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Highlights 5 

● Particular scale breaks were detected on Sentinel-2/MAJA products 6 

● Time variations in scaling regimes were noticed in series of surface reflectances 7 

● The large-scale break was related to the landscape spatial structure 8 

● The fine-scale break was explained by the effect of the optical acquisition system 9 

Abstract 10 

Multifractal analysis was applied to evidence spatial properties, in particular scaling behaviour, of 11 

Sentinel-2 surface reflectances and optical indexes acquired over the Southwest region of France. 12 

Considering the significant impact of clouds on the spatial properties of optical products, no study to 13 

our knowledge has focused on the multifractal analysis of a series of images. Images with minimal 14 

cloud cover were identified for the whole year 2016 based on the MACCS-ATCOR Joint Algorithm 15 

(MAJA) cloud and shadow detection process. This allowed us to access the dynamics of the scaling 16 

properties of surface reflectances, contributing to demonstrate the potential of multifractals for spatial 17 

characterization. Different scaling regimes, separated by significant scale breaks, were evident in these 18 

data. Through simulations from the Universal Multifractal model, we could explain the scaling 19 

properties and especially the position of scale breaks observed in the images studied by two types of 20 

phenomena. First, a transition scale located between hundreds of meters and one kilometre was 21 

detected on power spectra, structure functions and statistical moments. This specific scale was related 22 

to the average size of the agricultural plots of the studied region, revealing the direct link between the 23 

scaling behaviour observed and the physical properties of the surface. Second, an instrumental 24 

phenomenon was detected on the power spectra, resulting in a systematic transition scale observed 25 

near the resolution of the sensor and revealing the impact of the acquisition system on the high 26 

frequencies of optical images. In this research work, theoretical and/or empirical validation arguments 27 
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were provided as to the origin of the scales detected, contributing to demonstrate the value of 28 

multifractals to extract image texture from surface reflectance products. 29 

Keywords 30 

Surface reflectances; Optical indexes; Spatial characterization; Universal Multifractal; Sentinel-2; 31 

MAJA 32 
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1 Introduction 34 

The last generation of space-borne sensors enables the acquisition of Earth surface information 35 

with both high temporal and spatial resolutions, showing good capabilities for studying environmental 36 

and anthropogenic evolutions at local to global spatial scales (Gutman et al., 2008; Huang et al., 2010).  37 

Among others, the most popular may be the U.S. Landsat-8 (Roy et al., 2014) and the recent ESA 38 

Sentinel-2 mission (Martimort et al., 2007) satellites. They provide multispectral images at spatial 39 

resolutions of tens of meters with a revisit time ranging between 5 and 16 days. Thanks to the benefits 40 

of their thirteen spectral bands, Sentinel-2 satellites (S2) deliver surface reflectances acquired from 41 

visible to short-wave infrared, allowing observation of a strong spatial variability in quite a wide range 42 

of wavelengths (Sotian et al., 2019). 43 

Spatial heterogeneity is often closely linked to the temporal dynamics which itself relies on both 44 

natural phenomena associated with specific environmental conditions (meadows, forested areas, bare 45 

soils, etc.), and anthropogenic phenomena resulting from urban activities, agricultural practices, etc. 46 

Because these factors are present at different space scales and may have different spectral signatures, 47 

the information contained in acquired surface reflectances can be entangled in a very complex way 48 

and difficult to analyse from an image processing stand point (De Cola, 1989; Lam, 1990). Depending 49 

on the targeted applications, different techniques have been developed and used so far, to classify, 50 

model or characterize the land surface spatial and temporal properties with the aim to account for its 51 

complexity. In image classification, commonly used methods are based on the spectral signature of the 52 

observed scene (Lu and Weng, 2007), some of them involve complex data processing algorithms such 53 

as decision trees or neural networks (Hansen et al., 1996; Pal, 2005; Paola and Schowengerdt, 1995). 54 

In object-oriented classifiers, segmentation techniques make use of the spatial context of each pixel 55 

to improve the classification performance (Benz et al., 2004; Zucker, 1976). An embedding approach 56 

insensitive to the initial conditions was also introduced recently (Mangiarotti et al., 2018). For the 57 

modelling of the land surface, most of the developments have been based on optimization and data-58 

assimilation techniques with the aim to improve the integration of remote sensed data into land 59 

surface process models (Bach and Mauser, 2003; Mangiarotti et al., 2008; Rodriguez-Fernandez et al., 60 

2019). Using the global modelling technique, the first chaotic attractor directly issued from satellite 61 

data was obtained that illustrates the high complexity of the surface dynamics at large scale 62 

(Mangiarotti et al. 2012; 2014) and which itself relies on the level of spatial synchronization 63 

(Mangiarotti et al. 2016). To have a better description of the landscape changes, various linear and 64 

nonlinear characterization methods were introduced to describe the spatial variability of land surface 65 

(Gustafson, 1998; Puissant et al., 2005), some of them taking the spatial scale into account in their 66 

analyses (Mangiarotti et al., 2010, 2012). However, a more systematic spatial characterization requires 67 
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a statistical framework able to describe variability and image texture over a wide range of spatial 68 

scales. Statistical approaches like the Fourier power spectrum and entropy (Weszka et al., 1976) or 69 

variogram and fractal dimension (Ramstein and Raffly, 1989) can give relevant information on the 70 

spatial texture of the image such as roughness, autocorrelation, or the noisy nature of the signal for 71 

example. 72 

Fractal analysis can be a relevant tool to quantitatively characterize the high degree of complexity 73 

and the spatial structure of surface products (Verrier et al., 2020) such as new remote sensing 74 

reflectances similar to S2 products (Alonso et al., 2017). Indeed, S2 products can be seen as images 75 

that embed a hierarchy of spatial structures of different sizes and of different energy levels. Many 76 

remote sensing images of natural variables show a fractal structure that can be demonstrated by 77 

various geometrical and statistical tools (Lovejoy et al., 2001; Qiu et al., 1999; Schmitt et al, 1993; 78 

Tessier et al., 1993). Studying such scaling features can contribute to identify specific set of scales on 79 

which specific properties apply. Kim and Barros (2002a) used such scaling analysis to characterize 80 

space-time variability of remotely sensed soil moisture and relate it to landscape characteristics 81 

(terrain, soil, vegetation). Two scale ranges were identified, a large one related to the 82 

hydrometeorological conditions (evapotranspiration, precipitation processes) and a fine one related 83 

to the soil properties of the surface (texture, structure). Precisely knowing these sets of scales aims to 84 

improve land surface modelling, considering both natural phenomena like topography, streams or 85 

drainage basins (Aguado et al., 2014; Cheng et al., 2001; Lyu et al., 2017) and anthropogenic 86 

phenomena like urban growth (Chen and Wang, 2013; Tan, 2021) or irrigation (Ko et al., 2016). 87 

Specifically, in hydrology these scaling features led to the development of better calibrated 88 

downscaling algorithms applied to surface soil moisture (Kim and Barros, 2002b; Ko et al., 2016; 89 

Mascaro et al, 2010; Neuhauser et al., 2019) and precipitation (Gires et al., 2012; Rebora et al., 2006). 90 

One of the major constraints when measuring surface reflectances from space is the atmosphere. 91 

The latter is composed of different elements which have direct impact on reflectances. Indeed, clouds, 92 

gas molecules and aerosols are responsible for scattering and absorbing effects on the sun light 93 

reflected by the surface (Fraser et al., 1985; Vermote et al., 1997). These atmospheric components 94 

must be taken into account when analysing optical images, especially since they can affect the scaling 95 

properties of the signal measured from space. For example, several works have shown the fractal (and 96 

multifractal) behaviour of clouds acquired from visible and infrared sensors (Lovejoy et al., 2001; 97 

Siebesma and Jonker, 2000; Tessier et al., 1993). 98 

Thus, in order to avoid the impact of clouds, most of the scaling studies of surface reflectances 99 

have been applied to images specifically chosen to be cloud-free (Alonso et al., 2017; Lovejoy et al., 100 
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2008b). While these works prove the ability of multifractal analysis to investigate the scaling properties 101 

of images of surface reflectances, no seasonal properties/differences were really explored yet. 102 

Moreover, multifractal models were initially developed for modelling turbulence and atmospheric 103 

processes (Parisi and Frisch, 1985; Schertzer and Lovejoy, 1987), leading to many studies on 104 

atmospheric dynamics (Lovejoy et al., 2008a; Lovejoy and Schertzer, 2010c) but many fewer on 105 

continental surface characteristics. 106 

Recently, with the increasing use of spaceborne optical sensors, several algorithms have been 107 

developed to take into account the effects of the atmosphere on the reflectances measured by satellite 108 

(Hagolle et al., 2010; King et al., 1999; Liang et al, 2001; Rahman and Dedieu, 1994). One of the most 109 

recent is the MACCS-ATCOR Joint Algorithm, called MAJA. It relies on the MACCS (Multi-sensor 110 

Atmospheric Correction and Cloud Screening) method – dedicated to aerosol optical depth estimation, 111 

clouds detection and atmospheric corrections (Hagolle et al, 2015; Lenoble et al., 2007; Rouquié et al., 112 

2017) – and includes characteristics from the ATCOR algorithm (Atmospheric and Topographic 113 

Correction; Richter et al., 2006) such as the correction of slope effects. This processing chain is used 114 

within the French THEIA land data center (http://www.theia-land.fr) on multispectral images from 115 

Landsat-8, S2 and from the recent Venμs satellite (Manivasagam et al., 2019). 116 

Considering this context, key scientific questions still need to be addressed in the field of spatial 117 

characterization of surface reflectances. The research work described here was realized in order to 118 

deepen our understanding of multifractal analysis and, above all, to demonstrate its value for 119 

improving spatial characterization of land surfaces. A particular reflection was made on the physical 120 

origin of the specific scales identified, relating them to image texture and asking whether the latter 121 

were due to: 122 

 The seasonal specificities of the surface? 123 

 The geographic specificities of the surface? 124 

 The signal acquisition system of the satellite sensor? 125 

To answer these questions, we investigated the occurrence of scaling properties in surface images 126 

collected by S2 sensors and corrected by MAJA. The dataset consists of S2-MAJA maps located in 127 

France at different dates within 2016. This research work was first focused on the southwestern region 128 

of France, on which a selection of particular dates was made to minimize the impact of clouds. In this 129 

region, particular consideration was given to the temporal dynamics of scaling properties due for 130 

example to seasonal effects. In addition, other regions of France with a different land use were then 131 

selected to investigate the impact of geographic specificities on the scaling properties. For each 132 

selected map, we analysed and compared the scaling properties of S2 images acquired in blue (B2), 133 
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green (B3), red (B4), near infrared (B8) and short-wave infrared (B11, B12) bands. The latter were 134 

chosen considering their strong relation with Earth surface physical and biophysical processes and their 135 

common use in previous studies involving multifractal analysis of surface reflectances (Alonso et al., 136 

2017; Lovejoy et al., 2008b). The several bands of S2 sensors enable to explore the possible impact of 137 

the acquisition wavelength on scaling behaviour. Moreover, vegetation and soil moisture indexes 138 

obtained from these bands were also analysed to investigate how the combination of such bands can 139 

impact the scaling laws. This research study was done by applying multifractal analysis methods in the 140 

framework of the Universal Multifractal model (Schertzer and Lovejoy, 1987). 141 

  142 
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2 Case study and data 143 

