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ABSTRACT

We introduce Deep Sturm-Liouville (DSL), a novel function approximator obtained by integrating
the Sturm-Liouville theorem (SLT) into the deep learning framework. The Sturm-Liouville theorem
deals with a class of eigenvalue problems having a wide range of applications in physics, which
motivates us to explore its usage on machine learning tasks. The core idea of our work is to learn a
vector field, crossing the input space Ω ⊂ Rn, such that the ML task along each of its field lines can
be solved more easily due to the regularity of the problem on these field lines. A Sturm-Liouville
Problem is solved along each field line to obtain orthogonal basis functions that, combined linearly,
form the DSL function approximator. The vector field and the functions appearing in the SLT are
parameterized by neural networks and they are learnt simultaneously. We also demonstrate that the
DSL formulation appears naturally when solving a Rank-1 Parabolic Eigenvalue Problem. DSL
is trained by stochastic gradient descent thanks to the implicit differentiation theorem, achieving
comparable performances to neural networks on several multivariate datasets and the MNIST dataset.

1 Introduction

Neural networks have become indispensable in various applications, demonstrating their versatility by excelling in
a wide range of tasks from image recognition to natural language processing. These practical results are also sup-
ported by theoretical works on the expressivity of neural networks. It has long been known that any function can
be approximated by neural networks Hornik et al. [1989], Cybenko [1989] and recent works demonstrate exponential
approximation accuracy Elbrächter et al. [2021].

Despite its remarkable achievements, deep learning presents notable drawbacks. Several works demonstrate that deep
learning doesn’t follow the same logic as humans: this difference is particularly highlighted by adversarial attack
techniques Moosavi-Dezfooli et al. [2015] where a change in an image that is imperceptible to humans leads to a
complete change in the predictions of the neural network; or when a domain shift appears and the neural network
doesn’t recognize an image despite being semantically similar. Even if whole fields of active research stem from these
problems Rodriguez et al. [2023], Linsley et al. [2023], Szegedy et al. [2013], the underlying reasons are poorly un-
derstood: does the problem come from the optimization process, from the learning procedure, from the regularization
of the networks, from the architectures themselves, or something else entirely? Each field of artificial intelligence tries
to answer differently to these major issues.

These questions motivate us to explore new classes of function approximators where new regularizations can be de-
fined. In this work, we introduce a new class of predictors by leveraging the power of the Sturm-Liouville theorem in
high dimension, which allows us to learn orthogonal basis functions adapted to a machine learning task defined on an
open domain Ω ⊂ Rn with targets Y ∈ Rk. We assume that PXY = P(Ω×Rk) is the joint distribution of data points
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and targets, and we consider a dataset D ∼ P⊗n
XY . We define the predictor F as a pair (θ, L) composed of a vector

of basis functions uθ : Ω → Rd, d is a hyper-parameter of our method, parametrized by θ with a weight function
wθ : Ω → R+

∗ , and a linear map L : Rd → Rk:

F (x, θ, L) def= L(uθ(x)),

s.t

∫

Ω

wθ(x)uθ
i (x)u

θ
j (x)dx = 0 ∀i 6= j.

(1)

Our goal is to minimize the empirical risk associated to a loss L : Rk × Rk → R, defined as

min
θ,L

1

n

∑

i=1

L
(

yi, F (xi, θ, L)
)

, (2)

by simultaneously learning the linear operator L and the orthogonal function basis u
θ(x), in a data-dependent

fashion. To avoid the curse of dimensionality incurred by fixed basis functions such as Fourier, polynomial or wavelet,
the aim of this work is to create a flexible framework where the orthogonal basis functions are not fixed but they are
learnt to adapt to a particular machine learning task.

The main idea behind our work is that there exists some vector field Feldman and Yeager [2018] crossing the input
space where the task to be solved is simple on each field line. For example, in image classification task, we want to
learn a field line which contains only images of cars in the domain of definition. In this line, the classification task
will be simpler compared to a line which contains images of bananas, apples, cars and trains. During the training
procedure, we don’t explicitly train the vector field to be meaningful but we enforce implicitly a strong level of
regularization to encourage the discovery of this kind of field lines. It is interesting to note that the DSL’s formulation
appears naturally when solving a Rank−1 Parabolic Eigenvalue Problem.

Our main contributions are:

• Introducing a new function approximator, called Deep Sturm-Liouville (DSL), built from a task-dependent
orthogonal function basis in an open domain.

• Establishing a link between Deep Sturm-Liouville and a Rank-1 Parabolic Eigenvalue Problem.

• A training procedure using the implicit function theorem to train DSL with stochastic gradient descent.

• Implicitly enforcing the regularization of the function along each field lines by using only the d first elements
of the basis functions that have the property of being more regular than higher order of the basis function.

• Explicitly regularizing the function via spectral regularization thanks to the local eigenvalues of the function.

