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Cette contribution propose certains opérateurs de différenciation numérique pseudo-spectraux pour la construction de solveurs explicites d'équations aux dérivées partielles (EDP) qui traitent les dérivées spatiales d'ordre supérieur. En étendant une classe de méthodes d'extension discrète qui peuvent permettre des interpolations trigonométriques très précises de fonctions non périodiques, ces opérateurs facilitent le traitement des conditions de fonctions et de dérivées multiples/mixtes qui peuvent exister à la limite d'un domaine (par exemple, un bord simplement supporté ou libre).

Introduction

Les méthodes de continuation de Fourier (CF) produisent des représentations de séries de Fourier très précises de fonctions non périodiques tout en évitant l'effet bien connu du Gibb's ringing phenomenon. Ces techniques élargissent l'applicabilité des solveurs de Fourier d'équations aux dérivées partielles (EDP) à des conditions aux limites (physiques) et à des domaines de calcul [START_REF] Amlani | A stable high-order FC-based methodology for hemodynamic wave propagation[END_REF][START_REF] Amlani | An FC-based spectral solver for elastodynamic problems in general three-dimensional domains[END_REF][START_REF] Amlani | A Fourier-based methodology without numerical diffusion for conducting dye simulations and particle residence time calculations[END_REF] généraux. Les solutions correspondantes offrent une précision d'ordre élevé tout en profitant de la vitesse de la transformée de Fourier rapide (Fast Fourier Transform, ou FFT) et capturent fidèlement les caractéristiques de dispersion ou de diffusion des problèmes continus sous-jacents. Un certain nombre de solveurs basés sur la CF dans le domaine temporel ont été construits pour une variété d'équations physiques, notamment celles qui régissent la propagation des ondes [START_REF] Amlani | A stable high-order FC-based methodology for hemodynamic wave propagation[END_REF][START_REF] Amlani | An FC-based spectral solver for elastodynamic problems in general three-dimensional domains[END_REF][START_REF] Shahbazi | Multi-dimensional hybrid Fourier continuation-WENO solvers for conservation laws[END_REF][START_REF] Amlani | Supershear shock front contribution to the tsunami from the 2018 Mw 7.5 Palu, Indonesia earthquake[END_REF][START_REF] Amlani | A new high-order Fourier continuation-based elasticity solver for complex three-dimensional geometries[END_REF] et la diffusion [START_REF] Amlani | A Fourier-based methodology without numerical diffusion for conducting dye simulations and particle residence time calculations[END_REF][START_REF] Gaggioli | Light transport with the equation of radiative transfer : The Fourier Continuation-Discrete Ordinates (FC-DOM) Method[END_REF]. Les solveurs d'ordre élevé qui en résultent bénéficient d'un certain nombre de propriétés souhaitables pour le calcul scientifique : précision grâce à des discrétisations relativement grossières ; peu ou pas d'erreurs de dispersion ou de diffusion numériques ; contraintes CFL légères (linéaires) sur l'intégration temporelle ; et parallélisation efficace pour le calcul haute performance à mémoire distribuée.

Les algorithmes CF ont été couplés avec succès à d'autres méthodes, notamment les méthodes d'ordonnées discrètes pour le transfert radiatif [START_REF] Gaggioli | Light transport with the equation of radiative transfer : The Fourier Continuation-Discrete Ordinates (FC-DOM) Method[END_REF] et les schémas WENO (weighted essentially nonoscillatory) de capture des chocs pour les lois de conservation [START_REF] Shahbazi | Multi-dimensional hybrid Fourier continuation-WENO solvers for conservation laws[END_REF]. L'objectif à long terme de ce travail est de développer un solveur élastodynamique basé sur la CF à coupler avec un solveur de fluide de lattice Boltzmann [START_REF] Wei | Direct 0D-3D coupling of a lattice Boltzmann methodology for fluid-structure aortic flow simulations[END_REF] pour capturer les effets de paroi à haute fréquence dans les simulations fluide-structure d'hémodynamique. Un tel couplage peut être facilité par une méthode de frontière immergée [START_REF] Huang | Simulation of flexible filaments in a uniform flow by the immersed boundary method[END_REF], où la paroi est modélisée comme un filament flexible ou une plaque/coque mince en coordonnées lagrangiennes. Les EDP correspondantes contiennent des dérivées de quatrième ordre dans l'espace, nécessitant des conditions multiples à la limite d'un domaine (par exemple, un bord simplement supporté ou encastré).

