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Abstract—In this work, we study the problem of real-time
tracking and reconstruction of an information source with the
purpose of actuation. A device monitors an N -state Markov
process and transmits status updates to a receiver over a
wireless erasure channel. We consider a set of joint sampling
and transmission policies, including a semantics-aware one, and
we study their performance with respect to relevant metrics.
Specifically, we investigate the real-time reconstruction error and
its variance, the consecutive error, the cost of memory error,
and the cost of actuation error. Furthermore, we propose a
randomized stationary sampling and transmission policy and
derive closed-form expressions for all aforementioned metrics.
We then formulate an optimization problem for minimizing
the real-time reconstruction error subject to a sampling cost
constraint. Our results show that in the scenario of constrained
sampling generation, the optimal randomized stationary policy
outperforms all other sampling policies when the source is rapidly
evolving. Otherwise, the semantics-aware policy performs the
best.

I. INTRODUCTION

Networked control systems have recently received signif-
icant attention due to their promise of enabling various use
cases, such as swarm robotics for target tracking, health-
care systems, autonomous transportation and environmental
surveillance using sensor networks, to name a few. A key
functionality in these systems entails a device sending time-
stamped status updates to a remote monitor, which is tasked
to track the state of the monitoring process. Therefore, a
relevant yet highly challenging problem in this context is that
of real-time remote tracking and of deriving a sampling policy
that minimizes error performance metrics of the reconstructed
process.

Several studies have been carried out in this area. Different
variants of remote state estimation under communication con-
straints for linear time-invariant (LTI) systems are considered
in [1]–[4]. Fundamental limits and trade-offs of remote estima-
tion of Markov processes in real-time communication are stud-
ied in [5], [6]. The problem of scheduling in event triggered
estimation is considered in [7]. Optimal sampling of stochastic
processes for minimizing the mean square estimation error is
studied in [8]–[10]. In [11], a joint sampling and quantization
policy is presented for real-time monitoring of a Brownian
motion. The problem of whether to retransmit a previous
sample or a new sample in real-time remote estimation is
studied in [12]. More recently, new metrics that account for the
importance and the effectiveness (semantics) of information

[13]–[15] with respect to the goal of data exchange have been
introduced among others in [16]–[21]. The most closely related
work is [22], where new goal-oriented semantic sampling and
communication policies are proposed for the problem of real-
time tracking and source reconstruction of a two-state Markov
process.

In this paper, we extend [22] in several aspects. First, we
employ a general N -state discrete time Markov chain (DTMC)
model to describe the information source/process evolution,
as depicted in Fig. 1. Second, we consider joint sampling
and transmission and propose a set of metrics for system
performance evaluation. We derive general expressions for
the real-time reconstruction error and we introduce two new
timing-aware error metrics, namely the consecutive error and
the cost of memory error, which capture the effect on the
performance when the system remains in an erroneous state
for several consecutive time slots. Furthermore, we consider
the cost of actuation error to investigate the significance or the
non-commutative effects of an error at the receiver side since
different errors may have different impact on the system. Then,
we formulate and solve a constrained optimization problem
where the objective function is the time-averaged reconstruc-
tion error subject to a sampling cost constraint. Comparing
different sampling and transmission policies, we show under
which conditions the semantics-aware policy outperforms the
rest and when the proposed randomized stationary policy can
be beneficial.

II. SYSTEM MODEL

We consider a time-slotted communication system in which
a sampler performs sampling of a process Xt at time slot
t, and then the transmitter informs the receiver by sending
samples over a wireless communication channel. We model
the information source by an N -state discrete time Markov
chain (DTMC) {Xt, t ∈ N}, depicted in Fig.1. Therein, the
self-transition probability and the probability of transition to
another state at time slot t+ 1 are defined as Pr

[
X(t+ 1) =

X(t)
]
= q and Pr

[
X(t+ 1) ̸= X(t)

]
= p, respectively. Since

the process of Xt can have one of N different possible values,
we can write q + (N − 1)p = 1. In this paper, we denote the
action of sampling at time slot t by αs

t, where αs
t = 1 if

the source is sampled and αs
t = 0 otherwise. The action of

transmitting a sample is defined as αtx
t , where αtx

t = 1 if a
sample is transmitted, otherwise the transmitter remains idle,
i.e., αtx

t = 0.
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Fig. 1. DTMC describing the evolution of the information source.