First, we introduce the Sturm-Liouiville theorem (SLT) in its original 1D form. Then, we expose the Elliptic Eigen-
value Problem which extends SLT to the multidimensional case. This Elliptic Eigenvalue Problem being hard to solve
due to its significant calculation time, we also present a related problem called Parabolic Eigenvalue Problem. In sec-
tion 3, we introduce the Deep Sturm-Liouville method, which exploits a link between the Rank-1 Parabolic Eigenvalue
Problem and the Sturm-Liouville problem to obtain a tractable solution for the high-dimensional case. We finish with
an experimental evaluation of the DSL method.

1.1 Sturm-Liouville theorem

The Sturm-Liouville theorem Sturm and Liouville [1837] has a significant importance on the theory of eigenvalue
problems for 1D ordinary differential equations (ODE). For instance, Sturm-Liouville theory (SLT) is employed in
quantum mechanics to analyze the solutions of the Schrödinger equations Bender and Orszag [1978], in heat conduc-
tion problems Lützen [1984] or to compute vibrational modes Wang [1996]. Sturm-Liouville eigenvalue problems
offer a systematic approach to discerning the characteristic frequencies and spatial patterns. This relationship between
SLT and physics problems motivates us to explore the potential application of this theorem in machine learning. A
wide range of 1D complete orthonormal function bases can be reinterpreted within this theory, common bases such as
Fourier, Bessel or Chebyshev polynomials being are particular cases of this theorem.
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The Sturm-Liouville theorem is formulated as an eigenvalue and eigenfunction problem satisfying the boundary
conditions of an ODE:

Theorem 1.1 (Sturm-Liouville Theorem). For any given functions, p, w : [a, b] → R
+
0 and q : [a, b] → R of classes

C1, C0 and C0 respectively, and real numbers α1, α2, β1, β2, there exist a unique sequence {λi}i≥1 (of eigenvalues)
and associated eigenfunctions yi : [a, b] → R solving the ODE below, with the given boundary conditions:

−
d

dt

[

p(t)
dyi(t)

dt

]

+ q(t)yi(t) = λiw(t)yi(t),

α1yi(a) + α2
yi

dt
(a) = 0 α1, α2 not both 0,

β1yi(b) + β2
yi

dt
(b) = 0 β1, β2 not both 0.

(3)

The sequence of eigenfunctions {yi(t)} forms an orthonormal basis in the Hilbert space L2([a, b]) with the inner
product weighted by w:

∫ b

a

w(t)yi(t)yj(t)dt = δij .

The eigenvalues λ1, λ2, ... are real and numbered so that λ1 < λ2 < ...λn < ... → ∞. According to
Egorov and Kondratiev [1996] Chapter 5-Theorem 19, the nth basis function has exactly n − 1 zeros in the inter-
val ]a, b[, so that by tuning the number of basis functions being used, we can enforce the desired level of regularization
in the function approximator.

For example, the Fourier basis is obtained for p(t) = 1, w(t) = 1, q(t) = 0, a = 0, b = π and Dirichlet’s conditions.
The eigenfunctions are sin(nx) and eigenvalues are n2.

Herein, we assume Dirichlet’s boundary conditions:

yi(a) = 0 and yi(b) = 0.

To compute the eigenvalues of the Strum-Liouville problem, a shooting method Stoer et al. [2002] will be used by
performing a binary search between the lower and upper bounds of the eigenvalues Breuer and Gottlieb [1971] on an
equivalent problem obtained by the Prüfer Substitution Prüfer [1926], Lebovitz [2019]. Details of this method can be
found in Section 3.3.

For a one dimensional ML task, we can parameterize the functions p, q and w with neural networks. By solving the
associated Sturm-Liouville Problem, we obtain the eigenfunctions yi(t) which form an orthogonal basis. A linear
combination of the yi(t) can be used to predict the value on x ∈ [a, b]. The weights of p, q, w can be learnt to optimize
(2). The main idea behind our work is to extend this procedure to the multidimensional case.

1.2 Elliptic Eigenvalue Problem

The Strum-Liouville theorem has its extension in dimension greater than one, more precisely on a open set Ω, thanks
to the following Elliptic Eigenvalue Problem (EEP) Larsson [2003], Muthukumar [2014]:

Theorem 1.2 (Elliptic Eigenvalue Problem). For any continuous functions A : Ω → Rn × Rn, symmetric, positive-

definite, q : Ω → R and w : Ω → R∗
+ of classes C1, C0 and C0 respectively, there exist a unique sequence of

eigenvalues λi and associated eigenfunctions ui satisfying:

∇ · (A(x) · ∇ui(x)) + q(x)ui(x) = −λiw(x)ui(x).

with ui(x) = 0 ∀x ∈ ∂Ω.
∫

Ω

w(x)ui(x)uj(x)dx = δij ∀i 6= j.

