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Université Côte d’Azur,
CNRS, I3S, Inria, France

Figure 1: Our task-based methodology comprises three steps : (1) synchronise behavioural data with context data, (2) use task
model to define performance baselines, and (3) characterise user behaviour based on their performances using multivariate data.

ABSTRACT

Virtual Reality (VR) technologies enable strong emotions compared
to traditional media, stimulating the brain in ways comparable to real-
life interactions. This makes VR systems promising for research
and applications in training or rehabilitation, to imitate realistic
situations. Nonetheless, the evaluation of the user experience in im-
mersive environments is daunting, the richness of the media presents
challenges to synchronise context with behavioural metrics in or-
der to provide fine-grained personalised feedback or performance
evaluation. The variety of scenarios and interaction modalities mul-
tiplies this difficulty of user understanding in face of lifelike training
scenarios, complex interactions, and rich context.

We propose a task-based methodology that provides fine-grained
descriptions and analyses of the experiential user experience (UX) in
VR that (1) aligns low-level tasks (i.e. take an object, go somewhere)
with multivariate behaviour metrics: gaze, motion, skin conductance,
(2) defines performance components (i.e., attention, decision, and
efficiency) with baseline values to evaluate task performance, and (3)
characterises task performance with multivariate user behaviour data.
To illustrate our approach, we apply the task-based methodology to
an existing dataset from a road crossing study in VR. We find that the
task-based methodology allows us to better observe the experiential
UX by highlighting fine-grained relations between behaviour profiles
and task performance, opening pathways to personalised feedback
and experiences in future VR applications.
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1 INTRODUCTION

In the early rise of virtual reality (VR), research in neuroscience
such as that of Alcañiz et al. [1] have shown that interactions in
VR stimulate the brain in ways comparable to real-life, physical
interactions. This makes VR particularly promising for applica-
tions and research in training and rehabilitation, a few recent salient
examples including the creation of virtual wheelchair training sce-
narios [23], sports simulation [41], or to recreate stressful situations
for firefighter training [6].

However, when a user misstep occurs when carrying out a task,
whether it is overlooking an important indication, forgetting nec-
essary steps, or committing an error resulting in the failure of the
task, finding the reason can be extremely difficult: the misstep can
be linked to invisible cues such as the person’s physical, attentional,
or emotional state, triggered by specific scene elements. In the case
of training scenarios that involve a sequence of varied, non-trivial
tasks, carrying out a precise performance evaluation to gain user
understanding becomes even more complex. Yet synthetic 3D en-
vironments in VR have this capacity, to allow the designers of a
scenario to observe and highlight user behavioural indices in their
relevant context. Building a proper understanding of granular user
performance in the “lived” experience will bring multiple benefits:
on the one hand, to better accompany users in their training and
propose personalised feedback according to their performance and
interaction profiles; on the other hand, on the system side, design
improved affordances and guidance to the observed user behaviours
and needs.



We thus propose a task-based methodology to help enrich and
characterise the experiential aspect of user experiences (UX) that
VR systems offer, by investigating the state of the system in relation
to the state of the user [14]. Inspired by performance measures such
as GOMS [36] (Goals, Operators, Methods, and Selection rules)
as well as task modelling approaches such as CTT [35] and HAM-
STERS [28] – popularly used in engineering interactive systems –,
our method decomposes high-level VR scenarios and user task into
lower-level sub-tasks (or sub-sub-tasks) that can be completed by the
user in different ways. The originality of our approach then involves
the use of task models to support the analysis of user behaviour
on various levels of granularity (high and low-level tasks), aligning
task execution in the scene context (e.g., current task, state of the
scene, user position) with multivariate data describing the embodied
UX (i.e. attention, motion, emotion). It is this alignment of user
tasks with multivariate data that allows a better understanding of
the performance in relation to behaviours for every low-level task
(i.e., take an object, go somewhere) within a scenario. To evaluate
a user’s performance for each task, we defined three performance
components (i.e., efficiency, attention, decision) with set baseline
values to determine the success criteria for a given task. Once the
tasks and scenarios are settled, our approach allows the compara-
tive analysis of task performance and multivariate data that jointly
characterise the immersive UX.

To illustrate the advantages, we apply the task-based methodol-
ogy on the CREATTIVE3D multimodal dataset of user behaviour
in virtual reality from our previous user study [32], which is pub-
licly available 1. This dataset fulfils two important criteria for our
approach: (i) it includes multivariate data providing varied metrics
to characterise the experiential UX (ii) these metrics can be spatio-
temporally aligned with low-level tasks and scene context. The
dataset contains a substantial amount of sensor data collected from
40 participants crossing virtual roads in VR, throughout six scenarios
(with a varying amount of interactions and stress-inducing elements)
and under four conditions (a combination of normal vision and sim-
ulated low vision, with real physical walking and simulated walking
with a joystick), making a total of 24 scenarios. The multivariate
data comes from integrated and external sensors (e.g., attention,
motion, emotion) and system logs on contextual information (i.e.,
environment state, user interactions in the environment).

