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bUniversité Paris-Cité, IJCLab, ORSAY, France,

cIRSN, LEDI, FONTENAY-AUX-ROSES, France,
dIUCTO, ICR, TOULOUSE, France,

Abstract5

Vectorized internal radiotherapy is an efficient modality for cancer treatment

but requires a personalized dosimetry to adapt the administered dose for each

patient, in order to limit the toxicity to organs-at-risk and maximize thera-

peutic effects. This can be done by performing quantitative imaging of the

target organ with high resolution γ-imaging devices in order to evaluate the

uptake and biokinetics of the radiotracer. We developed a high-resolution

portable γ-camera with a 10×10 cm2 field of view dedicated to thyroid imag-

ing during diseases treatments with 131I. In addition to the optimization of the

detection elements, the quality of the images also depends on the implemen-

tation of efficient methods to reconstruct the interaction position of gamma

rays in the monolithic scintillator from the measurement of the scintillation

light distribution. We present here the results obtained with two different

machine learning methods based on experimental data for reconstruction of

the γ-rays interaction position. Those methods reach high spatial perfor-

mances such as millimeter spatial resolution and submilimeter distortion in
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the center of the field of view.

Keywords: Gamma-camera, image reconstruction, machine learning,6

neural networks, dosimetry7

1. Introduction8

Targeted radionuclide therapy is one of the most widespread treatment9

modality for benign and malignant thyroid diseases. In order to maximize10

the therapeutic effects on the target tissues while minimizing toxicity for11

organs-at-risk, the absorbed dose should be individually estimated for each12

patient to account for differences in radiopharmaceutical uptake and bioki-13

netics. Accurate individual estimation of absorbed doses for both treatment14

planning and post-treatment dosimetry verification requires γ-imaging de-15

vices that are optimized for high-energy γ-rays and high photon fluences and16

that can perform repeated measurements at different times before and after17

treatment administration. To fit these requirements, we proposed to develop18

a mobile high-resolution γ-camera specifically designed to dosimetry through19

planar imaging of the radiotracer biodistribution at patient’s bedside during20

the treatment of thyroid diseases with 131I. A first feasibility prototype with21

a parallel hole collimator and a 5×5 cm2 field of view (FOV) corresponding22

to the detection area showed very promising results [1]. We are now de-23

veloping a fully-operational clinical device (fig. 1). This clinical prototype24

has a 10×10 cm2 FOV suited to the size of enlarged thyroids, a millimetric25

intrinsic spatial resolution, an energy resolution of 8% FWHM at 364 keV26

(main gamma emission line of 131I) and a counting capability of 200 kcps27

with negligible dead-time for early imaging after treatment administration.28
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Figure 1: Photodetection module of the mobile camera composed of a 256 SiPMs array

coupled to an encapsulated 10× 10× 1 cm3 CeBr3 monolithic scintillator.

Those high intrinsic performances allow to improve the quantitative assess-29

ment of radiopharmaceutical distribution far beyond what is possible with30

conventional γ-cameras, by reducing partial volume effects and contamina-31

tion from high-energy scattered events. They are firstly achieved through32

the use of a monolithic inorganic scintillator coupled to pixelated silicon33

photodetectors, but also requires the implementation of efficient methods to34

reconstruct the interaction position of γ-rays within the scintillator from the35

measurement of the scintillation light distribution. Historically, the centroid36

of the measured light distribution was computed to retrieve the interaction37

position of absorbed γ-rays [2]. This method is fast but yields poor spatial38

performance, mainly due to the distortion of the light distribution near the39

scintillator edges, resulting in a reduced useful field of view (UFOV). It is40

also possible to define a suitable light distribution analytical model to be fit41
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on data [3]. Otherwise, if the response function of the detector is unknown or42

too complex, interpolation methods [4], maximum likelihood [5] or k-Nearest43

Neighbors [6] based on reference data can be used for reconstruction. These44

methods however require strong computation, limiting their use for real time45

clinical applications or when fast processing is required. More recently, the46

use of Neural networks has shown promising results as they can learn position47

information from distorted light distributions due to reflections or depth of48

interaction influence, and therefore, propose an attractive alternative to pro-49