(4)

This theorem could be useful to learn a basis of functions suited to a particular machine learning task in high dimension
by optimizing (2) through the optimization of the functions A, q and w, typically surrogated by neural networks.

Solving these equations directly is quite challenging. First, even if recent works study the solutions of partial differen-
tial equations in high dimension Wu et al. [2023], efficiently solving this kind of partial differential equations (PDE) is

3
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very costly. Secondly, solving the eigenvalue problem is very difficult even if numeric methods exists Larsson [2003].
Thirdly, without making any hypothesis on the form of the matrix A, whose size is the square of the size of input space,
the matrix A can be too large for high dimension data.

To overcome these difficulties, we study a related problem where the matrix A is not full rank:

Definition 1.3. The Eigenvalue Problem (4) is called Parabolic when the matrix A is positive semi-definite.

Definition 1.4. The Parabolic Eigenvalue Problem is called Rank-1 when the matrix A is positive semi-definite and
its rank is equal to 1.

In such case, the existence of eigenvalues is not guaranteed. However, its rank-1 structure will allow us to solve
the Parabolic Eigenvalue Problem along a field line by using the 1D Sturm-Liouville theorem. This will allow us to
combine the Sturm-Liouville theorem and deep neural networks, thus giving rise to Deep Sturm-Liouville, a means to
compute orthogonal bases in high dimensions without the need to solve a high dimensional PDE.

2 Related work

In recent years, deep learning architectures have evolved quickly to obtain better approximating functions within
high-dimensional spaces and exploit unique properties of complex data representations. ResNet He et al. [2015], a
pioneer in convolutional neural networks (CNNs), remains influential for its simplicity and effectiveness in image
classification. The MLP Mixer architecture Tolstikhin et al. [2021] has emerged as a concise alternative, utilizing
multi-layer perceptrons to capture intricate patterns in data sequences without the need for extensive convolution lay-
ers. MixConv Tan and Le [2019] mixes up multiple kernel sizes in a single convolution. The Vision Transformer
(ViT) Dosovitskiy et al. [2021] represents a breakthrough in image processing by relying on self-attention mecha-
nisms Vaswani et al. [2017]. The aim of most new architectures is mainly to improve the performance of the neural
networks. Other neural network architectures, such as Lipschitz neural networks Bethune et al. [2021] which controls
the Lipschitz constant of the neural network, have specific properties to improve the robustness and the explainability
of neural networks Serrurier et al. [2023]. The aim of our work is to build a function approximator with particular
regularities to tackle limitations of deep learning previously outlined. DSL regularizes the function along a learnt field
line where we expect that the task is simpler to solve which is not possible with usual architectures. The regularization
in our method is done by controlling the number of times of the basis function changes sign. Contrary to the Gram-
Schmidt process which could be used to define an orthogonality on the neighborhood of a sample, DSL enforce the
orthogonality along a field line and by extension to the whole domain Ω 3.4.

Neural Ordinary Differential Equations introduced in Chen et al. [2018a] parameterize the derivative of the hidden
state using a neural network. Unlike the more classical architectures formed of discrete sequences of hidden lay-
ers, Neural ODEs define the evolution of hidden states as solutions to ODEs. Neural ODEs have been success-
fully applied to normalizing flows which were introduced by Tabak and Vanden-Eijnden [2010] and popularised by
Rezende and Mohamed [2015]. The first part of our algorithm has some similarities with Neural ODEs. Neural ODEs
solve an autonomous ODE from an initial point to a fixed final time independent of each sample while DSL computes
the final time for each sample such as the final state reaches the boundary of the domain Ω.

Continuous-time variable models are a popular topic in generative models such as normalizing flow Chen et al. [2018a],
diffusion models Sohl-Dickstein et al. [2015], Flow matching Dao et al. [2023] and energy based models Hinton
[2002]. Even if our work is not an explicit generative model, the first part of Deep Sturm-Liouville can be seen
as a generative component that projects the sample distribution to the boundary of the domain. This property could
be exploited in future work to couple generative models and classifiers such as in generative classifier Grathwohl et al.
[2020], Jaini et al. [2023].

Some works solve partial differential equations with neural networks, e.g. for magnetic field estimation Khan et al.
[2019], fluid simulations Kim et al. [2019], eigenvalue functions problems Kovacs et al. [2022] or PDEs similar to the
Elliptic Eigenvalues Problems Marwah et al. [2023]. Inspired by complex natural phenomena which can be simulated
by PDEs, our work takes the opposite point of view of these works by using Rank-1 Parabolic Eigenvalue Problems to
propose a new function approximator.

4



Deep Strum-Liouville A PREPRINT

3 Deep Sturm-Liouville Method

The purpose of this work is to introduce a new kind of orthogonal basis in an open domain Ω ⊂ Rn. Leveraging
deep learning techniques and the Sturm-Liouville Theorem, Deep Sturm-Liouville is a new predictor which adapts
orthogonal basis functions to a particular machine learning task. DSL can be used in any machine learning task that
can be formulated as the optimization problem in (2).

