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Abstract
A practical algorithm has been developed for closeness analysis of sequential data
that combines closeness testing with algorithms based on the Markov chain tester.
It was applied to reported sequential data for COVID-19 to analyze the evolution of
COVID-19 during a certain time period (week, month, etc.).

Keywords Closeness testing · Periodical evolution · Key factor analysis · COVID-19
data analysis

1 Introduction

The COVID-19 coronavirus has spread worldwide, and as of May 31, 2021, the num-
ber of confirmed cases was 170M, and the number of deaths was 3.54M. A fourth
wave of infections due to the emergence of variants with strong infectivity began hit-
ting a number of countries in Spring 2021. Coping with a worldwide pandemic like the
COVID-19 one requires understanding the infection situation. This requires develop-
ment of techniques for analyzing the various types of sequential data that are available.
These data include the number of confirmed infections, the number of deaths, and the
number of polymerase chain reaction tests and rapid antigen tests by location and time.

As the availability of various types of data has increased in recent years, faster
and more sample-efficient algorithms have been developed for statistical testing. In
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particular, for data collected by sensors, closeness testing of distributions to infer infor-
mation from the underlying probability distributions is rapidly evolving (Chan et al.
2014; Canonne 2020; Daskalakis et al. 2018). Wolfer and Kontorovich, for example,
developed an identity tester that determines whether sequential data represented by
twoMarkov chains are identical (Wolfer and Kontorovich 2020). Although the theory
is quite rich in this area, there have been few reports of proposed algorithms being
tested on actual applications or of simulation studies. Moreover, the algorithms are
suitable only for discrete distributions, so a quantization technique is needed to trans-
form continuous distributions into discrete ones. Canonne and Wimmer discussed the
difficulties inherent in binning and segmentation and their limitations (Canonne and
Wimmer 2020). The main criticism of these algorithms is that generally the domain of
the distribution is taken as [n] = {1, . . . , n}, which is not always realistic or represen-
tative of the true data. To overcome this limitation, a suitable quantization is needed,
as suggested by Canonne and Wimmer (2020). In this work, since we did not have a
prior information on the data distribution, we adopted a uniform discretization, for a
number of bins which was determined empirically via numeric search.

We have developed a practical algorithm for closeness analysis of sequential data
by combining distribution testing and algorithms based on Wolfer and Kontorovich’s
identity tester (Wolfer and Kontorovich 2020). We tested it using it to analyze the
evolution of COVID-19 during a certain time period (week, month, etc.). Although
Markov switchingmodels andMarkov agentmodels have beenwidely used for general
compartmental models in epidemiology such as for SIR (susceptible–infectious–
recovered) and SEIR (susceptible–exposed–infectious–recovered)models to represent
the state transition (Bestehorn et al. yyy; Boukanjime et al. 2020; Gribaudo et al. 2021;
Larsen et al. 2020; Raherinirina et al. 2021), there has been little use of Markov chains
to model COVID-19 data. Ma et al. (2021) recently proposed using a Markov process
combined with LSTM (long short–term memory) model to categorize the reported
COVID-19 cases. To our knowledge, there have been no reports of applying Markov
chains to COVID-19 data using testing techniques.

In the following section, we briefly describe related work on distribution testing
and Markov chain testing. Our analysis methods are described in Sect. 3, and their
usage for analyzing spatio-temporal data like that for COVID-19 is described in Sect.
4. We discuss the testing sensitivity in Sect. 5 and conclude with a summary of the
key points in Sect. 6.

2 Related work

2.1 Distribution testing

Distribution testing is a field of computer science concerned with statistical (compos-
ite) hypothesis testing questions, with a focus on finite sample guarantees and efficient
algorithms. While the findings of many distribution tests have been reported, the main
focus has been on three problems: the uniform testing problem, the identity testing
problem, and the closeness testing problem. Let D be a distribution over a (count-
able) domain Ω . The uniform testing problem is to determine whether D = UΩ (the
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uniform distribution on Ω) or the distance between D and UΩ is far from ε ∈ (0, 1)
(ε-far) (Batu et al. 2001; Goldreich and Ron 2011; Paninski 2008). The identity testing
problem is to determine whether D = D∗ (a fixed distribution over Ω) or D is ε-far
from D∗ (Valiant and Valiant 2011; Acharya et al. 2015; Valiant and Valiant 2017).
The closeness testing problem is to determine whether D and D′ (another distribution
on Ω) are equal or ε-far from each other (Batu et al. 2013; Diakonikolas and Kane
2016; Valiant 2011). Here, we focus on tolerant closeness testing as it is useful for
analyzing theCOVID-19 situation. The resulting tolerant closeness tester is as follows.