vide an efficient method for accurate and fast reconstruction of γ-rays. Once50

trained on a reference dataset, the network can also be used for real-time51

imaging since the reconstruction is reduced to a few tensor multiplications.52

This article proposes the optimization and performance comparison of an53

interpolated model fitting method and a neural network algorithm for γ-ray54

imaging, both based on experimental data for training and validation.55

2. Material and methods56

2.1. Global design of the γ-detection system57

The γ-detection system of the mobile camera is composed of a 10×10 cm258

and 1 cm thick CeBr3 monolithic scintillator (Scionix) encapsulated in a me-59

chanical frame with a 1.5 mm thick glass output window and a reflective op-60

tical coating. The scintillator is coupled with optical grease (BC-630, Saint61

Gobain) to a 4×4 Hamamatsu S13361-6050 arrays of 4×4 silicon photomulti-62

pliers (SiPMs). The pixels have a sensitive area of 6×6 mm2 and a microcell63

pitch of 50 µm. The SiPMs signals are readout by commercial acquisition64

electronics manufactured by PETSys Electronics. This electronic readout65
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consists of four TOFPET 2B ASICs with 64 analog readout channels each,66

used in a charge-integration mode and connected to a DAQ computer via a67

Gigabit Ethernet link. The SiPMs bias and electronic triggering threshold68

were adjusted to optimize the energy resolution of the camera. The over-69

voltage was set to 7.5 V, which corresponds to a gain of 4.3·106 and a PDE70

of 55%. Thermal noise events (11 kcps for the optimal operative bias and71

individual trigger threshold used) are completely suppressed by an internal72

hardware trigger (10 ns coincidence window), which operates between two73

regions of the detector defined as a checkerboard, where each square cor-74

responds to a 4×4 SiPM array. The non-uniformity of the photodetector75

light response was evaluated and corrected by irradiating the SiPMs with a76

pulsed LED source. The relative standard deviations of the light response77

over the 256 SiPMs before and after uniformity correction are 12.8% and78

0.96%, respectively.79

2.2. Experimental Data80

The training and validation of the reconstruction algorithms was con-81

ducted with experimental data measured using a 133Ba source collimated82

with a single-hole tungsten collimator of 0.5 mm diameter . A scan of the83

whole FOV of the monolithic scintillator-photodetector assembly was per-84

formed with a 1 mm step, ranging from -49.5 mm to 49.5 mm in the x and y85

directions from the center of the camera, and resulting in a 100×100 positions86

grid. Each interaction event produces a light pulse within the monolithic scin-87

tillator that propagates, possibly after some reflections, to the SiPMs array88

leading to a 16×16 pixels frame corresponding to the charge distribution.89

The cleaning of the reference dataset is a crucial step before training the90
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Figure 2: Typical charge distributions produced after the total energy absorption of a

364 keV γ-ray in the monolithic scintillator : (Top-left) photoelectric effect after pass-

ing through the hole of the collimator, (Top-right) photoelectric effect after penetrating

through the collimator material and (Bottom-left) single Compton or (Bottom-right) mul-

tiple Compton scatterings followed by a photoelectric interaction

. The red cross represents the mechanical position of the source.
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reconstruction algorithms if good spatial performance is to be achieved. A91

first energy selection of twice the energy resolution was applied around the92

356 keV emission of 133Ba (16% energy window) to only keep events corre-93

sponding to a full deposition of the incident energy photon. Fig. 2 shows94

typical patterns of the frames produced by the full energy absorption of a95

356 keV γ-ray in a 1 cm thick CeBr3 scintillator. The scan dataset was then96

filtered by a second spatial selection to remove full-energy events that have97

penetrated through the collimator material (fig. 2 top-right) or that have98

scattered once or several times by Compton interaction inside the scintilla-99

tor, before being absorbed by photoelectric interaction, which will be called100

CS+PE events in the rest of the manuscript for concision (fig. 2 bottom left101

and right). The penetration events represent 77% of all events detected in102

the energy window, while CS+PE events remain negligible with less than103

1% of all detected events. The 22% remaining events correspond to 356 keV104

gamma rays that propagated through the collimator hole and were fully ab-105

sorbed inside the scintillator after a single photoelectric interaction (fig. 2,106

