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INFINITE FAMILIES OF CONGRUENCES MODULO 2 FOR
(`, k)-REGULAR PARTITIONS

T KATHIRAVAN(1), DIPRAMIT MAJUMDAR(2) AND USHA K SANGALE(3)

Abstract. Let b`,k(n) denote the number of (`, k)-regular partition of n. Recently,
some congruences modulo 2 for (3, 8), (4, 7)-regular partition and modulo 8, modulo 9 and
modulo 12 for (4, 9)-regular partition has been studied. In this paper, we use theta function
identities and Newman results to prove some infinite families of congruences modulo 2 for
(2, 7), (5, 8), (4, 11)-regular partition and modulo 4 for (4, 5)-regular partition.

1. Introduction

We shall use the following standard notation throughout the paper: for complex numbers
a, q with | q |< 1, define

fi := (qi; qi)∞, i = 1, 2, 3, · · · ,where (a; q)∞ =
∞∏

m=0
(1− aqm)

Recall that a partition of a positive integer n is a non-increasing sequence of positive
integers whose sum is n. An `-regular partition is a partition in which none of the parts is
divisible by `. Denote by b`(n) the number of `-regular partitions of n with the convention
b`(0) = 1. Then the generating function for b`(n) is given by

∞∑
n=0

b`(n)qn = f`

f1
. (1.1)

Recently, Kathiravan, Srinivas and Usha [6] stuided the (`, k)-regular partition denoted by
b`,k(n), which count the number of partition of n if none of the parts is divisible by ` or k.
Then the generating function for b`,k(n) is given by

∞∑
n=0

b`,k(n)qn = f`fk

f1f`k

. (1.2)

In [6], Kathiravan, Srinivas and Usha has proved infinite families of congruences modulo 2
for (3, 8), (4, 7)-regular partitions and modulo 8, 9 and 12 for (4, 9)-regular partition. For
example, the authors have shown that for n ≥ 0,

b4,9(16n+ 15) ≡ 0 (mod 8) (1.3)
b4,7(14(7n+ j) + 13) ≡ 0 (mod 2), 1 ≤ j ≤ 6. (1.4)
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In [7], Naika, Hemanthkumar and Bharadwaj has proved infinite families of congruences
modulo 2 for b3,5(n)-regular partition. For example, they showed that [7, Theorem 1.1] if
p is an odd prime

(
−15

p

)
L

= 1, 1 ≤ i ≤ p− 1 and j, n ≥ 0,

b3,5

(
2× p2j+2n+ (6i+ 2p)× p2j+1 + 1

3

)
≡ 0 (mod 2).

The aim of this paper is to prove several infinite families of congruences modulo 2 for (2, 7)
and (5, 8)-regular partitions, and modulo 4 for (4, 5)-regular partition. The following are
our main results

Theorem 1.1. Let a(n) be defined by
∞∑

n=0
a(n)qn = f 2

1 f7. (1.5)

Let p ≥ 5 be a prime and let
(

?
p

)
denote the Legendre symbol. Define

ω(p) := a
(3

8(p2 − 1)
)

+
(
−14
p

)(
−3

8(p2 − 1)
p

)
. (1.6)

(i) If ω(p) ≡ 0 (mod 2), then for n, j ≥ 0, if p - n, we have

b2,7
(
2p4j+3n+ 3

4p
4j+4 + 1

4
)
≡ 0 (mod 2). (1.7)

(ii) If ω(p) 6≡ 0 (mod 2), then for n, j ≥ 0,
(a) if p - n, we have

b2,7
(
2p6j+5n+ 3

4p
6j+6 + 1

4
)
≡ 0 (mod 2). (1.8)

(b) if p - (8n+ 3) and p 6= 7, we have

b2,7
(
2p6j+2n+ 3

4p
6j+2 + 1

4
)
≡ 0 (mod 2). (1.9)

(c) if 7 - (8n+ 3), we have

b2,7
(
2 · 76j+4n+ 3

476j+4 + 1
4
)
≡ 0 (mod 2). (1.10)

Remark 1. Using mathematica, we can find that a(9) ≡ 1 (mod 2). Using Theorem 1.1
with p = 5, we see that ω(5) ≡ 0 (mod 2) and hence by Theorem 1.1[(i)] we obtain that
for any integer n not divisible by 5, we have b2,7(250n+ 469) ≡ 0 (mod 2).