Given sample access to distributions D and D′ overΩ , and bounds η1 ≥ 0, η2 > 0,
δ ∈ (0, 1), distinguish with probability at least 1− δ between d1(D, D′) ≤ η1 and
d2(D, D′) ≥ η2 whenever D, D′ satisfy one of these two inequalities.

Here, d1 and d2 are the distances between two distributions. Depending on the purpose
of the analysis, the total variation distance, l2, theχ2 distance, or theHellinger distance
are generally used as d1 and d2 in distribution testing. The total variation distance is
standard, and the properties of the other two distances have been theoretically and
comparatively studied (Daskalakis et al. 2018). The χ2-type statistics defined by Chan
et al. (2014) are used here.

2.2 Markov chain testing

Learning and testing discrete distributions has been a hot research area, especially for
sample complexity problems in identity testing and closeness testing (Canonne 2020).
Most of the work in this area has relied on independent and identically distributed (iid)
sample testing,which is based on an unrealistic assumption. Emergentwork has started
to address the three testing problems described above, especially for data generated
from a finiteMarkov chain (e.g., Wolfer and Kontorovich 2019, 2020). Since COVID-
19 data observations are obviously not iid in time and space, we assume here that the
observed proportions π (where the distribution D is estimated by π ) are generated
by a Markov chain over a discrete state space [s] = {s1, . . . , sB}; this means that it
verifies the Markovian property

P
(
πt = s j | πt−1 = si

) = pi j , for all t, (1)

where pi j denotes the transition probability from state si to state s j . Given an observed
trajectory π = (π0, . . . , πT ) from some unknown Markov chain up to time T , we are
interested in testing the transition probabilities fromonly this trajectory. Two strategies
can be adopted forMarkov chain testing: (i) naive use of distribution testing techniques
(closeness testing, identity testing, and so on) for conditional transition probability
comparison and (ii) less obvious comparison of the stationary distributions of the two
Markov chains.With the first strategy, the discrete conditional probability distributions
pi . = (pi1, . . . , pi B) and qi . = (qi1, . . . , qi B) as defined in (1) are compared for each
fixed state si . With the second strategy, this technique needs existence conditions
through mixing time concept.

Wolfer and Kontorovich’s identity tester (Wolfer and Kontorovich 2020) constructs
a tester T that can determine whether a given trajectory was generated from an
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unknown ergodic Markov chain M having B states. The following distance between
Markov chains M1 and M2 is used.

d(M1, M2) � ‖M1 − M2‖ = 2max
i

(‖M1(i, .) − M2(i, .)‖T V , (2)

where ‖.‖T V stands for the total variation norm (see Wolfer and Kontorovich 2020).
They showed that the tester can determine with a probability of at least 1− δ whether
the sample trajectory was generated from M or ε-far from M .

This issue has also been studied by Dikkala and Gravin (2018), who, inspired by
the early work of Kazakos (1978), proposed a difference measure that captures the
scaling behavior of the total variation distance between growing trajectories of the
Markov chains. They then presented efficient identity testers and gave its information
lower bounds. Recently, (Cherapanamjeri and Bartlett 2019) succeeded to remove a
dependency in the hitting time of the sample complexity for symmetric chains. Fried
and Wolfer (2021) extended the results (Dikkala and Gravin 2018; Cherapanamjeri
and Bartlett 2019) from symmetric to general reversible chains. More details about
the tightness or the link to the hitting time of the Markov chain can be found in their
original paper (Dikkala and Gravin 2018; Cherapanamjeri and Bartlett 2019; Fried
and Wolfer 2021)

3 Analysis methods using distribution testing andMarkov chain
testing

Focusing on COVID-19, we investigated whether the pandemic evolved in the same
way in different regions and for different segments of the population. We tested three
analysis methods based on distribution testing and Markov chain testing that can be
applied to the spatio-temporal data of COVID-19 and potentially any novel coron-
avirus.