top-left). Both types of spurious events do not produce a well-localized en-107

ergy deposition and therefore result in poor localization. In order to clean108

data from parasite events, the position of all events was reconstructed with109

a non-linear weighting method [2] and only those located within a radius of110

3 mm around the mean reconstructed position were kept (the value of the111

radius was empirically optimized). Two thousand full-energy interactions112

were then obtained for each scan position after spatial filtering of spurious113

events. Half of these events were used as a reference dataset for training of114

the reconstruction methods, while the other half were used as a test dataset115
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for performance evaluation. Additionally, a flood-field uniformity acquisition116

has been carried out with the collimatorless 133Ba source, placed at 50 cm117

from the scintillator (30 million events in the 364 keV photopeak window).118

The impact on the quality of the reconstruction of CS+PE γ-rays has been119

quantified. Conversely, their effect on the learning process, that is their in-120

clusion in the training dataset, has not been studied because their number is121

too small to have any influence.122

2.3. Reconstruction algorithms123

Two reconstruction methods of the interaction position of the incident124

γ-ray limited in the x0y plane (no depth of interaction) were tested: a least-125

square fitting method and a neural network.126

2.3.1. Interpolated model fitting127

As the response function of each pixel of the camera is unknown, prevent-128

ing the use of an analytical model for fitting light distributions, the discrete129

response functions of the pixels were determined at each position of the scan130

by averaging the frames of the reference dataset. New synthetic light distri-131

butions at any given x and y positions of the field of view are interpolated132

from these reference frames with bivariate spline functions. The interaction133

position of any detected event of the test dataset is reconstructed by fit-134

ting its charge distribution with a standard least-square method (Levenberg-135

Marquardt), minimizing an objective function calculated at each step thanks136

to the synthetic light distributions [4]. To reduce statistical fluctuations137

that may degrade the quality of the fit, the frames of the reference and test138

dataset can be smoothed with different sizes of gaussian convolution kernel139

8



Figure 3: Structure of a Deep Residual Convolutional Block. m is the dimension of the

input image, n is the dimension of the filters and k is the number of filters. BN stands for

Batch Normalization, Av.Pool. for Average Pooling and ReLU for Rectified Linear Unit.
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(3×3, 5×5, ...). The trade-off between precision and convergence speed of140

the fitter can also be optimized by changing its tolerance for termination141

parameter [7].142

2.3.2. Neural network143

The neural network has been designed and trained using Keras (Tensor-144

flow) Python library. It is based on a Deep Residual Convolutional architec-145

ture inspired from Jaliparthi et al. [8]. This architecture is composed of one146

or several Deep Residual Convolutional Blocks each consisting of an input147

image, directed on one side through two convolutional and Batch Normaliza-148

tion layers, and on the other side to an identity shortcut (skip connection).149

The outputs of these two branches are then summed and activated by a150

ReLU (Rectified Linear Unit) activation function, as shown on fig. 3. The151

use of Batch Normalization is advised to make the training of the neural152

network faster and more stable [9]. However, when used in a deep neural153

network, these layers can also cause gradient vanishing or exploding, leading154

to difficulties of training. This problem is addressed by the use of the skip155

connections [10]. Unlike Jaliparthi et al., the Leaky ReLU activation func-156

tion was not used in order not to increase the number of hyperparameters157

too much and to stay as close as possible to Deep Residual Convolutional158

Blocks defined by He et al. [10]. In addition, our images are zero-padded to159

keep their size m×m constant during a convolution operation, then passed160

through an average pooling layer at the end of a block to reduce their size161

to m
2
× m

2
. This allows to use more convolution layers by choosing when the162

image size shrinks. The number of filters k on a layer, that is the number of163

extracted features, is always two times more than the previous layer, all along164
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the network, as shown on fig. 3. Therefore, the number of filters on each layer165