Theorem 1.2. Let b(n) be defined by
∞∑

n=0
b(n)qn = f 2

1 f5. (1.11)
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Let p ≥ 5 be a prime and let
(

?
p

)
denote the Legendre symbol. Define

ω(p) := b
(
7(p2 − 1)/24

)
+
(
−10
p

)(
−7(p2 − 1)/24

p

)
. (1.12)

(i) If ω(p) ≡ 0 (mod 2), then for n such that p - n and for all j ≥ 0, we have

b5,8
(
20p4j+3n+ 35

6 p
4j+4 + 7

6
)
≡ 0 (mod 2). (1.13)

(ii) If ω(p) 6≡ 0 (mod 2), then for all j ≥ 0,
(a) if p - n, we have

b5,8
(
20p6j+5n+ 35p6j+6/6 + 7/6

)
≡ 0 (mod 2). (1.14)

(b) if p - 24n+ 7 and p 6= 5, we have

b5,8
(
20p6j+2n+ 35

6 p
6j+2 + 7

6
)
≡ 0 (mod 2), (1.15)

(c) if 5 - 24n+ 7, we have

b5,8
(
4 · 56j+5n+ 7

656j+5 + 7
6
)
≡ 0 (mod 2), (1.16)

Remark 2. Using mathematica, we can find that b(14) = 0. Using Theorem 1.2 with
p = 7, we see that ω(7) = 0 and hence by Theorem 1.2[(i)] we obtain that for any integer
n not divisible by 7, we have b5,8(6860n+ 14007) ≡ 0 (mod 2).

Theorem 1.3. For n, k ≥ 0 and m ∈ {2, 4}, we have

b4,5

(
4 · 54kn+ 54k + 1

2

)
≡ b4,5(4n+ 1) (mod 4), (1.17)

b4,5

(
4 · 54k+1n+ 54k(8m+ 1) + 1

2

)
≡ 0 (mod 4), (1.18)

b4,5

(
4 · 54k+3n+ 54k+2(8m+ 1) + 1

2

)
≡ 0 (mod 4). (1.19)

2. Preliminaries

In this section, we collect some lemmas to prove our main results. We recall that for
| ab |< 1, Ramanujan’s general theta function f(a, b) is defined as

f(a, b) =
∞∑

n=−∞
an(n+1)/2bn(n−1)/2. (2.1)

Now from Jacobi’s triple product identity [3, Entry 19, p. 35]

f(a, b) = (−a; ab)∞(−b; ab)∞(ab; ab)∞, (2.2)
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it follows that (see [3, Entry 22, p.36])

ϕ(q) := f(q, q) = 1 + 2
∞∑

n=1
qn2 = (−q; q2)2

∞(q2; q2)∞ = f 5
2

f 2
1 f

2
4
, (2.3)

ψ(q) := f(q; q3) =
∞∑

n=0
qn(n+1)/2 = (q2; q2)∞

(q; q2)∞
= f 2

2
f1
, (2.4)

and
f(−q) := f(−q,−q2) =

∞∑
n=−∞

(−1)nqn(3n−1)/2 = (q; q)∞ = f1. (2.5)

Now we shall state few lemmas which will be required for the proof of our results.

Lemma 2.1. (Hirschhorn and Sellers [5, Theorem 1]) The following 2-dissection holds
f5

f1
= f8f

2
20

f 2
2 f40

+ q
f 3

4 f10f40

f 3
2 f8f20

. (2.6)

Lemma 2.2. The following 2-dissection holds (See [3, p.315]):

f1f
3
5 = f 3

2 f10 − q
f 2

2 f
2
10f20

f4
+ 2q2f4f

3
20 − 2q3f

4
4 f

2
40f10

f2f 2
8

, (2.7)

f 3
1 f5 = f 2

2 f4f
2
10

f20
+ 2qf 3

4 f20 − 5qf2f
3
10 + 2q2f

6
4 f10f

2
40

f2f 2
8 f

2
20
. (2.8)

Lemma 2.3. (Baruah and Ahmed [2, Eqn. (2.4)])
1

f1f11
= f 2

24f
5
132

f 2
2 f12f 2

22f
2
66f

2
264

+ q
f 2

4 f6f24f88f
2
132

f 3
2 f8f12f 2

22f44f264
+ q6 f8f

2
12f

2
44f66f264

f 2
2 f4f 3

22f24f88f132
+ q15 f 5

12f
2
264

f 2
2 f

2
6 f

2
22f

2
24f132

.