2.1 Study area 144 

Southwestern France is a highly anthropized site, mainly composed of agricultural land. More than 145 

half of the ground area is exclusively dedicated to the development and management of crops 146 

throughout the year. Among the most common are sunflower, corn, wheat, barley, soybean and 147 

rapeseed crops. Considering also the urban areas which constitute ~ 2% of the landscape, the 148 

Southwest region has a spatial structure which is largely characterized by anthropic factors. These have 149 

an impact on the spatial heterogeneity of physical and biophysical variables such as surface 150 

temperature, soil moisture or vegetation. Natural factors also play a significant role in the spatial 151 

structuring of this landscape and its related processes, such as, for example, natural grasslands and 152 

forests (~ 10% of the surface) (Baup et al., 2015; http://osr-cesbio.ups-tlse.fr/~oso). 153 

The climate in this region is temperate, inducing seasonal effects that impact significantly the 154 

temporal dynamics of surface variables. Springs are characterized by heavy rain, and summers are hot 155 

and dry with temperatures often reaching 35 °C (Battude, 2017). These climatic conditions have a 156 

direct effect on the landscape structure, more particularly on the evolution of this structure over the 157 

seasons. Indeed, the crop cycles – described by harvest and sowing periods – contribute to modify the 158 

heterogeneity of the surface as the seasons go by. In addition, the differentiation between winter and 159 

summer crops implies that not all crops have the same seasonal evolution and do not affect the 160 

landscape structure in the same way over time. 161 

The study area is part of a French observatory, named Regional Spatial Observatory (RSO) and 162 

labelled by the French National Institute of Sciences of the Universe (INSU) since 2007. The purpose is 163 

to answer scientific questions related to the functioning and evolution of continental surfaces, but also 164 

to deal with more applied issues related to land use planning and sustainable management of 165 

resources (Dejoux et al ., 2012). In order to ensure this, both in-situ (Béziat et al., 2009; Burel, 2018; 166 

Tallec et al., 2013) and remote sensing observations (Baup et al., 2012) are combined. Thanks to these 167 

data, several works related to crop monitoring by remote sensing have been carried out in this region 168 

such as the study of wheat and rapeseed (Fieuzal et al., 2013) or even the estimation by agro-169 

meteorological model of crop yields such as sunflower (Fieuzal and Baup, 2015), soybean (Baup et al., 170 

2015; Betbeder et al., 2016) and corn (Fieuzal et al., 2017). These studies also allowed the preparation 171 

of recent space missions such as Venμs or S2, subsequently leading to high spatial resolution modelling 172 

of biomass and crop yields by optical data (Ameline et al., 2018; Battude et al., 2016; Claverie et al., 173 

2012). The optical products from these new satellites now benefit from particular attention in this 174 

http://osr-cesbio.ups-tlse.fr/~oso
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region, since they are made available on the THEIA platform (http://www.theia-land.fr), corrected for 175 

atmospheric effects by the MAJA processing chain. 176 

Due to the heterogeneity of its surfaces and the growing number of data acquired at various 177 

spatial scales, southwestern France is particularly well suited to the application of multifractal analysis 178 

tools such as those we used in this study. In this context, the present work consists of the analysis of 179 

MAJA-corrected surface reflectances acquired in the region of the 30TYP S2 tile (according to the tiles 180 

format and nomenclature provided by ESA; Gatti and Naud, 2017) whose spatial extent is shown in 181 

Figure 1. More specifically, our study was focused on a smaller study area of 40 x 40 km² covering part 182 

of the Gers French department (red square in Fig.1) and located within the 30TYP tile. This area in the 183 

Gers was chosen due to the predominant place of agricultural surfaces, limiting the impact of urban 184 

areas (cities, roads) on the spatial variability of physical and biophysical processes. In addition, due to 185 

certain constraints related to analysis tools (sample size, computation time) and cloud cover, we 186 

deliberately chose our study area by selecting a smaller zone than the area corresponding to the 30TYP 187 

tile which covers an area of 100 x 100 km². 188 

This study investigates the period extending from January to December 2016, using the Sentinel-189 

2A satellite. With a ten-day revisit time, S2A provides a sufficient temporal frequency to analyze the 190 

global temporal dynamics of the properties of continental surfaces over an entire year. Finally, we can 191 

also point out that the Southwest region has a relatively low average cloud cover throughout the year 192 

Figure 1 : Study area in the Southwest region of France. 

http://www.theia-land.fr/
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compared to other regions of France located further north and south. Considering the impact of clouds 193 

on optical products, this criterion is not negligible in the choice of the study area. 194 

2.2 Sentinel-2/MAJA products 195 

We analyzed surface reflectances acquired in six spectral bands by the S2-A Multi-Spectral 196 

Instrument (MSI; Martimort et al., 2007) and then corrected by the MAJA chain within the CNES 197 

processing center (Centre National d’Etudes Spatiales; https://theia.cnes.fr). The selected bands are: 198 

three bands in the visible domain – blue B2 (0.50 μm), green B3 (0.56 μm), red B4 (0.66 μm), one band 199 

in near infrared B8 (0.84 μm) and two bands in the short-wave infrared B11 (1.6 μm) and B12 (2.2 μm). 200 

Note that all these bands are defined at 10 m resolution (in terms of pixel size) except B11 and B12 201 

which are defined at 20 m resolution. The six bands were chosen because of their important link with 202 

the physical and biophysical processes of continental surfaces. The visible/near infrared has already 203 

been the subject of studies aimed at transcribing the fractal (De Cola, 1989; Lam, 1990; Qiu et al., 1999) 204 

and multifractal (Alonso et al., 2017; Lovejoy et al., 2008b) properties of continental surfaces. 205 

In addition to reflectances, two optical indexes were also studied: the Normalized Difference 206 

Vegetation Index (NDVI; Tucker and Sellers, 1986) and the Normalized Soil Moisture Index (NSMI; 207 

Lampkin and Yool, 2004), which respectively account for the condition of the vegetation and the level 208 

of soil moisture. Since these variables are frequently used to investigate the functioning of continental 209 

surfaces, it is important to study their scaling properties. NDVI is constructed from surface reflectances 210 

(⍴) in the red (band B4) and near infrared (B8) wavelengths. NSMI is obtained from the combination 211 

of the bands in short-wave infrared B11 and B12: 212 

𝑵𝑫𝑽𝑰 =
⍴𝑩𝟖 − ⍴𝑩𝟒
⍴𝑩𝟖 + ⍴𝑩𝟒

          (𝟏𝟎 𝒎) 214 

1 213 

𝑵𝑺𝑴𝑰 =
⍴𝑩𝟏𝟏 − ⍴𝑩𝟏𝟐
⍴𝑩𝟏𝟏 + ⍴𝑩𝟏𝟐

          (𝟐𝟎 𝒎) 216 

2 215 

These indexes are built in a non-linear way from reflectances in individual spectral bands, and it 217 

is interesting to check if (and how) potential scaling properties of ⍴ could result in scaling properties 218 

of the indexes. 219 

https://theia.cnes.fr/
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Cloud masks from MAJA were used to identify images with less than 15% cloud cover. Fifteen 220 

dates were then selected over 2016 in order to limit the impact of clouds on surface reflectances and 221 

their scaling properties. These dates are shown in the chronogram in Figure 2, where we can see a 222 

distribution of dates that covers all seasons, with a larger number of images in summer. For the fifteen 223 

images, an average cloud cover of 2% was estimated over the period, with only 4 dates having more 224 

than 2% of clouds – the largest cloud cover being obtained on June 23 with 12.5%. Each of the 225 

remaining cloud pixels in the selected images were considered as missing data and were interpolated 226 

by bilinear interpolation. Note that no missing data other than that related to clouds was observed in 227 

our data, and that the corresponding size of the selected images are 4096 x 4096 pixels and 2084 x 228 

2048 pixels respectively for 10 m and 20 m resolution products. 229 

  230 

Figure 2 : Cloud cover of Sentinel-2A products selected over the January-December 2016 period, and corrected 
for atmospheric effects by MAJA. The corresponding dates were selected with less than 15% cloud cover. 
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3 Multifractal analysis methodology 231 

During the last century, researchers realized that many geophysical processes could present scale 232 

invariance or scaling properties (Kolmogorov, 1941; Mandelbrot, 1967; Richardson, 1922). Multifractal 233 

analysis makes it possible to highlight these scaling behaviours, enabling spatial characterization of 234 

surface processes. To do this, several scale sensitive statistical estimators are applied to the surface 235 

reflectances acquired by satellite sensors. These estimators can be the power spectrum, the structure 236 

functions or the statistical moments. Different multifractal models, like the Universal Multifractal 237 

model (Schertzer and Lovejoy, 1987), are used to parametrize the scaling properties obtained from the 238 

statistical estimators. In this paper, a focus was made on one estimator, the power spectrum, which 239 

has the advantage to detect, in an easy and rapid way, some spatial properties of geophysical variables 240 

over different space scales (Lovejoy et al., 2008b). Structure functions and statistical moments (in the 241 

framework of Universal Model parametrization) were also investigated in this work. Since they confirm 242 

the properties already observed by power spectra, and for sake of simplicity and clarity, the theory 243 

and the methodology relative to these estimators are not presented in this part but are detailed 244 

respectively in Appendix A and B. More generally, we invite the reader to refer to Appendix A for a 245 

deeper understanding of the theoretical framework of fractals and Universal Multifractal model. 246 

Because our study treats time series of satellite images, the statistical estimators will be computed 247 

for each image available during the studied period. Therefore, from this analysis two types of spatial 248 

characterization will be studied: (1) a mean characterization resulting from the average of individual 249 

estimators computed within the period, and (2) a “date by date” characterization of each image, 250 

allowing us to have access to the temporal evolution of the scaling properties of the products studied. 251 

For the calculation of estimators, note that, since only satellite images will be treated in this study, we 252 

will focus on the two-dimensional versions of the following techniques. 253 

3.1 Vocabulary : scale and resolution 254 

For the sake of clarity, we primarily want to define the terms "resolution" and "scale" within the 255 

meaning of fractal mathematical formalism. Indeed, although their meaning is close to that usually 256 

used by geophysicists, in particular in remote sensing, it can be appreciably different and could lead to 257 

certain misinterpretations in the remainder of this paper. 258 

If we consider a space of (geometric) dimension 𝐷 = 2 discretized over a set of intervals or pixels, 259 

the resolution 𝜆 of any fractal entity can be defined as the number of pixels present along a dimension 260 

of space. In the case of a satellite image of size 4 x 4 pixels, the resolution of the fractal entity is 261 

therefore equal to 𝜆 = 4 (Fig.3). Inversely proportional to the resolution, the scale 𝑙 is associated with 262 

the size of a pixel and is defined according to 𝜆: 263 
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𝒍 =
𝑳

𝝀
 264 

3 265 

with 𝐿 the extent or domain size along one dimension and corresponding to the greatest value of scale 266 

𝑙. Unlike 𝜆, the scale 𝑙 is a dimensional variable (meters for an image). In the case of our 4 x 4 satellite 267 

image, the scale is 𝑙 = 𝐿/4, which is the size of an elementary pixel. If we now aggregate our image on 268 

grids made up of new pixels twice as wide (or with an area four times as large), the resolution of the 269 

image will be taken equal to 𝜆 = 2, and the scale will be 𝑙 = 𝐿/2. 270 

 271 

In this way, any variable with fractal properties is defined on a continuum of resolutions (or scales) 272 

which extends from the finest resolution (to which is associated the smallest scale i.e. the size of an 273 

elementary pixel), to the coarsest resolution (𝜆 = 1) corresponding to the largest scale (𝑙 = 𝐿). 274 