can be derived from the number of filters on the first layer. The size n×n of166

the filters is constant in a block but can change from one block to another.167

The network loss optimization, where the loss can be different functions for168

regression tasks such as Mean Absolute Error (MAE), Mean Squared Error169

(MSE) or Mean Squared Logarithmic Error (MSLE), is achieved thanks to170

the stochastic gradient descent Adam algorithm [11]. The neural network171

is trained thanks to the aforementioned reference dataset, using the 16×16172

pixels frames and true mechanical position of the collimated source as input173

images and labels, and reconstructed interaction positions of the γ-rays as174

the output, on two fully connected neurons.175

2.4. Performance metrics176

For both reconstruction methods, the intrinsic spatial performance of the177

monolithic scintillator-photodetector assembly was evaluated using the sec-178

ond part of the scan dataset, that was not used for training. Those measure-179

ments on experimental data do not allow to assess the intrinsic performance180

of the reconstruction methods because of many sources of physical uncer-181

tainty. However, it permits to get relevant information about the interest of182

those methods for real-world clinical applications. The performance metrics183

are defined by the NEMA standard [12] and adapted to small field of view184

γ-cameras by Bhatia et al. [13]. The evaluation includes the measurement185

of the spatial resolution (SR) in mm FWHM by fitting a 2D Gaussian on186

the 2D histogram of the reconstructed positions, at each scan position. The187

measured FWHM is deconvoluted from the size of the collimator hole. This188

fit also gives a measurement of the bias, also called Local Intrinsic Spatial189

11



Distortion (LISD), that is the mean positioning error at each scan position.190

On the other hand, the integral and differential uniformities (respectively IU191

and DU) of the spatial response were obtained by reconstructing the data192

of the flood-field uniformity acquisition. The integral uniformity is given by193

the standard deviation of counts per bin over the mean counts per bin in the194

image. It measures how well the counts are uniformly distributed over the195

whole field of view. The differential uniformity measures local relative vari-196

ations of counts between adjacent bins for all the bins of the image and the197

value reported is the mean of all those variations. This metric reflects local198

accumulations or diminution of counts due to local distortion. All perfor-199

mance are reported in the Central Field of View of the camera (CFOV, 75%200

of the linear dimension of the FOV), and in the remaining surface uncovered201

by the CFOV (CFOV).202

The reconstruction of CS+PE γ-rays can’t alter the FWHM spatial reso-203

lution as their number is very low in a 1 cm thick scintillator. The effect can204

only be highlighted by measuring the prediction error, which is the Euclidean205

distance between the reconstructed position and the expected position. The206

interquartile range of the prediction error distribution, which is a robust207

measurement of the dispersion relatively insensitive to outliers, is reported208

to evaluate the influence of CS+PE events.209

2.5. Optimization of the algorithms210

The different tested configurations for the fitting method and the neural211

network are summarized respectively in table 1 and 2. Each time a parameter212

is changing, all other parameters remain constant and identical to those of213

the reference configuration B1 for the fitting method, and B2 for the neural214
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Configuration

name

Number of

events/pos.

Gaussian

kernel size

Tolerance for

fit termination

Reference

scan step

A1 150 3×3 10−1 1 mm

B1 300 3×3 10−1 1 mm

C1 600 3×3 10−1 1 mm

D1 900 3×3 10−1 1 mm

E1 300 no smoothing 10−1 1 mm

F1 300 5×5 10−1 1 mm

G1 300 3×3 10−2 1 mm

H1 300 3×3 10−4 1 mm

I1 300 3×3 10−1 3 mm

J1 600 3×3 10−2 3 mm

Table 1: Summary of the different tested configurations for the fitting algorithm. The

tolerance for fit termination refers to xtol and ftol parameters of Python’s Scipy library

documentation [7]. The same value is applied to both parameters. The reference configu-

ration is in bold and the configuration that gives the best compromise in terms of spatial

performance is in red.

network. The optimized parameters for the fitting algorithm are the number215

of events/position of the reference scan, the step of the reference scan, the216

size of the gaussian smoothing kernel and the convergence tolerance of the217

fitter [7]. The optimized parameters for the neural network are the number of218

events/position and the step of the scan for the training dataset, the number219

of filters per layer, the number of residual blocks, the loss function and the220

effect of the residual connection. The model has been trained for 30 epochs221

and saved at each epoch to compare performance. We noticed that for all222

13



Configuration

name

Nbr of

events/pos.