1. Closeness analysis
2. Periodical evolution analysis
3. Key factor analysis

In the following sections, we first formulate the problem and then describe these
analysis methods.

3.1 Observationmodel formulation

Let us consider a population P and suppose that P = ⋃
P�, where {P�}�=1,...,L is a

partition of the population and P�’s are disjoints. This segmentation can be linked to
geographic regions, socio-demographics categories, age, and other relevant auxiliary
variables. We are interested in monitoring the dynamic distribution of a coronavirus
like COVID-19. We are especially interested in the evolution of the distribution D�(t)
of the number of infected people in segment P� at time t .

Our testing framework is applicable to only discrete distributions, so we need
to quantize the state space into B bins. Let us denote the discretized states as

123



Japanese Journal of Statistics and Data Science (2022) 5:321–338 325

[s] = {s1, . . . , sB} (in the univariate case), and discretization of the interval [0, pmax],
where pmax is the maximum allowed proportion (in the experiments, the segmenta-
tion is uniform and pmax is less than 1). To investigate the severity of COVID-19,
the proportion π�

t of infected people in segment P� at time t is assigned a state si if
si < π�

t ≤ si+1. The observed proportion is π̂ �
t = n�

t /N�, where n�
t is the number of

infected people in population P� at time t , and N� is the size of the population segment
P�. For each t and �, the application π̂ �

t :−→ M[s] is to take a random variable in
M[s], which is the set of discrete probability measures on [s].

3.2 Closeness analysis

We designed an algorithm for closeness analysis by combining distribution testing
(closeness testing) and Markov chain testing in order to analyze the closeness of two
sequential data. In distribution testing, there is generally assumed to be oracle access
to the distributions. For closeness testing, according to Theorem 1 of Chan et al. (2014)
and Theorem 5.9 of Canonne (2020), tight upper O and lower Ω bounds for sample
complexity with the total variation distance in Eq. (2) are given by

O

(
max

(
B2/3

ε4/3
,
B1/2

ε2

))
and Ω

(
max

(
B2/3

ε4/3
,
B1/2

ε2

))
.

The algorithmwedesigned for closeness analysis satisfies the following two conditions
under the assumption of oracle access (Canonne 2020; Chan et al. 2014). On input
ε ∈ (0, 1) (a constant), C ∈ R

+ (an absolute constant) and B ∈ N (the number of

states), it takes C · max(
B2/3

ε4/3
,
B1/2

ε2
) samples from the distributions and,

– if the distributions are equal, it outputs ACCEPT with probability at least 2/3;
– if the total variation distance between the distributions is greater than ε, it outputs
REJECT with probability at least 2/3.

As shown in Algorithm 1, five parameters are input: ε, C , B, N ∈ N (the
number of testing iterations) and μ ∈ N (the minimum number of samples
for testing). The sequential data (x and y with d-dimension) are first quantized
into B bins (or B states). Algorithm 1 follows the naive use strategy described
in Sect. 2.2. For each state b, the discrete conditional probability distributions

(pb. = (pb1, . . . , pbB) = (
T x
b (1)

∑B
k=1 T

x
b (k)

, . . . ,
T x
b (B)

∑B
k=1 T

x
b (k)

) and qb. = (qb1, . . . , qbB) =
(

T y
b (1)

∑B
k=1 T

y
b (k)

, . . . ,
T y
b (k)

∑B
k=1 T

y
b (k)

)) are compared. In accordance with Theorem 1 of Chan

et al. (2014) and Theorem 5.9 of Canonne (2020), m0 is sampled from a Poisson dis-
tribution with mean m (line 21), and m0 samples are sampled from the distributions
(lines 23 and 24). For the acceptance probability, the χ2-type statistic z(n) defined by
Chan et al. is calculated for each sample n (line 28) and compared with a threshold
(Canonne 2020) (line 30). The statistic can be viewed as a modification of the empiri-
cal triangle distance applied to cx and cy . For the reject probability, the total variation
distance d(n) is calculated for each sample n (line 29) and compared with a threshold
ε.
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After application of Algorithm 1, the acceptance PA and reject PR probabilities,
the distance of the χ2-type statistic Z , and the total variation distance D for closeness
testing between x and y can be calculated as the mean, median, or minimum value
over all states. The minimum value is the most conservative; the mean value was used
in the experiments. The χ2-type statistic is an estimate of χ2-divergence. The relation
between the divergence and the total variation distance is as follows; for distributions
p and q, the following inequalities hold.

d2H (p, q) ≤ dTV (p, q) ≤ √
2dH (p, q) ≤

√
dχ2 (p, q).