In the following, scale sensitive statistical estimators will be called as “scaling estimators”, and will 275 

be computed on a spatial support represented either by resolutions 𝜆, scales 𝑙, varying window size 276 

∆𝑥 or even spatial frequencies 𝑘, depending on the initial definitions of the estimators. Studying the 277 

evolution of surface products according to these spatial variables (𝜆, 𝑙, ∆𝑥, 𝑘) provides access to 278 

fractal/multifractal properties that will be called hereafter as “scaling properties”. A scale range, 279 

corresponding to a set of scales with similar scaling properties, will be called as “scaling regime”. 280 

Figure 3 : Illustration of the concepts of resolution and scale from a two-
dimensional fractal entity (satellite image). 
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3.2 Power spectrum: evidence of spatial properties 281 

Power spectra are highly sensitive to the transition scales (also called “scale breaks”) that are 282 

located between scaling regimes characterized by different scaling properties. In a first step, the two-283 

dimensional power spectral density 𝑃(𝑘𝑥, 𝑘𝑦) of the data under analysis, 𝑋, is estimated: 284 

𝑷(𝒌𝒙, 𝒌𝒚) = |𝒇𝒇𝒕(𝑿)|𝟐 285 

4 286 

with 𝑃 the power spectral density (PSD) defined on both vertical and horizontal image axes, 287 

corresponding respectively to 𝑘𝑥 and 𝑘𝑦 wavenumbers (spatial frequencies). Here, the estimation of 288 

the PSD is done through a two-dimensional 𝑓𝑓𝑡 or Fast Fourier Transform. Then, the more convenient 289 

one-dimensional isotropic angle-integrated power spectrum 𝐸(𝑘) is obtained (Lovejoy et al., 2008b; 290 

§8), that provides a 1D representation of the 2D 𝑓𝑓𝑡 power spectra: 291 

𝑬(𝒌) = ∫ 𝑷(�⃗⃗� )𝒅�⃗⃗� 
‖�⃗⃗� ‖=𝒌

 292 

5 293 

where 𝑘 is the modulus of the wavenumber and ‖. ‖ is the Euclidean norm. Since it expresses space 294 

frequencies, 𝑘 is directly related to the spatial resolution 𝜆. If the process presents scaling properties, 295 

the spectrum should follow a power law, where 𝛽 is the negative slope of 𝐸(𝑘) on a log-log graph: 296 

𝑬(𝒌) ≈ 𝒌−𝜷 297 

6 298 

The symbol “≈” indicates an equality within the limits of slowly varying functions. This method makes 299 

it possible to identify the range of scales (here the values of 𝑘) where there are scaling properties, and 300 

this through a first parameter called the “spectral exponent”. 301 

3.3 Scale break detection 302 

When analysing the scaling estimators, a segmentation algorithm (D’Errico, 2017) was 303 

systematically used to detect the scale breaks and thus the scale ranges in order to avoid subjective 304 

detections. This algorithm is based on the non-linear regression of "spline" curves (piecewise 305 

polynomial functions), making it possible to estimate the position of slope breaks within scaling 306 

estimators. It requires three input parameters: (1) the position on the x-axis of each point of the cloud 307 

to be segmented (support vector i.e. 𝑘, ∆𝑥 or 𝜆), (2) the value of each point on the y-axis (estimator 308 

vector such as 𝐸) and (3) the number of breaks 𝑛𝑏_𝑘𝑛𝑜𝑡𝑠 to detect. Once applied, the function outputs 309 

the position of the detected 𝑛𝑏_𝑘𝑛𝑜𝑡𝑠 breaks. Note that the number of breaks is a parameter which 310 

is therefore defined by the user. In order to check if the position is reliable and independent of the 311 
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number of breaks proposed, the algorithm was applied for several values of 𝑛𝑏_𝑘𝑛𝑜𝑡𝑠 (𝑛𝑏_𝑘𝑛𝑜𝑡𝑠 = 312 

1, 2, 3), ensuring the same break was well detected in each case. 313 

314 
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4 Results 315 

4.1 Mean characterization over the period 316 

Figure 4 shows the mean power spectra estimated over the full period (January-December 2016) 317 

of the different S2/MAJA products presented in Section 2. This represents an average spectrum based 318 

on individual spectra obtained within the period. Each spectrum is plotted in log-log coordinates, with 319 

the horizontal axis converted into spatial scale 𝑙 (= 𝑘−1) expressed in kilometres. The scale break 320 

detection algorithm identified two scale breaks common to all products: a first break 𝑙1 located 321 

between a hundred meters and one kilometre, and a second break 𝑙2 located on smaller scales. 𝑙1 and 322 

𝑙2 positions are summarized in Table 1 for both surface reflectances and optical indexes. 323 

 324 

Considering all these products, the first scale break 𝑙1 was estimated at about 400 m (computed 325 

from the geometric mean of individual breaks). The spectral slope 𝛽 of each mean power spectrum 326 

(Table 2) was estimated for both ranges I (𝑙1 > 𝑙) and II (𝑙1 > 𝑙 > 𝑙2) (the last range (III) will be 327 

considered separately in Section 6). On 𝑟𝑎𝑛𝑔𝑒 𝐼, slopes are very close to zero and do not present 328 

significant differences within the different products (0.2 < 𝛽 < 0.3). These results are in contradiction 329 

with those of Lovejoy et al. (2008b) who identified slopes greater than 1 (𝛽 = 1.17 ± 0.08) on a similar 330 

Figure 3 : Mean angle-integrated power spectra estimated from Sentinel-2 bands and indexes, 
over the period January-December 2016. 
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scale range (500 m – 25 km), from reflectances acquired in comparable spectral bands (MODIS sensor; 331 

Justice et al., 1998). Similarly, our results are also not comparable to those of Alonso et al. (2017) who 332 

observed only a single scaling regime over the range (120 m – 15 km), for reflectances from similar 333 

bands (Ikonos and Landsat-7 satellites). However, because of the different multifractal formalism used 334 

by Alonso et al. (2017), our spectral slopes and their results are difficult to compare. Nevertheless, 335 

Alonso et al. (2017) have indeed shown the presence of scaling properties over this range of scales. 336 

Thus, the differences between our results and those of Lovejoy et al. (2008b) and Alonso et al. (2017) 337 

can be linked to geographic specificities (central Spain in their cases) or to the fact that their analyzes 338 

were carried out on one or two particular dates, not allowing the acquisition of the scaling behaviour 339 

averaged over a period as we did here. 340 

 341 

 342 

Regarding the behaviour of spectra on range II (𝑙1 > 𝑙 > 𝑙2), 𝛽 values are greater than one and 343 

are relatively different between the products. The lowest slope value is estimated for the near infrared 344 

band (𝛽 ≈ 1.4) and the greatest ones are found for the two short-wave infrared bands (𝛽 ≈ 2). 345 

Considering visible bands (B2, B3, B4) and optical indexes (NDVI, NSMI), the 𝛽 values obtained are 346 

between 1.6 and 1.8. We can also note in the spectra an increase of slope with the wavelength for 347 

reflectances acquired in visible domain. 348 

As for the fine-scale break 𝑙2, the latter is located at around 40 m for products with a resolution 349 

of 10 m (visible bands, near infrared band and NDVI) and is shifted towards larger scales (75 m) for 350 

products with a 20 m grid resolution (short-wave infrared bands B11 and B12). It even disappears with 351 

regard to the NSMI soil moisture index (flat spectrum for the fine scales). If we analyze this last 352 

Table 1 : Positions of the scale breaks 𝒍𝟏 and 𝒍𝟐 estimated by segmentation 
(D’Errico, 2017) on mean Sentinel-2 power spectra, structure functions and 
statistical moments. 
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spectrum in more detail, a rise in the curve is observed towards the points located at the finest scales 353 

(~ 50 m). This rise reflects the presence of noise in the NSMI data which affects the highest frequencies 354 

of the image, artificially creating an excess of energy at fine scales. Since bands B11 and B12, from 355 

which the NSMI has been estimated, do not show such an increase in their spectra at fine scales, their 356 

combination must be the source of the noise observed on the soil moisture index at high frequencies. 357 

This phenomenon was expected since the ratio of two signals is known to contain more noise (due to 358 

a reduction in the signal to noise ratio). Similarly, we can note that the NDVI is characterized by a 𝑙2 359 

scale break (at 48 m scale) that is less pronounced than for the bands B3 and B8 from which it was 360 

generated, with a very slight rise of the spectrum for highest frequencies (scales close to 20 m). 361 

Although the phenomenon is much less pronounced than for the NSMI, the vegetation index also 362 

appears to be somewhat impacted by the combination of bands. 363 

Continuing the comparison between bands and indexes, these results tend to show that on fine 364 

scales (𝑟𝑎𝑛𝑔𝑒 𝐼𝐼) the vegetation index is characterized by an average spectral behaviour comparable 365 

to the band B4 (red) but different from band B8 (near infrared). However, the spectral slope of the soil 366 

moisture index is found to be close to those obtained from both of the short-wave infrared bands B11 367 

and B12. Another general remark on the spectra can be made on the quality of the scaling law which 368 

is very good on 𝑟𝑎𝑛𝑔𝑒 𝐼𝐼, considering all products (𝑅² ≈ 0.98), while it is strongly reduced on 𝑟𝑎𝑛𝑔𝑒 𝐼 369 

(𝑅² ≈ 0.6). This can partly be explained by the sampling of power spectra which is sparser on low 370 

frequencies (large scales) than on high frequencies (fine scales). 371 

The results presented above were compared with the two other approaches (structure functions 372 

and statistical moments presented in Appendix B) and their results (figures in Appendix C) were found 373 

to be consistent with those of the power spectra. The positions of 𝑙1 scale break obtained from these 374 

approaches are presented in Table 1, with the corresponding parameters detailed in Table 2 for both 375 

ranges. 376 

 377 
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 378 

 379 

4.2 Temporal and spatial variations of the scale breaks 380 

Different scaling regimes were observed on the S2/MAJA products, separated by specific scale 381 

breaks: a first break 𝑙1 detected on the scaling estimators between hundreds of meters and one 382 

kilometre, and a second break 𝑙2 detected on the high frequencies of the mean power spectra. To 383 

explain the origins of these observations and their link with the spatial texture of the data, the 384 

evolution of these breaks was analysed according to the seasonal and spatial evolution of the surface. 385 

To explore the seasonal evolution of the scale breaks 𝑙1 and 𝑙2, the scale break detection algorithm 386 

was applied on each individual spectrum obtained between January and December 2016 (i.e. spectra 387 

computed for each available image). The time series of 𝑙1 (Fig.5.a) is found to be largely variable for all 388 

bands, whereas 𝑙2 (Fig.5.b) presents a quite constant evolution during the period. Therefore, these 389 