The proposed methodology introduces three primary advances
for the analysis of VR training scenarios :

• Definition of user performances following three components
(i.e. efficiency, attention, decision) and baseline values for
each component to observe the performance missteps on a
low-level tasks

• Characterisation of behaviour using multivariate data based on
the performance missteps

• Creation of user profiles based on observed link between be-
haviour and performance missteps, to improve personalised
feedback and VR experiences

The remainder of the paper is organised as follows. We first
present in Section 2 the related work on the analysis of UX in
VR to position our work. In Section 4, we detail the task-model
method for fine-grained VR experience analysis, and show how we
can achieve a fine-grained characterisation of user behaviour based
on task performance. Then in Section 5 we show the results of
our analysis on the variation in metrics for different performance
components (i.e., attention, decision, and efficiency), which leads
to individualised behavioural profiles in relation to the performance
missteps. Finally, we discuss these findings, their implications, and
present the next steps of this work in Sections 6 and 7.

1https://zenodo.org/doi/10.5281/zenodo.8269108

2 RELATED WORK

In this section we review the use of VR technologies to better un-
derstand users experiences, underlining those that apply this un-
derstanding for improving and personalising training experiences.
Specifically, we look at (1) cognitive science approaches to Affec-
tive user understanding in VR with multivariate data (i.e. attention,
motion, emotion), and how they are used to synthesise personalised
training experiences based on observed user performance, (2) task
modelling in human-machine interaction and robotics to represent
human actions and task performance in a hierarchical and struc-
tured way, which enable a focus on the fine-grained analysis of user
behaviour and task performance in a scenario.

2.1 Cognitive approaches to user understanding in VR
Measures of perception and emotion from the cognitive sciences
have been popularly adopted to validate observations of user be-
haviour in VR applications, providing insight into the influence of
the content on the affective user experience, surveyed by Luong et
al. [25]. These approaches can involve explicit tools such as ques-
tionnaires or implicit data captured from sensors such as for motion
or physiology. A number of individual studies have strongly inspired
our work. As early as 1999, motion and specifically posture has been
a subject of interest [20] to measure the level of body sway as a func-
tion of visual motion in VR. Jicol et al. [16] adopted questionnaires
for emotional intensity and positivity, and employed structural equa-
tion models to find complex correlations between emotion, sense of
presence, and agency, such as the observation that sense of agency
augmented sense of presence only while mediated by an emotional
fear condition. Seinfield et al. [37] measured performance and the
sense of embodiment as a function of object placement and modali-
ties of interaction (e.g., hand gestures, joystick, keyboard), finding
a positive increase in performance and sense of embodiment for
virtual hand paradigms. Using eye tracking and electrodermal ac-
tivity (a.k.a. skin conductance) for a study of viewing 360°videos
with various levels of emotional intensity, Guimard et al. [12] found
that videos with highly salient visual content coupled with high
user arousal allowed for a higher accuracy when predicting user
attention. Keighrey et al. [17] investigate the possibility to evaluate
the user’s perceived quality of experience for virtual speech and
language assessment applications on different interfaces (i.e., tablet,
VR, AR) using heart rate and electrodermal activity measurements
in addition to post-test questionnaires. These studies brought about
new ways to analyse the global user behaviour within a scenario,
and measure the behaviour variation between different scenario con-
ditions using modern cognitive science approaches. They do not
however conduct fine-grained analysis of user behaviour in relation
to the scenario context, such as for scenarios with continuous lifelike
training scenarios composed of multiple sub-tasks, to pinpoint the
elements at a specific time of the study that trigger a user behaviour.
The experimental conditions in such studies are also often difficult
to replicate (e.g., framework reproducibility, differences in setup,
data availability, population bias), limiting the possible conclusions
to the ones reported in the work itself.

An important advantage of VR training frameworks is the ca-
pacity to adapt the scenarios to each person’s needs. Systems that
analyses their relation to the user, and use this understanding for
personalizing the UX move towards the domain of experiential user
experience. Rule-based performance metrics and baselines such as
characteristics of the training scenario [24], completion time [33,38],
and error rate [33] have been dominantly used as parameters for such
adaptations. The more recent inclusion of user behaviour metrics
as parameters for synthesising personalised training scenarios or
adapting existing ones is gaining traction. Lang et al. [21] used gaze
tracking and noted event baselines such as improper habits in driving
scenarios, then used an optimisation approach to generate person-
alised map layouts for improving driving habits. Chen et al. [5]

https://zenodo.org/doi/10.5281/zenodo.8269108


designed a framework that analyses locomotion parameters such
as pose accuracy and motion speed to generate new target points
that train specific stances. Dey et al. [8] explored the use of EEG to
estimate task load from alpha peaks and adapt the difficulty level of
a target selection task.

2.2 Fine-grained analysis through task models

Task analysis is a cornerstone process for understanding how users
perform their tasks and how they achieve their intended goals [9].
Task analysis is often done though direct observation of users inter-
acting with the system. Task models provide an abstract structure
for the analyst to organise information gathered during task anal-
ysis that can be further detailed where needed [30]. Santoro [35]
characterised task models representations of the human activity in a
hierarchical structured way (such as a state machine, action tree, or
graph) allowing the analysis of task feasibility (formal demonstra-
tion that a task can be achieved) and (estimated) user performance.
Task models have strong advantages to support task analysis, in-
cluding coping with complex scenarios (by structuring tasks and
sub-tasks), supporting abstract and generalised reasoning about tasks
(beyond individual’s cases of use), and serving as non-ambiguous
documentation of tasks and observations made [9, 39].