γx(tx−)

γx(tx+)

γx(0) = x

γx(t) ≡ dz
dt

= a(z)

Ω

∂Ω γx(t)

γx(0)

ux
i (t)

γx(tx−) γx(tx+)

ux
1(t)

ux
2(t)

ux
i (t) ≡ − d

dt

[

p(γx(t))
dyi(t)

dt

]

+ q(γx(t))yi(t) = λx
i w(γx(t))yi(t)

Figure 1: Deep Sturm-Liouville. For a given point x, the field line γx(t) is defined by equation (5), it is such that
γx(0) = x and reaches the two points at the boundary of Ω at time tx− and tx+. On the field line γx(t), the Sturm-
Liouville Problem 6 is solved with the parameter functions p(γx(t)), q(γx(t)) and w(γx(t)) to obtain an orthogonal
function basis that, combined linearly, form the DSL function approximator along the field line. The prediction at x is
obtained by taking the value of this function at t = 0.

3.1 Deep Sturm-Liouville

First, we define the field line γx(t) satisfying the following equation parameterized by the function a : Ω → Rn:

dz

dt
= a(z), z(0) = x. (5)

This equation is similar to the one in Neural Ordinary Differential Equations Chen et al. [2018b]. Nevertheless, equa-
tion (5) will be used differently to project the sample distribution to the boundaries of the domain Ω. Neural ODEs
have a fixed final time while DSL has a different final time for each x. In Deep Sturm-Liouville, for any x ∈ Ω, we
impose that the field line γx(t) passing through x shall cross the boundary ∂Ω in two unique points, i.e. there exist
two unique times tx− < 0 and tx+ > 0 such that γx(tx−) and γx(tx+) ∈ ∂Ω.

To obtain the uniqueness and the existence of tx− and tx+, we shall assume that (5) has an unique solution (a(x)
is Lipschitz), that there are no limit cycles and that a(x) is nowhere tangent to ∂Ω. The existence of limit cycles
is a complex problem for which no general solution is known for n > 2; for n=2 the Bendixson–Dulac theorem
describes sufficient conditions to have no limit cycles Burton and Burton [1983]. However, special cases exists where
the absence of limit cycles has been demonstrated. For example Johnston [2015]:

• a is a strictly positive continuous function and Ω is convex,

• a is a gradient of a function with no singular point and the gradient is not vanishing anywhere in the domain4.

The field line γx(t) is defined by the equation (5) on the the interval [tx−, t
x
+].

For a given x, thanks to the Sturm-Liouville theory applying along the field line γx(t) with p : Ω → R+
∗ , q : Ω → R

and w : Ω → R+
∗ , we can solve the eigenvalue problem of the following system to obtain the 1D orthogonal basis

functions ux
i (t) and the eigenvalues λx

i :

−
d

dt

[

p(γx(t))
dui(t)

dt

]

+ q(γx(t))ui(t) = λx
i w(γ

x(t))ui(t),

ui(t
x
−) = 0, ui(t

x
+) = 0,

dui(t
x
−)

dt
= 1. (6)

4This equation has some similarities with energy-based models Hinton [2002].
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Remark 3.1. The first three equations are defined up to a multiplying coefficient. The 4th equation on the ux
i derivative

at t− ensures the uniqueness of the solution. The value of this derivative is not important for building an orthogonal
basis, but would matter if we wanted to build an orthonormal basis on Ω instead.

We define the function ui : Ω → R by setting ui(x) = ux
i (0). The ui(x) are well defined and form an orthogonal

basis along the field line γx. Indeed, for all x1 ∈ Ω, if x2 = γx1(s), we can show that ux1

i (t) = ux2

i (t − s). As a
consequence,

ui(γ
x1(s)) = ui(x2) = ux2(0) = ux1(s), (7)

which holds for any s ∈ [tx1
− , tx1

+ ]. This implies that we can rewrite the equality

∫ tx+

tx
−

w(γx(t))ux
i (t)u

x
j (t)dt = 0

in terms of the functions ui:
∫ tx+

tx
−

w(γx(t))ui(γ
x(t))uj(γ

x(t))dt = 0.

In the Sturm-Liouville Theorem, the functions p, q and w depend only on the variable t. In Deep Strum-Liouville, the
key idea is that p, q and w depend on the field line γx(t). The purpose of this dependence is to couple equations (5)

and (6) through the variable t. For two samples x1 and x2, which belong to two different field lines γx1

and γx2

, two
different local orthogonal 1D basis functions are estimated. Consequently, the function approximator on the whole
domain Ω is composed of 1D basis functions which are locally orthogonal.
To find the eigenvalues λx

i for a given x, we apply the shooting method along the field line γx(t) by applying the
Prüner substitution (9) (details can be found in the section 3.3). Finally, we can compute the prediction at a given x
by solving the previous ordinary differential equations to obtain ux

i (0). The function approximator is defined thanks

to the linear map L : Rd → Rk, where d is the number of eigenvalues (a parameter of our method) and k is the
dimension of the output of the predictor F : Ω → Rk:

F θ,L (x) = L
(

u
θ(x)

)

with θ = [a, p, q, w].