Additional details and discussion can be found elsewhere ( Daskalakis et al. 2018 for
instance). These inequalities show that the χ2-divergence dχ2 is more conservative
than the Hellinger distance dH and the total variation distance dTV. This motivated our
use of the χ2-type statistic.

Note that the distance also depends on the mixing properties of the Markov chains
and the stationary distribution, particularly when the number of states is small (Wolfer
and Kontorovich 2020). For such a case, the mixing time should be estimated, for
example, according to Algorithm 1 in Wolfer (2020) and confirmed to be smaller than
m (line 21) in Algorithm 1.

3.3 Periodical evolution analysis

For a sequential data such as COVID-19 data, it is often demanded to analyze the
evolution situation. Here, we investigate a method of periodical evolution analysis
with closeness analysis. As shown in Algorithm 2, input sequence x is first segmented
into L segments. Then, for each pair of segments, closeness of the pair is tested using
Algorithm 1. We can analyze the periodical properties on the resulting L× L matrices
for the acceptance probabilities and the distances.
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Algorithm 1: Closeness analysis of sequential data using Markov chain modeling.

Input: ε ∈ (0, 1),C ∈ R
+, N ∈ N, B ∈ N, μ ∈ N

Data: x = (x1, x2, . . . , xI ), y = (y1, y2, . . . , yJ ) ∈ R
d

Output: acceptance probability PA , reject probability PR , χ
2-type statistic Z , total variation distance D for each

state
1 /* Quantize x and y into Bd bins (or Bd states of Markov chains) */
2 Qx = (qx1 , qx2 , . . . , qxI ) ← x

3 Qy = (qy1 , qy2 , . . . , qyJ ) ← y

4 PA, PR , Z , D ← 0 ∈ R
Bd

5 /* Test closeness for each state b */

6 for b ← 1 to Bd do

7 T x
b , T y

b ← 0 ∈ R
Bd

8 Accept, Reject ← 0 ∈ R

9 /* Count transitions from state b */
10 for i ← 1 to I − 1 do
11 T x

b (qxi+1) ← T x
b (qxi+1) + 1{qxi = b}

12 end
13 for j ← 1 to J − 1 do
14 T y

b (qyj+1) ← T y
b (qyj+1) + 1{qyj = b}

15 end
16 /* Test N times */
17 if then
18 (‖T x

b ‖1 > μ) & (‖T y
b ‖1 > μ)

19 end
20 for n ← 1 to N do

21 Set a variable m ← C · max( B
2/3

ε4/3
, B1/2

ε2
)

22 Sample variables m0 from Poisson distribution with mean m

23 Sample a set Sx of m0 samples from Markov chain with transition probability
T xb (k)

∑B
k=1 T xb (k)

24 Sample a set Sy of m0 samples from Markov chain with transition probability
T
y
b (k)

∑B
k=1 T

y
b (k)

25 for b ← 1 to Bd do
26 cxb ← ∑

s∈Sx 1{s = b} , cyb ← ∑
s∈Sy 1{s = b}

27 end

28 z(n) ← ∑Bd
b=1

(cxb−c
y
b )2−(cxb+c

y
b )

cxb+c
y
b

,

29 d(n) ← 1
2

∑Bd
b=1 | cxb

∑Bd
b=1 cxb

− c
y
b

∑Bd
b=1 c

y
b

|

30 if z(n) ≤ 1
8

m2ε2

m+Bd
then

31 Accept = Accept + 1
32 end
33 if d(n) > ε then

34 Reject = Reject + 1
35 end
36 end

37 PA(b) ← Accept
N , PR (b) ← Reject

N

38 Z(b) ←
∑N

n=1 z(n)

N , D(b) ←
∑N

n=1 d(n)

N else
39 PA(b) = PR (b) = Z(b) = D(b) = −1
40 end
41 end
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Algorithm 2: Periodical evolution analysis using testing closeness.