Cette contribution propose donc divers nouveaux opérateurs de différenciation pour traiter ces conditions multiples aux frontières, en étendant la classe des méthodes CF aux EDP d'ordre élevé en général. Une application préliminaire aux filaments flexibles en deux dimensions est également présentée avec des études de vérification et de convergence, y compris des comparaisons avec une méthode bien établie employée dans les configurations fluide-structure.

Méthodes de continuation de Fourier

Pour les valeurs ponctuelles f (x i ) d'une fonction lisse donnée f (x) : [0, 1] → R définie sur une discrétisation uniforme structurée x i = i∆x, i = 0, . . . , N -1, ∆x = 1/(N -1), la méthode CF construit un polynôme trigonométrique interpolant à convergence rapide (représentation en série de Fourier) f cont : [0, b] → R sur une région [0, b] qui est légèrement plus grande que le domaine physique original de définition [0, 1] : 

f cont = M ∑ k=-M a k e 2πikx b s.t. f cont (x i ) = f (x i ), i = 0, ..., N -1, (1) 
où M = (N + N cont )/
∂ f cont ∂x (x) = M ∑ k=-M 2πik b a k e 2πikx b , ∂ 2 f cont ∂x 2 (x) = M ∑ k=-M 2πik b 2 a k e 2πikx b , ... (2) 
On obtient ainsi les dérivées numériques de f à l'ordre élevé en restreignant le domaine de ∂ f cont /∂x à l'intervalle unitaire d'origine. L'approximation repose donc sur la construction de l'Eq. ( 1) à partir de laquelle le calcul de des dérivées de l'Eq. ( 2) peut être facilité par la transformée de Fourier rapide (FFT). Notons ici que f a été définie sur [0, 1] sans perte de généralité.

Continuation de Fourier accélérée : CF(Gram)

Les coefficients a k de l'Eq. ( 1) sont trouvés intuitivement [START_REF] Boyd | Exponentially-convergent strategies for defeating the Runge phenomenon for the approximation of non-periodic functions, part I : single-interval schemes[END_REF] via la solution du problème des moindres carrés suivant :

min a k N-1 ∑ i=0 | f cont (x i ) -f (x i )| 2 (3) 
par la décomposition en valeurs singulières (SVD). Cela peut devenir assez coûteux pour les problèmes 3D ainsi que pour les solutions des EDP dépendantes du temps (où chaque dimension spatiale nécessite l'application des SVD à chaque pas de temps). Une méthode accélérée [START_REF] Amlani | An FC-based spectral solver for elastodynamic problems in general three-dimensional domains[END_REF][START_REF] Amlani | A Fourier-based methodology without numerical diffusion for conducting dye simulations and particle residence time calculations[END_REF], connue sous le nom de CF(Gram), peut contourner ces coûts en utilisant de petits vecteurs de seulement quelques valeurs des fonctions près des extrémités gauche et droite en x = 0 et x = 1, qui peuvent ensuite être projetés sur une base polynomiale de Gram (dont les continuités sont précalculées en résolvant le problème des moindres carrés correspondant (3) par une SVD de haute précision). En d'autres termes, on utilise un sous-ensemble de valeurs de fonctions données sur de petits nombres d ℓ et d r de points {x 0 , ..., x d ℓ -1 } et {x N-d r , ..., x N-1 } contenus dans de petits sous-intervalles à gauche et à droite de l'intervalle [0, 1] pour produire une extension périodique discrète de taille N cont . Pour ce faire, on projette ces valeurs finales sur une base de Gram jusqu'au degré d ℓ -1 (ou d r -1) de polynômes (produisant un interpolant polynomial) dont les extensions CF sont précalculées et dont l'orthogonalité est renforcée par le produit scalaire discret naturel défini par les points de discrétisation. Cela forme en effet une "base" de fonctions de continuation avec laquelle on peut étendre rapidement et précisément la fonction donnée f pour fournir une transition en douceur de f