Grid 

spacing
Scale range β α H

B2 0,30 0,62 1,96 0,007 0,89 -0,27 0,98

B3 0,31 0,64 1,86 0,006 0,91 -0,28 0,99

B4 0,24 0,55 1,81 0,007 0,92 -0,30 0,99

B8 0,29 0,60 1,80 0,004 0,89 -0,27 0,99

NDVI 0,20 0,50 1,91 0,005 0,88 -0,31 0,99

B11 0,28 0,56 1,83 0,004 0,87 -0,29 0,99

B12 0,25 0,53 1,81 0,005 0,88 -0,29 0,99

NSMI 0,22 0,55 2,23 0,005 0,83 -0,29 0,99

10 m range I

20 m range I

 ²𝜷  𝟏  ² ( )  ² 

Grid 

spacing
Scale range β α H

B2 1,63 0,99 1,97 0,11 0,96 0,32 0,98

B3 1,67 0,99 1,78 0,11 0,96 0,32 0,98

B4 1,76 0,99 1,56 0,12 0,96 0,35 0,97

B8 1,37 0,98 1,53 0,09 0,96 0,23 0,93

NDVI 1,84 0,99 1,61 0,13 0,96 0,37 0,98

B11 1,96 0,97 1,53 0,11 0,97 0,35 0,95

B12 1,96 0,98 1,53 0,12 0,96 0,37 0,97

NSMI 1,81 0,98 1,97 0,11 0,96 0,35 0,98

10 m

20 m

range II

range II

 ²𝜷  𝟏  ² ( )  ² 

(a) 

 

(b) 

 

Table 2: Scaling parameters obtained from multifractal analysis on 𝒓𝒂𝒏𝒈𝒆 𝑰 (a) and 𝒓𝒂𝒏𝒈𝒆 𝑰𝑰 (b) of 
Sentinel-2 products, over the period January-December 2016. The values of 𝜷, 𝜶,  𝟏 and   were obtained from 
linear regressions applied on mean statistical estimators. However,  𝟐 coefficients presented here corresponds 

to the average of all coefficients obtained on each date. Note that   ( )
𝟐  is the average of the coefficients 

obtained on every moment curves. Similarly,   is obtained from the average of  𝒙 and  𝒚, as   
𝟐  is obtained 

from   𝒙
𝟐  and   𝒚

𝟐  
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two scale breaks detected on power spectra seem to be of a different nature: on the one hand the 390 

large-scale break 𝑙1 seems to be related to the seasonal evolution of surface processes, on the other 391 

hand the fine-scale break 𝑙2 position is found to be relatively independent of time. In addition, we note 392 

that the ratio between 𝑙2 and the minimum scale (that is to say the grid resolution of the image for a 393 

given band) is comparable considering both 10 m and 20 m bands: 𝑙2 ≈ 4 × 𝑙𝑚𝑖𝑛. This relationship 394 

appears to be constantly present throughout the period.  395 

To understand the origin of these two scales, it was investigated whether the geographic 396 

specificities related to the study area could have an impact on the position of these scale breaks. Since 397 

𝑙1 relies on the seasonal evolution of the surface, changes in land use should have an effect on the 398 

position of 𝑙1, whereas they should not on 𝑙2. To so investigate this question, several regions of France 399 

with a different land use were selected. These regions were identified using the land use products 400 

supplied by the Scientific Expertise Center for Land Use CES OSO (http://osr-cesbio.ups-tlse.fr/~oso). 401 

This analysis was done from the land use map for 2016, obtained from S2 products, and presented in 402 

Figure 6. In addition to the original tile (30TYP), five new S2 tiles were added to our study, 403 

corresponding to five types of surface or classes: crops, forest, urban, vineyards and grasslands. The 404 

areas were chosen so that the extracted S2 images contain for each class a majority of pixels belonging 405 

to the class in question. For the six zones, we extracted the surface reflectances acquired in two 406 

spectral bands defined at 10 m (B2, B8) at two dates in the year 2016 (summer, autumn). Table 3 407 

specifies the position of the breaks 𝑙1 and 𝑙2 detected in the power spectra. In general, considering all 408 

the zones, bands and dates provided, these results show a break 𝑙2 which varies between 32 m and 42 409 

m, and a break 𝑙1 which is between 72 m and 1 km. Therefore, the position of the large-scale break 𝑙1 410 

seems much more impacted by the type of surface, the date of acquisition and the spectral band (when 411 

it is defined according to the same spatial resolution) than the fine-scale break 𝑙2. 412 

Figure 5: Time series of the position of the scale breaks 𝒍𝟏 (a) and 𝒍𝟐 (b) estimated from the power spectra of the 
Sentinel-2 bands, over the period January-December 2016. 

(a) 

 

(b) 

 

http://osr-cesbio.ups-tlse.fr/~oso
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These temporal and spatial behaviours confirm the different nature of the transition scales. In the 413 

following sections, demonstrations are made to relate these scale breaks with (1) the seasonal and 414 

geographic specificities of the surface in the case of the scale 𝑙1 and (2) with the acquisition system of 415 

optical images for 𝑙2. 416 

Figure 6: Six study areas corresponding to the five types of surface (crops, forest, urban, vineyards, grasslands) 
identified from the 2016 land use map of France CES OSO. 

Table 3: Positions (in meters) of the scale breaks 𝒍𝟏 and 𝒍𝟐 estimated from the power 
spectra corresponding to six types of surface, observed in bands B2 and B8, in summer 
and autumn 2016. 



21 
 

5 A large-scale break related to the seasonal and geographic specificities of the surface 417 

5.1 Seasonal dynamics linked to crop cycle 418 

To propose an explanation to the large-scale break 𝑙1 between ranges I and II, first the temporal 419 

evolution of the scaling properties of the S2 products can be observed on the two ranges, for the 420 

studied period. The time evolution of the spectral exponent 𝛽 estimated for the six bands (Fig.7) 421 

exhibits on the fine scale range (𝑟𝑎𝑛𝑔𝑒 𝐼𝐼) a seasonal cycle of the spectral slopes, while no particular 422 

behaviour is detected on large scales (𝑟𝑎𝑛𝑔𝑒 𝐼). In addition, the dynamics of the 𝛽 values are much 423 

higher on fine scales (0.8 < 𝛽 < 2.4) than on large scales (0 < 𝛽 < 0.9). 424 

If we analyze in more detail the cycle observed on fine scales (Fig.11.b), the dynamic detected on 425 

the visible bands (B2, B3, B4) is characterized by minimum values in February, August and then 426 

December (𝛽 ≈ 1.5) and peaks of values around May-June then October (𝛽 ≈ 1.9). For the short-427 

wave infrared bands (B11, B12), the maxima are placed at the same dates as for the reflectances 428 

acquired in the visible domain but they do not present the same intensity: the peak observed in May-429 

June is very marked – with values reaching 2.3 (arrow on the graph) – while that of October is weaker 430 

(even almost non-existent for B11). Considering the near infrared B8 band, a reversed cycle is found 431 

on 𝑟𝑎𝑛𝑔𝑒 𝐼𝐼 (compared to the other bands), characterized by minimum values for the months of May-432 

June and then October. In addition, the spectral exponent of B8 shows a much more marked dynamic 433 

in the second half of the period – values of 𝛽 falling from 1.5 (July) to 0.9 (October, arrow on the graph) 434 

– than in the first half of the period (1.4 < 𝛽 < 1.7). Thus, for the month of October, the images 435 

acquired in the near infrared seem to lose spatial autocorrelation, with a spectral slope approaching 436 

zero. This temporal evolution of scaling properties is illustrated on Figure 8 where the individual power 437 

spectra of four near infrared images are compared: two images acquired in summer (July 10 and July 438 

(b) (a) 

Figure 7: Time series of spectral exponents of the Sentinel-2 bands, over the period January-December 2016 for range I (a) 
and range II (b). 
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30) and two images acquired in autumn (September 28, October 21). For these spectra, the fine-scale 439 

break 𝑙2 was estimated at around 35 m in all four cases, confirming its "instrumental" origin (see 440 

Section 6). On the other hand, two different 𝑙1 breaks were obtained: at around 350 m for the July 441 

spectra (dark red and light red curves) and the September spectrum (light green curve), and at 72 m 442 

for October (dark green curve). It appears that the 𝑙1 break in July moves towards fine scales in 443 

October, combining with 𝑙2. Thus, these results show that a switch takes place from two scaling 444 

regimes in summer and early autumn to a single one in autumn. On this period, we observe the 445 

decrease of the spectral slope with time, confirming the evolution presented in Figure 7.b. For October 446 

21, the regime seems to be found on a scale range close to the global range provided by our data (72 447 

m – 41 km), and presenting a spectral slope less than 1. 448 

 449 

These results confirm the link between the fine-scale break 𝑙1 and the temporal and spatial 450 

variations of the surface. Therefore, considering the predominant place of agricultural surfaces in the 451 

study area, our hypothesis is that this time variation is related to the crop cycle (with the more abrupt 452 

changes associated with harvesting and sowing), taking place during the mid-season periods (autumn, 453 

spring). The evolution of crops, including the transitions between winter and summer crops, would 454 

explain the cycle that we detect here. This hypothesis can also explain the reverse nature of the cycles 455 

between near infrared and visible/short-wave infrared behaviours. Indeed, the reflectances acquired 456 

in the near infrared, being very sensitive to vegetation, should exhibit more spatial variability when 457 

Figure 8: Power spectra of surface reflectances acquired in summer and 
autumn 2016 by the near infrared band B8. 
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the crops are well developed, therefore for periods between the harvest and sowing phases. If we take 458 

the example of corn, which is one of the main crops grown in Southwestern France, the harvesting 459 

phase usually occurs between August and November. This corresponds to the fall observed on the 𝛽 460 

parameter estimated from the band B8. Thus, a harvest phase would correspond to a loss of spatial 461 

heterogeneity in these wavelengths, revealing a poorer and less structured signal than during a 462 

vegetation growth phase. In addition, the gradual drop in spectral slope (beginning of decrease 463 

observed from August) can be explained on the one hand by the staggering of the sowing phases 464 

between August and November (according to the calendar of each farmer), and on the other hand by 465 

the senescence phase occurring before harvest and helping to reduce the ability of vegetation to 466 

reflect solar radiation (less chlorophyll). Conversely, visible reflectances behave differently by being 467 

sensitive to other elements of the surface such as roads, buildings, or even the bare soil that appears 468 

once harvesting is complete. Thus, at mid-season, when the vegetation has just been sown, the surface 469 

shows more spatial variability in the visible than in the near infrared domain. 470 

To develop the interpretation proposed above, our results were compared with some 471 

characteristics of the surface, and more particularly with its spatial structure. The study area is mainly 472 

composed of agricultural plots of which the majority reveals an area between 0.3 and 130 ha, 473 

corresponding to a plot width (assuming square areas) of around 50 to 1000 m. This could be identified 474 

thanks to the Graphic Parcel Register (GPR; https://geoservices.ign.fr) for the year 2016, allowing 475 

access to the delimitation, the surface area and the type of crops of all the agricultural plots in the 476 

department of Gers. An average plot width of around 170 m was deduced from this data. Figure 9 477 

below shows a part of the GPR for our study area, for which the plots were classified according to their 478 

extent. We observe a large number of plots whose characteristic widths are between 100 m and 1 km 479 

(areas in light blue, green and yellow). Although the agricultural plots reveal quite different structures, 480 

of more or less elongated shapes, even with rounded "edges", the more or less systematic cutting that 481 

they generate on the surface could be at the origin of the large-scale break 𝑙1 observed in our results. 482 