A. Physical Layer Model

We assume that the communication channel between trans-
mitter and receiver is subject to small-scale Rayleigh fading
and large-scale pathloss attenuation. The received power is
given by Prx = Ptxgr

−β where Ptx is the transmitted power,
and g is fading power between transmitter and receiver. We
assume that g is independent and identically distributed (i.i.d)
random variable (RV) with unit mean and cumulative distri-
bution function (CDF) Fg(x) = 1− e−x, x ⩾ 0. The distance
between transmitter and receiver is denoted by r, where β > 2
is the pathloss exponent. At each time slot, the received
signal to noise ratio (SNR) is given by SNR = Prx

σ2 , where
σ2 is the variance of the complex additive white Gaussian
noise (AWGN) at the receiver. At time slot t, the receiver
constructs an estimate of the process Xt, denoted by X̂t.
The channel state ht is equal to 1 if a sample is successfully
decoded by the receiver and 0 otherwise. It is assumed that a
sample is successfully received if the received SNR exceeds a
certain threshold. The probability that a sample is successfully
decoded is given by

ps = Pr
[
ht = 1

]
= Pr

[
SNR > γ

]
= exp

(
− γσ2

Ptxr−β

)
(1)

where γ is an SNR threshold. We consider that a successful
transmission is declared to the transmitter using an acknowl-
edgment (ACK) packet. The receiver also sends a negative-
ACK packet in the case of a transmission failure. It is assumed
that ACK/NACK packets are delivered instantaneously and
error free to the transmitter. Therefore, the transmitter has
perfect knowledge of the reconstructed source state at time
slot t, i.e., X̂t. We also assume that a sample is discarded
when its transmission fails.

B. Sampling and Transmission Policies

We introduce here the four sampling and transmission
policies considered in this work.

1) Uniform Policy: sampling is performed periodically ev-
ery d time slot, independently of the evolution of the
source Xt. Therefore, the sampling time sequences are
{tk = kd, k ⩾ 1}. Although this policy’s implementation
is simple, several state transitions can be missed between
two consecutive sampling events.

2) Change-Aware Policy: the generation of a new sample
is triggered when a change at the state of the source
Xt between two consecutive time slots is observed,
regardless of whether the system is in synced state or
not.

3) Semantics-Aware Policy: sample generation is triggered
in two cases. First, in the case where at a given time slot
t the system is in synced state, i.e., Xt = X̂t, sampling
is performed if a change at the state of the source at time
slot t + 1 occurs, i.e., Xt+1 ̸= Xt. Second, in the case
where at time slot t, the system is in an erroneous state,
i.e., Xt ̸= X̂t, sample acquisition is triggered whenever
Xt+1 ̸= X̂t.

4) Randomized Stationary Policy: sampling is performed
in a probabilistic manner at each time slot.

Remark. The uniform, change-aware, and randomized sta-
tionary policies do not require an ACK/NACK feedback chan-
nel from the receiver to the transmitter.

III. REAL-TIME RECONSTRUCTION ERROR

The real-time reconstruction error is defined as the differ-
ence between Xt and X̂t at time slot t, i.e.,

Et =
∣∣∣Xt − X̂t

∣∣∣ . (2)

The time-averaged reconstruction error for an observation
interval [1, T ], with T being a large positive number, is defined
as

Ē = lim
T→∞

1

T

T∑
t=1

1 (Et ̸= 0) = lim
T→∞

1

T

T∑
t=1

1

(
Xt ̸= X̂t

)
,

(3)

where 1(·) is the indicator function. We define the transition
probabilities of Et as

Pi,j = Pr
[
Et+1=j

∣∣Et = i
]
, ∀i, j ∈ {0, 1, · · · , N − 1} (4)

where at time slot t the synced state of the system is denoted
by Et = 0, while Et ̸= 0 denotes the system is in an erroneous
state. In the following subsections, we derive general expres-
sions for the transition probabilities of Et under randomized
stationary policy for an N -state DTMC information source.

A. Transition Probabilities

Using the total probability theorem, one can write the
transition probabilities Pi,j , given in (4), as

Pi,j

=
N−1∑
n=0

Pr
[
Et+1 = j

∣∣Et = i,Xt = n
]
Pr
[
Xt = n

∣∣Et = i
]

=
N−1∑
n=0

Pr
[
Et+1 = j

∣∣Et = i,Xt = n
]
Pr
[
Xt = n,Et = i

]
Pr
[
Et = i

]
=

N−1∑
n=0

(
c1×Pr

[
Et+1=j

∣∣Xt=n,X̂t=n−i
]
Pr
[
Xt=n, X̂t=n−i

]
Pr
[
Et = i

] ,

+
c2×Pr

[
Et+1=j

∣∣Xt=n,X̂t=n+i
]
Pr
[
Xt=n, X̂t=n+i

]
Pr
[
Et = i

] )
∀i, j ∈ {0, 1, · · · , N − 1}, (5)



where c1 and c2 in (5) are given by

c1 = 1(i = 0)0.5 + 1(n ⩾ i, i ̸= 0),

c2 = 1(i = 0)0.5 + 1(n+ i ⩽ N − 1, i ̸= 0). (6)

Furthermore, the probability Pr
[
Et = i

]
in (5) is given by

Pr
[
Et = i

]
=

N−1∑
m=0

Pr
[
Xt = m,Et = i

]
=

N−1∑
m=0

(
f1 × Pr

[
Xt=m, X̂t=m− i

]
+

f2 × Pr
[
Xt=m, X̂t=m+ i

])
(7)

where f1 and f2 in (7) are given by

f1 = 1(i = 0)0.5 + 1(m ⩾ i, i ̸= 0),

f2 = 1(i = 0)0.5 + 1(m+ i ⩽ N − 1, i ̸= 0). (8)

