction measurements [see (26) for a discussion of the latter two issues]. 

Many different types of frictional metainterfaces can be developed by using our design strategy, 

constituting a useful toolbox for designers of friction-based devices. By operating in optimized 

conditions, these devices should benefit from increased energy efficiency and lifetime. If further 

equipped with suitable sensors or actuators that bring relevant real-time changes to the topography, 

these metainterfaces could also become an asset in the development of smart systems (46) that 

incorporate functional solid contacts. 
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Materials and Methods 

 

Sample preparation 

All PDMS samples are made of Sylgard 184, prepared according to the cross-linking protocol 

recommended in (47) (24 h at 25°C, demolding, and 24 h at 50°C). The samples are 

parallelepipedic blocks (thickness 7.2 mm, lateral sizes 20 and 20 mm), attached to a glass plate 

(see a typical picture in Fig. 1). The top surface is nominally flat, decorated by a square lattice of 

8×8=64 spherical caps defining the surface asperities. The lattice period is 1.5 mm in both 

directions. The spherical caps are obtained by molding PDMS in an aluminum mold prepared with 

spherical holes, drilled with a sphere-ended tool of nominal radius of curvature 500 µm. Each hole 

has its individual depth, controlled with a precision of ±0.9 µm and setting the height hi of the 

summit of the corresponding spherical asperity. Four additional, deeper holes are drilled to 

generate four spherical asperities with large and identical altitudes, that will be used to align the 

contacting surfaces before mechanical testing (see Materials and Methods section “Mechanical 

testing”). The list of heights of the individual spheres differs for each surface, and is given below 

for each illustration example. The residual arithmetic mean areal roughness (Sa) of the surface of 

the spheres is 1.2 µm. The counter-surface is a smooth glass plate, cleaned first with acetone and 

then with distilled water. 

 

Mechanical testing 

The experiments are performed using the setup described in Fig. 13 of (48), placed in a clean 

room (temperature 20±1°C, humidity 50±10%). Forces are acquired at 10 Hz. The resolution of 

the normal force P is ±5 mN, while it is ±(1 mN+0.01F) for the friction force F. Images of the real 

contact interface are taken as described in (27), using a high-resolution camera (Teledyne DALSA 

Genie Nano-GigE equipped with Qioptics optem fusion objective ; 4.6 to 5.0 µm/pixel, depending 

on the experiment). The contact area of each microcontact appears dark in the images (see Fig. 2A 

and insets of Figs. 3 to 5) and is measured by simple thresholding, the threshold value being 

determined individually using Otsu’s method (49) applied to the image at maximum normal force. 

The PDMS and glass nominally flat surfaces are first aligned to better than ±0.005°, thanks 

to four dedicated asperities with the very same large altitude, placed at the corners of the square 

lattice of asperities, and subsequently cut-off with a blade to enable subsequent testing of the 

metainterfaces. 

Compression tests relating the normal force P to the initial contact area A0 are performed 

under controlled normal indentation, by steps of amplitude 1 µm and duration 40 s. One image is 

taken at the end of each step. Shearing tests enabling to measure the friction force F and the 

associated (reduced) area Af are performed under constant normal force thanks to a feedback loop, 

and using a constant tangential velocity of 0.1 mm/s over a distance of 1 mm. During shear, images 

are taken at a rate of 8.3 frames per second. F is measured as the peak of the curve of tangential 

force versus tangential displacement. Af is the contact area at the same instant. 