(x = 0) à f (x = 1) sur l'intervalle [0, b].
En définissant les vecteurs des points pour la gauche et la droite comme suit :

f ℓ = ( f (x 0 ), f (x 1 ), ..., f (x d ℓ -1 )) T , f r = ( f (x N-d r ), f (x N-d r +1 ), ..., f (x N-1 )) T , (4) 
l'opération de continuation peut être exprimée sous la forme d'une matrice en bloc : 3 Quelques nouveaux opérateurs CF pour les EDP d'ordre élevé

f cont = f A ℓ Q T ℓ f ℓ + A r Q T r f r , (5) 
où f = ( f (x 0 ), . . . , f (x N-1 ))
V =      1 x 0 (x 0 ) 2 ... (x 0 ) d-1 1 x 1 (x 1 ) 2 ... (x 1 ) d-1 . . . . . . . . . . . . . . . 1 x d-1 (x d-1 ) 2 ... (x d-1 ) d-1      = QR. (6) 
Pour les EDP d'ordre élevé, telles que les équations de la poutre d'Euler-Bernoulli (avec une dérivée d'ordre 4 dans l'espace), de multiples conditions doivent être satisfaites à une frontière x 0 , e.g., pour un bord encastré ( f 3 . La méthodologie décrite ci-dessus ne s'applique qu'aux valeurs connues de la fonction aux points frontières, ce qui est suffisant pour un problème de Dirichlet d'une EDP d'ordre inférieur, mais insuffisant pour les EDP d'ordre supérieur. Cependant, des interpolants polynomiaux modifiés peuvent être introduits pour correspondre à de multiples combinaisons de valeurs de fonctions et de valeurs de dérivées aux points frontières. De tels interpolants peuvent être obtenus en orthonormant, au lieu des colonnes de l'Eq. ( 6), les colonnes correspondantes d'une matrice de type Vandermonde qui est modifiée de manière appropriée pour les conditions d'intérêt. Par exemple, de telles matrices modifiées peuvent être données pour un bord encastré comme

(x 0 ), ∂ f (x 0 )/∂x), un bord simplement supporté f (x 0 ), ∂ 2 f (x 0 )/∂x 2 ou un bord libre ∂ 2 f (x 0 )/∂x 2 , ∂ 3 f (x 0 )/∂x
V m =        0 1 2x 0 ... (d -1)(x 0 ) d-2 1 x 0 (x 0 ) 2 ... (x 0 ) d-1 1 x 1 (x 1 ) 2 ... (x 1 ) d-1 . . . . . . . . . . . . . . . 1 x d-2 (x d-2 ) 2 ... (x d-2 ) d-1        .
Une reconstruction des coefficients de la base polynomiale de Gram originale peut être obtenue simplement en remplaçant l'opérateur Q ℓ (resp. Q r ) dans l'Eq. ( 5) par un opérateur modifié Qℓ (resp. Qr ) qui effectue directement une telle (re)projection. Le nouvel opérateur peut être trouvé en résolvant d'abord les nouveaux coefficients a = (a 1 , a 2 , ..., a d-1 ) T via l'expression

V m a = (∂ f (x 0 )/∂x, f (x 0 ), f (x 1 ), ..., f (x d-2 )) T (7) 
qui, à partir d'une décomposition QR, c.-à.-d. V m = Q m R m , peut être résolue comme suit :

a = R -1 m Q T m (∂ f (x 0 )/∂x, f (x 0 ), f (x 1 ), ..., f (x d-2 )) T . (8) 
A partir de la décomposition originale de la matrice de Vandermonde originale V = QR de l'Eq. ( 6), les coefficients correspondants sont donnés de la même manière par

V a = QRa ( f (x 0 ), f (x 1 ), ..., f (x d-1 )) T . (9) 
La substitution de l'Eq. ( 8) dans l'Eq. ( 9) donne l'expression suivante :

QRR -1 m Q T m (∂ f (x 0 )/∂x, f (x 0 ), f (x 1 ), ..., f (x d-2 )) T = (∂ f (x 0 )/∂x, f (x 0 ), f (x 1 ), ..., f (x d-2 )) T . En définissant Q = (RR -1 m Q T m ) T , on obtient en outre : QT (∂ f (x 0 )/∂x, f (x 0 ), f (x 1 ), ..., f (x d-2 )) T = Q T (∂ f (x 0 )/∂x, f (x 0 ), f (x 1 ), ..., f (x d-2 )) T . ( 10 
)
Par conséquent, pour un domaine avec des frontières encastrées, la nouvelle forme de matrice en bloc de la continuation avec les opérateurs modifiés est donnée par

f cont = f A ℓ QT ℓ fℓ + A r QT r fr , (11) 
où fℓ = (∂ f (x 0 )/∂x, f (x 0 ), f (x 1 ), ..., f (x d ℓ -2 )) T , etc., et où A ℓ , A r sont les mêmes opérateurs de continuation originaux. Une telle formulation permet de mélanger et de faire correspondre les conditions aux limites à gauche et à droite (par exemple, encastré à un bord et libre à l'autre). Les projections correspondantes pour les bords simplement supportés ou libres peuvent être trouvées de façon similaire en utilisant les matrices de Vandermonde modifiées données respectivement par