Such task models are essential to a fine-grained analysis of user
tasks. They bind together a deep understanding and characterisation
of the interactive system constraints, the user performance, and the
qualitative aspects of the experience. For this purpose, various works
have adopted task models for the evaluation on various levels of
granularity. KLM-GOMS [36] is a well known method used for
traditional media to quantify how much time users take to perform a
given task by aggregating the duration of low-level tasks (e.g., point
mouse to a target = 1.1 seconds, move hand to keyboard from mouse
= 0.4 seconds) that compose more complex interactions. Moving
from traditional media to more recent works using KLM-GOMS
method, we find Rice et al. [31] who investigate the description
of different inputs composing touchscreen and mobile device in-
teractions (e.g., pinch, zoom, tilt). Guerra et al. [11] extended the
available interactions and measured interaction time to provide a new
GOMS methods to evaluate task performances (e.g., grab an object,
using teleportation movement) for augmented and extended reality
systems. Zhou et al. [44] built a method focused on quantifying
user performances using a virtual hand. These works aim primar-
ily at the description of a scenario purely based on the time spent
on each tasks, to measure the efficiency of performance, without
considering behavioural performance components such as the user
attention or emotion. Whilst tasks models have strong advantages in
evaluating the usability and experiential UX of various interactive
systems (including applications such as web applications [39], iTV
[3], systems of command and control [30]...), few studies address
3D interaction in VR systems.

In robotics, there is a strong interest in performance analysis
on fine-grained slicing of a scenario, such as to pinpoint perfor-
mance flaws. Analysing and identifying when there is a flaw and
the cause are crucial to improving the robot and avoiding future
failures, corresponding to a similar need in VR applications where
adapting and personalising UX are concerned. For example, Lee
and Lozano-Pérez [22] focus on the design of interaction graphs
that finely segment tasks carried out by a robot, in order to precisely
detect when an error occurs and proceed to a failure mode. Kroemer
et al. [19] focused on the prediction of phases of manipulation by a
robot using a probabilistic model to represent the steps composing
a manipulation task. These existing works focus on performance
analysis on the system level, without taking into account the per-
formance of a potential user interacting with the system. To adapt
these methods to VR training scenarios, a model allowing the joint
performance analysis and characterisation of the system and the user
who is interacting is required.

The above review highlights the need of experiential UX method-
ologies for the granular observation of the user performances and
behaviours in continuous lifelike VR scenarios, in relation to the sce-
nario context. We propose an approach inspired by human-computer
interactions and robotic task models, slicing a scenario in multiple
low-level task (i.e., take an object, go somewhere, interact with
something) each with precise performance criteria synchronised
with multivariate metrics, opening multiple possibilities for granular
analysis in VR:

• Definition of user performances according to different compo-
nents (e.g., efficiency, attention, decision) for multiple types of
tasks

• Characterisation of behaviour using multivariate data (e.g.,
gaze, motion, emotion)

• Discovery of user behaviour profiles in correlation with the
performance missteps to explore possibilities of improvement
for personalised feedback and experiences

Being able to identify and apply the metrics that are most efficient at
characterising user behaviour for a given type of task is very valuable,
as it help to define with more accuracy when a user misstep or
system limitation happen, which can be translated to a certain form
of refinement or user guidance to improve the global experience.

3 DATASET

Figure 2: Our study in VR [32] that produced the dataset. In the
study, users crossed a virtual road with simulated car traffic, in six
scenarios with a variable amount of interactivity and number of cars
on the road.

The dataset we chose to exemplify our task-based methodology is
the CREATTIVE3D multimodal dataset of user behaviour in virtual
reality, publicly available from the VR study we conducted in our
previous work [32]. The dataset presents the two characteristics
necessary for our methodology: (1) a clear temporal segmentation of
tasks and sub-tasks in scenarios, and (2) behaviour and 3D context
data containing timestamps for synchronisation. The study involved
40 participants who performed scenarios of around 2 minutes during
which they had to achieve multiple tasks including to cross a virtual
road with simulated car traffic. This dataset is composed of 6 scenar-
ios with varying interactivity and stress-inducing elements, as shown
in Figure 2. Multivariate data was recorded across all scenarios :

• System scene logs recording on Unity with the GUsT-3D tool
[32] at 10Hz containing time-stamped entries of (1) the current
state of the environment (i.e., traffic light colour, cars position,
object positions), and (2) the object interactive properties (e.g.,
the book is on the table, the box is grabbed by the player)

• System user logs recording on Unity with the GUsT-3D tool
[32] at 10Hz containing time-stamped entries of: (1) the user’s



Table 1: Data contained in a dataframe of synchronised behavioural and 3D contextual data, decomposed by tasks. Task objects row gives the
name of 3D objects relevant for the current task. Performance metrics row list the variables used to identify the missteps during the task.

Task # of logs Task objects Performance metrics
Get the key 1570 key efficiency (unixTimestamp)
Open the door with the key 480 key, door efficiency (unixTimestamp)
Get the trashbag 2243 garbage bag efficiency (unixTimestamp)

Cross the road safely 2929 car, traffic light,
traffic light button

efficiency (unixTimestamp)
attention (lookedAtItemName)

decision (carHonk, trafficLightColor)

Put the trashbag in the trashcan 642 garbage bag,
trashcan efficiency (unixTimestamp)

visual attention in the environment (i.e., object on gaze focus,
objects in the field of view, object in the centre of the vision),
(2) the user interactions with the environment (i.e., grab an
object, drop an object, press a button, open a door, location in
the environment), and (3) the current task they are performing
(e.g., take a box, cross the road)

• Motion capture recording with Xsens MVN Awinda suit at
60Hz how users physically move in the environment with 17
sensors position and rotation (x,y,z) for head (1), torso (4:
shoulders, hip, and stern), arms and legs (8: upper and lower
limb), and feet and hands (4)

• Physiological sensors recording with Shimmer GSR3+ at 15Hz
how are users physiologically feeling through electrodermal
activity (EDA, a.k.a. skin conductance) and heart rate (HR).