 

Calibration of individual microcontacts 

Single microcontact calibration is performed on samples featuring five identical asperities, 

distant by more than 7.1 mm to minimize elastic interactions between them (each contact’s radius 

is always smaller than 400 µm). The individual contact areas and forces are taken as one fifth of 

the total contact areas and total forces. Those individual quantities are denoted a, p and f (lower 

case letters) to distinguish them from their macroscopic counterparts in metainterfaces, A, P and 

F (upper case letters). For each PDMS batch (see below), three normal-indentation–controlled 
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compression tests have been performed (Fig. 2B). As in (50), we fit 
𝑎0
3/4

√6π5/4𝑅
 as a function of 

π1/4𝑝

√6𝑎0
3/4, 

where a0 (see Fig. 2A) and p are, respectively, the contact area and normal force for a single 

microcontact under pure compression, and the curvature radius R=526±5 µm is measured from 48 

different profilometry measurements on different individual spherical asperities. In this form, the 

data is found linear, indicating a good match with JKR’s model of adhesive elastic spherical 

contacts (34). The fitted slope provides an estimate of the composite elastic modulus E*. The 

intercept at origin provides an estimate of the effective adhesion energy. The latter is fitted to be 

about 9 mJ/m2, a value so small that the data is very close to Hertz’s model of adhesionless elastic 

spherical contact (34): for normal loads larger than 0.01 N, the relative difference in contact area 

between JKR’s and Hertz’s models is less than 2%. Thus, in our friction model, we used Hertz’s 

model to relate a0 to p, an assumption which proved to be sufficient for our purposes (see e.g. Fig. 

2B). Two different batches of Sylgard 184 were used for this study, yielding either E*=1.36±0.04 

MPa (batch 1, curves in Figs. 3 and 4 and blue curve in Fig. 5) or E*=1.52±0.01 MPa (batch 2, red 

curve in Fig. 5). 

The shear-induced area-reduction ratio B=0.85±0.01 for batch 1 (resp. 0.92±0.01 for batch 2) 

is fitted on two (resp. one) curves af versus a0, using a linear function passing through the origin 

(Fig. 2C). af is the microcontact area when the friction peak f is reached (see Fig. 2A). Similarly, 

the friction strength σ can be fitted on curves f versus af, using a linear function passing through 

the origin (27) (see Fig. 2D for an example on batch 1). 

 

Note on elastic interactions 

Forces applied on a given surface asperity may affect the altitude of neighboring asperities 

due to long-range deformation of the underlying bulk solid. To assess the potential impact of such 

elastic interactions between microcontacts in our metainterfaces, we have compared our model of 

independent microcontacts to the model of (51), which explicitly incorporates elastic interactions. 

We used the geometrical parameters of our metainterfaces (R, in-plane positions of the spherical 

asperities, maximum individual contact radius), and looked at the relationships A0(P), P(δ) and 

A0(δ), δ being the separation between the indenting rigid plane and the base plane that supports the 

asperities. We found that, while P(δ) and A0(δ) are affected by interactions, the relationship of 

interest in our work, A0(P), is only negligibly affected (less than 2.3% rms difference between 

models with and without interactions, over all cases considered in the present work), in good 

agreement with the conclusions of (51). This is why, in our friction model, we could assume that 

microcontacts are independent. 

 

Model parameter values 

Model predictions use parameter values determined through dedicated experiments. For each 

batch, R, E* and B are those extracted from the preliminary microcontact calibration (see Materials 

and Methods section “Calibration of individual microcontacts”). σ is determined, for each 

metainterface, through friction experiments under normal forces so large that all asperities are 

involved in the contact. In this regime, not shown in Figs. 3 to 5, no new micro-contact is formed 

as the normal force is increased, and thus the friction behavior reduces to the non-linear sum over 

a constant number N of Hertz-like micro-contacts. In practice, in the figures, to rescale the vertical 

axis, we used σ=0.370±0.006 MPa in Fig. 3 ; σ=0.404±0.005 MPa (resp. 0.358±0.006 MPa) for 

the blue data (resp. red data) in Fig. 4 ; σ=0.450±0.004 MPa (resp. 0.225±0.005 MPa) for the blue 

data (resp. red data) in Fig. 5. 
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Uncertainties 

Each parameter has its own uncertainty, which contributes to the global uncertainty on the 

rescaled normal and friction forces. These uncertainties (see error bars in Figs. 3 to 5) are 

estimated, in a Monte-Carlo–like approach, as the standard deviation over 10000 evaluations of 
𝐹

σ𝐵
(
𝑃

𝐸∗
) for each 

𝑃

𝐸∗
. In those calculations, the values of the forces and of the model parameters are 

drawn from gaussian distributions of mean (resp. standard deviation) the values (resp. error bars) 

provided in the present Materials and Methods. 

