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Abstract—The Channel State Information (CSI) of the orthog-
onal frequency division multiplexing (OFDM) comprises data
pertaining to the attenuation of multipath propagation. In this
paper, we assume that the amplitude fading of both line-of-
sight (LoS) and non-line-of-sight (NLoS) paths conforms to the
Nakagami-m distribution. Via establishing a relationship between
the distribution parameters and the propagation distance, we pro-
pose a CSI-based ranging method utilizing the Expectation Maxi-
mization (EM)-Revisited Approximate Message Passing (reVAMP)
algorithm. This algorithm is not only applicable to the CSI-based
ranging estimation but can also be extended to other parameter
estimation scenarios. It effectively tackles challenges associated
with generalized linear models (GLMs) that involve hidden random
variables and the intractability of posterior distributions during the
EM iterations.

I. INTRODUCTION

The orthogonal frequency division multiplexing (OFDM) is
employed in widely recognized standards such as IEEE 802.11,
long term evolution (LTE), and 5G NR [1]. Consequently, there
is a growing interest in leveraging wireless signals to extract
distance estimates and provide accurate user positioning, par-
ticularly in environments where GPS signals may be unreliable,
such as indoor or complex settings.

Several studies have attempted to establish the relationship
between signal attenuation and propagation distance for dis-
tinguishable multipath components (MPCs)[2]. In recent years,
the Nakagami-m distribution has gained significant attention
due to its general flexibility and accuracy in matching various
experimental data compared to Rayleigh, Rician, or log-normal
distributions[3]. Due to the influence of diffuse reflections, a
superposition of primary and clutter signals occurs even within
a single path, making the Nakagami-m distribution a better fit
than the Rayleigh distribution[4]. Additionally, the Rician and
Nakagami-m distributions exhibit similar behavior at the mean
attachment point.

In this paper, we propose a method for CSI-based ranging in
multipath Nakagami-m fading channels. The main contributions
of our work are as follows: 1) We establish the Nakagami-m
fading distribution in multipath paths and propose a CSI-based
ranging method for OFDM systems based on this distribution. 2)
We introduce the new EM-reVAMP algorithm that directly esti-
mates distance from the received OFDM signal. This algorithm
can be extended to other scenarios. 3) We conduct simulations
to validate the feasibility of the algorithm and confirm that the
ranging method is indeed effective when the fading matches
a certain distribution. Our research offers valuable insights as
provides a foundation for accurate distance estimation and fur-
ther positioning in wireless communication networks, paving the
way for enhanced performance and improved user experiences.

II. SYSTEM MODEL

A. OFDM signal model with Nakagami-m Fading

The received signal in OFDM can be represented as follows:

y = XTa+ v = Ha+ v; v ∼ CN (0, σ2
vI), (1)

where y ∈ CN×1 is the received signal, X ∈ CN×N is a known
matrix containing the transmitted symbols on its diagonal,
T ∈ CN×L is a transformation matrix, a ∈ CL×1 denotes
the complex attenuation coefficients, H ∈ CN×L presents the
product of X and T , v ∈ CN×1 is a vector of independently
and identically distributed (i.i.d.) complex zero-mean Gaussian
noise samples with equal variance σ2

v .
For each individual element ai of a, we assume its magnitude

with a Nakagami-m distribution and phase with a uniform
distribution from 0 to 2π. Therefore, the probability density
function (PDF) of the probability density of the complex fading
coefficient ai can be expressed as as follows:

p(ai|Ωi) =
mm|ai|2m−2

π Γ(m) Ωm
i

exp
[
−m |ai|2

Ωi

]
,m ≥ 0.5. (2)

where Γ(·) denotes the gamma function, m is the shape param-
eter of the Nakagami-m distribution, Ωi is the average power
intensity of path i. Referring to [5], the parameter Ωi can be
defined as a function of the propagation distance di:

Ωi = PtGtGr

(
λ

4πdi

)n

= G0(d0 + cτi)
−n, (3)

in the given equation, several variables are defined as follows: Pt

represents the transmitting power, Gt denotes the transmitting
antenna amplification, λ is the wavelength of the electromag-
netic wave, c is the velocity of light, n represents the propa-
gation factor influenced by the environment, d0 indicates the
Line-of-Sight (LoS) distance, and τi indicates the propagation
delay between the i-th path and the LoS path.

B. Ranging Estimation

Our objective is to estimate d0 directly from y. To achieve
this, we employed the maximum likelihood estimation (MLE)
method, which transforms the problem into the following equa-
tion:

d̂0 = argmax
d0

lnL(d0;y) = argmax
d0

ln
∫
p(y|a)p(a|d0)da,

where L(·) represents the likelihood function.
However, solving this optimization problem directly proves

to be intractable, as both the integral and the involved MLE
involving latent variables pose significant challenges.