Nbr of filters

on 1st layer

Filter

size

Nbr of

res. blocks

Reference

scan step

Loss

function

Residual

connection

A2 200 16 3×3/5×5 2 1 mm MSE yes

B2 500 16 3×3/5×5 2 1 mm MSE yes

C2 800 16 3×3/5×5 2 1 mm MSE yes

D2 500 8 3×3/5×5 2 1 mm MSE yes

E2 500 32 3×3/5×5 2 1 mm MSE yes

F2 500 16 3×3/3×3 2 1 mm MSE yes

G2 500 16 5×5/5×5 2 1 mm MSE yes

H2 500 8 3×3/3×3/5×5 3 1 mm MSE yes

I2 500 16 3×3/5×5 2 3 mm MSE yes

J2 500 16 3×3/5×5 2 1 mm MAE yes

K2 500 16 3×3/5×5 2 1 mm MSE no

L2 800 8 5×5/5×5/5×5 3 1 mm MAE yes

Table 2: Summary of the different tested configurations for the neural network. MSE

stands for Mean Squared Error, and MAE for Mean Absolute Error. The reference config-

uration is in bold and the configuration that gives the best compromise in terms of spatial

performance is in red.

network architectures the loss value reached a plateau around the 17th epoch.223

We therefore established a learning rate schedule decreasing the learning rate224

from 10−3 to 10−4 at the 17th epoch. The batch size is set to 32 samples. As225

Adam optimizer uses a stochastic gradient descent and the weights and bias226

of the network are randomly initialized, each neural network architecture is227

trained three times to ensure that the training is stable, and the reported228
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performances are the mean of the three trained models.229

3. Results230

The box plots in fig. 4, 5, 7 and 8 represent the distributions of spatial231

resolution and distortion in the CFOV and CFOV. The bottom and the232

top of the box are respectively the first and third quartiles Q1 and Q3, so233

the box height is the interquatile range IQR= Q3 − Q1. The bottom and234

top whiskers represent Q1 − 1.5·IQR and Q3 + 1.5·IQR, respectively. The235

lines crossing the boxes are the median values, the triangles are the mean236

values, and the dashed line is the lowest median of all configurations. This237

representation gives an idea of the homogeneity of the spatial response and238

the possible skewness towards high values. For the uniformity bar graphs on239

fig. 6 and 9, the blue bar is the uniformity value in the CFOV, the orange bar240

is the uniformity in the CFOV and the dashed line is the lowest uniformity241

in CFOV of all configurations.242

3.1. Fitting algorithm243

The parameters of the fitting algorithm that give the best compromise in244

terms of spatial performance and processing speed (configuration J1 ) are 600245

events per averaged reference frame, a smoothing of those frames and the ones246

to be reconstructed with a 3×3 gaussian kernel, tolerance for termination of247

the least-squares fitting of 10−2 on the change of the cost function and the248

change of the independent variables, and a 3 mm step reference scan. These249

parameters are the ones that, separately, optimize spatial performance. The250

addition of CS+PE γ-rays to the reconstruction increases the interquartile251

range of the prediction error distribution by 9%. An example of a 2 mm step252
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Figure 4: Box plots of the spatial resolution distributions (in mm FWHM) for the differ-

ent configurations of the fit method. Top: Spatial resolution in CFOV. Bottom: Spatial

resolution in CFOV.

reconstructed scan with this configuration is shown on fig. 10 (left). The253

processing speed achieved with this configuration is about 90 events/s/CPU.254

The overall spatial performance given by this set of parameters is reported255

in table 3.256

3.2. Neural Network257

The configuration of the neural network that leads to the best spatial258

performance uses the optimal value of each separately optimized parameter259
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Figure 5: Box plots of the LISD value distributions (in mm) for the different configurations

of the fit method. Top: Distortion in CFOV. Bottom: Distortion in CFOV.