 

Inversion scheme for friction laws defined by operating points 

To design a metainterface with a friction law that passes through a series of operating points 

(
𝑃𝑖

𝐸∗
,
𝐹𝑖

σ𝐵
) (𝑖 ≥ 1), with Pi+1>Pi and Fi+1>Fi, we propose to use the simplified type of topography 

sketched in fig. S1. For each operating point i, we seek the number ni of asperities needed to 

approach it from below, their common height hi (the ith height level), and the height hi,a of a single 

additional adjustment asperity to pass exactly through the operating point (hi+1<hi,a<hi). In the 

context of the friction model described in the main text, the couple of equations describing the area 

and normal force as a function of the separation between the indenting rigid plane and the base 

plane that supports the asperities, δ, is: 

{

𝐹

σ𝐵
= 𝐴0 = π𝑅[∑ (𝑛𝑗(ℎ𝑗 − δ) + ℎ𝑗,a − δ) − 𝑙(ℎ𝑖,a − δ)

𝑖
𝑗=1 ]

𝑃

𝐸∗
=

4√𝑅

3
[∑ (𝑛𝑗(ℎ𝑗 − δ)

3/2
+ (ℎ𝑗,a − δ)

3/2
) − 𝑙(ℎ𝑖,a − δ)

3/2𝑖
𝑗=1 ]

                                             (S1) 

with l=1 when hi,a<δ<hi and l=0 when hi+1<δ<hi,a. 

h1 represents the height of the highest asperities on the surface, and can be fixed at any 

arbitrary value. We then iteratively determine, for growing values of i, the values of ni, hi,a and hi+1. 

First, ni is the integer part of the solution of eqs. S1 while setting l=1, F=Fi and P=Pi (all other 

parameters are known). Note that if ni = 0 already leads to a curve 
𝐹

σ𝐵
(
𝑃

𝐸∗
) passing above the ith 

operating point, the procedure is aborted because there is no solution to the considered list of 

operating points. Second, hi,a is the solution of eqs. S1 while setting l=0, F=Fi and P=Pi. Third, hi+1 

is taken as the value of the solution δ of the same equations as for hi,a. 

In Fig. 3, the targeted operating points correspond to F1/B=0.84, F2/B=1.68 and F3/B= 

4.12 mm2, and P1=0.144, P2=0.336 and P3=0.649 mm2. Using the material parameters of batch 1, 

and setting the maximum asperity height to 270 µm, the design outputs are: n1=5, n2=3 and n3=47 

; h1=270.0, h2=180.7 and h3=129.0 µm ; h1,a=243.6, h2,a=172.6 and h3,a=115.2 µm. A picture of 

this metainterface is shown in inset of Fig. 3, where the asperities at height level 1 (resp. 2 and 3) 

are circled in green (resp. blue and red). 

 

Building a quasi-linear friction law 

To design metainterfaces with linear-like friction laws, we use the following truncated 

exponential probability density function of asperity heights: Φ(ℎ) =
𝑒−ℎ/λ

λ(1−𝑒−ℎm/λ)
 for 0≤h≤hm, and 

Φ(h)=0 elsewhere. hm is the maximum possible height, λ is the scale parameter of the exponential, 

and there are N asperities on the surface. If microcontacts follow Hertz’s theory, in analogy with 

Greenwood & Williamson’s model (20), the expected values of the friction and normal forces are: 
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{

𝐹(δ)

σ𝐵
= 𝐴0(δ) = 𝑁π𝑅 ∫ Φ(ℎ)(ℎ − δ)𝑑ℎ

ℎm

δ

𝑃(δ)

𝐸∗
= 𝑁

4

3
√𝑅 ∫ Φ(ℎ)(ℎ − δ)3/2𝑑ℎ        

ℎm

δ

                                    (S2) 

with δ the separation between the indenting rigid plane and the base plane that supports the 

asperities. Both integrals have analytical solutions. When ℎm → +∞, 
𝐹

σ𝐵
(
𝑃

𝐸∗
) is perfectly linear, in 

agreement with (20). When hm is finite, 
𝐹

σ𝐵
(
𝑃

𝐸∗
) remains essentially linear for large P/E*, while 

larger non-linearities arise at small P/E* when hm/λ is smaller. 

