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Université Savoie Mont Blanc (USMB), Annecy, France
{sylvain.lejamble,flavien.vernier,ilham.alloui,sebastien.monnet}@univ-smb.fr

Abstract—With the recent pandemic, credit card and even
contactless payment have gained significant popularity. The
elevated frequency of card usage, along with the lack of
diligence among customers, has resulted in an increase in stolen
or counterfeit cards, often leading to fraudulent activities. This
emphasized the importance of real-time detection of abnormal
banking transactions for card issuers. Automated analysis of
transaction logs is a prevalent approach to address this chal-
lenge, often involving the comparison of incoming transactions
to a database containing genuine and fraudulent transactions.
Methods such as the Mahalanobis distance have proven to be
efficient when seeking for similarities between high dimensional
data. However, the challenge lies in the fact that credit card
logs contain both categorical and tabular data, which poses
compatibility issues with the Mahalanobis algorithm. This
study explores the effectiveness of finding alternative data
representations as a pre-processing step to enable the utilization
of algorithms that were previously unsuitable for such data
types. The research conducted in this work is established on
an exclusive credit card logs dataset.

Keywords-fraud detection; credit card; Mahalanobis dis-
tance, Auto-Encoder, Principal Component Analysis, multi-
modality

I. INTRODUCTION

According to the Nilson Report [1], the estimated cost of
fraud reached $28.8 billion in 2020. Experts predict that this
figure will exceed $400 billion over the next decade. Con-
sequently, the issue is significant, with the primary entities
affected being credit institutions and banks. Fraud can occur
in numerous ways (such as insurance fraud, government aid
fraud, etc.), and it is an ongoing race between fraudsters and
detection/prevention systems that has no end in sight. Credit
card fraud is one of the most bothersome types of fraud for
bank clients, as it is highly prevalent and it directly targets
their funds.

Machine learning (ML) is expected to be a useful tool
to assist banks in detecting abnormal phenomena. However,
in many financial institutions, such methods are considered
too innovative to be investigated and are often not even
considered. Banks often favor manual analysis of logs,
which necessitates large teams due to the extensive volume
of data requiring analysis. Typically, this processing involves

algorithms extracting fraud reports from all transactions.
These algorithms, which are employed by traditional banks,
consist of very basic rules (designed by an expert) that incor-
porate thresholds and statistics. These rules have a number of
shortcomings. They are not frequently updated, making them
vulnerable to data drift. Moreover, their simplicity makes
them insufficient to identify complex or dynamic patterns.

Machine Learning has demonstrated its effectiveness in
solving complex problems with often improved results
compared to traditional methods. When it comes to fraud
detection, two prominent families of methods stand out:
supervised learning and anomaly detection (unsupervised).
We position our work at the intersection of these two
methods by performing semi-supervised learning. In [2]
the authors used the Mahalanobis distance to calculate an
anomaly score for an incoming transaction to transactions of
similar users (grouped using Peer Group Analysis) based on
the assumption that an anomalous behavior would deviate
strongly from its peer group. However, this work only
considers continuous peer group features and disregards
binary-encoded categorical features such as transaction type,
payment type, and card presence, which our compliance
team has found to be valuable information (binary columns
are unusable in the Mahalanobis algorithm because of an
non invertible matrix problem). To address this limitation,
we propose a method that preserves the information in
binary columns by compressing them and using them in a
Mahalanobis classifier.

This study aims to assess the efficiency of different
compression algorithms in order to use a Mahalanobis based
classifier that cannot be fitted on multi modal (binary +
tabular) data. Our approach compare not only genuine but
also past instance of fraud to incoming transaction to reduce
the occurrence of false positives (instances classified as
anomalies but not actual fraud). Simultaneously, this inclu-
sion improves the algorithm’s ability to identify complex
patterns that pose challenges for existing rule-based models
reducing false negatives. The rationale behind is that the cost
associated with a false positive is expected to be significantly
lower than that of a false negative.



The paper is organized as follows. The first part provides
an overview of existing methods; in the second part we
introduce our algorithm, discuss the challenges associated
with multimodality and present our proposed solutions.
Finally, we discuss about the results of our experiments
conducted on an exclusive credit card fraud dataset, along
with their respective outcomes.