(configuration L2 ). The training dataset consists of 800 events per position260

with a step size of 1 mm. The neural network is composed of three Deep261

Residual Convolutional Blocks, where the first block contains 8 and 16 filters,262

respectively. The second block is similar but with 32 and 64 filters, and the263

last block uses 128 and 256 filters. All the filters are 5×5 kernels and the264

network contains a total of around 1 million neurons. We found that theMean265

Absolute Error loss function leads to better overall performance. The optimal266

configuration uses residual connections. The influence of CS+PE events is267

an increase of the interquartile range of prediction error distribution by 9%,268
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Figure 6: Bar graphs of differential and integral uniformity (in %) for the different parame-

ters configurations of the fitting algorithm. Blue: Uniformity in CFOV. Orange: Uniformity

in the CFOV.

as for the fitting method. An example of a 2 mm step reconstructed scan269

with this configuration is shown on fig. 10 (right). The processing speed270

achieved with this configuration is about 350 events/s/CPU. The overall271

spatial performance achieved with this architecture is reported in table 3.272
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Figure 7: Box plots of the spatial resolution distributions (in mm FWHM) for the different

hyperparameters configurations of the neural network. Top: Spatial resolution in CFOV.

Bottom: Spatial resolution in CFOV.

4. Discussion273

4.1. Fitting algorithm274

The asymptotic behaviour of the evolution of spatial performance as a275

function of the number of frames in the computation of the average light276

responses of SiPMs (A1 to D1 ) shows that fluctuations become negligible277

above 600 frames per position and no longer impact the spatial response.278

Even when reducing the fluctuation on the average frame, it is still necessary279

to smooth those reference frames along with the frame to be reconstructed280
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Figure 8: Box plots of the LISD value distributions (in mm) for the different hyperparam-

eters configurations of the neural network. Top: Distortion in CFOV. Bottom: Distortion

in CFOV.

(E1, B1 and F1 ). The optimal smoothing in terms of spatial performance in281

CFOV is achieved with a 3×3 gaussian kernel (B1 ). This result may be due to282

the large size of the SiPMs relative to the scintillator thickness, which results283

in spatial subsampling of the light distribution and strong pixel-to-neighbor284

variations. Smoothing reduces the latter effect and also the fluctuations in285

the tails of the light distributions. However, a too large smoothing (5 × 5286

gaussian kernel, F1 ) decreases the quality of the spatial response. As the287

surface of the filter represents about 10% of the frame, it mixes useful sig-288
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Figure 9: Bar graphs of differential and integral uniformity (in %) for the different hyper-

parameters configurations of the neural network. Blue: Uniformity in CFOV. Orange: Uni-

formity in the CFOV.

nal information of the light distribution with noise from the tails and thus,289

degrades the information. Increasing the constraint on the tolerance for ter-290

mination of the least-squares fit should intuitively improves the accuracy of291

the reconstruction, which is confirmed by the data. Decreasing the tolerance292

for termination from 10−1 to 10−2 (B1 and G1 ) leads to a significant improve-293

ment in spatial resolution and distortion at the edges of the FOV. Further294

decreasing of this parameter to 10−4 (H1 ) is not beneficial and reduces the295

processing speed of the method of 30% from configuration G1. Using a step296
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Figure 10: Images of a reconstructed scan obtained with the optimized configurations of

the fitting algorithm (left) and the neural network (right). For sake of clarity, only events

with a 2 mm step are shown.

size of 3 mm (I1 ) instead of 1 mm (B1) for the reference scan slightly im-297

proves differential uniformity and distortion on the edges of the FOV. The298

degradation of the regression when the step scan decreases is probably due299

to errors in the average light responses. These errors, which could be related300

to small pedestal or gain fluctuations during measurements, are of the or-301

der of magnitude of the expected light variation between two measurement302

points separated by 1 mm. Therefore, for a set of several consecutive points,303

the overall trend for the variation in light response is correct but affected304

by these local fluctuations. The bivariate spline interpolation follows that305

local fluctuations when using a 1 mm step, whereas the interpolated light306

response is smoothed with a 3 mm step. The poor estimation of the mean307

light response at the local scale creates ”attractors” during the convergence308

process, resulting in local heterogeneities.309

Although the J1 configuration uses the parameters that give separately310
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Region SR (mm) LISD (mm) DU (%) IU (%)

UFOV 1.44±0.24 0.09±0.12 3.63 5.36

Fit method CFOV 1.30±0.06 0.06±0.03 3.60 4.61

CFOV 1.85±0.77 0.19±0.37 3.72 7.61

UFOV 1.31±0.40 0.15±0.11 2.45 4.35

Neural network CFOV 1.15±0.06 0.11±0.05 2.39 3.35

CFOV 1.54±0.55 0.35±0.66 2.47 6.3

Table 3: Summary of the intrinsic spatial performance measured with the best configura-

tion of the fitting method (J1 ) and the neural network (L2 ).