V m =        0 0 2 ... (d -2)(d -1)(x 0 ) d-3 1 x 0 (x 0 ) 2 ... (x 0 ) d-1 1 x 1 (x 1 ) 2 ... (x 1 ) d-1 . . . . . . . . . . . . . . . 1 x d-2 (x d-2 ) 2 ... (x d-2 ) d-1        ou        0 0 0 ... (d -3)(d -2)(d -1)(x 0 ) d-4 0 0 2 ... (d -2)(d -1)(x 0 ) d-3 1 x 1 (x 1 ) 2 ... (x 1 ) d-1 . . . . . . . . . . . . . . . 1 x d-2 (x d-2 ) 2 ... (x d-2 ) d-1        .

Exemple d'application aux filaments flexibles

Les équations régissant la position X(s,t) = (X(s,t),Y (s,t)) T ∈ R 2 d'un filament flexible massif et inextensible en deux dimensions peuvent être données par [START_REF] Wei | Direct 0D-3D coupling of a lattice Boltzmann methodology for fluid-structure aortic flow simulations[END_REF][START_REF] Huang | Simulation of flexible filaments in a uniform flow by the immersed boundary method[END_REF] 

ρ s h ∂ 2 X ∂t 2 = ∂ ∂s Eh ∂X ∂s • ∂X ∂s -1 ∂X ∂s - ∂ 2 ∂s 2 EI ∂ 2 X ∂s 2 + F (s,t), (12) 
où ρ s ∈ R est la densité du solide ; h ∈ R est l'épaisseur constante du filament ; s ∈ R est la coordonnée lagrangienne le long du filament ; F (s,t) ∈ R 2 est la force lagrangienne exercée sur le filament (e.g, la gravité ou un fluide environnant [START_REF] Huang | Simulation of flexible filaments in a uniform flow by the immersed boundary method[END_REF]) ; et Eh ∈ R, EI ∈ R sont les rigidités en traction et en flexion (respectivement). Pour toutes les expériences numériques de cette section, la méthode CF est appliquée à l'Eq. ( 12) pour la discrétisation et la différenciation spatiales (N cont = 25, d ℓ = d r = 5), et un schéma Adams-Bashforth de quatrième ordre est utilisé pour l'intégration temporelle (de manière similaire à d'autres solveurs basés sur la méthode CF [START_REF] Amlani | A stable high-order FC-based methodology for hemodynamic wave propagation[END_REF][START_REF] Amlani | An FC-based spectral solver for elastodynamic problems in general three-dimensional domains[END_REF]).

Suspension d'un filament sous l'effet de la gravité

Un filament de longueur L = 1 m est initialement maintenu immobile à un angle k = 0.1π radians par rapport à la verticale et soumis à une force gravitationnelle F (s,t) = (10, 0) T m/s 2 . En s = 0, le filament a un bord libre donné par 2 présente une superposition des positions du filament (à gauche) et l'évolution temporelle du déplacement Y du bord libre (à droite) produit par une simulation basée sur la CF utilisant N = 21 points de discrétisation spatiale et un pas de temps ∆t = 10 -3 . Ces résultats sont en bon accord avec ceux produits par d'autres solveurs (basés sur les différences finies) [START_REF] Wei | Direct 0D-3D coupling of a lattice Boltzmann methodology for fluid-structure aortic flow simulations[END_REF][START_REF] Huang | Simulation of flexible filaments in a uniform flow by the immersed boundary method[END_REF]. 

T (0,t) = 0, ∂ 2 X ∂s 2 (0,t) = 0, ∂ 3 X ∂s 3 (0,t) = 0, et en s = 1, on considère une condition simplement supportée, c.-à.-d. X(1,t) = 0, ∂ 2 X ∂s 2 (1,t) = 0. La Fig.