• Gaze and head tracking recording with HTC Vive Pro Eye
at 120 Hz of gaze and head movement for left, right, and
cyclopean eye (combined gaze vector of both eyes), with the
following data entries: gaze vector (x,y,z) , pupil size, eye
openness percentage, and data validity mask.

In a pre-processing step, we first synchronised all the data men-
tioned above using the system user logs as the base timeline. The
motion, gaze and physiological data were all recorded in their respec-
tive software and data frequencies, with one record per scenario for
gaze, one record every six scenarios for motion, and one record per
user for the physiological data. The dataset provides synchronised
data entries with the system user log data using Unix Timestamp
values, with each type of data sliced according to the start and end
time of the scenarios, making a total of 24 files per data type for
each user, constructing a pool of 960 files per data type. The gaze
data is processed to produce point of regard (POR), which were
directly calculated on the Unity scene of the experiment through
raycasting the gaze vector with the 3D scene mesh. From this step,
we converted all data to csv format and used the python pandas
library to interpolate the data at 125Hz, which allows us to obtain
a dataframe composed of synchronised context and multivariate
data, for each user and each scenario. Figure 3 provides a sample
visualisation of the multivariate data for one user in one scenario:
the raw EDA values (in microsiemens µS), POR (x,y,z) (in meters),
and inclination of the center of pressure (COP) motion (x,y,z) (in
degrees), all synchronised with the context of the experience.

Table 1 highlights the most relevant data contained in a synchro-
nised dataframe and the variables used for our performance baseline
(Section 4.2) and the behavior metrics (Section 4.3). Here are some
of the meaningful variables contained in the dataframe :

• unixTimeStamp: unix timestamp of the data entry,

• position: (x,y,z) position of the player in the 3D environment,

• user state variables: currentTask (the name of the task the user
is performing) and item (object the player is holding in VR),

Figure 3: An example of the raw multivariate data (i.e., skin conduc-
tance (EDA), point of regard positions with x, y, z axis (POR), chest
rotation value) synchronised with the context for one user in a single
scenario. During this scenario, the users carried out four tasks: (1)
Go outside their house, (2) Cross the road safely, (3) Take the box,
(4) Cross the road safely to come back home

• attention data: lookedAtItemName (the object the user is look-
ing at) and inViewItems (all objects in the user’s field of view),

• scene state variables: trafficLightColor (current color of the
traffic light) and honk (boolean indicating if a car is currently
honking),

• EDA: raw EDA value in microseimens µS,

• point of regard: PorXYZ as a (x,y,z) position,

• motion capture sensor positions: MotionPos including (x,y,z)
positions for each of the 17 motion sensors).

The synchronised dataframes have been made available in the
latest version of the dataset repository to ensure the reproducibility
of this work.

4 METHODOLOGY : TASK MODEL

To tackle the challenges of characterising experiential UX on a granu-
lar level for lifelike VR scenarios, we conceived a task-based method-
ology inspired from existing methodologies in human-machine in-
teraction and robotics to finely observe and characterise user perfor-
mance using multivariate data. This methodology can be applied
widely to studies presenting two characteristics : (1) a clear tem-
poral segmentation and (2) a set of synchronised behavioural and
3D contextual data. The former allows us to build a task model that
characterises the sequence and success criteria for each task, and
more importantly, detect the missteps, i.e., when a task is incorrectly
carried out. The latter then allows us to perform a fine-grained anal-
ysis of behavioural metrics in correlation with the 3D context at the
moment a misstep occurs.



In this section we first present the task-model definition from
high-level scenario to low-level task. Based on the task model,
we then define the three baseline components that will be used
to identify user performance missteps : efficiency, attention and
decision. Finally, we present and justify the selected behavioural
metrics derived from the multivariate data used to characterise the
user behaviour in relation to performance missteps.

4.1 Task model conception
Our first step is to build our task-based approach inspired from task
models [35], describing a scenario as a graph of high to low-level
tasks to perform, in a precise order. Each task is composed of precise
set of criteria that classifies the execution of the task as a success, or
with a misstep.

We constructed our task-model using Hamsters tool2 [29]. Each
task has its own separate task-model with the following elements:

• task description from the high abstraction level – for example
“open the door” – to the sequence of motor tasks composing
this task – “find the key”, “walk to the key”, “press the trigger
to grab the key”, “walk to the door”, “interact with the door” –
in order to define precisely the ideal sequence of actions the
user is expected to perform.

• precise definition of objects included in a task and the interac-
tions expected with them (i.e., touch, grab, look at, place in,
place on), which are the criteria to the success of a task.

Our scenarios feature 9 high-level tasks in the following sequence
: (1) Open the door, (2) Take the garbage bag, (3) Go outside your
home (4) Cross the road safely, (5) Put the garbage bag in the
trashcan, (6) Take the box, (7) Cross the road safely, (8) Come back
home, (9) Place the box on the table. Each scenario is a subset
of tasks from this selection. For example, the simple interaction
scenario with one car (Scenario #2 in Figure 2) is composed of the
task sequence 3 → 4 → 6 → 7 → 8 → 9. All scenarios are at least
composed of one interactive task (e.g., take the box / garbage bag),
and one road crossing task.