Algorithm 1 Deep Sturm-Liouville - Prediction

1: Compute tx− and tx+ with equation (5)
2: Find eigenvalues λx

i along the field line γx(t) in (6) using a shooting method and the Prüner substitution (9)
3: Resolve equation (6) from tx− to compute ui(x)

4: Compute the prediction at x: F θ,L (x) = L
(

u
θ(x)

)

The optimization problem (2) can be rewritten by minimizing the parametric functions of the Sturm-Liouville problem:

min
L,θ

L(Y, F θ,L(X)).

In our experiments, the functions a(x), p(x), q(x), w(x) will typically be neural networks.

3.2 Regularizations

The main idea of Deep Strum-Liouville is that there exists some vector field crossing the input space Ω where the task
to solve along each field lines can be solved more easily due to the regularity of the problem on these field lines. In
DSL, we don’t train explicitly a(x) to encourage to share common features among all samples along γx. We rather
enforce a strong regularization of the function along each field line γx that indirectly encourages a(x) to find the
desired vector field. This regularization is done both implicitly and explicitly.

Implicit regularization The implicit regularization is the most important regularization of this work, coming naturally
from the mathematical formulation. This regularization is obtained by selecting the first few elements of the basis
alone; which is a very natural regularization, since similarly to what happens in a Fourier basis, the first elements of
the DSL basis oscillate less than higher elements of the basis. In the Sturm-Liouville framework, the oscillation is
defined by the number of times where the basis functions change sign: the nth base function changes sign exactly
n − 1 times. By selecting the d first elements of the basis function, DSL guaranties an implicit regularization along
each field line γx.

6
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Spectral regularization To avoid strong variations on the derivatives of the basis along the field line γx, the absolute
value of the eigenvalues of the Sturm-Liouville Theorem, computed for each field line γx(t), are added in the loss as
a regularization term:

min
L,θ

L(Y, F θ,L(X)) + α · E

(

1

n

d
∑

i=0

|λi(X)|

)

. (8)

3.3 Computation of the eigenvalues

To compute the eigenvalues of the Strum-Liouville problem (3), we use a shooting method Stoer et al. [2002]. The
aim of the shooting method is to optimize the eigenvalue λ such as the boundary condition y(b) = 0 is satisfied.
Several techniques exist to solve this optimization problem such as gradient descent. In our work, we perform a binary
search between the lower and upper bounds of the eigenvalues [λ−

n , λ
+
n ] Breuer and Gottlieb [1971], see the appendix

A for more details. We choose the binary search method to avoid tuning some hyper-parameters such as the learning
rate if we had chosen the gradient descent.

Unfortunately, it is not possible to perform the binary search directly in the interval [λ−
i , λ

+
i ]. Indeed, the different

intervals for each λi may overlap meaning that there might be multiple eigenvalues λj in the interval [λ−
i , λ

+
i ]. So the

binary search is not guaranteed to find the correct eigenvalue λi.

To resolve this issue and to guarantee the monotonicity of the eigenvalue problem in the interval [λ−
i , λ

+
i ], the Prüfer

Substitution Prüfer [1926], Lebovitz [2019] is used to ensure that there is a unique solution for each eigenvalue. The
equations (3) are substituted by the following equations thanks to the change of variables:











ui(t) = r(t) sin(θ(t)),

dui(t)

dt
=

r(t)

p(t)
cos(θ(t)).

If λn is the nth eigenvalue given by the Sturm-Liouville theorem, the equations can be re-expressed as:

dθ(t)

dt
= (λnw(t) + q(t)) sin2(θ(t)) + cos2(θ(t))

1

p(t)
,

dr(t)

dt
=

[

1

p(t)
− (λnw(t) + q(t))

]

r(t)

2
sin(2θ(t)),

θ(a) = 0, θ(b) = nπ.

(9)

The boundary conditions are dependent on the parameter n, relating to the nth eigenvalue, which is not the case with
the initial formulation (3). This is what allows us to overcome the overlapping intervals problem.

Let g(λ) be the function that maps each λ to the value θ(b) − nπ obtained by solving the equation (9) with the initial
boundary condition θ(a) = 0, for a given λ. The function g is a strictly increasing function, so that a binary search

can be applied between [λ−
i , λ

+
i ] to find the λ such that g(λ) = 0.

The computation of λx
i is done in a similar way by using the shooting method along the field line γx with binary search

and by applying the Prüner substitution on equation (6).