II. RELATED WORK

There are two main sets of techniques for fraud detection:
supervised and unsupervised anomaly detection. Supervised
approaches require a history of fraudulent transactions and
often result in fewer false positives than anomaly detec-
tion models. Unsupervised methods seek to find outliers
(i.e., anomaly) among the data, assuming that fraudulent
transactions are sufficiently different from other data to
be detected. This can result in detecting outlier data but
not necessarily fraud, leading to a high false positive rate.
Anomaly detection techniques also have advantages, as they
are often less sensitive to data drift and can still produce
good results even if the patterns of fraud are not the same
as those in the past.

A. Supervised fraud detection techniques

For years, data mining has been widely used to detect
suspicious changes in user behavior [3], [4].

Decision Trees(DTs) [5] have demonstrated their effi-
ciency in classification, even with small training sets. They
have been widely used for credit card fraud detection [6]. A
very large portion of fraud classification is also using DTs
in boosting algorithm such as AdaBoost [7] or LightGBM
[8].

Neural Networks (NNs) are highly efficient in learning
features for classification, as demonstrated by [9], who
employed a Multi-Layer Perceptron to perform Non-Linear
Discriminant Analysis. Long short-term memory models are
highly effective for sequential data, such as credit card
payment flows [10]. NNs are frequently utilized in ensemble
learning [11], and have become one of the most effective
approaches for credit card fraud detection due to the varying
strengths of different classifiers [12].

B. Anomaly detection for fraud detection

Profiling involves the collection of user information to
construct a database that captures the patterns of user
behavior. This information can be used to check if current
behavior is different from the expected(learned) behavior
[13], [14], [15]. More recently, user profiles are sent as
features for a third party classifier [16]. Break Point Analysis
is the detection of an anomalous sequence from past data. It
has been used for money laundering [17] and is now used
implicitly in decision tree or neural networks algorithms.

Most of unsupervised techniques chose to compute an
anomaly score from the new transaction with respect to the

spending profile of the user or user-associated cluster [2],
[18].

C. Alternative representation for better classification

Learning an alternative representation of the data can help
a lot before sending data to a third party classifier. For ex-
ample, Convolutional Neural Networks delivers impressive
results in image classification by virtue of their convolutional
layers, which act as feature extractors that alter the structure
of the data.

The Self-Organizing Map (SOM) can be employed to
learn a two-dimensional representation of the training data.
In previous studies [19], [20], a SOM was trained on
historical genuine and fraud transactions. The SOM then
assigns labels (e.g., genuine or fraud) to new transactions
based on their positions on the map.

Auto-Encoders (AEs) [21] are highly effective in learning
a compressed representation that captures the most valuable
information in the data. If a new data significantly deviates
from the learned latent distribution, the reconstruction qual-
ity will be affected, resulting in a high reconstruction loss.
Either the reconstruction loss or the latent representation
itself can be employed in unsupervised anomaly detection
[22]. AEs can also be employed in semi-supervised learning
[23], [24] to improve the result of the binary classifier.

Principal Component Analysis (PCA) [25] is a powerful
method for data compression that retains as much informa-
tion as possible, and it is also well-suited for handling sen-
sitive data. For instance, the Université Libre de Bruxelles
(ULB) employed PCA to process data for fraud detection,
which allowed them to share the data without compromising
its sensitivity [26]. In another study [27], PCA was utilized
to reduce processing time and yielded to better results than
AEs models.

There exist various methods for altering feature repre-
sentation. This paper aims to compare these methods and
determine their efficiency as a preprocessing step for an
other algorithm.

D. Data level techniques

The imbalanced nature of the dataset poses a significant
challenge in fraud detection. Since fraud instances represent
only a small portion of the data, traditional supervised
methods may yield unsatisfactory results. Techniques such
as oversampling the positive class or undersampling the
negative class have demonstrated improved performance
compared to scenarios without data pre-processing.

Synthetic Minority Oversampling Technique (SMOTE)
or Adaptive Synthetic (ADASYN) can be employed to
upsample the minority class, which is an effective feature
engineering method that is often associated with enhanced
results [27], [28], [11].