In this way, the fine-scale regime observed on 𝑟𝑎𝑛𝑔𝑒 𝐼𝐼 would reflect the intra-plot variability 483 

governed by multifractal physical and biophysical processes linked to crops (soil moisture, vegetation, 484 

etc.), while the large-scale regime on 𝑟𝑎𝑛𝑔𝑒 𝐼 would represent the extra-plot variability resulting from 485 

the aggregation of several fine-scale processes which together would not have particular multifractal 486 

properties. This interpretation would explain the uncorrelated and less complex nature of the 487 

reflectances on large scales (very low values of 𝛽 and 𝐶1 parameters on 𝑟𝑎𝑛𝑔𝑒 𝐼), whereas more 488 

complex fractal and multifractal properties were obtained on 𝑟𝑎𝑛𝑔𝑒 𝐼𝐼 tending to justify the interest 489 

of applying a multifractal model like that of Universal Multifractals on these fine scales. 490 

https://geoservices.ign.fr/
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 491 

5.2 Simulation of the impact of agricultural plots on the scaling properties of surface 492 

reflectances 493 

In order to check if the previous explanations are realistic, an example of agricultural area was 494 

simulated with the same scaling properties as the S2 reflectances. To do this, a synthetic multifractal 495 

field was simulated by applying the Universal Multifractal model (see Appendix D), to which we 496 

combined an image containing the delimitations of agricultural plots obtained from the GPR-2016 on 497 

our study area (Fig.10.a). The multifractal field was generated by defining the values of the universal 498 

parameters of the model at 𝛼 = 2, 𝐶1 = 0.1 and 𝐻 = 0.3, corresponding to the values obtained for 499 

the band B2 on 𝑟𝑎𝑛𝑔𝑒 𝐼𝐼 (mean behaviour, Table 2.b). The combination method simply consists in 500 

adding the spatial texture generated by the agricultural plots to the image of the simulated multifractal 501 

field. To reproduce a more realistic texture, the entities ("plot" objects) have been previously grouped 502 

into six classes: the same pixel value between the min and max values of the initial field, i.e. 0 and 1, 503 

has been assigned to each of these classes. These have been defined according to the area of the 504 

entities: the plots have been grouped into object classes whose area is within a predefined interval. 505 

Here, these intervals have been defined from the area quantiles, so as to have the same number of 506 

objects in each class. Although this classification does not correspond in any way to reality, it allows to 507 

reproduce artificially the differences in intensity of reflectances according to the type of soil (different 508 

Figure 9: Classification of agricultural plots (parcels) according to their surface area estimated 
from the Graphic Parcel Register for the year 2016. The data represented here correspond to an 
area of ~ 3 x 3 km² extracted in our main study area. The plot widths were calculated from the 
surface areas by approximating them to square areas. 
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types of crop, bare soil, forest, etc.) which can be observed on the real data (Fig.10.b). The final surface 509 

generated (𝑖𝑎𝑔𝑟𝑖) is based on an integrated multiplicative cascade (𝑖𝑀𝐹) defined at all scales of the 510 

image, but to which is added the spatial texture of agricultural plots (𝑜𝑓𝑓𝑠𝑒𝑡𝑝𝑎𝑟𝑐𝑒𝑙𝑠) such as: 511 

 512 
𝒊𝒂𝒈𝒓𝒊 = 𝒊𝑴𝑭 + 𝒐𝒇𝒇𝒔𝒆𝒕𝒑𝒂𝒓𝒄𝒆𝒍𝒔 514 

7 513 

 515 

The graph in Figure 11 represents the power spectrum obtained for the simulated agricultural 516 

surface iagri (green curve), compared to that obtained from the original simulated multifractal field 517 

iMF (blue curve). The power spectrum estimated from an image iB2 of real surface reflectances (gray 518 

curve) is also presented. iB2 is the image acquired in B2 band on July 10 (image presented in Fig.10.b). 519 

For the sake of clarity, the finest scale of the simulated fields was set to the size of a S2 pixel (band B2) 520 

so that 𝑙𝑚𝑖𝑛 = 10 𝑚. 521 

As expected, a single scaling regime is observed on the original multifractal iMF with no scale break 522 

detected, whereas two scaling regimes are indeed observed for iagri, with a scale break 𝑙1 detected at 523 

around 200 m. This break noticed on iagri is located a few dozen scales higher than the finest scale, 524 

which is comparable to the results obtained from S2 data. The two regimes exhibit behaviours close 525 

to those observed on the ranges I and II of iB2, at least in terms of the shape of the curves. Indeed, on 526 

large scales (𝑟𝑎𝑛𝑔𝑒 𝐼) a spectral slope smaller than 1 is obtained, while a spectral slope greater than 1 527 

is estimated on fine scales (𝑟𝑎𝑛𝑔𝑒 𝐼𝐼). Therefore, the twofold scaling behaviour of S2 products is clearly 528 

transcribed by our simulation : it was evidenced here that a definite link exists between the division of 529 

Figure 10: Simulated and real surface reflectances corresponding to the study area (Gers, 30TYP tile). The simulation 
was obtained by combining a multifractal field and the GPR of the year 2016. 

(b) (a) 
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the area by agricultural plots and the presence of two scaling regimes – with a transition scale which 530 

is effectively close to the average plot scale. We note a  flattening at the finest scales of the iagri   power 531 

spectrum, which reveals the presence of noise localized on the last octave (20 m – 40 m). A similar 532 

flattening was observed on the NSMI spectrum (Fig. 4) due to the creation of noise by the application 533 

of the NSMI formula. For the  iagri spectrum, this phenomenon is probably due to the "local" effect of 534 

the boundaries of agricultural plots at resolutions close to the pixel size. Indeed, these boundaries 535 

generate abrupt transitions from one pixel of the image to its neighbour, leading to an increase of the 536 

energy at this specific scale. The fact that this flattening is observed on the simulated agriculture 537 

spectrum (iagri) but is not on the real spectrum (iB2) may be due to (1) the impact of our combination 538 

method creating artificial boundaries that are more abrupt on the simulation than on the real case, 539 

and/or (2) the impact of the optical acquisition system (Section 6) on the real spectrum which inversely 540 

affects the fine scales (slope increased) but that is not considered in this simulation. 541 

 542 

 543 

  544 

Figure 11: Impact of agricultural plots on power spectrum of simulated surface reflectances (Fig.10.a). 
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6 A fine-scale break related to the optical acquisition system of the satellite sensor 545 

This section is dedicated to the interpretation of the scale break 𝑙2 observed on power spectra 546 

between range II and III. 547 

6.1 The effect of the Modulation Transfer Function 548 

Considering the relatively small variations of the position of the fine-scale break 𝑙2 with time and 549 

land use, this break could be a consequence of the acquisition system which affects the high spatial 550 

frequencies of images. In any optical system, this phenomenon is modelled by a function called MTF 551 

(Modulation Transfer Function; Norton et al., 1977). It defines the system ability to transmit the spatial 552 

frequencies of the observed scene. It is affected by several components of the system such as the 553 

objective (the lens) and detectors, but also by external factors such as temperature or atmospheric 554 

diffusion. During the satellite launch in space, these last factors can modify the MTF. However, the 555 

latter varies very little over time once the satellite is finally placed in its orbit. In this way, it could be 556 

the reason for the systematic break observed at the maximum frequencies acquired by the MSI-S2 557 

sensor. 558 

As part of the validation and calibration procedures for S2 products, Gascon et al. (2017) 559 

determined the modulation transfer function of the MSI imager after the launching of the S2-A 560 

satellite. This has been estimated from an image acquired in the B2 band on Arizona (USA), applying 561 

the "slanted-edge" method (Viallefont-Robinet and Léger, 2010; Reichenbach et al., 1991) which has 562 

often been used to determine the MTF of space sensors like Landsat (Carnahan and Zhou, 1986) or 563 

Ikonos (Choi , 2002). 564 

6.2 Simulation of the impact of optical acquisition system on scaling properties 565 

Given what has been described above, we made the hypothesis that the scale break 𝑙2 detected 566 

on the power spectra is directly related to the impact of the MTF on the scaling properties of the 567 

“original” signal acquired by the MSI sensor. 568 

To demonstrate this, a multifractal field was simulated (according to the method presented in 569 

Appendix D which is based on the Universal Multifractal model) representing the scaling behaviour of 570 

a hypothetical original signal, i.e. with fractal/multifractal properties not impacted by the optical 571 

system. Here, we suppose that the original signal should have the same scaling properties as those 572 

obtained on 𝑟𝑎𝑛𝑔𝑒 𝐼𝐼 (Figure 4), with parameters set as 𝛼 = 2, 𝐶1 = 0.1, 𝐻 = 0.3 (values obtained 573 

from band B2, Table 2.b). Note that we did not consider in this simulation the impact of agricultural 574 

plots (Section 5.2). 575 
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Then, to simulate the impact of optical acquisition system, we generated an MTF according to the 576 

model of Viallefont-Robinet and Léger (2010). The latter proposed a parametric model taking into 577 

account various characteristics of the system such as the diffraction effects of the lens and the 578 

sampling effects of the detector, as well as the impact of other factors such as the displacement of 579 

electronic charges or correction of the focus that can be achieved after launching the satellite. Here, 580 

for the sake of simplicity, only the major effects on MTF have been taken into account, namely 581 

diffraction and sampling. Finally, this function was applied to the simulated multifractal field. The 582 

operation was carried out in the Fourier domain by applying the following relation: 583 

𝑰𝒇𝒊𝒍𝒕𝒆𝒓𝒆𝒅 = 𝑴𝑻𝑭 × 𝑰𝒔𝒊𝒎𝒖 584 
8 585 

with 𝑰𝒇𝒊𝒍𝒕𝒆𝒓𝒆𝒅 and 𝑰𝒔𝒊𝒎𝒖 the Fourier transform modules of the images corresponding respectively to 586 

the field filtered by MTF and to the simulated original field. 587 

For the calculation and generation of the MTF, the equations used are detailed in Appendix E. Two 588 

parameters are to be defined in the model: (1) the sampling frequency 𝑓𝑠 of the detector which was 589 

fixed here at the resolution of the simulated multifractal field, that is, at 1 pixel-1 (here, the scale is 590 

expressed in pixels, the corresponding unit is thus "pixel-1" for frequency), (2) the cut-off frequency 𝑓𝑐  591 

of the lens (also defined at 1 pixel-1 for the sake of simplicity) which is responsible for the diffraction 592 

effects. In reality, the value of 𝑓𝑐  depends on the characteristics of the lens (diameter, focal length) and 593 

on the wavelength of the incident radiation. However, since we did not have access to the value of the 594 

MSI sensor focal length, we were unable to determine the actual cut-off frequency. According to 595 

Gascon et al. (2017), the MTF they measured for band B2 has a value close to 0 at the sampling 596 

frequency. This shows that, for this band, 𝑓𝑐  should be positioned close to 𝑓𝑠, at slightly higher 597 

frequencies. According to this assumption, we will suppose thereafter that 𝑓𝑠 ≈ 𝑓𝑐 = 1 pixel-1. 598 

Figure 12 presents the power spectra of the original field (blue curve), of the field affected by the 599 