The asymptotic slope of  
𝐹

σ𝐵
(
𝑃

𝐸∗
) for large P/E* can be derived by linearizing both F()/B 

and P()/E* around δ→0 and combining them into a linear relationship 
𝐹

σ𝐵
≈ α +𝑚

𝑃

𝐸∗
. The 

expression of the asymptotic slope is: 

𝑚 = √
π𝑅

λ
𝑔 (

ℎm

λ
)                                   (S3) 

where 

𝑔(𝑥) =
1−e−𝑥

𝑘(𝑥)
                                                       (S4) 

with 

𝑘(𝑥) = erf(√𝑥) −
2

√π
√𝑥e−𝑥                                                                                                                   (S5) 

and erf being the error function. 

The intercept  is non vanishing when hm is finite, and reads α = π𝑁𝑅λΓ (
ℎm

λ
), where Γ(𝑥) =

𝑥e−𝑥

1−e−𝑥
(
4

3√π
√𝑥𝑔(𝑥) − 1). 

For the illustration of Fig. 4, we targeted two different slopes m (mt in Fig. 4). For each case, 

fixing hm, the suitable value of λ is then obtained by solving numerically the expression of m. 

Once the parameters of the height distribution are chosen, we use the following method to 

create a discrete list of heights of N asperities, whose collective contact behavior closely matches 

that of the continuous model of eqs. S2. The range of possible heights ([0 ; hm]) is divided into 

elementary intervals of amplitude ∆h, [(i − 1)∆h ; i∆h]. The central value of each interval sets the 

corresponding height level, hi. The number ni of asperities with this height is the closest integer 

to 𝑁 ∫ Φ(ℎ)𝑑ℎ
𝑖∆ℎ

(𝑖−1)∆ℎ
. In practice, we used N=64 and ∆h=6 µm. The lists of hi and ni used for the 

two metainterfaces shown in Fig. 4 are given in table S1. In order to enable indentation beyond 

the point when all asperities are involved in a microcontact, even the smallest asperities must 

emerge from the base plane by a sufficient amount. Thus, an offset h0 is added to the above-

determined list of hi (h0 is indicated in table S1). Note that such an offset has no expected impact 

on the resulting friction law. Also note that, as soon as all asperities are in contact, the friction 

behavior ceases to be linear-like, and becomes the non-linear sum over a constant number N of 

Hertz-like micro-contacts, an example of which is the third branch in the friction law of Fig. 3. 

 

Bounds on achievable friction coefficients 

To evaluate the interval within which the friction coefficient can be targeted, we stick to the type 

of inversion used in Materials and Methods section “Specifying the friction coefficient at constant 
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material pair”: R and hm are fixed, and we look for the value of  that realizes the target value of 

the slope m of the rescaled friction law F/B vs P/E*. m can be rewritten for convenience as 𝑚 =

√
π𝑅

ℎm

√𝑥(1−e−𝑥)

erf(√𝑥)+[
1

√π𝑥
−2√

𝑥

π
(1+

1

2𝑥
)]e−𝑥

, where the parameter  appears only through x=hm/. m is a strictly 

increasing function of x, with the following two limits: 

- when x0, i.e. when +∞ at fixed hm, then m 
3π

4
√

𝑅

ℎm
 

- when x+∞, i.e. when 0 at fixed hm, then m+∞ 

Thus, in this framework, the theoretical interval in which the friction coefficient µ=
σ𝐵

𝐸∗
m can be targeted is 

[
3πσ𝐵

4𝐸∗
√

𝑅

ℎm
 ;  +∞]. 