Undersampling can also help a lot to balance the dataset
in order to make learning more relevant. In [29] the authors



balanced the data distribution using Gaussian mixture un-
dersampling and applied it to credit card fraud detection.

III. FRAUD DETECTION SYSTEM

As explained in Section IV-A, most Fraud Detection
Systems (FDS) do not detect fraud, but anomalies. While
detecting anomalies remains relevant, it deviates slightly
from our initial problem. In this paper we propose a template
based approach to deal with this issue. The algorithm com-
putes a distance between templates and current transactions
to determine whether to accept or reject them. We consider it
as an end-to-end classifier but our final goal is to incorporate
the template deviation score as a feature in an ensemble
classification technique alongside other anomaly features,
similar to the methodology demonstrated by the authors in
[30].

A. Classification and Templates

To deal with this problem, we chose to compare each
transaction to two groups of data (belonging to the ”Fraud”
or ”Genuine” class), which we will call ”templates”. By do-
ing so, we greatly decrease the instances where a transaction
appears unusual but does not correspond to a known instance
of fraud.

The templates are either real or simulated transactions
that are divided in two classes, ”Fraud” and ”Genuine”.
For the templates of normal transactions, they are randomly
selected from recent transactions (by default, all transactions
are considered normal because statistically, over 99% of
them are normal). The fraud templates are either generated
through simulations (described in Section IV-B) or taken
from our set of client reported transactions. The sets of
templates are updated every month to prevent drift (see
Section IV-D).

Upon obtaining these templates, cluster membership of
new data is determined by computing the mean distance to
all data points within the cluster (the formula is detailed in
Section III-B). We chose to try several distances such as
Euclidean and Mahalanobis distances.

B. Cluster Membership

Let x⃗ = (x1, x2, x3, . . . , xp)
T be the transaction to

classify, p being the number of features, M the template
matrix(n templates,p features), and Mi be the ith template
of the matrix with Mi = (Mi1,Mi2,Mi3, . . . ,Mip)

T .
Euclidean: The normalized Euclidean distance can be

used to compute the distance between the new data and the
templates. The distance is defined as follows:

d(x⃗,M) =

∑n
i=1

√∑p
j=1

(x⃗j−Mij)
2

σ2
j

n
.

where σi is the standard deviation of x⃗.

Despite the known limitations of the Euclidean distance in
high-dimensional spaces due to the curse of dimensionality
[31], we chose to test it in order to evaluate the relevance
of compression algorithms.

Mahalanobis: To calculate membership in a cluster,
we can use the Mahalanobis distance [32] for its ability
to take into account the similarity and variances between
data series. The main idea is to calculate the Mahalanobis
distance between the mean values of templates and the
current transaction.

The distance between the vector x⃗ and a set of tem-
plates M with covariance matrix Σ and mean value µ⃗ =
(µ1, µ2, µ3, . . . , µp)

T is defined as follows:

d(x⃗,M) =
√

(x⃗− µ⃗)TΣ−1(x⃗− µ⃗).

Two mean vectors are calculated respectively for fraud
and genuine transaction templates:

µ⃗(Mfraud) = (µf1, µf2, µf3, . . . , µfp)
T
,

µ⃗(Mgenuine) = (µg1, µg2, µg3, . . . , µgp)
T
.

Let f(x⃗) be the function that assigns a class to a transaction
x⃗ such that:

f(x⃗) =

{
1 (Fraud) if d(x⃗,Mfraud) > d(x⃗,Mgenuine),
0 (Genuine) otherwise.

C. Issues with templates

The major issue with using traditional distances lies
in the multimodality of the data. Our dataset includes
both continuous and binary categorical data. The benefit
of utilizing a distance metric such as Mahalanobis is its
capability to factor in the correlation between data points. As
a result, there will be a strong correlation between identical
categorical fields, rendering such comparisons considerably
more relevant. However this advantage can also bring a
problem: The use of the Mahalanobis distance requires each
template matrix to be invertible (in order to calculate the
inverse of the covariance matrix Σ−1). Our data contains
many categorical variables (+40) that are deemed valuable
(see Section IV-C) and therefore require one-hot encoding to
retain their information. Consequently, when the number of
templates is relatively limited, there is a strong likelihood
that there is a column where all variables are identical
and the covariance matrix Σ is consequently non-invertible.
We have considered and compared different solutions to
overcome this problem:

• Increasing the number of templates: The possibility
of increasing the number of templates was not explored,
as the required quantity would be too large.