MTF by considering only the sampling effects of the detector (dark brown curve), only the diffraction 600 

effects of the lens (light brown curve), and finally by considering both the sampling and diffraction 601 

effects (red curve). For the sake of clarity, the scale axis of the figure was adapted to correspond to 602 

that of S2 spectra: the finest scale of the fields was set to the size of a S2 pixel (band B2) so that 𝑙𝑠 =603 

1

𝑓𝑠
= 10 𝑚. The fine scales are found to be impacted by the MTF the more significantly: the energy of 604 

the signal is attenuated for the high frequencies, resulting in an increase in the spectral slope for scales 605 

lower than 100 m. This behaviour is obviously more pronounced when the two effects (diffraction and 606 

sampling) are combined (spectrum in red). The scale break detection algorithm (Section 3.3) was 607 

applied on this last spectrum, which revealed a scale break located at 48 m (= 4.8 𝑙𝑠). The relationship 608 
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found here between the position of the break and the resolution of the image is comparable to that 609 

deduced from our S2 products, for which the coefficient linking the two scales was close to 4 over the 610 

entire period (Fig.5.b). 611 

 612 

The MTF model used in this study enables to reproduce the impact of the acquisition system on 613 

the high frequencies of the image. Although the value of the cut-off frequency was chosen in a more 614 

or less arbitrary way, the scale break generated on the original spectrum is similar to that of the fine-615 

scale break 𝑙2 observed on the spectra of our S2 bands. These results provide a physical explanation 616 

as to the origin of this fine-scale break, which is the result of the acquisition system, i.e. MTF, that 617 

reduces spatial variations (smooths the image) at high frequencies inducing a decrease of energy at 618 

the finest scales. The strong similarity of the red and light brown curves in Figure 12 suggests that the 619 

rupture is mainly related to the diffraction effects of the lens. Further research may be needed to be 620 

conclusive of the latter findings by integrating other factors influencing the MTF (electric charge 621 

displacements, temperature, etc.). However, the interpretations given here show the potential of 622 

power spectra estimators to easily detect the on-orbit effective resolution of the optical sensors, i.e. 623 

the actual resolution below which any signal will not correctly reflect the spatial properties of the 624 

surface. 625 

  626 

Figure 12: Impact of the Modulation Transfer Function on the power spectra of simulated multifractal 
fields. The MTF was generated from the analytical model described in Viallefont-Robinet and Léger 
(2010). 
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7 Conclusion and perspectives 627 

In this study, the Universal Multifractal model was applied to analyze the scaling behaviour of 628 

Sentinel-2 surface reflectances and optical indexes acquired over the Southwest region of France, and 629 

corrected for atmospheric effects by the MAJA processing chain. Images with minimal cloud cover 630 

were identified for the whole year 2016 based on the MAJA cloud and shadow detection process. This 631 

allowed us to access the dynamics of the scaling properties of surface reflectances, which, to our 632 

knowledge, had not yet been explored to date due to the significant impact of clouds on optical data. 633 

Different scaling regimes, separated by significant scale breaks, were evidenced from these data. 634 

Through the use of multifractal simulations, we could explain the scaling properties and especially the 635 

position of scale breaks observed in the images studied by two types of phenomena. 636 

First, a scale break between hundreds of meters and one kilometre was detected that was found 637 

to be impacted mostly by the seasonal and geographic specificities of the surface. From this specific 638 

break, two scaling regimes with distinct scaling properties were evidenced. Over large extents, 639 

reflectances were found to be poorly autocorrelated, revealing spatial properties quite distant from 640 

those commonly detected in the phenomena such as topography, rain and clouds. Over small extents, 641 

higher autocorrelation were observed in our data, reflecting the presence of multifractal processes 642 

comparable to those in turbulence. In addition, a seasonal cycle of scaling parameters was revealed 643 

for the fine-scale regime, while no particular temporal behaviour was noticed for the large-scale 644 

regime. We showed that this twofold scaling behaviour is directly linked to the physical properties of 645 

the surface, and in particular to the agricultural plots that impact its spatial structure. In this way, the 646 

fine-scale regime would reflect the intra-plot variability governed by multifractal physical and 647 

biophysical processes related to crops (soil moisture, vegetation, etc.), while the large-scale regime 648 

would represent the extra-plot variability resulting from the aggregation of several fine-scale processes 649 

which together would not have particular multifractal properties. These interpretations were validated 650 

by combining our knowledge of the surface and multifractal simulations, which confirmed that the 651 

transition scale between the two observed regimes corresponds to the average size of the agricultural 652 

plots for this region. 653 

Second, a singular scaling behaviour was systematically detected at high frequencies on the 654 

various optical products: a systematic spectral drop was observed near the resolution of the sensor, 655 

reflecting an alteration of the signal measured on fine scales, independently of the observed surface 656 

type. This phenomenon was found to be an instrumental artefact generated by the Modulation 657 

Transfer Function of the optical system which affects the high frequencies of the acquired image. 658 

Therefore, this analysis highlighted the performance limits of the Sentinel-2 optical sensor MSI. The 659 
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particular break detected at fine scales (i.e. about 40 m scale) would correspond to the effective 660 

resolution of the sensor, beyond which the fine-scale fractal properties of the observed surface cannot 661 

be detected. 662 

To complete the interpretation of the spectral drop artifact observed near the resolution of the 663 

sensor, the multi-scale model proposed here could be deepened by integrating other factors 664 

influencing the Modulation Transfer Function such as electric charge displacements or temperature. 665 

In order to be in the real conditions of Sentinel-2 data acquisition, the real value of cut-off frequency 666 

of the MSI sensor could be used in the MTF model. It would also be interesting to establish precisely 667 

why the fine-scale break is located at ~ 4 𝑙𝑠 (mathematical relation) and possibly propose a method to 668 

correct this artefact statistically. Here, a fractal stochastic disaggregation could be applied to replace 669 

the "impacted" field at fine scales (𝑙 < 4 𝑙𝑠) by a simulated multiplicative cascade that would have the 670 

scaling properties of the large-scale field (𝑙 > 4 𝑙𝑠). Based on scaling properties, this type of method 671 

preserves the probability distribution from large to fine scales. Such fractal-based techniques have 672 

been applied on geophysical variables such as rainfall (Rebora et al., 2006; Sharma et al., 2007; Deidda, 673 

2000; Gires et al., 2012) or soil moisture (Bindlish and Barros, 2002a; Kim and Barros, 2002b; Mascaro 674 

et al., 2010). Therefore, it would be interesting to apply this “stochastic” correction to the S2/MAJA 675 

surface reflectances and to verify if the spectral drop is still observed near the resolution of the sensor. 676 

However, since the disaggregation is based on a random generator, an ensemble of possible fields can 677 

be proposed from just one set of scaling parameters. Therefore, this kind of methodology may not be 678 

fully suitable in the case of operational hydro-agricultural applications, in particular for determining 679 

the position of the extremes. Another possibility to correct the effects of the optical system would be 680 

to estimate the original “non-impacted” image from the MTF model proposed in this study. It would 681 

simply consist of reversing equation 8, and then estimating the inverse Fourier transform of the field. 682 

This solution would respect the deterministic behaviour of the original signal, giving the correct 683 

position of the extremes not only statistically valid but also punctually. The challenge would be to get 684 

the exact MTF model corresponding to the MSI sensor. Although several methods have been proposed 685 

so far to estimate on-orbit MTF (Lei and Tiziani, 1988; Viallefont-Robinet and Léger, 2010; Xu et al., 686 

2014), differences persist between empirical and modelled MTF (Gascon et al., 2017). In the case of an 687 

improperly parametrized MTF, this methodology could further alter the signal and generate more 688 

scaling artifacts. 689 

This research work demonstrated the potential of the multifractal analysis for spatial 690 

characterization of surface reflectances. The theoretical background on which this analysis is based 691 

makes it possible to provide an interpretation that is both different and complementary to the more 692 

usual texture analysis methods, thus improving our understanding of surface processes and their 693 
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spatial heterogeneity. Thanks to the Universal Multifractal model, we were able to identify specific 694 

sets of scales ranging from tens of meters to tens of kilometres and on which specific statistical 695 

properties were detected. The observed scaling regimes were found to be the results of the 696 

combination at different scales of both natural and anthropogenic factors. This spatial characterization 697 

could be useful to precisely define the set of scales to consider in information extraction from remote 698 

sensing images and help calibrating current surface models which take little account of scaling 699 

behaviour, operating on either local or global scales (Ko et al., 2016). It would be possible to verify 700 

whether the products synthesized by these models comply with the expected scaling regimes, and if 701 

not to constrain the statistics of these models on certain scale ranges. In addition, the present analysis 702 

showed that the particular scale ranges detected are directly related to the seasonal (and geographic) 703 

specificities of the surface and that these variations should be taken into account in this type of spatial 704 

analysis. 705 

Finally, this study showed the potential of multifractal analysis to assess the reliability of satellite 706 

products to transcribe what was observed by the sensor. Due to its genericity, the method presented 707 

here could be applied to other optical satellite data (Landsat-8, Venμs), even defined at very high 708 

resolution (Ikonos). It could also be used to analyze products from different technologies such as radar 709 

(Sentinel-1) or passive microwaves (Neuhauser et al., 2019). From a more operational point of view, 710 

this could be useful either for the preparation of future space missions in order to determine the 711 

capacity of the sensors to detect the inherent scaling properties of the surface processes, or for post-712 

launch assessment to detect in an easy and rapid way the effective resolution of satellite sensors. This 713 

methodology complements more usual validation methods enabling a better estimation and 714 

understanding of the effective resolution of different products derived from satellite acquisitions. 715 
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Appendix A: Theory of Multifractals 724 

During the last century researchers realized that many geophysical processes could present scale 725 

invariance properties. This was first anticipated by Richardson (1922) in the case of turbulence: he 726 

described turbulent flows as cascade processes that transfer kinetic energy from large to small scales. 727 

Based on this approach, statistical models of turbulence were proposed such as the famous 728 

Kolmogorov law (1941) to describe velocity increments. Later research generalized the study to take 729 

into account the heterogeneity of the energy flux (Kolmogorov, 1962; Oboukhov, 1962; Yaglom, 1966). 730 

Multi-scale models such as multiplicative cascades were proposed to reproduce scale invariance 731 

properties through the use of fractal geometry. Later, scale invariance was noticed in other geophysical 732 

fields. For example, in his study of the coast of Britain, Mandelbrot (1967) revealed the presence of 733 

fractal properties in topography. 734 

1) From fractal sets to multifractal fields 735 

The concept of fractal has been used in many works related to multi-scale analysis and geophysical 736 

modelling. Indeed, the term “fractal” refers to any entity (time series or 2D/3D random field) in which 737 

each part presents similar properties, geometrically or statistically, to the ensemble. In this manner, 738 

the structure of a fractal entity is characterized by scale invariance. 739 

Monofractal stochastic models aim to represent the simple scaling behaviour of geophysical 740 

processes. In this context, the fractal dimension or scaling parameter is assumed to be unique, 741 

restricting multi-scale modelling to a specific class of variability. However, most geophysical processes 742 

are characterized by more complex statistics. In case of operational hydrology, rare and extreme 743 

events, present in precipitation or soil moisture for example, correspond to high-order statistics and 744 

need to be detected (Hubert et al., 1993). Therefore, multifractal models, characterized by an infinite 745 

spectrum of fractal dimensions, have been proposed to account for a more exhaustive set of statistics. 746 