III. EM-REVAMP ALGORITHM

To address the challenge at hand, we employed the expecta-
tion maximization (EM) algorithm to transform the MLE involv-
ing latent variables into an iterative problem. When considering
the Nakagami-m prior distribution of a as described in equation
(2), the EM algorithm can be transformed as follows:

d
(t+1)
0 = argmax

d0

E
p(a|y,d(t))

0
[ln p(a,y|d0)]

= argmin
d0

∑L−1
i=0

[
lnΩi(d0) +

E
p(a|y,θ(t))[|ai|2]

Ωi(d0)
)

]
,

(4)

where Ωi(d0) was defined in (3). However, in this scenario,
the EM algorithm remains intractable because obtaining the
posterior distribution p(a|y,θ(t)) is challenging due to the
integration involved in equation (4). Therefore, it becomes
crucial to develop an algorithm that approximates this poste-
rior distribution with another tractable distribution. To achieve
this goal, we propose the reVAMP algorithm, which can be
regarded as an Expectation Propagation (EP) [6] algorithm via
approximating the factorization as follows:

p(a,y) ∝ p(a|y) ≃ p(y|a)
∏N

i=1 q(ai)q(a). (5)

Combined EM and reVAMP, we propose the EM-reVAMP algo-
rithm for estimating d0. The algorithm, outlined in Algorithm
below, utilizes reVAMP sequentially at each step of the EM
algorithm to obtain approximate first-order and second-order
moments.

IV. SIMULATION

The simulation aimed to evaluate the effect of different
Signal-to-Noise Ratio (SNR) levels and the number of Non-
Line-of-Sight (NLoS) paths on estimation accuracy. Specifically,
we conducted the simulation with certain parameters. The LoS
distance d0 to be estimated was fixed at 10 meters. The parame-
ter values were set as follows: the distances of NLoS paths were
uniformly opted between 11 and 25 meters, N was assigned a
value of 10, G0 was set to 1, m was selected randomly from
a uniform distribution ranging between 0.5 and 2, and n was
chosen randomly within the range of -4 to -2. The matrix H
was generated randomly with a complex normal distribution,
and the fading phase of each path was uniformly distributed
between 0 and 2π. The simulation results are presented in Figure
1. It demonstrates that within the range of 10-30 dB, the SNR
has no significant impact on the estimation results. However,
we observed that the accuracy of the estimation improves as
the number of paths increases, which aligns with our initial
expectations.

V. CONCLUDING REMARKS

This paper introduces a CSI-based ranging estimation method
using the EM-reVAMP algorithm, which exploits the multi-
path effect in communication propagation and assumes the
Nakagami-m distribution for path attenuation. To assess its
performance, besides simulations, we are currently collecting
measurement data in different environments to validate the
effectiveness of our ranging technique. Furthermore, we are
exploring the application of the EM-reVAMP algorithm to other
scenarios involving non-Gaussian prior distributions of GLMs.
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Fig. 1. The impact of SNR and the number of NLoS paths on d0 estimation

Algorithm EM-reVAMP
Ensure: d̂0
Require: y, A, pv(v), m, τ i, G0

1: Initialize: d̂0
2: repeat [For t = 0 . . . L− 1]
3: Initialize: τ p, p
4: repeat
5: repeat [For i = 1 . . . N ]
6: [Update the posterior approximation]
7: Cm =

(
AHC−1

vv A+D−1
p

)−1

8: m = Cm

(
AHC−1

vv y +D−1
p p

)
9: [Update the extrinsic]

10: τm = diag(Cm)

11: ri =
τpimi−τmi

pi
τpi−τmi

12: τri =
τmi

τpi
τpi−τmi

13: [Approximate the marginal posterior]
14: âi =

∫
aip(ai|d̂0)CN (ai;ri,τri )dai∫
p(ai|d̂0)CN (ai;ri,τri )dai

15: τai =
∫
|ai−âi|2p(ai|d̂0)CN (ai;ri,τri )dai∫

p(ai|d̂0)CN (ai;ri,τri )dai

16: [Propagate the approximation back]
17: pi =

τri âi−τai
ri

τri−τai

18: τpi =
τriτai
τri−τai

19: until All i-s have been updated
20: until Convergence
21: d̂0 = argmin

d0

∑L−1
i=0

[
lnΩi(d0) +

τmi
+|mi|2

Ωi(d0)
)
]

22: until Convergence
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