• Removing problematic columns: To make the matrix
invertible and use the Mahalanobis distance, categorical
columns can be eliminated.

• Encoding information differently: The problem being
just a matter of form, there are algorithms (SOM, PCA,



Auto-Encoders, etc.) that can compress data while
preserving as much information as possible.

We chose to evaluate the following methods, as each has
its own strengths and weaknesses.

1) Removing boolean features: The removal of binary
columns (dimension goes from +50 to less than 10) can
make the correlation matrix invertible because we remove
the multi modality. It also enables the possibility of using
different distance metrics that are not well-suited for high-
dimensional or mixed-types data because 90% of our fea-
tures are one-hot encoded. The challenge lies in the fact that
these columns contain a wealth of information (purchase
category, payment method, etc.), which seems crucial in
comparing user profiles. Despite a study indicating the
significance of categorical variables in feature selection for
classification (as illustrated in Figure 1), we have decided to
proceed with testing this approach to confirm our hypothesis
that boolean features are mandatory.

Figure 1. SHapley Additive exPlanations (Shap) value of features
using XGB classifier. Shap values can be seen as how much the feature
contributed to the decision of the algorithm. Note that Shap values of
categorical features are summed. Feature names are hidden to guarantee
the integrity of our partner.

2) Encoding information: Principal Component Analysis
(PCA): PCA is a common technique to visualize or pre-
process any high dimensional data. PCA aims at transform-
ing the data into a new coordinate system by grouping highly
correlated columns. We used PCA to compress the data and
go through the template issue described in Section III-C.

3) Encoding information: Variational Auto-Encoder
(VAE): Auto-Encoders have widely demonstrated their
performance in finding a subspace that preserves as much
information as possible [?]. Learned latent space represents
a condensed variant of the data. Compression alters the
form of the data, thereby enabling it to be fed into the
Mahalanobis binary Classifier.

IV. EXPERIMENTAL SETTINGS

Our partner provided us the opportunity to study real
transactions from credit cards that cover from September
2020 to July 2022. The dataset is about +1.5 million

business card transactions from +100 countries. The fea-
tures are not transformed making interesting the use of
data engineering techniques such as feature engineering.
We have an extensive set of features (+50) such as the
amount of the transaction, the country of the transaction,
the type of payment (card present/card not present/internet,
etc.). In contrast to prior research studies [33] that rely on
user responses to a questionnaire, we made a deliberate
decision to exclude any private information as a feature to
minimize the potential impact of individual biases. Therefore
our algorithms rely only on anonymized transaction data
and peer group information. Given that these transactions
originate from business card transactions, the data is highly
sensitive to demographic factors and market fluctuations.
This presents both a drawback (as training a single model is
not applicable) and an advantage (as it is indicative of the
industry reality). We decided not to compare our algorithms
with the fraud dataset from ULB [26] as it only covers
transactions over a span of 2 days, which is not reflective of
the dynamic nature of the data in a shifting environment.

A. Real world evaluation constraints

In France, upon detecting fraud, it is necessary to submit
a report of suspicion to TRACFIN. However, TRACFIN
does not provide feedback on whether the transaction is
indeed fraudulent or not. In most of the publications, when
authors discuss “fraud detection”, they are referring to the
identification of anomalies that could possibly indicate the
presence of fraud. As we do not have a 100% trustful labels,
the evaluation of FDS remains really hard without a human
in the loop. As explained in [34] “The financial institution
can not find out if a money laundering suspect was guilty
of the crime”. Labels that are 100% trustful are issued by
the compliance team when a client said he has been victim
of a fraudster. It is worth noting that it is only a small part
of the labels because proven frauds happens only when a
client notifies the card issuer.