(2.9)

Lemma 2.4. The following 5−dissection holds:

f1 = f25

(
1

F (q5) − q − q
2F (q5)

)
(2.10)

as well as the identities
f 6

1
f 6

5
=
( 1
R5 − 11q − q2R5

)
(2.11)

and
1
f1

= f 5
25
f 6

5
(F 4(q5) + qF 3(q5) + 2q2F 2(q5) + 3q3F (q5) + 5q4 − 3q5F−1(q5) + 2q6F−2(q5)

− q7F−3(q5) + q8F−4(q5)). (2.12)

Where F (q) := q−1/5R(q) and R(q) is the Rogers-Ramanujan continued fraction defined,
for | q |< 1, by

R(q) := q1/5

1 +

q

1+

q2

1 +···
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Lemma 2.5. [4, Theorem 2.2] Let p ≥ 5 be a prime such that

±p− 1
6 :=


p− 1

6 , if p ≡ 1 (mod 6),
−p− 1

6 , if p ≡ −1 (mod 6).

With the notations as defined in (2.1) and (2.5), we have

f1 =
p−1

2∑
k=− p−1

2
k 6= ±p−1

6

(−1)kq
3k2+k

2 f
(
−q

3p2+(6k+1)p
2 ,−q

3p2−(6k+1)p
2

)
+ (−1)

±p−1
6 q

p2−1
24 fp2 .

Furthermore, if −p−1
2 ≤ k ≤ p−1

2 , k 6= ±p−1
6 , then 3k2+k

2 6≡ p2−1
24 (mod p).

Lemma 2.6. (Ahmed and Baruah [1, Lemma 2.3]) If p ≥ 3 is prime, then

f 3
1 =

p−1∑
k=0

k 6= p−1
2

(−1)kq
k(k+1)

2

∞∑
n=0

(−1)n(2pn+ 2k + 1)qpn· pn+2k+1
2 + p(−1)

p−1
2 q

p2−1
8 f 3

p2 .

Furthermore, if k 6= p−1
2 , 0 ≤ k ≤ p− 1, then k2+k

2 6≡ p2−1
8 (mod p).

The following result of M. Newman [8, Theorem 3] will play a crucial role in the proof of
our theorems, therefore we shall quote is as a lemma. Following the notations of Newman’s
paper, we shall let p, q denote distinct primes, let r, s be integers such that r, s 6= 0, r 6≡ s
(mod 2). Set

φ(τ) =
∏

(1− xn)r(1− xnq)s =
∑

c(n)xn, (2.13)

ε = 1
2(r + s), t = (r + sq)/24,∆ = t(p2 − 1), θ = (−1)

1
2−ε2qs,

(
?
p

)
is the well-known

Legendre symbol. Then the result is as follows.

Lemma 2.7. With the notations defined as above, the coefficients c(n) of φ(τ) satisfy

c(np2 + ∆)− γ(n)c(n) + p2ε−2c
(
(n−∆)/p2

)
= 0, (2.14)

where
γ(n) = p2ε−2c−

(
θ

p

)
pε−3/2

(
n−∆
p

)
. (2.15)

3. Proof of Theorems

3.1. Proof of Theorem 1.1. By definition
∞∑

n=0
b2,7(n)qn = f2f7

f1f14
≡ f2

f1f7
(mod 2). (3.1)

Now from [9, Lemma 2.1], we have
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∞∑
n=0

p[1171](2n+ 1)qn = f 2
2 f

2
14

f 3
1 f

3
7
, (3.2)

where p[1171](n) is defined by
∞∑

n=0
p[1171](n)qn = 1

f1f7
.