the best spatial performance, some effects are not cumulative. The opti-311

mal configuration therefore results from a compromise between the different312

spatial performances, with a greater weight given to spatial resolution and313

uniformity. This is why the J1 configuration is the best in terms of spatial314

resolution and uniformity, but at the cost of slightly more distortion than315

the G1 configuration.316

4.2. Neural Network317

The number of events in the training dataset is one of the key parame-318

ters for good performance of a neural network. For good generalization, the319

dataset should have as many different examples as possible. Fig. 7 shows320

that for our regression task, the number of events strongly affects the dis-321

tortion and thus the spatial uniformity. As for the fitting algorithm, this322

behavior is asymptotic (A2 to C2 ) and approximately constant performance323

is achieved beyond 500 events per position. This asymptotic behavior is due324

to the fact that above this number, the new added frames are not statis-325
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tically different from the previous ones, so the learning does not progress326

significantly. Since we have more events per position available, we chose to327

use 800 events to push further the homogeneity of the spatial response. The328

step size of the training dataset, 1 mm or 3 mm (B2 or I2 ), is also crucial329

when collecting data. A small step size will allow to give to the network a330

nearly complete description of the latent space it is trying to map. Thus,331

the 1 mm step size allows the best performance to be achieved in terms of332

spatial resolution, distortion and uniformity in the whole FOV (Fig. 7, 8333

and 9). All spatial performance improve slightly by adding filters (Fig. 7, 8334

and 9). Indeed, the number of filters per layer determines how many features335

are extracted from the frames (D2, B2 and E2 ). On one hand, if this num-336

ber is to low, the information contained in the frames is not fully extracted.337

On the other hand, too many filters per layer adds redundancy and useless338

complexity, preventing the network to learn quickly and easily. The optimal339

number of filters per layer is 32, 64, 128 and 256 from the first to the last340

convolution layer, respectively, which corresponds to the E2 configuration.341

The optimal size of the filters to use remains a topic of discussion in arti-342

ficial neural network research (F2, B2 and G2 ). In our application, 5 × 5343

kernels for all filters (G2 ) works best for low distortion (fig. 8). This can be344

explained by the local features extracted with 3×3 kernels, such as contours345

for instance, while the large 5 × 5 kernels will extract large scale informa-346

tion. The frames we feed the neural network with are sampled continuous347

charge distributions that contain no local features or very sharp content vari-348

ations from pixel to pixel. Thus, the 5×5 kernels perform better than the349

3×3 kernels for extracting position information [14]. Islam et al. [15] also350
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showed that zero-padding plays a significant role for the good performance351

of Convolutional Neural Networks extracting absolute position information.352

The deepness of the neural network, that is the number of Deep Residual353

Convolutional Blocks in our case, will determine how much the extracted354

information is processed by the network. Like the number of filters per layer,355

an optimum can be found between a shallow network that does not fully356

process extracted features, and a too deep network where too much com-357

plexity prevents good performance. We see that increasing the number of358

Deep Residual Convolutional Blocks from two to three (B2 to H2 ) slightly359

improves all spatial performance, as the extracted features are of higher level360

(Fig. 7, 8 and 9). We also tested a configuration with only a single residual361

block, but the spatial performance were poor. Since we kept the number of362

neurons in the network constant while increasing its deepness, this shows that363

the complexity of the network (i.e the number of neurons or filters) is not the364

only parameter to control to reach good performance, but that the deepness365

of the network is also important to fully process the information contained366

in the frames. The use of skip connections allows better convergence during367

the learning phase, and therefore to extract better features from the frames368

to accurately reconstruct the interaction positions of γ-rays. We see that by369

removing these shortcuts (K2 ), which leaves us with a conventional Convolu-370

tional Neural Networks, performance are not specifically degraded except for371

the distortion when compared to the same network with residual connections372

(B2 ) (fig. 8). Indeed, this suppression only results in a global spatial shift373

by a constant of all the reconstructed positions in the x and y directions.374

This effect could not be understood. We also show that using the MAE loss375
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function (J2 ) leads to a better spatial resolution and slightly better overall376