Input: ε ∈ (0, 1),C ∈ R
+, N ∈ N, B ∈ N, μ ∈ N, L ∈ N

Data: x = (x1, x2, . . . , xI ) ∈ R
d

Output: acceptance probability PA , reject probability PR , χ
2-type statistic Z , total variation distance D for each

pair of segments
1 /* Segment x into L segments */

2 x = {x1, x2, . . . , xL }
3 /* Test closeness for each pair of segments */
4 for i ← 1 to L do
5 for j ← 1 to L do
6 if i �= j then
7 /* Test closeness of segments xi and x j using Algorithm 1 */
8 end
9 end

10 end

3.4 Key factor analysis

When planning measurements such as those for COVID-19, it is important to analyze
the key factors, i.e., the factors that correlate with changes in, for example, the number
of infections. We investigated a method for analyzing the key factors that uses a
generalized additive model (GAM) (T.J. Hastie 1990) in which the response variable
depends linearly on the unknown smooth functions of some predictor variables and
the focus is on making inferences about the smooth functions. The benefit of GAM
is that it takes advantage of the smoothed transforms of the predictor variables using
basis functions such as smoothing splines. The distances obtained by the closeness
analysis are used as the response variables. The data for the key factor candidates,
e.g., vehicle and public transport increase rates, are used as predictor variables. The
best model is then selected in a step-wise fashion using either Akaike Information
Criterion or model residual deviance (Hastie 1992).

4 Experiments and results

4.1 COVID-19 sequential data

We used reported data for the number of newly infected people nt� for each of the
53 cities on the main island of Japan as reported daily by the Tokyo metropolitan
government from April 1, 2020, to May 6, 2021, along with the population N� of
each city. Segmentation {P�}�=1,...,L (described in Sect. 3.1) was linked to each city
in Tokyo (which is a prefecture, not a city). The observed proportion π̂ �

t (= n�
t /N�)

was quantized into B-states, and B was set to 20.

4.2 Closeness analysis of COVID-19 infection situation between cities

Figure 1 shows 53 cities ×53 cities matrices of acceptance probabilities (the mean of
PA(b) over all states in Algorithm 1) and distances of χ2-type statistics (the mean of
Z(b) over all states in Algorithm 1) between all pairs of 53 cities in Tokyo for each
month from April 2020 to April 2021, calculated using Algorithm 1. C and μ were
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Fig. 1 Acceptance probabilities (top) and distances (bottom) for closeness analysis of COVID-19 infection
status between 53 cities in Tokyo

chosen empirically and set to 100 and 3, respectively. As of June 2021, there had been
four waves of COVID-19 infection; the peak months are roughly indicated by red
stars.

For the acceptance probabilities, the matrices between the waves tend to be darker;
that is, many cities are considered to have had similar characteristics of the changes
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Fig. 2 k-means clustering for 53 cities in Tokyo bymonth based on distancematrices: red indicates relatively
high level of increases in infection, yellow indicates moderate level, and blue indicates low level

in the number of infected people for each of the months. In fact, for such cities, the
number of infected people was relatively and stably small during those months.

For the distances, the overall matrix color is the darkest for January 2021, when
the third wave peaked and the number of infected people was the largest. Many cities
experienced an explosion of infections and different characteristics of the changes in
the number of infected people for the month.

Figure 2 shows the k-means clustering for the distance matrices in Fig. 1. To facili-
tate recognition of the differences in the level of increases in infection, the number of
color codeswas set to three: red indicates relatively high level, yellow indicatesmoder-
ate level, and blue indicates low level. For April 2020, two cities in the heart of Tokyo,
Shinjuku-ku and Minato-ku, had the highest level. This is attributed to Shinjuku-ku
andMinato-ku having a popular entertainment district. Until October 2020, most cities
had the lowest level. Starting with the third wave, roughly from December 2020 to
February 2021, the levels of the nearby cities increased to moderate and then to high.
These figures illustrate how the characteristics of the changes in the number of infected
people were transformed.