The Figure 4 illustrates a shorter, plausible scenario composed
of only three high-level tasks, with a simplified view of the three
task models for each high-level task. Each sub-figure highlights the
expected interactions and the sequence to perform them in order to
succeed at the task. In the “cross the road safely”, the user must,
for example, cross the road while the traffic light is green, after
checking that the car has stopped. The sequence however can be
done in multiple orders creating multiple variation of a same scenario
(i.e. State 1: Look at green light, look at the stopped cars, cross the
road; State 2: Look at red light, wait, look at green light, look at
stopped cars, cross the road). The individual task models are made
for all scenario variants. As such, we could for example look only at
the road crossing task for one user in a single scenario individually,
or we can aggregate all instances of the road crossing task across all
users and scenarios in one analysis, and all instances of the opening
door task for a different analysis.

The road crossing task is the longest and most complex task, with
multivariate metrics to observe and analyse. It also incorporates all
of the interactive mechanisms that appear in the other tasks. In the
rest of the paper, we therefore use this task as the example to demon-
strate our task model approach to UX analysis and performance
evaluation.

4.2 Performance baselines
From this task model, we can already begin to observe the different
components that could be used to quantify the success at performing

2https://www.irit.fr/recherches/ICS/softwares/

hamsters/

Figure 4: A simplified task model for three high level tasks: (a)
“Go outside your house”, (b) “Take the box”, (c) “Cross the road
safely”, to properly achieve the task, the user is expected to perform
the right interactions at the right time, and in the case of crossing the
road, also look at traffic light and cars, and cross when the light is
green and the cars are stopped. Rectangles indicate tasks and ovals
indicate object states.

the task (e.g., cross in time, cross during the green light, look left and
right before crossing, don’t get hit by a car). Out of this model, we
can define the performances baselines values that an analyst would
like to observe and analyse when a user is crossing the road.

We therefore defined three components needed for the successful
completion of the “cross the road safely” task : (1) efficiency : the
user must finish the task within a given amount of time, (2) attention
: the user must pay attention (i.e., look at) certain elements during
the task to know when to do an action, and (3) decision : the user
must make correct choices in the sequence of executing actions.

First, we define the efficiency component, that is the time limit to
complete the task. We calculated our baseline value on the existing
human-computer interaction metric GOMS, which is a well known
predictive model to quantify how much time it will take to perform
a given task. Based on the extension to VR proposed by Guerra et
al. [11], we defined times to grab object, drop object and press the
traffic light button. For the task of physical walking, we estimated
the preferred walking speed of users in VR at 0.9m/s based on
Wodarski et al. [40], resulting in the list of actions presented in
Table 2 to define the efficiency baseline value of a task.

When starting a scenario, we take into account that users will
need a short adaptation time to look around at the environment,

https://www.irit.fr/recherches/ICS/softwares/hamsters/
https://www.irit.fr/recherches/ICS/softwares/hamsters/


Figure 5: Time taken by all 40 participants (sorted by study comple-
tion order) to finish the tasks of the scenario #6 (multiple interactions
with two cars). The baseline column on the far right shows the base-
line value for each individual task stacked. All the tasks where the
user surpasses this baseline are outlined in black.

Table 2: List of actions and the associated expected time to perform
them in VR, inspired from GOMS methodology, to define task
efficiency baseline value.

Action Time
Scenario starting delay (S) 2.0 seconds
Audio instruction delay (I) 1.0 seconds
Grab an object (G) 2.6 seconds
Drop an object (D) 2.6 seconds
Press a button (P) 1.45 seconds
Red traffic light duration (T) 8.0 seconds
Walk physically (W) (Distance / 0.9) seconds

corresponding to the time S. For every task, users get a short audio
instruction with task instructions, which corresponds to the time I.
When users want to cross the road, the time they will have to wait
for the light to go from red to green corresponds to time T .

Figure 5 allows us to visualise the time participants took to finish
each task in scenario #6 (multiple interactions with two cars) under
one experimental condition. The column Baseline in Figure 5 shows
the efficiency component baseline defined for every task of the
scenario. In this scenario, out of 200 tasks performed, we can
see that 24 efficiency missteps occurred (i.e., the execution time
surpassed the baseline value), highlighted by the black frames.

This definition process is also done for the two other performance
components: attention and decision, which are a more straightfor-
ward. The attention baseline defines objects in the scene that the
user must look at. The decision baseline designates certain states
under which objects must be when the user executes a task. The
right-most column in Table 1, summarises the the data entries in
the dataframe that are relevant to each performance component for
each task. Using these data entries, Table 3 then lists in detail the
three performance components for each task the same scenario in
Figure 5. The efficiency baseline of each task is defined as the sum
of the actions comprising the task listed in Table 2. For example,
during the second task “Cross the road safely”, to fulfil the efficiency
component, users must finish the task within 13.50 seconds (i.e., the
user can wait 1 second following the audio instruction to start the
task, wait up to 8 seconds for the traffic light to turn to green, and
finally walk a distance of 5 meters at a speed of 0.9m/s, making a
total expected duration of up to 13.50 seconds to complete the task);
to fulfil the attention component, users must look at the cars and
traffic light prior to going on the road; finally, they must also cross
road while the traffic light is green without being honked by a car
that wants to pass during their own green light to fulfil the decision
component.

After defining these performance components, we can then group
the users in each task into those who fulfilled the performance
baselines and successfully executed the task under the baseline value,
and those who did not, thus incurring a performance misstep. We
can then correlate user behavioural metrics to observed performance
missteps, which allow a more fine-grained analysis of the behaviour
in relation to the performance.