3.4 Gradient computation

The computation of the gradients of Deep Sturm-Liouville over the weights of the function a, p, q and w is not
straightforward due to the estimation of eigenvalues the λx

i and the times tx− and tx+ associated to each prediction. In
fact, the computation through the shooting process and the stop conditions are not differentiable. To overcome this
difficulty, we use the implicit differentiation theorem Krantz and Parks [2012].

We define the mapping Hθ,λ,tx
−

,tx+ : Ω → Rd+2, capturing the optimal conditions of the problem:

H
θ,λ,tx

−

,tx+
k (x) =















u
θ,λ
k (γx(tx+)), if 1 ≤ k ≤ d,

min
j

γx
j (t

x
−), if k = d+ 1,

max
j

γx
j (t

x
+)− 1 if k = d+ 2.
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Remark 3.2. The two last conditions materialize the intersection of the field line γx with ∂Ω for the specific domain
Ω =]0, 1[n that we use in our experiment. It should be defined differently for other convex domains such as the sphere.

Remark 3.3. ∀x ∈ Ω, Hθ,λ,tx
−

,tx+(x) = 0.

Following the implicit differentiation theorem Krantz and Parks [2012]:

∇uθ
i (x) = ∇θu

θ
i (x)

−∇λ,t
−
,t+u

θ
i (x)J

−1
λ,t

−
,t+

Hθ,λ,tx
−

,tx+(x)JθH
θ,λ,tx

−

,tx+(x).

3.5 Deep Sturm-Liouville is an orthogonal basis on Ω

Let us state the main theorem of Deep Sturm-Liouville:

Theorem 3.4. The functions ui(x) form an orthogonal basis of functions on the open domain Ω:

∫

Ω

v(x)ui(x)uj(x)dx = 0.

The intuition behind the proof of this theorem is simple. Along the field line γx the basis functionsui(x) are orthogonal.
By applying a Fubini-like Nicolaescu [2011] result to the integral over the whole domain Ω, we rewrite the integral
over Ω as a double integral: over the points in the boundary ∂Ω of the form γx(tx−), and along the field line γx, thus
obtaining the orthogonality over the whole domain Ω. Details of the proof can be found in appendix B.

3.6 Link between Deep Sturm-Liouville and Rank-1 Parabolic Eigenvalue Problems

Before stating the main result of this section, we define a sub-class of Deep Sturm-Liouville problems.

Definition 3.5. Deep Sturm-Liouville Problem (6) is uniform if all eigenvalues are independent of x.

Theorem 3.6. The Uniform Deep Sturm-Liouville Problem can be rewritten as a Dirichelt Rank-1 Parabolic Eigen-
value Problem when assuming ai(x) > 0.

∇ · (a(x)at(x) · ∇ui(x)) + q(x)ui(x) = −λiw(x)ui(x).

⇔

{

∂
∂t

(

p(x)∂vi(t,y)
∂t

)

+ q̃(x)vi(t,y) = −λiw̃(x)vi(t,y),
dx
dt

= ã(x).

The idea is to define a direction a(x) where the PDE can be solved thanks to ODEs. This can be achieved by observing
that any positive semi-definite rank−1 matrix A(x) can be written as A(x) = a(x)at(x) and by applying a change of
variables where all gradients of this new system of variables are orthogonal to a(x). Details of the proof can be found
in appendix C.

Deep Sturm-Liouville can be seen as a relaxed version of the Rank-1 Parabolic Eigenvalues Problem when no global
eigenvalues exists.

4 Experiments

To evaluate our work, Deep Sturm-Liouville has been trained on three multivariate datasets: Adult Becker and Kohavi
[1996], Dry Bean UCI Machine Learning Repository and Bank Marketing Frank [2010], as well as the MNIST image
dataset LeCun and Cortes [2010].

4.1 Experimental Setup

Ordinary differential equation solvers. Deep Sturm-Liouville is implemented on jax Bradbury et al. [2018] and
uses diffrax Kidger [2021] to solve the ODEs involved. The solver dopri8 Prince and Dormand [1981] is used
with a relative tolerance of 1e−6 and an absolute tolerance of 1e−6.

8



Deep Strum-Liouville A PREPRINT

Computation of the times t− and t+. At the time of writing of this paper, even if the diffrax library supports
event stopping conditions, diffrax does not provide a way of approximating t− and t+ within a given tolerance as in
Chen et al. [2020]. To obtain a good approximation of the times t− and t+ to reach the boundary of the domain Ω, we
perform a binary search. There is no need for this binary search procedure to be differentiable thanks to the implicit
differentiation theorem.

4.2 Computation of eigenvalues

To solve the eigenvalue problem, the values of q, p and w are computed along the field line γ to obtain a spline which is
dependent only on t (avoiding numerous calls to the neural networks during the shooting phase). In these experiments,
a piecewise linear function of 2000 parts is used to approximate these functions along the field line.
The binary search is done with a tolerance of 1e−4 for the tabular experiments and 1e−8 for the image dataset. For
all experiments, the number of eigenfunctions was fixed to 10.