Étude de convergence

Pour la méthodologie proposée, basée sur la CF, la method of manufactured solutions (MMS) peut être utilisée pour vérifier à la fois sa précision numérique et sa mise en oeuvre dans le code. Une telle méthode postule une solution (suffisamment lisse) de l'Eq. (12) et, lors de la substitution, incorpore le côté droit correspondant et les conditions aux limites en tant que termes de forçage non triviaux. Le système résultant permet à la fonction proposée d'être une solution exacte (analytique) d'un système de filaments forcés. Par exemple, on peut postuler une solution X(s,t) comme suit :

X ex (s,t) = (sin(k 1 s -ω 1 t) cos(k 2 s -ω 2 t), sin(k 3 s -ω 3 t) cos(k 4 s -ω 4 t)) T , s ∈ [0, 2], t ≥ 0, (13) pour {k 1 , ω 1 , k 2 , ω 2 , k 3 , ω 3 , k 4 , ω 4 } = {2
.08, 1.05, 5.00, 0.30, 8.33, 4.80, 3.75, 2.40}. En substituant l'Eq. ( 13) dans l'Eq. ( 12), on obtient la partie droite F (s,t) du problème correspondant, avec une condition initiale donnée par X(s, 0) = X ex (s, 0). Pour compléter le problème, les conditions aux limites doivent être choisies de la même manière, par exemple, pour une condition simplement supportée en s = 0, X(0,t) = X ex (0,t), ∂ 2 X ∂s 2 (0,t) = ∂ 2 X ex ∂s 2 (0,t), et pour une condition encastrée en s = 2,

X(2,t) = X ex (2,t), ∂X ∂s (2,t) = ∂X ex ∂s (2,t).
La Fig. 3 présente des instantanés d'une solution basée sur la méthode CF à des temps croissants. En appliquant le solveur CF à une série de discrétisations correspondant à des multiples entiers de N = 40 (où tous les pas de temps sont choisis suffisamment petits pour que les erreurs soient dominées par les discrétisations spatiales), le Tableau 1 présente la valeur maximale des erreurs absolues L ∞ , sur tout l'espace et tout le temps (pour 409 600 pas de temps), pour les deux composantes de X(s,t). Les ordres de convergence sont également présentés et illustrent la précision d'ordre cinq attendue des opérateurs pour les paramètres CF utilisés dans ce travail [START_REF] Amlani | A stable high-order FC-based methodology for hemodynamic wave propagation[END_REF][START_REF] Amlani | A Fourier-based methodology without numerical diffusion for conducting dye simulations and particle residence time calculations[END_REF]. TABLE 1 -Erreurs maximales L ∞ (sur tout l'espace et tout le temps) et ordres de convergence pour le solveur CF appliqué au problème dérivé de la solution fabriquée de l'Eq. ( 13). Le pas de temps est choisi suffisamment petit pour que les erreurs soient dominées par la discrétisation spatiale. Toutes les solutions sont avancées au même temps final en utilisant 409 600 pas de temps. 

X(s,t) Y (s,t) N erreur L ∞ O(L ∞ ) N erreur L ∞ O(L ∞ ) 40 

Conclusions

Cette contribution introduit de nouveaux opérateurs de continuation de Fourier pour traiter les conditions aux limites requises pour les EDP d'ordre élevé, en démontrant leur efficacité à l'aide d'un exemple de résolution pour les filaments flexibles en coordonnées lagrangiennes. Les efforts actuels consistent à étendre la mise en oeuvre à la dynamique des parois minces/coques en 3D, dans le but ultime d'intégrer une méthode CF pour l'élasticité dans un solveur fluide-structure basé sur la méthode lattice Boltzmann pour les simulations d'hémodynamique cardiovasculaire. Les résultats préliminaires présentés dans ce travail suggèrent que la méthode CF est une approche prometteuse pour capturer les oscillations de paroi à haute fréquence avec des discrétisations relativement grossières et avec des coûts de calcul relativement faibles par rapport aux méthodes usuelles.

La Fig. 1 FIGURE 1 -

 11 FIGURE 1 -Un exemple de continuation de Fourier d'une fonction non périodique[START_REF] Amlani | A stable high-order FC-based methodology for hemodynamic wave propagation[END_REF]. La fonction originale sur [0, 1] est translatée d'une distance de longueur N cont ∆x dont les valeurs sont complétées par la somme des continuations "blend-to-zero" (lignes pointillées) afin de rendre la fonction périodique[START_REF] Amlani | An FC-based spectral solver for elastodynamic problems in general three-dimensional domains[END_REF]. Les carrés et les cercles verts représentent les points d'appariement discrets d ℓ , d r = 5, et les marqueurs rouges représentent les points de continuation discrets N cont = 25 qui constituent l'extension.