In order to carry out our task-based analysis, the field currentTask
in the synchronised dataframe is used to partition a scenario file
in task groups corresponding to the rows in Table 1. With this
partitioning, we apply our baseline values the relevant variables, to
characterise if a user did a misstep for the given task. Again using
the example of the “Cross the road safely” task, the missteps for the
three performance components are well-defined :

• efficiency : the unixTimeStamp value gap between the begin-
ning and the ending of the task is above the baseline value,

• decision : the user crossed the road while trafficLightColor
value was at “red”, or during the road crossing task, the honk
value has been equal to true at least once,

• attention : the user crossed the road without lookedAtItemName
value being equal to “car” at least once during the task.

4.3 Behavioural metrics

The last step in our approach is to select the metrics with which
we wish to characterise the user performance. It is important to
note that multiple possibilities can be imagined from such a dataset
for each data type. For example, the emotion data is composed
of both electrodermal activity and heart rate information. From
motion capture data, gait characteristics, stability, limb coordination
etc. can be derived. In this work we limit our analysis to only a
subset of these metrics to illustrate our approach, using the following
principles to help us in our choice:

1. Only one metric is chosen for each data type (i.e. motion,
emotion and attention), since the goal is to exemplify our task-
based methodology along with its flexibility to be applied to
diverse type of data, and not present an overall analysis of all
possible metrics.

2. Avoid metrics that are directly related to the person’s absolute
physical characteristics, such as height or step size, which can
be correlated to additional factors such as gender, which could
merit new sets of research questions into other aspects of user
experience analysis currently outside of the scope of this work.

3. Prioritise metrics that have already been of interest for existing
studies in VR, and are also relevant to the performance base-
lines in our task model, which highlights the added value of
our task-based approach for fine-grained analysis.

Emotion we select skin conductance (or electrodermal activ-
ity, EDA) which shows the level of arousal of the user, indirectly
indicates the level of stress the user is experiencing in the long term
and the intensity of their timely physiological responses to stimuli,
represented by skin conductance response (SCR) peaks. Skin con-
ductance (EDA) is often used in the literature ( [42], [13]) to evaluate
the arousal of the user considering multiple context with more or
less stress-inducing elements. This metric is particularly interesting
in the context of this dataset which includes scenarios with more
or less stress inducing elements that could lead to missteps on user
performance and observable variation on user behaviour.



Table 3: The performance baseline values defined for the scenario six of the experiment. When crossing the road in this scenario, the user is
expected to look at the car and the traffic light, cross only when the traffic light is green and the cars are stopped, in a total of 13.50 seconds.

Task Efficiency Attention Decision
Go outside the house S+I+W=2+1+3.5=6.50s \ \
Cross the road safely I+W+T=1+4.5+8.0=13.50s Look at : Cars, Traffic light Cross : Traffic light green, did not get honked
Take the box I+W+G = 1+3.4+2.6 =7.0s \ \
Cross the road back home I+W+T=1+4.5+8.0=13.50s Look at : Cars, Traffic light Cross : Traffic light green, did not get honked
Place the box on the table I+W+D=1+3.4+2.6=7.0s \ \

Attention we choose gaze fixation duration (GFD), which has
been used to observe visual recognition processes in Chan et al.
work [4] or gaze behaviour for sports in Klostermann et al. [18],
who have identified a potential link between longer duration of gaze
fixations for professional players compared to amateurs. We want
to investigate notably if GFD is potentially a metric that could help
characterise attention and decision performance missteps, such as
being correlated to shorter average fixations.

Motion we choose center of pressure inclination (COPI),
adopted in existing studies to measure age and height effect on
body balance through center of mass (COM) and center of pressure
(COP) inclination [15], or to measure body sway when viewing
moving visuals in VR headsets [20]. It is an important metric to
measure body muscle stress [43], respiratory mechanics [27], and
body balance [10]. The stability of users is a major concern for VR
experiences that involve physical walking, making this metric inter-
esting in the context of mobility in VR for our selected task, where
there is physical walking involved to cross a road. We therefore
investigate the link COPI could have with performance.

Setting out from the synchronised dataframe, we process each
data type to calculate the above-mentioned metrics. The skin conduc-
tance data (EDA) is analysed with the Python toolkit Neurokit [26],
as was done by Guimard et al. [13] in which the phasic component
is calculated as the first derivative of the normalised EDA, allow-
ing us to observe short term variations of physiological response in
relation to the scene context. For gaze fixation, we used the I-VT
algorithm [34] to obtain the list of fixations and their duration. Cen-
ter of pressure inclination is computed on raw motion data records,
using chest and ankle segments to compute the body angle, with a
higher value when the body is more inclined and zero meaning the
body is 90°vertical.

This three step process: establishing the task model, defining
performance components and baseline values, and finally selecting
relevant behaviour metrics comprises our methodology which allows
us to (1) finely segment tasks into identifiable actions, (2) define
which components of performances are evaluated and how they
are quantified for each tasks done by the user, in order to classify
the performance result (i.e., success or misstep), and (3) analyse
correlations to behavioural metrics.

5 RESULTS

In the previous section, we presented the multivariate data synchro-
nisation with context, the task model based on the multivariate data,
establishing baselines to define the components on which perfor-
mance is evaluated, and selection of metrics for characterising user
behaviour. Here we take a deep dive into the analysis of user be-
haviour using multivariate data based on performances, and further
investigate on the possibility of identifying profiles of users whose
performances are similar on certain observable metrics. We continue
using the road crossing task and the three defined performance com-
ponents and baselines: (1) efficiency: the time to finish the task, (2)
attention: the elements looked at during the task and (3) decision:
the choices made by the user to finish the task.