Schertzer and Lovejoy (1987), based on the findings of Parisi and Frisch (1985), initially established the 747 

multifractal formalism through the fundamental equation: 748 

𝑷𝒓 (⌽𝝀> 𝝀𝜸) ≈ 𝝀−𝒄(𝜸) 749 

9 750 

where ⌽𝜆 is a positive normalized random scalar process, time series or random field defined on 𝑅2 751 

or 𝑅3. The symbol “≈” indicates an equality within the limits of slowly varying functions. The mean of 752 

the process is assumed to be statistically conserved across scales (〈⌽𝜆〉 = 𝑐𝑜𝑛𝑠𝑡). 𝜆 is the observation 753 

resolution, here defined as the number of intervals (or pixels) along a dimension of space. Note that 754 

the definition given here is different from that usually encountered in remote sensing. In our case, it is 755 
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a dimensionless factor that is inversely proportional to the scale 𝑙. The latter can be seen as the 756 

sampling time or pixel size for time and space domain processes respectively (see Section 3.1 for a 757 

more detailed definition of scale and resolution concepts). 758 

Eq.9 expresses the fact that for a multifractal process, the probability of exceeding a threshold 759 

varies as a power law of the resolution with exponent 𝑐(𝛾). This exponent is called as fractal 760 

codimension of the process, depending on the amplitude of thresholds. The thresholds are defined by 761 

the following power law: 762 

𝑻𝝀 = 𝝀𝜸 763 

10 764 

with 𝛾 the notion of singularity, characterizing the amplitude of the process independently of the 765 

resolution. Each singularity is associated with a fractal codimension 𝑐(𝛾), corresponding to a measure 766 

of the sparseness of the area where the process exceeds the thresholds defined by 𝛾. From a more 767 

physical point of view, high singularities (detected by high thresholds) are related to rare and extreme 768 

events, with high fractal codimensions and inversely low (box-counting) fractal dimensions 𝐷𝑓(𝛾) 769 

(Mandelbrot, 1967). Indeed, the latter are related to the dimension of space 𝐷 through the relation 770 

𝑐(𝛾) = 𝐷 − 𝐷𝑓(𝛾). Therefore, 𝑐(𝛾) can be described as a codimension function, increasing with 𝛾, 771 

which completely characterizes the multi-scale statistical properties of the field ⌽𝜆. In general, if the 772 

field is multifractal, 𝑐(𝛾) is found to be a convex and positive function (with a fixed point 𝐶1 imposed 773 

by the condition of canonical conservation 〈⌽𝜆〉 = 𝑐𝑜𝑛𝑠𝑡), whereas monofractality is associated to 774 

the trivial case 𝑐(𝛾) = 𝑐𝑜𝑛𝑠𝑡. 775 

Since probability distributions and statistical moments are related by a Mellin transform, 776 

Schertzer and Lovejoy (1987) proposed an equivalent equation to Eq.9: 777 

〈⌽𝝀
 
〉 ≈ 𝝀 ( ) 779 

11 778 

where 〈∙〉 is the statistical averaging operator, 𝑞 is the order of the moment (𝑞 ≥  0), and 𝐾(𝑞) is the 780 

moment scaling function. Eq.11 expresses that, for any fixed moment order, statistical moments and 781 

resolution are linked through a power law. Singularities and moment orders are directly linked, since 782 

the moment scaling function 𝐾(𝑞) is the Legendre transform of the codimension function 𝑐(𝛾). 783 

Similarly to 𝑐(𝛾), 𝐾(𝑞) is a convex function (with the special case 𝐾(1) = 0 related to the conservation 784 

of the mean across scales), which entirely characterizes the multifractal field. 785 
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2) Multiplicative cascades 786 

Multiplicative cascades are stochastic models that can be used to build multifractal fields. 787 

Cascades are multiplicative processes because they are defined by an iterative multiplicative 788 

construction, from larger scales to smaller scales. Considering a two dimensional random signal (field), 789 

the cascade consists of dividing each pixel at resolution 𝜆𝑛 (with 𝑛 the construction level of the 790 

cascade) into sub-pixels at finer resolution 𝜆𝑛+1, and then to multiply the latter by a random variable 791 

𝜇𝜀. This is described by the following equation: 792 

⌽𝝀𝒏+𝟏= 𝝁𝜺 ×⌽𝝀𝒏  793 

12 794 

In this manner, the statistical properties of the field ⌽𝜆𝑛+1 are directly related to the statistical 795 

properties of the coarser field ⌽𝜆𝑛. If all the multiplicative random variables used for each step of the 796 

iterative construction are independent and identically distributed, and distributed independently of 797 

the scale, the final random field (obtained after multiple iterations) presents scale invariant properties. 798 

Several models of cascades have been developed so far. First models were built within the 799 

framework of turbulence, such as the α-model (Schertzer and Lovejoy, 1984) which corresponds to 800 

discrete construction of cascades: the multiplicative random variables are limited to two possible fixed 801 

values, respectively leading to increasing or decreasing pixel value when the resolution is refined. 802 

Later, more elaborate models were constructed generalizing the discrete case to continuous cascades 803 

(Dubrulle, 1994; Schertzer and Lovejoy, 1987, 1991, 1997; She and Levêque, 1994). The latter are based 804 

on an infinite number of steps between any pair of resolutions, leading to continuity in scale. The 805 

benefit of continuous cascades is twofold. First, they can represent possibly more realistic structures 806 

by avoiding any arbitrary discretization of scales. Moreover, they often converge towards random 807 

processes that are characterized by a small number of degrees of freedom (special cases of log-808 

infinitely divisible distributions). This is interesting considering that multifractal fields built by 809 

multiplicative cascade processes would otherwise need an infinite number of scaling parameters (one 810 

for each fractal dimension). For example, She and Levêque (1994) proposed the Log-Poisson model 811 

which constructs multifractal fields from the generation of the random variable 𝜇𝜀 whose distribution 812 

law is of log-Poisson type. The (log-) Poisson laws are part of the (log-) infinitely-divisible laws, just as 813 

the (log-) stable laws (including the Gaussian case). The Universal Multifractal (UM) model proposed 814 

by Schertzer and Lovejoy (1987) uses random variables 𝜇𝜀 of log-stable laws to generate the 815 

multifractal field (see Appendix D for more details on the generation of such a field). In both models, 816 

only two fundamental parameters are needed to fully define multifractality, i.e. to fully characterize 817 

the 𝑐(𝛾), 𝐾(𝑞) functions. 818 
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3) Universal Multifractals 819 

Physically, multifractal fields built by Log-Poisson or Log-stable cascades are found in many 820 

geophysical applications. The Log-Poisson model has been successfully applied to different geophysical 821 

variables such as rain (Deidda, 2000), or even soil moisture (Mascaro et al., 2010). However, the Log-822 

Poisson model can have the disadvantages of representing a somewhat restricted range of variabilities, 823 

since they are not suitable for modeling processes with unbounded singularities. On the other hand, 824 

by assuming the stability of the random variables and suitable renormalization, the UM model is likely 825 

adaptable for characterizing a wide range of processes: topography (Lavallée et al., 1993), rain and 826 

clouds (Tessier et al., 1993) and more recently soil moisture and vegetation optical indexes (Lovejoy et 827 

al., 2008b). Moreover, a possibly more immediate physical interpretation of the parameters is found 828 

in this model. For mathematical and physical arguments supporting the universality of the UM model, 829 

see Schertzer and Lovejoy (1997); see also Gupta and Waymire (1997) for discussion about its 830 

generality. The UM model defines the moment scaling function using two “universal” parameters, 831 

through the following equation (Schertzer and Lovejoy, 1987): 832 

 ( ) =
 𝟏

(𝜶 − 𝟏)
( 𝜶 −  ) 834 

13 833 

where 𝛼 is the degree of multifractality of the field. It varies between 0 (monofractality) and 2 (log-835 

normality) and expresses how fast the codimension evolves as a function of the singularity. The second 836 

parameter 𝐶1 is the codimension giving the dominant contribution to the mean value of the field 837 

(related to moment of order 1): 𝐶1 = 𝐾′(1). Physically, it indicates inhomogeneity (dispersion) of the 838 

field: it varies from 0 (homogeneous field) to the dimension 𝐷 of the embedding space (very 839 

intermittent field). Because of the Legendre transform, 𝑐(𝐶1) = 𝐾′(1) is also defined as the fixed point 840 

of the codimension function. 841 

4) FIF model 842 

Generally, most geophysical fields are “non-conservative”, i.e. integrated processes defined by a 843 

certain degree of fractional integration (classical integration with non-integer orders). This appellation 844 

comes from multifractal cascade models: see Gagnon et al., 2006 for detailed explanations on the 845 

notion of fractional integration and its use in 2D multifractal models. Thus, to account for a wider range 846 

of processes (like filtered fields caracterized by steeper spectra), an extension of the UM model to non-847 

conservative fields has been proposed (Schertzer and Lovejoy, 1991): the Fractionally Integrated Flux 848 

(FIF) model. It expresses the degree of fractional integration of the UM field using a third parameter, 849 

𝐻. The latter is called the order of integration and defines the non-conservativity of the field: in plain 850 
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words, the larger is 𝐻, the smoother is the field. The integrated flux is noted 𝑅𝜆 and is characterized 851 

by a power law variation of its stationary increments: 852 

∆ 𝝀 ≈ ⌽𝝀 ∆𝒙
  854 

14 853 

where ∆𝑅𝜆 are the increments (fluctuations of the flux) estimated over a varying window ∆𝑥, which is 855 

equivalent to the spatial scale 𝑙. Note that when 𝐻 = 0, the equation corresponds to the conservative 856 

case ⌽𝜆, and that when 𝐻 < 0 the equation corresponds to the specific “fractional derivation” non-857 

conservative case. Additionally, in the case of two dimensional fluxes, Eq.14 also applies for other 858 

directions (i.e. ∆𝑦 increments), with the same exponent 𝐻 if the process is isotropic.  859 
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Appendix B: Estimation of Structure Functions and Statistical Moments 860 

1) Structure functions: some evidence of non-conservativity 861 

The structure functions were initially used in turbulence by Kolmogorov (1941) to highlight the 862 

scaling behaviour of velocity increments. Then, these methods were widely applied in geophysics, in 863 

particular thanks to their simplicity of construction and interpretation. Indeed, unlike the spectrum 864 

which implies a transform in the Fourier domain, the structure functions simply represent the 865 

fluctuations of the observations in real space, as a function of their distance. In addition, these 866 

methods allow direct access to the degree of smoothness (or degree of integration) of the data, also 867 

called in the multifractal formalism the “non-conservative” nature of the data studied. This is possible 868 

through the estimation of the parameter 𝐻 that characterizes any integrated multifractal data 𝑅𝜆. In 869 

the multifractal formalism, 𝑅𝜆 is defined by the power law variation of its stationary increments 870 

described in Appendix A (Eq.14). 871 

There are several ways to estimate these fluctuations. The simplest is to calculate the average of 872 

the absolute differences (or gradient) of 𝑅𝜆. In general, this method is very suitable for processes 873 

characterized by a parameter 𝐻 between 0 and 1 (Lovejoy and Schertzer, 2012a), thus corresponding 874 

to increasing fluctuations with the distance 𝛥𝑥. However, one constraint with this definition is that it 875 

does not allow decreasing fluctuations to be represented with distance: for multifractal data defined 876 

by 𝐻 < 0, the structure function converges to a constant "parasitic" value, which gives an inaccurate 877 

estimate of 𝐻 (which would be considered equal to 0). To be able to extend the range of 𝐻 to which 878 

the structure functions have access, one solution is to change the shape of the wave estimating the 879 

fluctuations. Lovejoy and Schertzer (2012b) proposed a simple formalism of definitions of fluctuations 880 

which is based on that of wavelets. In particular, Haar's wavelet is a definition that turns out to be 881 

simple to calculate and interpret, while allowing access to negative 𝐻 values. The fluctuations 882 

estimated from this method are calculated according to the following equation: 883 