4.3 Periodical COVID-19 evolution analysis

Figure 3 shows thematrices of acceptance probabilities, distances ofχ2-type statistics,
reject probabilities (mean of PR(b) over all states in Algorithm 1), and total variation
distances (mean of D(b) over all states in Algorithm 1) between all pairs of 13 months
for Shinjuku and Tachikawa calculated using Algorithm 2. C and μ were chosen
empirically and set to 100 and 3, respectively. Tachikawa-shi is located in the middle
west of Tokyo, in a suburban area. For Shinjuku-ku (in the heart of Tokyo), as in Fig.
1, almost all the pairs are different while the May–October 2020 pair are similar. For
Tachikawa-shi, the pairs from April to November 2020 and for February and March
2021 are similar. The number of infected people for these months was relatively and
stably small. This figure illustrates the characteristics of monthly COVID-19 evolution
for both cities.
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Fig. 3 For Shinjuku (left) and Tachikawa (right), 13 months × 13 months matrices of acceptance proba-
bilities, distance of χ2-type statistic, reject probability, and total variation distance

Fig. 4 For all cities in Tokyo, 57 weeks × 57 weeks matrices of acceptance probabilities, distance of
χ2-type statistic, reject probability, and total variation distance

Figure 4 shows thematrices of acceptance probabilities, distances of χ2-type statis-
tic, reject probabilities, and total variation distances between all pairs of 57weeks from
1 April 2020 to 5 May 2021 for all of Tokyo calculated using Algorithm 2 and all the
numbers accumulated for all the cities in Tokyo. C and μ were chosen empirically
and set to 100 and 3, respectively. The acceptance probabilities show that the weeks
from April to June, 2020 and for August and September, 2020, tended to be similar
among the cities. The distances show that the weeks in January, April, and May 2021
were very different. This indicates that the number of infected people for the weeks
in January 2021 dynamically changed, probably because of an increase in contacts
between people due to year-end and beginning-of-year parties and meetings. In April
and May 2021, variants of the COVID-19 virus with higher infectivity began to grad-
ually spread, so the characteristics of the changes in the number of infected people
differed from those in previous weeks.
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4.4 Key factor analysis for COVID-19 evolution

For the key factor analysis, we used the distances of the χ2-type statistic Z and the
total variation distances D between all pairs of 52 weeks from 6 May 2020 to 4 May
2021 for all of Tokyo, which are included in Fig. 4 in which 57 weeks were used. Table
1 lists the key factor candidates used in the experiments such as vehicle and public
transport increase rates and average temperature in Tokyo, which are considered to
affect the rate of new infections. We set a delay of zero (no delay), one week, or two
weeks between the distances.

For the distances of theχ2-type statistic, theR-squared (adjusted) values are listed in
Table 2. R-squared is a statistical measure of the success in explaining the response by
the model, and R-squared (adjusted) is a version adjusted for the number of predictors
in the model for parsimony. The table shows that the fitting was fairly accurate. The
best model for a delay of two weeks was selected; it is shown in Eq. (3). The s(term)

indicates a smoothed transform in which term is computed using a smoothing spline,
as mentioned in Sect. 3.4. All the terms were significant: 0.001 significance level for
vehicle, s(temperature), and s(deathTokyo), 0.01 for s(week), s(patientHospital),
and s(roomHospital), and 0.05 for pedestrian and s(deathWorld).

Z ∼s(week) + vehicle + pedestrian + s(tepmerature) + s(deathTokyo)

+ s(deathWorld) + s(patientHospital) + s(roomHospital)
(3)

For the total variation distances, the fitting accuracy on the R-squared (adjusted)
values was fairly good, as shown in Table 2. The best model for a delay of
two weeks was selected; it is shown in Eq. (4). All the terms were signifi-
cant except for s(patientHospital): 0.001 significance level for s(week), vehicle,
s(temperature), s(deathTokyo), and s(infectedWorld) and 0.01 for pedestrian and
s(roomHospital).

D ∼s(week) + vehicle + pedestrian + s(temperature) + s(deathTokyo)

+ s(infectedWorld) + s(patientHospital) + s(roomHospital)
(4)

Moreover, we divided the 52 weeks from 6 May 2020 to 4 May 2021 into two
periods: (i) the 30 weeks from May to November 2020 and (ii) the 22 weeks from
December 2020 to May 2021. For the first period, the R-squared (adjusted) values for
both the χ2-type statistic and total variation distance in Table 2 were low, making it is
difficult to find correlation between the distances and the key factors. For the second
period, the R-squared (adjusted) values for both distances were high. As mentioned
in Sect. 4.2, the third wave roughly started in December 2020 in Tokyo, and stronger
correlations between the distances and the key factors are evident for the second period.