For instance, using E*=1.36 MPa, =0.358 MPa, B=0.85, R=526 µm and hm=120 µm (a realistic set of parameters in 

our experiments), the smallest targetable friction coefficient is 1.10. 

Note that, in practice, arbitrarily large friction coefficients cannot be obtained, because those would require an 

arbitrarily small width of the distribution of asperity heights. In this case, the smallest imprecision in the manufacturing 

of the population of asperities will dominate the friction response. As a rule of thumb, we suggest that the minimum 

value of  for the distribution to remain reasonably exponential-like is ten times the typical manufacturing error on 

the asperities’ heights. In our experiments, this error is about 0.9 µm, so that the minimum  would be 9 µm. With 

hm=120µm (a value used in our experiments, see table S1), x=hm/≈13.33. For such a large value of x, to a good 

approximation, the value of m reduces to 
σ𝐵

𝐸∗
√
π𝑅

λ
. Using again a realistic set of parameters in our experiments (E*=1.36 

MPa, =0.358 MPa, B=0.85, R=526 µm), we find that the maximum targetable friction coefficient is 3.03. 

We emphasize that the above-determined bounds on the achievable friction coefficient are specific to our experimental 

parameters when  is the only adjustable parameter of the design, and thus need to be evaluated again in any other 

context. For instance, letting R be an adjustable design parameter could increase significantly the accessible range of 

µ. 

 

Building a bilinear friction law 

The approach is similar to the one for quasi-linear friction laws (Materials and Methods 

section “Building a quasi-linear friction law”). We start with a continuous height distribution, 

Φ(h), defined as a modified exponential: 

Φ(ℎ) =

{
 
 

 
 

1−e−ℎm/𝜆−𝑢(e−ℎc/𝜆−e−ℎm/𝜆)

λ(1−e−ℎc/𝜆)(1−e−ℎm/𝜆)
e−

ℎ

λ                 if ℎ ∈ [0 ;  ℎc]

𝑢

λ(1−e−ℎm/𝜆)
e−

ℎ

λ                                               if ℎ ∈ [ℎc ;  ℎm]

0                                                              if ℎm < ℎ

        (S6) 

with λ the scale parameter of the exponential, hm the maximum height, hc the cross-over height 

separating the two branches in the distribution and u a positive scalar parameter useful to tune the 

respective weights of the two branches. F()/B and P()/E*, with δ the separation between the 

indenting rigid plane and the base plane that supports the asperities, are obtained by inserting Φ(h) 

(eq. S6) into eqs. S2. For u=1, both weights are equal, Φ(h) corresponds to the unweighted 

truncated exponential treated in Materials and Methods section “Building a quasi-linear friction 

law”, and the friction law is quasi-linear. For smaller u, the two weights are different, yielding a 

second quasi-linear branch in the friction law (see Fig. 5). The cross-over normal force, Pc, is the 

value of P when δ=hc. 

For each quasi-linear branch, we calculate the asymptotic slope of 
𝐹

σ𝐵
(
𝑃

𝐸∗
) for large P/E*, m1 

for the first branch P≤Pc (δ≥hc) and m2 for the second branch P>Pc (δ<hc). To design 
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metainterfaces with prescribed m1, m2 and Pc/E∗, we first fix hm=120 µm and solve numerically 

for λ using the equation of m1, which does not involve u nor hc: 

𝑚1 = √
π𝑅

λ
𝑔 (

ℎm

λ
)                           (S7) 

with g defined in eq. S4. 

u and hc are then obtained simultaneously through numerical solution of the coupled equations 

for m2 and Pc/E∗: 

{
 
 

 
 𝑚2 = √

π𝑅

λ

α1−α2e
−
ℎm
λ −(α1−α2)e

−
ℎc
λ

(α1−α2)𝑘(
ℎc
λ
)+α2𝑘(

ℎm
λ
)

𝑃𝑐

𝐸∗
=

4

3
𝑁√𝑅α2 [

3

4
√πλ5/2e

−
ℎc
λ erf (√

ℎm−ℎc

λ
) + λe−

ℎm
λ
√ℎm−ℎc

2
(2ℎc − 3λ − 2ℎm)]

             (S8) 

with k the function defined in eq. S5, α2 =
𝑢

λ(1−e−ℎm/λ)
  and α1 =

1−λα2(e
−ℎc/λ−𝑒−ℎm/λ)

λ(1−e−ℎc/λ)
. 