Eigenvalues regularization. The value of the regularization coefficient of the equation (8) was fixed to 1e−4.

For the MNIST dataset, to ensure that the eigenvalues are not too large at initialization, the output domain of each of
the functions a, p, q and w was bounded. The choice of the appropriate bounds for each function is guided by the
lower and upper bounds in the equations (10). To limit the eigenvalues to belong to the interval ≈ [−100, 100 n2π2],
the following constraints were implemented:

a(x) q(x) 1
p(x)

w(x)

DOMAIN (0.01, 1) (−10, 10) (1, 10) (0.1, 10)

Remark 4.1. The eigenvalues bounds were taken experimentally to let enough range to the variation of the eigenvalues
while maintaining a reasonable computation times.

These constraints are enforced by using sigmoid activations at the end of the model for a, p and w and a hyperbolic
tangent activation for q.

Architectures, losses and optimizers. The optimizers of optax library are adam Kingma and Ba [2014] with
learning rate 2e−3 for the tabular datasets and fromage (lr=1e−2) Bernstein et al. [2020] for the MNIST dataset. The
losses are the hinge loss for the tabular datatsets and the categorical cross-entropy for the MNIST dataset.

For the tabular datasets, the functions q(x), 1
p(x) and w(x) are defined by a MLP with the features [128, 64, 32, 1]

and leaky relu activations. The function a(x) is a MLP [128, 64, 32, k] with tanh activations, where k is the dimension
of the input size of the data.

For the MNIST dataset, the functions q(x), 1
p(x) and w(x) are defined by a convolutional neural network with

[32,64,128] features and kernel (3,3), the features of the MLP are [32, 32, 16, 1] with tanh activations. The function
a(x) is an auto-encoder with [32,64] convolutions features and kernel (3,3) with 32 features and tanh activations.

Domain and Data normalization. As defined in the remark (3.2), the domain Ω is defined to be ]0, 1[n. Data are
normalized so that they belong to [0.25, 0.75]n, thus ensuring that they are included in Ω, and that no example is too
close to the boundary ∂Ω, where the basis functions equal to 0 due to the Dirichlet conditions.

4.3 Results

To verify that DSL learns a different local basis for each example x, the local basis along the field line γx(t) is analyzed
for several different samples of the Dry Bean Dataset. As observed in figure 2, the local basis is different for the each
of the examples represented, illustrating the local expressiveness of Deep Sturm-Liouville. Additionally, as expected
by the Sturm-Liouville theory, the boundaries satisfy the Dirichlet conditions and the ith base function crosses the
x-axis exactly i− 1 times.

To demonstrate that Deep Sturm-Liouville can reach comparable performance to a Neural Network, DSL and NN were
trained on several classification tasks. For this experiment, Neural Networks have similar architectures. For tabular
dataset, the NNs are MLP with [128, 64, 32, no] features where no is the number of output. Table 1 demonstrates that
DSL achieves comparable result than NN with only 10 eigenfunctions.
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Figure 2: Eigenfunctions on Dry Bean dataset. For two samples, on the top, the first three eigenfunctions and on the
bottom the first three logits. The x-axis represents the time t of the field line γx(t).

DATA SET DEEP STURM-LIOUVILLE NN

ADULT 84.28% 84.06%
DRY BEAN 91.14% 91.45%
BANK MARKETING 83.10% 83.77%
MNIST 97.93% 99.83%

Table 1: Evaluation. Classification accuracies for Deep Sturm-Liouville and Neural Networks

Finally, for the Dry Bean dataset, the impact of the number of eigenfunctions on the performance of the classifier was
analyzed. As illustrated in 3, 10 eigenfunctions are sufficient to obtain comparable performance to an MLP.

5 Limitations

Despite the promising results, Deep Sturm-Liouville suffers from several flaws. Scalability. Even if Deep Sturm-
Liouville is scalable to high dimension, the gradient computation can be expensive due to the form of the problem to
solve . It is not particularly due to the implicit differentiation theorem because we observe that the computation of
the gradient on the weights of neural networks are the same order of magnitude than the computation of the jacobian
on the eigenvalues and times to boundaries. Prediction computation can also be expensive. Even if the binary search
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Figure 3: Impact of number of eigenfunctions on Dry Bean dataset. Validation accuracy as function of eigenfunc-
tions basis size. Trained with fromage and cross-entropy.

itself is quick, the approximation of p, q, w along the field line γ can be costly despite their smoothness5.
Stability. The estimation of the gradient of the ODE could be noisy if the solver is not precise enough. During training,
in rare configurations, the ODE solver takes too much time to solve the ODE with a good precision and training fails.