For the distances of the χ2-type statistic, the best model for a delay of two weeks
was selected; it is shown in Eq. (5). All the terms were significant: 0.001 significance
level for week, vehicle, s(deathTokyo), s(deathWorld), and s(patientHospital),
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Table 1 Key factor candidates
as predictor variables

Predictor variable Description

Week Time point (weekly ID)

Vehicle Vehicle increase rate (provided by Apple Inc.;
compared with January 13, 2020)

Transport Public transport increase rate (provided by
Apple Inc.; compared with January 13, 2020)

Pedestrian Pedestrian increase rate (provided by Apple
Inc.; compared with January 13, 2020)

Temperature Average temperature in Tokyo (provided by
Japan Meteorological Agency)

DeathTokyo Number of COVID-19 deaths in Tokyo (pro-
vided by Ministry of Health, Labour and
Welfare)

PatientHospital Number of patients in hospitals in Tokyo
(provided by Ministry of Health, Labour and
Welfare )

RoomHospital Number of available rooms in hospitals in
Tokyo (provided by Ministry of Health,
Labour and Welfare )

InfectedWorld Number of people infected with COVID-19
worldwide (obtained fromOurWorld inData)

DeathWorld Number of COVID-19 deaths in the world
(obtained from Our World in Data )

0.01 for s(transport) and infectedWorld, and 0.05 for s(temperature).

Z ∼week + vehicle + s(transport) + s(temperature) + s(deathTokyo)

+ infectedWorld + s(deathWorld) + s(patientHospital)
(5)

For the total variation distances, the best model for a delay of two weeks was selected;
it is shown in Eq. (6). All the terms were significant except for s(patientHospital)):
0.001 significance level for week, vehicle, s(deathTokyo), and s(patientHospital)
and 0.05 for s(transport).

D ∼week + vehicle + s(transport) + s(deathTokyo)

+ s(patientHospital)
(6)

These results indicate that the increase rates for vehicles and public transport can
be used in the COVID-19 measurements, especially for the second period. The tem-
perature, numbers of deaths, and number of patients in hospitals in Tokyo should be
considered key factors that can be correlated with a change in COVID-19 infection
rates.
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Table 2 R-squared (adjusted) values for response variables of distances of χ2-type statistic and total
variation with a delay of zero, one week, or two weeks from time points of predictor variables

Period χ2-type statistic Total variation

No delay 1 week 2 weeks No delay 1 week 2 weeks

All 52 weeks 0.52 0.53 0.55 0.52 0.55 0.58

(i) First 30 weeks 0.32 0.27 0.28 0.32 0.31 0.35

(ii) Last 22 weeks 0.51 0.60 0.70 0.63 0.59 0.67

5 Discussion

We first discuss the properties of Algorithm 1 as a Markov chain tester and the
sensitivity of its parameters. We do this using simulated data: (i) sequence Qx ran-
domly generated from a transition probability matrix with 5 states (Markov chain), (ii)
sequence Qy generated using sorting sequence X , and (iii) sequence Qz consisting of
(100−α)% sequences (the same as for Qx ) and an α% sequence (different from Qx ).
All sequences had a length of 100 with state components s1 = 1, . . . , s5 = 5 (see
appendix A). Note that although sequences Qx and Qy included the same portion of
each state, Qy had no Markovian property.

Figure 5 shows the acceptance probabilities, the distances of the χ2-type statistic,
and the threshold values of closeness analysis between two sequences (Qx and Qy)
with and without the Markovian property and with various values of ε and C in
Algorithm 1. When ε was smaller than 0.3, the algorithm could accurately distinguish
Qx and Qy for all values ofC . However, when ε was 0.4 or 0.5 andC was 1 or less, the
test resultswere incorrect although the inaccuracywas less than 4%.These results show
that strict testing can be conductedwith small values of ε and large values ofC although
with these setting,m (line 21 in Algorithm 1) becomes large and the computation cost
is higher. However, the required level of strictness in closeness analysis should differ
between applications, meaning that the values can be set accordingly, especially that of
ε. Moreover, both C and ε should be set in accordance with the available computation
power.

Figure 6 shows the acceptance probabilities, the distances of the χ2-type statistic,
and the threshold values of closeness analysis between two identical sequences (Qx

and Qx ) with various values of ε and C in Algorithm 1. For ε from 0.1 to 0.9 and
C from 1 to 100, the algorithm correctly determined that the two sequences were the
same.