B. Fraud simulations

When there is uncertainty in labeling, simulation can be
an effective solution. The objective is to use actual trans-
actions as a foundation and incorporate only the fraudulent
ones, resulting in a synthetic dataset where all features are
managed. However, simulating data is a complex task, and
it is crucial that the data are derived from known scenarios.
Otherwise it makes no sens to use the trained algorithm on
live production data.

In [35] the authors employed scenario matching to detect
fraud in an Enterprise Resource Planning (ERP). According
to the French “Observatoire de la Sécurité des Moyens de
Paiement”, there are several relatively common scenarios.
These scenarios are divided into two categories depending
on whether the card is physically present at the time of
purchase or not.



Card present frauds: The frauds in which the card is
physically present represent about 20% (including 9.2% for
Automated Teller Machines (ATM) withdrawals and 10%
for Point Of Sell (POS) payments). This can be caused by
a loss or theft of the card but also by counterfeit cards. We
extracted two scenarios from those data:

• Scenario 1-P: The user has lost or had his/her card
stolen, then a third party withdraws cash from an ATM.

• Scenario 2-P: The user has lost or had his/her card
stolen, then a third party made a POS transaction.

These scenarios aim to reproduce real events. We notice
that in these scenarios, the user can no longer make pay-
ments with a physical card since he no longer has one. He
can however continue to make payments on the Internet.

Card not-present frauds: ”Card not-present frauds” are
much more frequent (approx. 75%). They are often the result
of a misuse of card numbers. The following fraud scenarios
were identified:

• Scenario 1-NP: The user has been hacked. The hacker
uses the card for internet payments with reasonable
amounts to avoid detection. 1/3 of his/her new expenses
will be related to the hacker. This forces the algorithms
to take into account the spending profile of a user to
detect a deviant transaction.

• Scenario 2-NP: The user has been hacked. The hacker
makes large purchases which arouses the suspicions of
the owner who immediately blocks his card.

We are also leveraging additional simulation scenarios that
capture other known fraud cases, but their confidentiality is
essential to guarantee the integrity of our partner.

C. Feature engineering

Many publications focus on minimized and anonymized
ULB dataset, and therefore, barely touch on feature engi-
neering. We chose to discuss the feature engineering we
performed, without going into too much detail for security
reasons.

Profiling: According to [14], it is not possible to detect
fraudulent behavior if only one transaction is available.
The user profile is a valuable information for detecting
sudden changes in user’s behavior. The Recency-Frequency-
Monetary (RFM) analysis [36] enables comparison of the
current transaction with a similar group of users, helping
to avoid bias towards any individual in the algorithm. RFM
analysis gives the customer a score based on the amount,
frequency, and recency of his transactions. As we process
data in real-time, it is necessary to keep a variable correlated
to the customer’s spending history. According to [37], it
can be beneficial to add information about the customer’s
last transaction to the features of the current transaction,
such as the time since the last transaction, the amount
of the transaction, the country where it was made, etc.
Therefore, we decided to extract the RFM features for 7

and 30-day windows. With the training strategy described
in Section IV-D, RFM features of the current batch are
calculated from the past data at each batch in order to
simulate real working conditions.

No personal features: In a traditional bank, when a
transaction is flagged as fraudulent, the compliance team
will verify the profile and investigate the individual. It may
be tempting to add these user features to the transaction
features for the classification algorithm. In Personalized
Approaches (PA) [38], fraud detection algorithms take into
account features related to individuals, which often improve
detection results [6]. However, we want the algorithm to only
operate on multiple transaction data with the multiple-user
approach (MUA). To prevent the algorithm from promoting
individual discrimination, we will refrain from using any
personal data. It is important to note that MUA yields poor
results when there are few or no transaction for a given
individual.

D. Training strategy

Temporal data is often subject to drift caused by external
factors such as seasonality or changes in user behavior. For
this reason, we have decided to simulate model training on
a monthly basis by generating training batches as illustrated
in Figure 2. Model Mt is trained on the two months (Bt−2

and Bt−1) preceding the current month Bt. Fraud templates
can be obtained in real working conditions as we can have
delayed supervised samples from the feedback of compli-
ance team. To simplify the experiment and focus solely on
studying the compression algorithm, we have decided not to
consider ensemble learning [12], [39]. This strategy ensures
some adaptability to data drift while remaining relatively
simple.