∆ 𝝀(∆𝒙) = 〈
𝟐

∆𝒙
|𝑺(𝒙) + 𝑺(𝒙 + ∆𝒙) − 𝟐𝑺 (𝒙 +

∆𝒙

𝟐
)|〉 884 

15 885 

where 𝑥 and 𝛥𝑥 are vectors and 〈∙〉 corresponds to the empirical average. 𝑆 is the cumulative sum of 886 

the integrated data 𝑅𝜆 from which the global average has been subtracted. Thus, although this 887 

definition seems complex at first glance, it simply consists in estimating the average fluctuations from 888 

𝑥 to 𝑥 +
∆𝑥

2
 and from 𝑥 +

∆𝑥

2
 to 𝑥 + 𝛥𝑥. We can note that, from an algorithmic point of view, equation 889 

8 involves aggregating the field at half the resolution as to allow the calculation of 
∆𝑥

2
. This implies that, 890 

in the case of Haar wavelets, the structure function will not be defined for the finest observation scale. 891 
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This technique was used in this study to estimate the structure functions and the corresponding 𝐻 892 

parameters of our surface S2 products. In particular, in the case of 2D processes, fluctuations were 893 

estimated on vertical ∆x and horizontal ∆y distances separately, allowing us to obtain Hx and Hy 894 

parameters respectively. If the observations present indeed multifractal properties and are non-895 

conservative in nature, the order of integration Hx (Hy) should be the slope of the increments ∆Rλ, 896 

plotted in a log-log graph as a function of space scale 𝛥𝑥 (𝛥𝑦). 897 

2) Statistical moments: multifractal properties 898 

Statistical moments analysis deepens and extends spectral or structure functions analysis by 899 

focusing on the extreme variability of the signal. By comparison with the spectral analysis which 900 

represents the evolution of a single order of statistics, this method analyzes the behaviour of a set of 901 

statistical moments on the range of scales studied. 902 

To test the presence of multifractal properties in the data (Eq.11), statistical moments and 903 

moment scaling function need to be estimated. To do this, different steps must be followed. First, the 904 

underlying flux ⌽𝜆𝑚𝑎𝑥
 has to be reconstructed from the data, i.e. random field 𝑅, at the maximum 905 

observation resolution 𝜆𝑚𝑎𝑥 . Because of the possible existence of a fractional integration of order 𝐻 906 

(Eq.14), a fractional derivative of the same order should be done. In this study, the modulus of the 907 

gradient was applied to the data. Indeed, this operator provides a simple and good numerical 908 

approximation of the fractional derivation without prior knowledge of 𝐻 order (Lavallée et al., 1993; 909 

see also Renosh, 2015 for discussion about this approximation): 910 

⌽𝝀𝒎𝒂𝒙
= √(

𝝏 𝝀𝒎𝒂𝒙

𝝏𝒙
)

𝟐

+ (
𝝏 𝝀𝒎𝒂𝒙

𝝏𝒚
)

𝟐

 911 
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Once the flux (conservative field) is retrieved, ⌽𝜆𝑚𝑎𝑥
is normalized by its mean. 913 

The second step involves the degradation of the flux at lower resolutions 𝜆 < 𝜆𝑚𝑎𝑥 . It aims to 914 

approximate the inversion of the stochastic multiplicative cascade by iteratively averaging the flux at 915 

coarser scales: each coarse pixel (level 𝑛 of the cascade) is obtained by a simple average of neighboring 916 

finer pixels (level 𝑛 + 1). Note that each roughened pixel size is a power of two multiplied greater than 917 

the observation scale 𝑙𝑚𝑖𝑛  (=
𝐿

𝜆𝑚𝑎𝑥
). 918 

Finally, empirical moments (i.e. computing 𝑞-th order moments in Eq.11 while replacing statistical 919 

averages by empirical averages) are then computed for various orders and all accessible resolutions. 920 

Because of sample size limitations and/or possible divergence of high-order moments (Hubert et al., 921 
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2007), in this study moments were computed for orders set from 0 to 3, by steps of 0.1. On a log-log 922 

graph, the different moments are plotted as a function of the resolution. If linearity is observed for 923 

each moment curve, at least over a significant range of resolutions, Eq.11 is therefore verified, which 924 

is the signature of multifractality. The empirical moment scaling function can be estimated, with 𝐾(𝑞) 925 

corresponding to the slope of each linear fit of 𝑞th order moment. Afterwards, the universal 926 

parameters 𝛼 and 𝐶1 may be obtained by optimization: here the Nelder-Mead method is used to find 927 

the couple of parameters minimizing the (quadratic) distance between the empirical function 𝐾(𝑞) 928 

and the UM model form (Eq.13). 929 

  930 
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Appendix C: Results for mean structure functions and statistical moments 931 

 932 

Figure 13: Mean Haar structure functions estimated from Sentinel-2 bands and indexes, over the period 
January-December 2016. For each band, structure functions are computed in two orthogonal directions (X 
and Y axis of the image). 
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 933 

Figure 14: Mean moments estimated from Sentinel-2 bands and indexes, over the period January-
December 2016. The straight lines in red and green correspond to the linear regressions carried out 
respectively on range I (large scales) and range II (small scales). 
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  934 

(a) 

 

(b) 

 

Figure 15: Scaling functions estimated from the mean statistical moments in figure 14, for range I (a) and range II 
(b). Note the different range of values on the vertical axes. 
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Appendix D: Simulation of multifractal random fields 935 

The simulator that we present here is used to generate multifractal random fields knowing the 936 

three parameters 𝛼, 𝐶1 and 𝐻 of the UM model (FIF version) as well as the size of the simulation 937 

domain corresponding to the maximum resolution. This simulator includes several steps, which are 938 

described in detail in various works on multifractal processes such as Lovejoy and Schertzer (2010b, 939 

2010c), Pecknold et al. (1993), and Verrier (2011). We therefore invite the reader to refer to this work 940 

for more information on these processing steps. 941 

In general, this simulator aims to reproduce the mathematical construction of the multiplicative 942 

cascades corresponding to the UM/FIF model, defined in Appendix A. This construction is based on five 943 

main steps that we describe hereafter: 944 

1) Generation of the log-stable random variable ϒ𝛼  : 945 

The construction of the UM model is based on the generation of a log-stable random variable, 946 

corresponding here to an α-stable white noise ϒ𝛼. The parameter 𝛼 designates the degree of 947 

multifractality of the UM model, and also corresponds to the stability index relating to stable laws 948 

(Schertzer et al., 2002). Thus, a first step consists in generating ϒ𝛼 thanks to the algorithm of Chambers 949 

et al. (1976). This algorithm makes it possible to simulate stable variables quickly and efficiently, simply 950 

from realizations of independent random variables and according to uniform and exponential laws. 951 

Note here that some additional constraints must be considered to generate ϒ𝛼, relatively to its 952 

normalisation (unit asymmetrical α-stable white noise) and its asymmetry (asymmetry parameter set 953 

to -1). 954 

2) Multiplication by the amplitude factor 𝜎 : 955 

The random variable ϒ𝛼 is then multiplied by an amplitude factor 𝜎 allowing to integrate the 956 

parameter 𝐶1 in the construction of the cascade: 957 

𝝈 = (
𝒄𝟏

|𝜶 − 𝟏|
)

𝟏
𝜶

 958 

17 959 

3) Generator creation ᴦ𝜆 : 960 

In order to obtain the multifractal field, we must first construct the random variable ᴦ𝜆 called 961 

"generator". This is obtained by convolution of the log-stable variable 𝜎.ϒ𝛼 and a filter 𝑔𝛼 (in negative 962 

power law of the distance) such that: 963 
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𝒈𝜶(�⃗⃗� ) =
𝟏

‖�⃗⃗� ‖
𝑫
𝜶

 964 

18 965 

where ‖∙‖ designates the Euclidian norm, i.e. in the 2D case ‖𝑥 ‖ = ‖(𝑥, 𝑦)‖ = √𝑥2 + 𝑦2. For the sake 966 

of speed, the convolution operations present in this simulator are performed numerically in the Fourier 967 

domain by means of the two-dimensional 𝑓𝑓𝑡 or “Fast Fourier Transform”. 𝐷 is here taken equal to 2 968 

for a two-dimensional simulation. 969 

4) Generation of the conservative process ⌽𝜆 : 970 

The conservative process (or flux) is finally obtained by exponentiation of the generator, then 971 

normalization: 972 

⌽𝜆=
𝑒ᴦ𝜆

〈𝑒ᴦ𝜆〉
 973 

19 974 

5) Generation of the integrated process 𝑅𝜆 : 975 

In the case of the simulation of a non-conservative process (integrated process named here as 976 

“field”), a last step consists in applying a convolution to ⌽𝜆 by the filter in decreasing power law 𝑔𝐻, 977 

defined by : 978 

𝒈 (�⃗⃗� ) =
𝟏

‖�⃗⃗� ‖𝑫− 
 979 

20 980 

This convolution amounts to carrying out a fractional integration of order 𝐻 (less than 𝐷) (Gagnon et 981 

al., 2006). In the particular case where 𝐻 = 0, step 5 is omitted since here the random process to be 982 

generated is conservative, that is to say 𝑅𝜆 =⌽𝜆. 983 

  984 
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Appendix E: Modelling of the Modulation Transfer Function of an optical sensor from the 985 

characteristics of the lens (diffraction) and detector (sampling) 986 

 987 

𝑴𝑻𝑭 = 𝑴𝑻𝑭𝒅𝒊𝒇𝒇𝒓𝒂𝒄𝒕 ×𝑴𝑻𝑭𝒔𝒂𝒎𝒑𝒍𝒊𝒏𝒈 988 

 989 

𝑴𝑻𝑭𝒅𝒊𝒇𝒇𝒓𝒂𝒄𝒕 = 
2

𝛱
 {cos−1 (

𝑓

𝑓𝑐
) − (

𝑓

𝑓𝑐
)√1 − (

𝑓

𝑓𝑐
)
2
}    𝑓 = √𝑓𝑥

2 + 𝑓𝑦
2 990 

            991 

         𝑓𝑐 = 
𝑎

𝜆𝐷
  (cut-off frequency)992 

            993 

         𝑎 : lens diameter 994 

            995 

         𝜆 : radiation wavelength996 

            997 

         𝐷 : focal length 998 

 999 

 1000 

𝑴𝑻𝑭𝒔𝒂𝒎𝒑𝒍𝒊𝒏𝒈 = 𝑠𝑖𝑛𝑐 (𝛱
𝑓𝑥

𝑓𝑠
) . 𝑠𝑖𝑛𝑐 (𝛱

𝑓𝑦

𝑓𝑠
)    𝑓𝑠 : sampling frequency 1001 

 1002 

 1003 

  1004 
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