For the two examples shown in Fig. 5, we targeted a common couple of slopes, m1=7.15 and 

m2=12.52, but two different cross-over forces Pc/E
* (denoted Pc,t/E

* in Fig. 5), either 0.0380 or 

0.0737 mm2. From the data in Fig. 5, the actual Pc (denoted Pc,f/E
* in Fig. 5) is estimated as the 

average normal load between the last point that is well-captured by the linear fit of the first branch 

and the first point deviating from it: Pc,f/E
*=0.046±0.005 and 0.098±0.005 mm2 for the red and 

blue curves, respectively. 

For each metainterface, the discrete list of asperity heights, hi, that offers a good quantitative 

agreement with the prediction from the continuous model of eqs. S2, is obtained as follows. One 

first calculates, for N=64, the numbers of asperities in regime 1 (h>hc) and regime 2 (h<hc), N1 

and N2 respectively. For each regime, the height range ([hc ; hm] and [0 ; hc] for regimes 1 and 2, 

respectively) is divided into a number of intervals equal to N1 or N2, respectively. The width of 

each interval is calculated such that the probability that h belongs to the interval [bi ; bi+1], 

∫ Φ(ℎ)𝑑ℎ
𝑏𝑖+1
𝑏𝑖

, is equal to 1/(N1+N2). Then, a single asperity is placed at the center of each so-

determined interval. 

The lists of hi underlying the curves in Fig. 5 are provided in table S2 (the values include an 

offset h0=50 µm, for the same reasons as those mentioned at the end of Materials and Methods 

section “Building a quasi-linear friction law”). 

 

 

Applying the design strategy to the sliding friction force 

In our shearing calibration experiments, one can define two different friction forces, either 

the peak (static) friction force at the onset of sliding (as done in Fig. 2) or the plateau (sliding) 

friction force when macroscopic motion has settled (in practice, f is then defined as the average 

tangential force for tangential displacements in the range [100 − 200] µm after the static friction 

peak ; af is defined analogously). We find that both friction forces obey the same behavior laws 

(f=σaf and af=Ba0) but that the calibrated values of σ and B are slightly modified. Such 

modifications only affect the rescaling factor of the macroscale friction force, but will not affect 

the predicted curves 
𝐹

σ𝐵
(
𝑃

𝐸∗
) shown in Figs. 3 to 5. And indeed, for all three examples, we have 

found that the agreement between the various targeted frictional features and the corresponding 

measurements is, quantitatively, similarly good for the static friction force (shown in Figs. 3 to 5) 

and sliding friction forces. 
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Suitability of an elastic asperity model 

While elastomers like PDMS remain elastic up to very large strains, other materials are likely 

to experience plastic deformation when involved in a rough contact. The question thus arises of 

the limits of validity of elastic asperity models to describe such elasto-plastic contacts. It is 

addressed in (20), where a plasticity index is defined as =(E*/H).(/R)1/2, with E* and H the 

composite elastic modulus and hardness of the material, respectively, R the curvature radius of the 

asperities and  the standard deviation of their distribution of heights. The authors of (20) argue 

that an elastic asperity model is suitable if <0.6, which leads us to propose the following interface 

design steps: 

1. choice of the material, which imposes E* and H. 

2. inversion of an elastic asperity model to identify suitable couples of geometrical parameters, R 

and , such that the specifications on the friction law are met. 

3. check whether one of those couples satisfies the criterion <0.6. 

- if yes, then a design solution is found 

- if not, the elastic asperity model cannot be used for this couple of E* and H. Then, go back to 

step 1 and consider another material with a smaller ratio E*/H. Or, go back to step 2 and replace 

the elastic model with another asperity model explicitly accounting for plasticity (40, 41). 