From (3.2) and (3.1), we obtain
∞∑

n=0
b2,7(2n+ 1)qn ≡ f 2

1 f7 (mod 2). (3.3)

By hypothesis of the theorem and equation (3.3), we have
∞∑

n=0
a(n)qn = f 2

1 f7 ≡
∞∑

n=0
b2,7(2n+ 1)qn (mod 2). (3.4)

Putting r = 2, q = 7 and s = 1 in (2.13), we have by Lemma 2.7, for any n ≥ 0

a
(
p2n+ 3

8(p2 − 1)
)

= γ(n)a(n)− p a
( 1
p2

(
n− 3

8(p2 − 1)
))
, (3.5)

where
γ(n) = pc−

(
−14
p

)(
n− 3

8(p2 − 1)
p

)
(3.6)

and c is a constant. Setting n = 0 in (3.5) and using the facts that a(0) = 1 and
a
(
−3(p2−1)/8

p2

)
= 0, we obtain

a
(3

8(p2 − 1)
)

= γ(0). (3.7)

Setting n = 0 in (3.6) and using (3.7), we obtain

pc = a
(3

8(p2 − 1)
)

+
(
−14
p

)(
−3

8(p2 − 1)
p

)
:= ω(p). (3.8)

Now rewriting the equation (3.5), by referring (3.6) and (3.8), we obtain

a
(
p2n+ 3

8(p2 − 1)
)

=
(
ω(p)−

(
−14
p

)(
n− 3

8(p2 − 1)
p

))
a(n)− pa

( 1
p2 (n− 3

8(p2 − 1))
)
,

(3.9)
Now, replacing n by pn+ 3

8(p2 − 1) in (3.9), we obtain

a
(
p3n+ 3

8(p4 − 1)
)

= ω(p)a
(
pn+ 3

8(p2 − 1)
)
− pa(n

p
). (3.10)

Case - 1: ω(p) ≡ 0 (mod 2)

Since ω(p) ≡ 0 (mod 2), from equation (3.10) we obtain
a
(
p3n+ 3(p4 − 1)/8

)
≡ pa(n/p) (mod 2). (3.11)
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Now, replacing n by pn in (3.11), we obtain

a
(
p4n+ 3

8(p4 − 1)
)
≡ pa(n) ≡ a(n) (mod 2). (3.12)

Since p4jn+ 3
8(p4j − 1) = p4

(
p4j−4n+ 3

8(p4j−4 − 1)
)

+ 3
8(p4 − 1), using equation (3.11), we

obtain that for every integer j ≥ 1,

a
(
p4jn+ 3

8(p4j − 1)
)
≡ a

(
p4j−4n+ 3

8(p4j−4 − 1)
)
≡ a(n) (mod 2). (3.13)

Now if p - n, then (3.11) yields

a
(
p3n+ 3

8(p4 − 1)
)
≡ 0 (mod 2). (3.14)

Replacing n by p3n+ 3(p4 − 1)/8 in (3.13) and using (3.14), we obtain

a
(
p4j+3n+ 3

8(p4j+4 − 1)
)
≡ 0 (mod 2). (3.15)

Case - 2: ω(p) 6≡ 0 (mod 2)
In order to prove part (ii), we replace n by p2n+ 3p(p2 − 1)/8 in (3.10)

a
(
p5n+ 3

8(p6 − 1)
)

= a
(
p3
(
p2n+ 3

8p(p
2 − 1)

)
+ 3

8(p4 − 1)
)

≡ ω(p)a
(
p3n+ 3

8(p4 − 1)
)
− p a

(
pn+ 3

8(p2 − 1)
)

≡
[
ω2(p)− p

]
a
(
pn+ 3

8(p2 − 1)
)
− pω(p) a

(n
p

)
. (3.16)

Now, as ω(p) 6≡ 0 (mod 2), we have ω2(p)− p ≡ 0 (mod 2), and therefore (3.16) becomes

a
(
p5n+ 3

8(p6 − 1)
)
≡ a(n/p) (mod 2). (3.17)

Replacing n by pn in (3.17), we obtain

a
(
p6n+ 3(p6 − 1)/8

)
≡ a(n) (mod 2). (3.18)

Using equation (3.18) repeatedly, we see that for every integer j ≥ 1,

a
(
p6jn+ 3(p6j − 1)/8

)
≡ a(n) (mod 2). (3.19)

Observe that if p - n, then a(n/p) = 0. Thus (3.17) yields

a
(
p5n+ 3

8(p6 − 1)
)
≡ 0 (mod 2). (3.20)

Replacing n by p5n+ 3(p6 − 1)/8 in (3.19) and using (3.20), we obtain

a
(
p6j+5n+ 3

8(p6j+6 − 1)
)
≡ 0 (mod 2). (3.21)
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Assume that p - (8n+ 3), then n 6≡ −3
8 (mod p) and hence p - n− 3

8(p2− 1), which in-turn
implies that a

(
1
p2 (n − 3

8(p2 − 1))
)