spatial performance than using MSE loss function (B2 ). We explain this ef-377

fect by the fact that most of the predictions give errors that are smaller than378

one from the end of the first epoch. Therefore, as MSE is the squared error379

and MAE is linear, the loss value will be smaller with MSE and the model380

will not be penalized as much as with MAE. The drawback of using MAE381

is that for predictions giving errors larger than one, the model will be less382

penalized than when using MSE. However, the performance metrics used in383

our study, that is the spatial resolution FWHM, is not sensitive to outlying384

values. The numerical issue of the model being less penalized for errors less385

than one when using MSE could be addressed by multiplying the expected386

and predicted values by a carefuly chosen constant, so that the error never387

drops below one. We could therefore limit outlying predictions while getting388

good predictions when error is below one, as with MAE.389

The neural network configuration L2 gives the best spatial performance390

of all tested configurations, but as it uses three Deep Residual Convolutional391

Blocks and more filters than all other configurations, its processing speed is392

slowed down. For instance, its reconstruction rate is approximately divided393

by 4 compared to the B2 configuration.394

4.3. Comparison of the methods395

The fitting algorithm is relatively simple to implement and optimize and396

gives good overall results with a spatial resolution of 1.30 mm FWHM and397

a distortion of 0.06 mm in the CFOV, but a poor computational speed of 90398

events/s/CPU (table 3). The implementation, tuning and training of basic399

neural networks is made easy thanks to Keras, but optimization of hyperpa-400
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rameters was done through empirical method, as the complexity of artificial401

neural networks only allows to use them as ”black boxes”. Although sys-402

tematic optimization of hyperparameters is a heavy process, we obtained403

a neural network with a spatial resolution of 1.15 mm and a distortion of404

0.11 mm FWHM in the CFOV and a suitable reconstruction speed of around405

350 events/s/CPU (table 3). Both methods therefore give good spatial per-406

formance, but the neural network outperforms the fitting method for spatial407

rsolution and uniformity, because it is able to learn position information from408

complex light distributions, whereas for the fitting method, the information409

is averaged in the mean light response functions of SiPMs. The resulting im-410

provement is even greater near the edges of the detector (table 3), where the411

light distribution undergoes strong distortions, and should further increase412

with thicker scintillators. Therefore, thanks to its good performance on the413

edges of the crystal, the neural network is the algorithm that gives the ef-414

fective UFOV the closest to the real dimensions of the detection area, which415

is crucial for small FOV γ-cameras. Those performance are not intrinsic to416

the reconstruction methods, but embed all the uncertainties due to random417

physical effects and experimental artefacts. The intrinsic performance of the418

algorithms are therefore possibly better than the values reported in the re-419

sult section. The impact of CS+PE events on the reconstruction is the same420

for the fitting algorithm and the neural network. The slight increase of the421

interquartile range of prediction error distribution means that those events422

mainly impact the tails of distributions of reconstructed spots. This could423

lead to a reduction of image contrast if the contribution of Compton events424

becomes much larger. Another advantage of the neural network is its recon-425
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struction speed. Our application requires processing at a minimum rate of426

around 10 kevents/s. The processing speed of the fitting method is a barrier427

to its use in a clinical environment, as the image reconstruction will be per-428

formed on a clinical computer with limited resources, and the acceleration429

of this method can only be done through multiprocessing. The neural net-430

work, on the other hand, can be speed up using Keras native multithreading431

implementation, which is a more resource-efficient technique than multipro-432

cessing. To increase further the reconstruction rate of the neural network, it433

is also possible to slightly reduce its spatial accuracy by limiting the number434

of layers. In more general conditions, the advent of high performance GPUs435

are a strong motivation for using neural networks.436

5. Conclusion437

We developed, optimized and compared two image reconstruction meth-438

ods for high-resolution γ imaging, both using experimental data for training.439

The Deep Residual Convolutional neural network we have developed fully440

satisfies the spatial performance targeted for our application in internal ra-441

diation therapy, with a mean spatial resolution close to 1 mm and a very442

low distortion. The processing speed achieved will also allow to use it for443

real-time applications in a clinical context.444
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