 

Effect of a misalignment on the friction law  

The design strategy provides, from a given set of specifications on the target friction law, a 

suitable list of asperities’ heights, hi. This list of heights is the relevant one as long as the mean 

planes of the two contacting solids are perfectly parallel. In experiments however, a non-vanishing 

residual angle between both planes exists. In our experiments, this angle remains in the interval   

[-0.005° ; +0.005°], thanks to a specific alignment procedure (see Materials and Methods section 

“Mechanical testing”). To assess the potential effect on the experimental friction law of such 

imperfect conditions, we perform numerical simulations using the very same asperity-based 

friction model as that used in the rest of this work (see description in the third paragraph of section 

“Applying the strategy to centimetric elastomer-on-glass interfaces”). 

To account for an angle  around both in-plane axes x and y simultaneously, we modify the 

prescribed list of heights by adding a contribution hi=hi+xi.tan+yi.tan, with xi and yi the 

coordinates of the ith asperity. The origin x=y=0 is taken at one corner of the square lattice of 

asperities. We then apply the friction model to the updated list of heights, hi+hi. 

As examples, we consider the substrates associated to the red and blue friction laws in Fig. 4, 

and we vary  from -0.1° to +0.1° (yielding a maximum height modification of about 37 µm in 

our experiments), by steps of 0.0001°. We observe that, for each value of , the simulated rescaled 

friction law, F/B versus P/E*, keeps a quasi-linear shape, so that the effect of the angle can be 

assessed using the slope of the law, as fitted in the same way as in Fig. 4. The fitted slope is denoted 

m, while the target slope for =0 is denoted m0. We quantify the discrepancy between the target 

slope and the one for misaligned surfaces as the standard deviation (SD) of mm0 over all 

simulations with an angle in the interval [-; +]. Note that this quantity is a good estimate of the 

uncertainty on the experimental slope when the alignment precision is ±. 

Figure S2 shows the simulated evolution of the relative discrepancy between the target slope 

and that for a misaligned interface, SD(mm0)/m0, as a function of | for both samples in Fig. 4 

(solid lines). Note that, for each sample, the shape of the curve is strongly related to the precise in-

plane locations of the various asperities: simulations using the very same list of heights but shuffled 



23 

 

in-plane locations yield very different curves (dashed lines). Those large differences are 

presumably due to the small number of asperities along the interface (64 asperities). The curves 

obtained for both samples are in separate parts of the plot, presumably due to the two different 

values of , the scale parameter of the exponential in the distribution of heights for both samples.  

Figure S2 shows that, for the samples of Fig. 4, the typical discrepancy on the slope of the 

rescaled friction law due to misalignment is less than 2.1% when  is smaller than 0.1°. Note that, 

for our uncertainty on the experimental alignment (±0.005°), this discrepancy remains always 

smaller than about 0.2% (see dots in fig. S2). Such a small value has been an asset contributing to 

our successful quantitative comparisons between target and experimental friction laws. 

 

Effect on the friction law of manufacturing errors on the asperities’ heights 

Once a list of heights, hi, has been identified as a solution to a set of specifications on the friction 

law, a corresponding sample is manufactured. The manufacturing process generally results in an 

imperfect list of heights, which can be described as hi + dhi, where dhi is the error on the height of 

the ith asperity. To investigate the effect of those errors on the friction law, we perform numerical 

simulations in which we use our asperity-based friction model to calculate the friction law resulting 

from the perturbed list of height, hi + dhi. All other model parameters are kept unchanged. Two 

reference lists hi are considered: those underlying the two quasi-linear friction laws in Fig. 4. 

Each list dhi is randomly drawn from a centered Gaussian distribution of standard deviation 

SD(dh). SD(dh) is varied from 0 to 3 µm, by steps of 0.1 µm. For each SD(dh), 10000 simulations 

are performed, each with a different draw, and the slope m of the rescaled friction law is fitted in 

the same way as in Fig. 4. 