= 0 and
(

n− 3
8 (p2−1)

p

)
6= 0. Thus for p ≥ 5 and p 6= 7,

from equation (3.9) we obtain

a
(
p2n+ 3

8(p2 − 1)
)
≡ 0 (mod 2). (3.22)

Replacing n by p2n+ 3(p2 − 1)/8 in (3.19) and using (3.22), we obtain

a
(
p6j+2n+ 3

8(p6j+2 − 1)
)
≡ 0 (mod 2). (3.23)

Finally, assume that p = 7 and p - (8n+ 3), that is 7 - (n− 18). From (3.10) we obtain

a
(
74n+ 3

8(74 − 1)
)

= a
(

72
(
72n+ 3

8(72 − 1)
)

+ 3
8(72 − 1)

)
≡ a

(
72n+ 3

8(72 − 1)
)

+ a(n) (mod 2)

≡ 2a(n) + a
(n− 18

49
)
≡ 0 (mod 2). (3.24)

Replacing n by 74n+ 7(74 − 1)/24 in (3.19) and using (3.24), we obtain

a
(
76j+4n+ 3

8(76j+4 − 1)
)
≡ 0 (mod 2). (3.25)

The proof of Theorem 1.1 follows from the fact that b2,7(2n+ 1) ≡ a(n) (mod 2).

3.2. Proof of Theorem 1.2. By definition
∞∑

n=0
b5,8(n)qn = f5f8

f1f40
≡ f 3

1 f5f4

f40
(mod 2). (3.26)

Substituting (2.8) into (3.26) and extracting terms involving q2n+1 from both sides, we get
∞∑

n=0
b5,8(2n+ 1)q2n+1 ≡ q

f2f4f
3
10

f40
(mod 2). (3.27)

Cancelling q from both sides, then replacing q2 by q, we get
∞∑

n=0
b5,8(2n+ 1)qn ≡ f1f

3
5 f2

f20
≡ f 3

1 f5

f10
(mod 2). (3.28)

Again substituting (2.8) into (3.28) and extracting terms involving q2n+1 and cancelling q
from both sides, then replacing q2 by q, we get

∞∑
n=0

b5,8(4n+ 3)qn ≡ f1f
2
5 (mod 2). (3.29)
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Now substituting (2.10) into (3.29) and extracting terms involving q5n+1 and cancelling q
from both sides, then replacing q5 by q, we get

∞∑
n=0

b5,8(20n+ 7)qn ≡ f 2
1 f5 (mod 2). (3.30)

By the notation in the theorem, we have
∞∑

n=0
b(n)qn = f 2

1 f5 ≡
∞∑

n=0
b5,8(20n+ 7)qn (mod 2). (3.31)

Putting r = 2, q = 5 and s = 1 in (2.13), we have by Lemma 2.7, for any n ≥ 0

b
(
p2n+ 7

24(p2 − 1)
)

= γ(n)b(n)− p b
( 1
p2

(
n− 7

24(p2 − 1)
))
, (3.32)

where
γ(n) = pc−

(
−10
p

)(
n− 7

24(p2 − 1)
p

)
(3.33)

and c is a constant. Setting n = 0 in (3.32) and using the facts that b(0) = 1 and
b
(
−7(p2−1)/24

p2

)
= 0, we obtain

b
( 7

24(p2 − 1)
)

= γ(0) (3.34)
Setting n = 0 in (3.33) and using (3.34), we obtain

pc = b( 7
24(p2 − 1)) +

(
−10
p

)(
− 7

24(p2 − 1)
p

)
:= ω(p). (3.35)

Now rewriting the equation (3.32), by referring (3.33) and (3.35), we obtain

b
(
p2n+ 7

24(p2− 1)
)

=
(
ω(p)−

(
−10
p

)(
n− 7

24(p2 − 1)
p

))
b(n)− p b

( 1
p2

(
n− 7

24(p2− 1)
))
.