FIGURE 2 -

 2 FIGURE 2 -(Gauche) Superposition des positions des filaments en fonction du temps (tracé toutes les 0.02 secondes). (Droite) Déplacement de la composante Y de l'extrémité libre en fonction du temps.

FIGURE 3 -

 3 FIGURE 3 -Snapshots de la solution X (gauche) et Y (droite) du problème dérivé de l'Eq. (13) pour un temps croissant (du plus clair au plus foncé).

  2 est un paramètre de largeur de bande complète pour un nombre de points N cont ajoutés au domaine original (tel que b = (N + N cont )∆x).

	La fonction CF f cont rend la fonction originale
	f discrètement périodique, c.-à.-d. que f cont se rapproche de f à l'ordre élevé dans le domaine original
	[0, 1] et est approximativement périodique sur le domaine légèrement plus grand [0, b], b > 1. Les dérivées
	spatiales d'une EDP peuvent alors être obtenues par différenciation exacte par terme de cette série sous
	la forme suivante :

  , A r contiennent les N cont valeurs qui effectuent la continuation à gauche et à droite (de telle sorte que la somme des continuations vers la gauche et vers la droite assure la transition en douceur nécessaire). Les colonnes de Q = Q ℓ , Q r contiennent les d = d ℓ , d r valeurs ponctuelles de chaque élément de la base polynomiale de Gram associée, produite à partir d'une décomposition QR d'une matrice de Vandermonde V de monômes, c.-à.-d.

T 

est un vecteur colonne contenant les valeurs ponctuelles discrètes de f ; f cont est un vecteur des valeurs continues de la fonction N + N cont ; I est la matrice identité N × N ; et A ℓ

TABLE 2 -

 2 = 0.05 et n = 5. En utilisant des conditions aux limites encastrées aux deux bords (dont les valeurs dépendant du temps sont déterminées en conséquence par l'Eq. (14), comme précédemment), le Tableau 2 présente une comparaison des erreurs numériques L ∞ sur l'ensemble de l'espace et du temps de la méthode CF et d'une méthode de différences finies (DF) à staggered grid du deuxième ordre couramment utilisée[START_REF] Wei | Direct 0D-3D coupling of a lattice Boltzmann methodology for fluid-structure aortic flow simulations[END_REF][START_REF] Huang | Simulation of flexible filaments in a uniform flow by the immersed boundary method[END_REF] (qui résout implicitement pour le terme de traction). Les solutions sont avancées à un temps final de t = 1 s (correspondant à une période complète d'oscillation), et les discrétisations spatiales pour les deux méthodes sont choisies de manière à ce que les solveurs correspondants atteignent une précision similaire (trois, quatre et cinq chiffres). Comme on peut le constater, le solveur basé sur la méthode CF permet des calculs beaucoup plus rapides et nécessite beaucoup moins de mémoire que la méthode DF bien établie. Des résultats équivalents attestant des avantages des simulations basées sur la CF-par rapport au coût ou aux besoins en mémoire-ont été présentés pour divers solveurs CF dans des travaux antérieurs[START_REF] Amlani | A stable high-order FC-based methodology for hemodynamic wave propagation[END_REF][START_REF] Amlani | An FC-based spectral solver for elastodynamic problems in general three-dimensional domains[END_REF][START_REF] Amlani | A Fourier-based methodology without numerical diffusion for conducting dye simulations and particle residence time calculations[END_REF]. FIGURE 4 -Snapshots de la solution X (gauche) et Y (droite) du problème dérivé de l'Eq. (14) pour un temps croissant (du plus clair au plus foncé). Comparaison des erreurs L ∞ (sur l'ensemble de l'espace et du temps) ainsi que des temps de calcul entre la méthode CF et une méthode de différences finies (DF) (centrale) de second ordre[START_REF] Huang | Simulation of flexible filaments in a uniform flow by the immersed boundary method[END_REF] pour la résolution de la solution donnée par l'Eq. (14). Les discrétisations sont choisies pour chacune d'entre elles de manière à obtenir une erreur similaire.
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présente des instantanés pour un temps croissant d'un problème dérivé de la solution exacte fabriquée donnée par X(s,t) = (s, A sin(nπs) cos(πt)), s ∈ [0, 2], t ≥ 0, (14) avec A