Figure 6: Median COPI of all users for each scenario of the ex-
periment based on the efficiency component of performance. The
red boxes represent the COPI values for T Me, and the green boxes
represent the COPI values for non T Me.

The dataset contains the record of 40 participants who each com-
pleted 24 scenarios, for a total of 960 scenarios with road crossing
tasks to observe. Using the performance component baselines, we
can identify the missteps for each performance component. We
then analyse the behavioural metrics selected: electrodermal activ-
ity (EDA), center of pressure inclination (COPI), and gaze fixation
duration (GFD) in order to characterise the behaviours that are in
relation to performance missteps.

The following notation is used:

• T Ma, T Me, and T Md denote a task with the occurrence of an
attention, efficiency, and decision misstep respectively

• the metrics are abbreviated as COPI, EDA, and GFD for cen-
ter of pressure inclination, electrodermal activity, and gaze
fixation duration respectively

5.1 Behaviour at a scenario level
Out of the 960 scenarios with road crossing done by the 40 par-
ticipants, 630 missteps of either attention, decision or efficiency
were observed. The majority of the missteps were T Ma representing
47.9% (302) of all the misstep occurrences, then 27.1% (172) for
T Me, and 24.9% (156) of T Md . The average missteps for users was
7.6 T Ma, 4.3 T Me, and 3.9 T Md .

For the first part of the analysis, we would like to observe po-
tential trends that could signify a link between one performance
component and one behaviour metric. We take the road crossing
task data from the 24 scenarios from all users, each classified ac-
cording to the three tasks performance components, resulting in a
dataframe where each row represents the user, scenario, success or
misstep associated to each performance component, and the average
value of each behavioural metric. To identify if the distribution for
each metric is significant between the T Mc and non-T Mc groups
for a given component c, we then compute the null-hypothesis sig-
nificance testing with p-values ( [2, 7]). As shown in Table 4, we
can find significance (p < 0.05) for T Ma+GFD and T Md+GFD, and
strong significance (p < 0.001), for the T Me+COPI, T Ma+COPI,
T Ma+EDA, and T Md+COPI. The median values of each metric are



Table 4: The average values of each metric for tasks with misstep T Mc on a performance component c and those without a misstep. We
calculate the p-value significance of each behavioural metric in combination with the performance component. The values in bold indicate
significance p < 0.05. We can for example observe a strong significance in COPI when comparing the groups with and without T Me.

Efficiency Attention Decision
Metrics COPI EDA GFD COPI EDA GFD COPI EDA GFD

T Mc median 3.72° 4.56e-4 153.23ms 3.70° 5.37e-4 153.87ms 3.61° 4.93e-4 153.91
Non T Mc median 3.28° 4.52e-4 148.11ms 3.26° 4.55e-4 148.78ms 3.24° 4.55e-4 147.94

p-value 4e-8 0.582 0.084 6e-14 4e-7 0.010 2e-4 0.159 0.011

also shown for the different group and component combinations.
We can see an increase of COPI, EDA, and GFD for the different
missteps compared to the scenarios without missteps. If we look in
detail at Figure 6, we can visualise the trend of the average COPI
of three users. The group of tasks with performance missteps has
a globally higher median COPI than those without, the exceptions
being scenarios 14, 17 and 19.

5.2 Behaviour on user level

Figure 7: Visualisation of the median COPI value of each scenarios
with road crossing for the users U511 (top), U495 (middle), U109
(bottom) with significant negative COPI variation in T Ma tasks. A
red dot represent the median COPI value during road crossing task
for a scenario done with an attention misstep, a green dot represent
the median COPI values during road crossing task for a scenario
without attention misstep.

In order to observe on a more fine-grained level if a user presents
specific behaviours in relation to their performance, we conducted
the same type of analysis for users individually, looking at each road
crossing task during the experiment, grouping their scenario data
based on success or misstep in a performance component. On these
groups of behavioural metrics classified by performance, we com-
puted the p-value in order to identify those users whose behaviour is
significantly different for a given metric based on their performance.
For this analysis, we kept only users with a p-value below 0.05 and
at least 10% of tasks with occurrences of missteps in order to have
a sufficient amount of data to compare between the performances
groups. The users included this analysis are shown in Table 5.

These results outline unique behavioural profiles. We found at
least two people per combination of performance-metric, and can
observe that there is rarely one consistent trend of behaviour: sig-
nificantly higher for one user but the exact opposite for another.
Four interesting exceptions exist: a higher EDA for T Me, a higher
GFD for T Ma, and a lower COPI for both T Me and T Md . First,
the revelation of the relation between the gaze metric (GFD) with
attention missteps makes logical sense, as the user does not switch
their gaze as frequently to take into account various pieces of infor-
mation. The relation between emotional metric (EDA) could also be
an indicator of the level of stress the user is experiencing. Finally, a
lower COPI indicates that the person is more upright, which can be

a sign of less engagement or walking slower. The observations can
then facilitate the conception of hypotheses to further validate these
relations between the performance and behaviour. We can visualise
more in Figure 7 the COPI of users U511, U495 and U109 who have
a significant difference in value when committing a T Ma, with a
decreasing tendency of their COPI of -14% to -18% compared to
non T Ma.