(3.36)
Now, replacing n by pn+ 7(p2 − 1)/24 in (3.36), we obtain

b
(
p3n+ 7

24(p4 − 1)
)

= ω(p) b
(
pn+ 7

24(p2 − 1)
)
− p b

(n
p

)
. (3.37)

Case - 1: ω(p) ≡ 0 (mod 2)
Since ω(p) ≡ 0 (mod 2), we have

b
(
p3n+ 7

24(p4 − 1)
)
≡ p b

(n
p

)
(mod 2). (3.38)

Replacing n by pn in (3.38) we obtain

b
(
p4n+ 7

24(p4 − 1)
)
≡ pb(n) ≡ b(n) (mod 2). (3.39)

Using equation (3.39) repeatedly, we see that for every integer j ≥ 1,

b
(
p4jn+ 7

24(p4j − 1)
)
≡ b(n) (mod 2). (3.40)
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Now as p - n, then (3.38) yields

b
(
p3n+ 7

24(p4 − 1)
)
≡ 0 (mod 2). (3.41)

Replacing n by p3n+ 7(p4 − 1)/24 in (3.40) and utilizing (3.41), we obtain

b
(
p4j+3n+ 7

24(p4j+4 − 1)
)
≡ 0 (mod 2). (3.42)

Case - 2: ω(p) 6≡ 0 (mod 2)
First note that b(14) = 0, which implies ω(7) = 0 and hence we can assume that p 6= 7.
Now, in order to prove part (ii), we first replace n by p2n+ 7

24p(p
2− 1) in (3.37) to obtain

b
(
p5n+ 7

24(p6 − 1)
)
≡ ω(p)b

(
p3n+ 7

24(p4 − 1)
)
− p b

(
pn+ 7

24(p2 − 1)
)

≡
[
ω2(p)− p

]
b
(
pn+ 7

24(p2 − 1)
)
− pω(p) b

(n
p

)
. (3.43)

Since ω(p) 6≡ 0 (mod 2), we have ω2(p)− p ≡ 0 (mod 2), and therefore (3.43) becomes

b
(
p5n+ 7

24(p6 − 1)
)
≡ b

(n
p

)
(mod 2). (3.44)

Replacing n by pn in (3.44), we obtain

b
(
p6n+ 7

24(p6 − 1)
)
≡ b(n) (mod 2). (3.45)

Using equation (3.45) repeatedly, we see that for every integer j ≥ 1,

b
(
p6jn+ 7

24(p6j − 1)
)
≡ b(n) (mod 2). (3.46)

Observe that if p - n, then b(n/p) = 0. Thus (3.44) yields

b
(
p5n+ 7

24(p6 − 1)
)
≡ 0 (mod 2). (3.47)

Replacing n by p5n+ 7(p6 − 1)/24 in (3.46) and using (3.47), we obtain

b
(
p6j+5n+ 7

24(p6j+6 − 1)
)
≡ 0 (mod 2). (3.48)

Now assume that p - (24n+ 7), then n 6≡ − 7
24 (mod p) and hence p - n− 7

24(p2− 1), which
in-turn implies that b

(
1
p2 (n− 7

24(p2 − 1))
)

= 0 and
(

n− 7
24 (p2−1)

p

)
6= 0. Thus for p > 5, from

equation (3.36) we obtain

b
(
p2n+ 7

24(p2 − 1)
)
≡ 0 (mod 2). (3.49)

Replacing n by p2n+ 7(p2 − 1)/24 in (3.46) and using (3.49), we obtain

b
(
p6j+2n+ 7

24(p6j+2 − 1)
)
≡ 0 (mod 2). (3.50)
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Finally, assume that p = 5 and p - (24n+ 7), that is 5 - (n− 7). From (3.36) we obtain

b
(
54n+ 7

24(54 − 1)
)

= b
(

52
(
52n+ 7

24(52 − 1)
)

+ 7
24(52 − 1)

)
≡ b

(
52n+ 7

24(52 − 1)
)

+ b(n)

≡ 2b(n) + b
(n− 7

25
)
≡ 0 (mod 2). (3.51)

Replacing n by 54n+ 7(54 − 1)/24 in (3.46) and using (3.51), we obtain

b
(
56j+4n+ 7

24(p6j+4 − 1)
)
≡ 0 (mod 2). (3.52)

The proof of Theorem 1.2 follows from the fact that b5,8(20n+ 7) ≡ b(n) (mod 2).