Bt+1BtBt-1Bt-3 Bt-2

Mt

μgenuine

Frauds
Training batches
Testing batch

μfraud

Figure 2. Learning Strategy

The two months prior to the current month are used
for training or template generation. Considering that the
models are trained from scratch for each iteration, we have a
total of 19 distinct models and training processes (excluding
incomplete months).

The experiments were conducted on 4 datasets from 4
different simulations. For the first two datasets, frauds were



generated on a monthly basis in order to obtain a relatively
stable distribution between the different batches. In these
datasets, frauds represent 1.15% and 0.55% respectively.
In dataset 2, fraud scenarios are activated and deactivated
randomly between batches, making it more realistic. In
the 3rd and 4th datasets, frauds are added by randomly
selecting a card IDs. This card is then flagged fraudulent and
transactions will be labeled as fraud based on the activated
scenarios. While this approach makes the distribution more
realistic (distribution is not flat across each batches), it also
increases the complexity of the task.

E. Metrics

Given the high degree of imbalance in our dataset, it
is essential to employ suitable metrics. Accuracy alone is
insufficient since if 99% of the data belong to Class A
and if 100% of the data are classified as Class A, the
resulting accuracy would be 99%, thereby overlooking the
1% of potentially critical data that requires classification.
We therefore decided to use the F1 score, which is an
average of precision and recall. As the False Positive Rate
(FPR) is important, it seemed obvious that this metric should
be included in our benchmark. However, as the classifier
improves, the FPR approaches 0 due to the overwhelming
size of the negative class in comparison to the positive class.
That is the reason why we use False Discovery Rate (FDR)
instead of FPR.

FDR =
False Positive

False Positive+ True Positive
.

Miss rate or False Negative Rate (FNR) is also important as
we want to maximize the number of detected frauds among
frauds.

FNR =
False Negative

False Negative+ True Positive
.

Additionally, to account for the fact that our classifier is
designed to excel in positive instances, we incorporated the
Area Under the Precision-Recall Curve (AUPRC) metric.
We used macro-average for recall and F1 score in order to
keep in mind the unbalanced nature of the data. Results are
averaged across 19 batches of training to take in considera-
tion the training strategy of Section IV-D and make results
easier to compare. All the metrics are also averaged within
the 4 datasets.

F. Baseline

We chose to designate logistic regression, random forest
and gradient boosting as three baseline methods. These
algorithms are easy to implement and offer valuable insights
into how traditional approaches perform on diverse datasets.
The algorithms are trained using fraud templates and ALL
genuine transactions from the last two months. They are
then tested on the current month, similar to other methods
employed in this study.

Table I
EXPERIMENTAL RESULTS

Recall F1 FDR FNR AUPRC

Logistic Regression 0.782 0.815 n/a 0.435 0.574

Random forest 0.941 0.94 0.067 0.107 0.836

LightGBM 0.992 0.983 0.032 0.011 0.959
SOM 0.898 0.894 0.182 0.196 0.667

Euclidean + DROP 0.528 0.39 0.974 0.577 0.022
Euclidean + PCA-25 0.528 0.39 0.974 0.577 0.022
Euclidean + VAE-25 0.867 0.587 0.808 0.095 0.175

Mahalanobis + DROP 0.645 0.485 n/a 0.514 0.04
Mahalanobis + PCA-25 0.883 0.927 0.001 0.234 0.772
Mahalanobis + VAE-25 0.981 0.986 0.009 0.038 0.956

As the aim of this paper is to compare several compression
methods and how they impact algorithm performance, we
trained every compression algorithm on the same data (gen-
uine transactions of the last two months). Templates and test
transactions are transformed to the new coordinates system
using the trained model.

1) Self-Organizing Map: We also deemed it relevant to
compare our results with those obtained through unsuper-
vised training using a SOM. In [19] the authors used a 70x70
neuron map with 5 clients, each having 105 transactions,
each with 7 features.