Figure S3 shows the evolution, as a function of SD(dh), of the average slope <m> (over the 10000 

simulations) divided by m0, the target slope in the absence of manufacturing errors. We find that 

<m>/m0 remains very close to 1, indicating that the perturbation of the topography has almost no 

effect on the average friction law. However, the standard deviation on m, SD(m), has a clear, linear-

like dependence on SD(dh), as is visible through the amplitude of the error bars (±SD(m)/m0). 

Thus, for a particular realization of a perturbed topography, the experimental slope of the friction 

law has a larger probability to deviate from the target slope when SD(dh) in larger. Figure S3 

indicates that the typical deviation is smaller than 1.5% in all our simulations. In our experiments, 

in which SD(dh)=0.9 µm (Materials and Methods section “Samples preparation”), the typical 

deviation of the slope is smaller than 0.5%. Such a small value has contributed to the success of 

our quantitative comparison between target and experimental friction laws. 
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Fig. S1. 

Fig. S1. Sketch of the topography used to target three operating points. N = n1 +n2 + n3 + 3 

spherical asperities of common radius R have different heights. ni asperities of height hi 

complemented by an additional asperity of height hi,a enable reaching operating point i. The three 

colors of the asperities are the same as that of the corresponding operating points in Fig. 3. 
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Fig. S2. 

 

Fig. S2. Effect of a misalignment of the contacting surfaces on the friction law. Results of 

simulations based on the asperity-based friction model, applied to the lists of heights of both 

samples shown in Fig. 4 (same color code), modified by the introduction of an angle  around both 

axes x and y simultaneously (for details, see Materials and Methods section “Effect of a 

misalignment on the friction law”). Solid lines: evolutions of the standard deviation (SD, over all 

simulations with an angle in [-; +]) of the difference between the fitted slopes of the rescaled 

friction law, with and without misalignment (m and m0 respectively), rescaled by m0, as a function 

of the absolute value of . Dashed lines: similar curves for simulations using the same list of 

heights but shuffled lateral positions of the asperities. Dots correspond to the experimental 

precision on the alignment (± 0.005°). 
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Fig. S3. 

 

Fig. S3. Effect on the friction law of manufacturing errors on the asperities’ heights. Results 

of simulations based on the asperity-based friction model, applied to the lists of heights of both 

samples shown in Fig. 4 (same color code), after adding to each asperity i a height perturbation dhi 

(for details, see Materials and Methods section “Effect on the friction law of manufacturing errors 

on the asperities’ heights”). Mean slope of the rescaled friction law over 10000 realizations of the 

list of dhi, divided by the target slope m0 (for a vanishing perturbation), as a function of the standard 

deviation of the perturbation, SD(dh). Error bars correspond to ±SD(m)/m0. The vertical dashed 

line indicates SD(dh)=0.9 µm, which is the precision on the asperities’ height in our experiments. 
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Table S1. 

 
Table S1. List of prescribed heights for metainterfaces with a quasi-linear friction law. The 

colors refer to the curves in Fig. 4. Notations refer to Materials and Methods section “Building 

a quasi-linear friction law”. 
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Table S2. 

 
Table S2. List of prescribed heights for metainterfaces with a bilinear friction law. The 

colors refer to the curves in Fig. 5. Notations refer to Materials and Methods section “Building 

a bilinear friction law”. 
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Movie S1. 

Movie S1. Qualitative illustrative experiment showing that two metainterfaces may have either 

similar or different frictional behaviour, depending on the range of normal force applied. The 

metainterfaces were fabricated from the same two molds used for Fig. 5. The low normal force 

corresponds to the weight of the bare samples, about 5 g. The large normal force corresponds to 

an additional weight of about 10 g (rectangular polymer plate placed on top of each sample). For 

each normal force, both samples are driven by the same tangential displacement ∆, through 

loading springs. When the samples are sliding (non-vanishing sliding distances SR and SB), the 

spring lengths (LR and LB) enable visualization of whether the friction forces are similar or 

different. 

 

 

 

 