3.3. Proof of Theorem 1.3. We shall need the following result, which we present as a
proposition, to prove the theorem.

Proposition 3.1. For any non-negative integer k, we have
∞∑

n=0
b4,5

(
4 · 54kn+ 54k + 1

2

)
qn ≡ 2f 3

1 + 2qf2f
5
5 (mod 4). (3.53)

Proof. By definition
∞∑

n=0
b4,5(n)qn ≡ f 3

1 f5

f20
(mod 2). (3.54)

Substituting (2.8) in (3.54) and extracting terms involving q2n+1 and cancelling q from
both sides, then replacing q2 by q, we get

∞∑
n=0

b4,5(2n+ 1)qn ≡ 2f 3
2 + 3f1f

3
5

f10
(mod 4). (3.55)

Substituting (2.7) in (3.55) and extracting terms involving q2n and then replacing q2 by q,
we get

∞∑
n=0

b4,5(4n+ 1)qn ≡ 2f 3
1 + 2qf2f

5
5 (mod 4). (3.56)

which is the k = 0 case of (3.53). Now suppose that (3.53) holds for some k ≥ 0. Sub-
stituting (2.10) in (3.56) and extracting terms involving q5n+3 and cancelling q3 from both
sides, then replacing q5 by q, we get

∞∑
n=0

b4,5

(
4 · 54k+1n+ 54k+2 + 1

2

)
qn ≡ 2f 3

5 + 2f 5
1 f10 (mod 4). (3.57)

Again substituting (2.10) in (3.57) and extracting terms involving q5n and then replacing
q5 by q, we get

∞∑
n=0

b4,5

(
4 · 54k+2n+ 54k+2 + 1

2

)
qn ≡ 2f 3

1 + 2f8

f5
(mod 4). (3.58)
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Again substituting (2.10) in (3.58) and extracting terms involving q5n+3 and cancelling q3

from both sides, then replacing q5 by q, we get
∞∑

n=0
b4,5

(
4 · 54k+3n+ 54k+4 + 1

2

)
qn ≡ 2f 3

5 + 2qf40

f1
(mod 4). (3.59)

Substituting (2.12) in (3.59) and extracting terms involving q5n and then replacing q5 by
q, we get

∞∑
n=0

b4,5

(
4 · 54k+4n+ 54k+4 + 1

2

)
qn ≡ 2f 3

1 + 2qf2f
5
5 (mod 4). (3.60)

Thus, by induction hypothesis (3.53) is established. �

Now, the proof of theorem is a direct application of the proposition which can be seen
as follows. Proof of (1.17) follows by comparing equation (3.56) and (3.60). Proof of
(1.18) and (1.19) follows by substituting (2.10) in (3.57) and (3.59) respectively, and then
equating the coefficients of q5n+m for m = 2 and m = 4.

Theorem 3.2. For all n ≥ 0,
b4,11(22n+ 2m) ≡ 0 (mod 2), where m = {1, 4, 8, 9, 10}. (3.61)

Proof. By definition
∞∑

n=0
b4,11(n)qn ≡ f 2

2
f1f11f22

(mod 2). (3.62)

Substituting (2.9) in (3.62) and extracting the terms involving q2n from both sides of the
congruence and then replacing q2 by q, we have

∞∑
n=0

b4,11(2n)qn ≡ 1
f 3

11

(
f 2

12
f6

+ q3f
3
33f2

f11

)
(mod 2),

≡ f 3
6
f 3

11
+ q3f

3
33f2

f 4
11

(mod 2). (3.63)

Taking p = 11 in (2.5), and q replacing by q2, we get

f2 =

 5∑
k=−5
k 6=−2

(−1)kq3k2+kf
(
−q22(17+3k),−q22(16−3k)

)
+ q10f242

 (3.64)

Note that for −5 ≤ k ≤ 5 and k 6= −2,
3k2 + k 6≡ 5 (mod 11).

Also taking p = 11 in (2.5), and q replacing by q6, we get

f 3
6 =

10∑
k=0
k 6=5

(−1)kq3k(k+1)
∞∑

n=0
(−1)n(22n+ 2k + 1)q33n·(11n+2k+1) − 11q90f 3

726. (3.65)
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Furthermore, if k 6= 5, 0 ≤ k ≤ 10, then k2+k
2 6≡ 15 (mod 11).

Employing (3.65) and (3.64) in (3.63), observe that the right-hand side doesn’t contain
terms of the form q11n+m for m ∈ S = {1, 4, 8, 9, 10}. Thus

∞∑
n=0

b4,11(22n+ 2m)qn ≡ 0 (mod 2). (3.66)

Completes the proof of theorem follows from (3.66).
�
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