
HAL Id: hal-04446948
https://hal.science/hal-04446948

Submitted on 8 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Engineering Evolution for software’s future: an
architectural approach

Dalila Tamzalit

To cite this version:
Dalila Tamzalit. Engineering Evolution for software’s future: an architectural approach. Interna-
tional Journal of Software Architecture, 2010, 1 (1), pp.13-13. �10.5308/2153-8409.001.01.007�. �hal-
04446948�

https://hal.science/hal-04446948
https://hal.archives-ouvertes.fr


Engineering Evolution for software’s future: an architectural approach. 1

Running head: ENGINEERING EVOLUTION FOR SOFTWARE’S FUTURE: AN ARCHITECTURAL APPROACH.

Engineering Evolution for software’s future: an architectural approach.

Dalila Tamzalit

University of Nantes, LINA, CNRS UMR 6241

Nantes, France.



Engineering Evolution for software’s future: an architectural approach. 2

Abstract

Software evolution is often an activity conducted on a case by case basis, leaning generally

on feelings, by trial and error, intuition and experience. However, this approach is

nowadays known as time consuming, risky, error-prone and very costly. Significant efforts

have been done since Lehman and his famous laws, but abstracting software evolution for

an efficient evolution management is still in its infancy. In fact, even if more controlled,

software evolution is still an ad hoc activity and generally took into consideration only

when an evolution need occurs. It is rarely anticipated nor reused. It is now time to go

two steps beyond: (i) engineering software evolution and (ii) offering evolution capabilities

not only for current systems but also for legacy and future systems. We propose, through

some prospective ideas, to support the first objective by abstracting and manipulating

evolution as a first-class entity and to support the second one by leaning on an

architectural approach, outlining thus some important research tracks.



Engineering Evolution for software’s future: an architectural approach. 3

Engineering Evolution for software’s future: an architectural

approach.

Engineering Software Evolution: evolution as a first-class

entity

As it was already pointed out by the NATO conference in 1968 and formalized by

M.M. Lehman (?, ?), two main reasons of producing more and more large software are the

fact that software have an intrinsic increasing complexity and that they are no more than

living entities continuously evolving in an infinite life cycle. In response to changing needs

(from stakeholders, the external environment, the introduction of new technologies . . . ),

the software engineer needs to manage and evolve the software system as much as possible

according to the overall system’s goals, rather than modifying isolated parts of the system

in an ad hoc way. According to this growing complexity, it is crucial to handle evolution

needs in a rigorous and disciplined manner. Software evolution needs to be analysed,

specified, guided, controled, capitalised and also reused and made reusable. It needs to be

abstracted and engineered like any other software artifact: evolution is thus seen as a

first-class entity.

In light of these facts, software evolution needs to be included in the software’s

development cycle. It should be considered as the other requirements, analysed, specified,

designed, validated and ultimately implemented and deployed. Like any engineered

software artifact, software evolution needs to be surrounded with theoretical and practical

approaches by means of (meta) modelling, guidelines and methodologies. This gives an

evolution dimension to a software. Each system can thus be enriched with an evolution

dimension.



Engineering Evolution for software’s future: an architectural approach. 4

Supporting evolution during the software life cyle: an

architectural approach.

The most stable and essential part of a software system is its strategic objectives

and not the way they are realised. The realisation of a software system is generally less

stable than the essential part. In order to ensure system’s longevity, this essential part

needs and should be decoupled from its realisation by explicitly specifying both of them

and their existing interrelations. Software architectures are an ideal mean to specify the

heart of a system and to decouple it from its different facets thanks to their powerful

abstraction mechanism (Perry & Wolf, 1992 ; Bass, Clements, & Kazman, 1997 ; Shaw &

Garlan, 1996). In fact, they allow, according to the conceptual framework of the

IEEE 1471 Standard(Hilliard, 2000), to express all facets of a software system and are

generally technological-free. It represents the pivot of a system as well for their design as

for their evolution. Each facet can be handled in its own evolution but also all dependent

and related facets can be consequently evolved if needed, following their explicit

interrelations expressed within the architecture. This is an important feature since large

systems must continuously evolve to respond to external and internal pressures.

Even if evolution needs concern legacy systems, current eroded systems or future

systems, the evolution can be handled in a uniform way since the pivot is their software

architecture. Thereby, each software system, whatever its age, can benefit from disciplined

evolution through its architecture: the software architecture of a legacy-system can be

obtained by way of recovering, the one of an erroded system can be retro-engineered and a

future system will be designed first in its architecture. Managing evolution by engineering

it and by leaning on architectural descriptions represent a force to handle the evolution of

any kind of system in a uniform way.



Engineering Evolution for software’s future: an architectural approach. 5

General discussion

Two major objectives have been prospected in this paper: (i) engineering software

evolution and (ii) offering evolution capabilities for old, current and future software

systems. Even if awareness about abstracting software evolution is already underway

(Jazayeri, 2005 ; Le Goaer, Tamzalit, Oussalah, & Seriai, 2008 ; Garlan, 2008 ; Tamzalit &

Mens, 2010), this trend should be strengthened to strive towards engineering software

evolution. Evolution must be in mind of architects and designers from the beginning.

They must think about the system’s requirements and include evolution requirements of

the system to develop. These requirements must also be analysed. Of course, foreseen

evolution are easier to handle than unforeseen ones. For this reason, the system should be

thought with evolution capabilities and not only by storing some known-evolution

scenarios. Analysis of evolution should consider these both situations. Meta-models,

models, mechanisms, laws and guidelines are the key points to specify and handle properly

any evolution. In addition, since evolution is a first-class entity, it can be stored as

evolution patterns and reused in similar situations (Tamzalit & Mens, 2010).

Thanks to engineering software evolution and thanks to considering the software

architecture as the evolution pivot, it is possible to extend significantly system’s life

expectancy. This allows old systems to evolve for current needs, existing systems to evolve

and prepare future evolutions and future systems. In fact, we are convinced that

engineering software evolution only in the present has no sense if the past cannot come

into the present and if the future cannot be considered in the present. Software’s future

needs to lean on software’s past and present.



Engineering Evolution for software’s future: an architectural approach. 6

Références

Bass, L., Clements, P., & Kazman, R. (1997). Software architecture in practice.

Addison-Wesley Professional.

Garlan, D. (2008). Evolution Styles Formal Foundations and Tool Support for Software

Architecture Evolution. Tech. report. CMU-CS-08-142, CMU .

Hilliard, R. (2000). ANSI/IEEE Stand. 1471-2000: Recommended Practice for

Architectural Description of Software-Intensive Systems (Rapport technique). IEEE.

Disponible sur http://standards.ieee.org

Jazayeri, M. (2005). Species evolve, individuals age. In Principles of software evolution,

eighth international workshop on (pp. 3–9).

Le Goaer, O., Tamzalit, D., Oussalah, M., & Seriai, A. (2008). Evolution Shelf: Reusing

Evolution Expertise within Component-Based Software Architectures. IEEE

COMPSAC , 311–318.

Perry, D. E., & Wolf, A. L. (1992). Foundations for the study of software architecture.

ACM SIGSOFT Softw. Eng. Notes, 17 (4), 40–52.

Shaw, M., & Garlan, D. (1996). Software architecture — perspectives on an emerging

discipline.

Tamzalit, D., & Mens, T. (2010). Guiding architectural restructuring through

architectural styles. IEEE ECBS 2010: 17th IEEE International Conference on

Engineering of Computer-Based Systems, 69–78.