Table 3 lists the acceptance probabilities, the distances of the χ2-type statistic, the
reject probabilities, and the total variation distances of closeness analysis between
(100 - α)% similar sequences (Qx and Qz) with ε = 0.1 andC = 100 in Algorithm 1.
α was varied from 0 to 5%. The algorithmwas able to distinguish the similar sequences
when α = 2% or more. In contrast, the classical hypothesis tests for two distributions
(Wilcoxon rank-sum test and Kolmogorov–Smirnov test) could not reject the null
hypothesis for all values of α. The proposed algorithm thus has strong testing power
for sequential data.

123



Japanese Journal of Statistics and Data Science (2022) 5:321–338 335

Fig. 5 Acceptance probabilities and distance of χ2-type statistic (solid line) and threshold (dashed line)
of closeness analysis between two different sequences (Qx and Qy ) with/without Markovian property and
with various values of ε and C in Algorithm 1

Fig. 6 Acceptance probabilities and distance of χ2-type statistic (solid line) and threshold (dashed line)
of closeness analysis between two identical sequences (Qx and Qx ) with various values of ε and C in
Algorithm 1
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Table 3 Acceptance probability, distance of χ2-type statistic, reject probability, and total variation distance
of closeness analysis between (100 - α)% similar sequences (Qx and Qz ) with ε = 0.1 and C = 100 in
Algorithm 1

α 0% 1% 2% 3% 4% 5%

Accept probability 1.0 0.8 0.4 0.2 0.2 0.0

χ2-type statistic − 1.0 64.3 173.5 244.0 301.5 492.9

Reject probability 0.0 0.0 0.0 0.2 0.2 0.6

Total variation distance 0.0 0.0 0.0 0.1 0.1 0.1

Wilcoxon rank-sum test: p-value 1 0.9 0.9 0.9 0.8 0.8

Kolmogorov–Smirnov test: p-value 1 1 1 1 1 1

6 Conclusions

We have designed a practical algorithm for testing the closeness of sequential data
by combining distribution testing and Markov chain testing. We used it to analyze
the closeness, the periodical evolution, and the key factors for the number of people
infected with COVID-19 for each city in Tokyo. The results showed that whether or
not the epidemic evolves in the same way in different cities or in different months
or weeks with numerical indicators of the acceptance and reject probabilities and
the significance levels. Examination of the properties of the algorithm as a Markov
chain tester and the sensitivity of the parameters showed that strict testing can be
conducted with small values of ε and large values of C under the constraint of the
available computation power. Comparison with the classical Wilcoxon rank-sum test
and Kolmogorov–Smirnov test demonstrated that the algorithm has a strong testing
power for sequential data.
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permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
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material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix

A Simulated data

The simulated data, Qx , Qy and Qz are as follows.

Qx = (1 4 1 2 2 5 1 2 2 5 5 5 1 2 5 5 3 3 4 5 4 2 4 4 5 3 4 4 5 5 5 5 4 3 2 2 5 1 4 3
2 4 5 3 5 5 1 5 2 3 5 3 2 4 1 2 4 4 5 5 1 2 2 1 2 2 1 5 5 3 5 3 5 1 2 4 5 3 4 4 4 5 4 3
1 4 5 4 5 4 3 2 1 3 2 3 5 1 3 4)
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Qy = (1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5)
Qz = (1 4 1 2 2 5 1 2 2 5 5 5 1 2 5 5 3 3 4 5 4 2 4 4 5 3 4 4 5 5 5 5 4 3 2 2 5 1 4 3 2
4 5 3 5 5 1 5 2 3 5 3 2 4 1 2 4 4 5 5 1 2 2 1 2 2 1 5 5 3 5 3 5 1 2 4 5 3 4 4 4 5 4 3 1
4 5 4 5 4 3 2 1 3 2 2 2 2 2 2) (α = 5%)

The transition probability matrix used to generate Qx is as follows.

⎛

⎜⎜⎜⎜
⎝

0.02126912 0.40209113 0.3423650 0.1571781 0.07709659
0.19377434 0.19871080 0.1079850 0.1904423 0.30908763
0.16414480 0.33028736 0.0176185 0.3189076 0.16904172
0.04017933 0.03392901 0.2268634 0.2755908 0.42343754
0.24338862 0.09483701 0.2326078 0.1308475 0.29831911

⎞

⎟⎟⎟⎟
⎠
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