6 DISCUSSION

We have presented a task-based methodology to evaluate and char-
acterise experiential UX, taking inspiration from existing work in
human-machine interactions and robotic task modelling, which have
not yet been fully explored and used for analysis of VR experiences.
Our methodology proposes new ways to evaluate the UX by looking
at the fine-grained behaviour synchronised with context on three
performance components, and finally allowing the characterisation
of specific user profiles. By applying the methodology on a selected
parameter of performance (i.e., attention, efficiency, decision) with
suitably selected behavioural metrics, we can observe whether a
metric could potentially be interesting for a better characterisation
of the UX in a given context, task, or type of performance measure.

While our analysis and results have mainly been focused on a deep
dive into the performance of a single road crossing task, it has already
allowed us to observe some user behaviour profiles, and highlight
the metrics are potentially more effective for the characterisation
of the experience, such as gaze for tasks requiring visual attention,
and emotion for task efficiency. We would also like to outline
the inclusion of center of pressure inclination (COPI), which is
important for tasks that require spatial displacement within a limited
amount of time. We believe this is a novel and important contribution
for VR that can benefit applications such as training or rehabilitation
applications, where the understanding of a user’s difficulties and
needs when working with a VR system is crucial to improve the
both global experience and provide personalisation.

One major strength of the methodology is its flexibility, as it is
applicable to various types of studies, allowing the definition of
performance parameters according to the task, and the analysis of
corresponding behavioural data. In this work, we demonstrated
this analysis on a pre-existing dataset, applying new baselines on
performance that were not part of the original study design.

The dataset presented in this paper proposes notable advantages
in providing synchronised multivariate data with the low-level task
context for fine-grained analysis. The public availability of more
similar dataset proposing similar features can allow us to flexibly
adapt our evaluation methodology to a wide variety of tasks and
metrics, which we believe can open new doors for user understanding
in media with such rich interaction possibilities as VR. It will also
potentially allow validation of hypotheses across different study
designs to identify global trends of human behaviour.

However, this evaluation method alone is not sufficient to charac-
terise the complete user experience. It would be better coupled with
post-study interviews or qualitative studies. On its own, it is limited
to identifying the correlation between behaviour and performance,
but we cannot claim causation on whether a performance parameter
is the cause of a behavioural metric variation, or vice versa. We



Table 5: Individual users whose values for a given behavioural metric are significantly different (p < 0.05) between tasks with and without
missteps. uID corresponds to the ID of the user, Misstep corresponds to the percentage of tasks that have a misstep for a performance
component, and Var corresponds to the variation (with positive/negative sign) observed median of the metric between T Mc and non T Mc for
the given performance component c

Efficiency misstep Attention misstep Decision misstep
uID p-value Misstep Var uID p-value Misstep Var uID p-value Misstep Var

COPI

851 0.034 54% -29% 321 0.020 29% +56% 666 0.001 13% -43%

963 0.009 42% -22%
511 0.010 46% -14% 877 0.004 25% -40%
495 0.031 29% -15% 828 0.026 38% -19%109 0.029 46% -18%

EDA

981 0.002 21% +55% 748 0.037 62% -18% 666 0.001 13% -71%
361 0.006, 25% +47% 091 0.047 50% -35% 981 0.016 13% -46%

658 0.009 17% +52% 213 0.004 21% +71% 361 0.021 25% -50%
446 0.026 29% +73%

GFD 361 0.032 25% +27% 666 0.020 42% +28% 748 0.017 21% +33%
940 0.029 17% -29% 682 0.027 56% +17% 446 0.033 21% -17%

used an existing dataset in order to highlight the flexibility of the
approach, which doesn’t allow us to verify our hypotheses through
additional questionnaires. Such conclusions could be drawn, for
example, in a follow-up user study designed based on our findings.

Another limitation of this work lies in the sole focus in the results
section on the most complex task of the dataset: the road crossing,
calling for three different performance parameters. It would be
interesting in future work to compare such an analysis to different
types of tasks, to observe the variability of relevance of a given
behavioural metric depending the type of task. Another potentially
interesting analysis would be to analyse multiple behavioural metrics
together for a given performance component in order to observe if a
broader characterisation of users behaviour could be achieved.

7 CONCLUSION

In this article, we have introduced a task-based methodology that
uses a task model to define performance components and baseline
values for the analysis of fine-grained user behaviour based on the
context and multivariate data. To demonstrate the advantages of
our approach, we used a dataset of VR experiences in order to
characterise behaviour in relation to a certain type of performance
misstep. Finally, we identified individual profiles of users for whom
a behavioural metric is strongly correlated to the performance of the
task. This could help us reveal profiles of user behaviour in order to
better understand their needs and propose personalised experiences.

The next step of this work calls for a deeper analysis of specific
profiles of users across a wider range of tasks and scenarios, such
as focusing on users who may have specific needs for VR training
and rehabilitation. We open the possibility of investigating complex
behaviour characterisation in-context, as well as the possible to push
this type of evaluation for the improvement of the experience, to
propose better feedback, guidance, and refine experiment systems
in VR. Finally, we also emphasise the benefits of open datasets and
experimental protocols for the advancement of UX understanding
for new and immersive media platforms such as VR.

ACKNOWLEDGMENTS

This work has been partially supported by the French National
Research Agency though the ANR CREATTIVE3D project ANR-
21-CE33-0001 and UCAJEDI Investissements d’Avenir ANR-15-
IDEX-0001 (IDEX reference center for extended reality XR2C2).

REFERENCES
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