6 Conclusion

A mathematical formulation has been developed to introduce the Sturm-Liouville Theory in the deep learning frame-
work. We demonstrate the link between the Deep Strum-Liouville formula and the Rank-1 Parabolic Eigenvalues
problem. A trainable procedure based on implicit differentiation was implemented, successfully achieving compara-
ble results to those of neural networks on several datasets and MNIST. We hope that our work paves the way for novel
avenues in function regularization.

7 Broader Impact Statement

This paper presents work whose goal is to advance the field of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be specifically highlighted here.
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A Eigenvalues lower and upper bounds

The lower and upper bounds of Sturm-Liouville Problem are:

λ+
n

def=
n2π2

mint w(t)p(t) ·
(

∫ a

b
1

p(t)dt
)2 +max

t

−q(t)

w(t)
.

λ−
n

def=
n2π2

maxt w(t)p(t) ·
(

∫ a

b
1

p(t)dt
)2 +min

t

−q(t)

w(t)
.

(10)

B Proof Theorem 3.4

ui(x) form an orthogonal basis function on a open Ω:
∫

Ω

v(x)ui(x)uj(x)dx = 0.

Proof. By Sturm-Liouville Theory, we have for all x ∈ Ω and for all i 6= j :

∫ tx+

tx
−

w(γx(t))ux
i (t)u

x
j (t)dt = 0.

We will reformulate the integral over the field line γx and by applying the line integrals change of variable and by (7):
∫

γx

w(z)

‖a(z)‖
ui(z)uj(z)dH

1
Ω(z) = 0.

We define the manifold ∂Ω− ⊂ Rn which is (n− 1)-rectifiable:

∂Ω− = {γx(tx−) ∀x ∈ Ω}.

By integrating over Ω− we get:
∫

∂Ω
−

∫

γv

w(z)

‖a(z)‖
ui(z)uj(z)dH

1
Ω(z)dH

n−1
∂Ω

−

(v) = 0.

We define:

P : Ω → ∂Ω−

P (x) = γx(tx−).

Since P is Lipschitz we apply the co-area formula Nicolaescu [2011]:
∫

Ω

w(x)

‖a(x)‖
ui(x)uj(x)det|JP (x)|dx = 0.

We let:

v(x) =
w(x)

‖a(x)‖
det|JP (x)|.

Then:
∫

Ω

v(x)ui(x)uj(x)dx = 0.

ui(x) form an orthogonal basis functions under the weight function v(x) on the domain Ω.
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C Proof Theorem 3.6

Uniform Deep Sturm-Liouville can be rewritten to a Dirichelt Rank-1 Parabolic Eigenvalues Problem when assuming
ai(x) > 0.

Proof. From the equation (4), we will take the special case where:

A(x) = a(x)at(x).

Then we will develop the first component of the equation:

∇ · (a(x)at(x) · ∇ui(x)) + q(x)ui(x) = −λiw(x)ui(x). (11)

We will introduce the following change of variable (t,y) such that:

vi(t,y) = ui(x)

∇xt = a(x)

∇xyk = ank
(x) ∀k ∈ [1, n− 1]

With ank
(x) are built using Gram-Schmidt procedure to obtain an orthogonal base ank

(x) ⊥ a(x).

Then, we can expand ∇x · (a(x)at(x)∇xui(x)) as

=∇x ·

(

a(x)at(x)

(

a(x)
∂vi(t,y)

∂t
+

n−1
∑

k=1

(

ank
(x)

∂vi(t,y)

∂yk

)

))

=∇x ·

(

‖a(x)‖2a(x)
∂vi(t,y)

∂t

)

=‖a(x)‖2a(x)

(

∂2vi(t,y)

∂t2
a(x) +

n−1
∑

k=1

(

ank
(x)

∂2vi(t,y)

∂yk∂t

)

)

+ ‖a(x)‖2
∂vi(t,y)

∂t
∇x · a(x)

+ 2 (Jxa(x) · a(x)) · a(x)
∂vi(t,y)

∂t

=‖a(x)‖4
∂2vi(t,y)

∂t2

+
(

2 (Jxa(x) · a(x)) · a(x) + ‖a(x)‖2∇x · a(x)
) ∂vi(t,y)

∂t

We let:

b(x) = 2 (Jxa(x) · a(x)) · a(x) + ‖a(x)‖2∇x · a(x)

Then because ai(x) > 0, the equation (11) can be rewritten:

⇔

{

‖a(x)‖4 ∂2vi(t,y)
∂t2

+ b(x)∂vi(t,y)
∂t

+ q(x)vi(t,y) = −λiw(x)vi(t,y)
dx
dt

= a◦−1(x) (Hadamard inverse of a(x))
(12)

⇔

{

∂
∂t

(

p(x)∂vi(t,y)
∂t

)

+ q̃(x)vi(t,y) = −λiw̃(x)vi(t,y)
dx
dt

= ã(x)
(13)
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