By experimentation, we found that increasing the size of
the map beyond that described by [40] did not produce
significantly better results, while requiring a substantial
increase in computation time. Therefore, we set the grid size
to 5 ∗

√
k (where k is the number of features). We used a

step count of 50 ∗ grid size2; beyond this, improvements
were minimal. The map is trained on the templates of the
last two months. As SOM have the ability to directly predict
the class, we did not employ them as a preprocessing step
for binary classifiers but as standalone classifier.

2) PCA: We considered several configurations of dimen-
sionality reduction by principal component analysis. The
experiments show optimal results for a reduction to between
20 and 25 components. PCA is trained using genuine trans-
actions only. Fraud and Genuine templates are then reduced
using trained PCA.

3) VAE: A VAE was employed instead of an AE due to its
capability to generate a latent space distribution, which can
be sampled from. The VAE has 30 neurons on the first layer
and 15/25 neurons on the hidden layer depending on the
selected configuration. Experiments showed the best results
with 15 epochs, a batch size of 64, a Rectified Linear Unit
(ReLU) activation and a hidden layer of 25 neurons. We
trained the VAE using the latest two months of genuine
transactions only, and used the latent representation of the
templates to compute the distances.



G. Results

Traditional supervised methods yielded average results,
whereas gradient boosting performance were notably im-
pressive. LightGBM excelled in classifying data from batch
simulations, but exhibited average performance when faced
with emerging patterns, as observed in dataset 3 and 4.

Self-Organizing Maps demonstrated promising results;
however, the training and inference processes are time-
consuming from an industrial standpoint. A thorough inves-
tigation would be worthwhile as SOMs are highly sensitive
to hyperparameters.

In Table I, the metrics from the Euclidean/DROP and
Euclidean/PCA approaches exhibit striking similarity, at-
tributed lack of relevance of such distance on binary values.
The VAE, on the other hand, has convincingly demonstrated
its efficiency in preserving vital information and has reaf-
firmed our initial intuition regarding the mandatory incorpo-
ration of categorical variables into the learning process.

The Mahalanobis classifier demonstrated superior perfor-
mance when applied to the latent space generated by the
VAE. In contrast to LightGBM, the Mahalanobis classifier
exhibited relatively consistent results across all datasets,
indicating promising real life outcomes, particularly for
dataset 3 and 4.

During the training process of the VAE, the distribution
of fraud reconstruction errors tends to diverge from the
distribution of genuine reconstruction errors, indicating that
both distributions can be differentiated by this method.
However, the distributions are still too entangled to employ
the reconstruction error as a threshold-based classifier.

V. CONCLUDING REMARKS

Based on our experiments, we observed a substantial
improvement of third part classifier by exploring alterna-
tive data representations. This enables the utilization of
algorithms that are not applicable to categorical data and
facilitates the learning of representations for ”normal” or
”fraudulent” transactions. These representations can also
assist in generating data for oversampling methods. Our ex-
periments demonstrated the most favorable outcomes when
compressing input features into a 25-dimensional latent
representation and feeding them into a binary Mahalanobis
classifier.

As stated in [36], ”Any particular study is always a
snapshot in time and space”. Therefore, it should not be
forgotten that these results were partially generated by
scenario-driven simulations. This study would benefit greatly
from more annotated data provided by specialists to make
the results more robust, but such data are rare and very
challenging to obtain. It should be noted that due to the
private nature of the dataset, the replication of the results
presented in this study is not feasible. The public datasets
available online often inadequately reflect reality due to their
limited duration, security encoding, and other factors. This

is one of the main obstacles to the development of high-
performing bank fraud detection systems.

We will continue to work on this dataset, using the results
obtained through our study as a tool score for more com-
prehensive algorithms. An in-depth investigation into which
algorithms perform effectively on specific datasets and the
underlying reasons behind their success appears to be in-
triguing. The inferred data, which may deviate significantly
from all templates but closely resemble specific instances
of fraud, highlights the need for a better solution than
averaging the scores associated with every template. The
inferred data may be far from all templates but very close
to only certain frauds. Thus fuzzy classification appears
promising in this domain, as highlighted in previous studies
such as [41]. Oversampling seems also very promising as
many publications describe it as a necessary processing step
and it is often associated with improved results.
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