Note that the joint probability Pr
[
Xt = m, X̂t = m ± i

]
is the stationary distribution of the two-dimensional DTMC
describing the joint status of the system regarding the
current state at the original source. Now, the expression
Pr
[
Xt = n, X̂t = n± i

]
Pr
[
Et = i

] given in (5) can be simplified as

Pr
[
Xt=n, X̂t=n± i

]
Pr
[
Et = i

] =1(i=0)
1

N
+1(i ̸= 0)

1

2(N−i)
. (9)

To derive the conditional probability given in (5), we first
define H0 and H1 as

H0 = Pr
[
αs
t+1 = 1, αtx

t+1 = 1, ht+1 = 0
]

= Pr
[
αs
t+1 = 1, αtx

t+1 = 1
]
Pr
[
ht+1 = 0

]
H1 = Pr

[
αs
t+1 = 1, αtx

t+1 = 1, ht+1 = 1
]

= Pr
[
αs
t+1 = 1, αtx

t+1 = 1
]
Pr
[
ht+1 = 1

]
, (10)

where H0 and H1 are the joint probability density function
(PDF) of sampling and transmissions actions at time slot
t + 1 when we have failed and successful transmission,
respectively. We define Pr{αs

t+1 = 0} as the probability that
the source is not sampled at time slot t + 1, which is equal
to 1 − Pr{αs

t+1 = 1}. In this work, we assume that the
transmitter can send samples immediately after the sampler
performs sampling. This means that the joint probability of
sampling and transmissions actions at time slot t+1 when the
sampler performs sampling is equal to pαs = Pr

[
αs
t+1 = 1

]
.

Therefore, (10) can be simplified as

H0 = pαs

(
1− ps

)
, H1 = pαsps, (11)

where ps is the success probability given in (1). Using (5),
(6), and (9), we can derive P0,0 as

P0,0=
N−1∑
n=0

Pr
[
Et+1 = 0

∣∣Xt = n, X̂t=n
]
Pr
[
Xt=n, X̂t=n

]
Pr
[
Et = 0

]
=

N−1∑
n=0

1

N
Pr
[
Et+1 = 0

∣∣Xt = n, X̂t = n
]
. (12)

We now calculate the conditional probability in (12). To this
end, we first note that the receiver has perfect knowledge of
the process Xt at time slot t. Therefore, the system will be in
synced state at time slot t+1, i.e., Et+1=0, if the state of the
process Xt does not change, which happens with probability q.
In addition, Et+1=0 when the state of the source changes to
one of the remaining N−1 states and the sample is successfully
decoded by the receiver. This event occurs with probability
(N − 1)pH1. Then (12) can be written as

P0,0 = q + (N−1)pH1. (13)

Similarly, one can obtain the transition probabilities Pi,j for
different values of i and j as follows

Pi,0 = 1(1 ⩽ i ⩽ N − 1)
(
p+ qH1 + (N − 2)pH1

)
.

P0,j = 1(1 ⩽ j ⩽ N − 1)

[
2
(
1− j

N

)(
pH0 + p

(
1− pαs

))]
.

Pi,i=


N−2i
N−i

(
pH0 + p

(
1− pαs

))
+ qH0 + q

(
1− pαs

)
,

1 ⩽ i ⩽ N−1
2

qH0 + q
(
1− pαs

)
, N

2 ⩽ i ⩽ N − 1

0, i ⩾ N.

P1,j =

{
2N−2j−1

N−1

(
pH0 + p

(
1− pαs

))
, 2 ⩽ j ⩽ N − 1,

0, j ⩾ N.

Pi,1 =

{
2N−2i−1

N−i

(
pH0 + p

(
1− pαs

))
, 2 ⩽ i ⩽ N − 1

0, i ⩾ N.

(14)

For i ⩾ 2, and j > i, Pi,j is given by

Pi,j=


N−j
N−i

(
pH0+p

(
1− pαs

))
, j+1⩽N⩽ i+j−1

2N−i−2j
N−i

(
pH0 + p

(
1− pαs

))
, N⩾ i+ j

0, N ⩽ j.

(15)

For j ⩾ 2, and i > j, Pi,j is given by

Pi,j =


pH0 + p

(
1− pαs

)
, i+ 1 ⩽ N ⩽ i+ j − 1

2N−j−2i
N−i

(
pH0 + p

(
1− pαs

))
, N ⩾ i+ j

0, N ⩽ i.

(16)

Using the transition probabilities given in subsection III-A, the
probability that the system is in an erroneous state, PE , or the
time-averaged reconstruction error can be derived by obtaining
the state stationary distributions of the transition matrix. As an
example, we calculate PE for N = 3

PE =
Φ

Φ+ P2,0 − P2,0P1,1 + P1,0P2,1
, (17)



where Φ = 1 + P2,1 − P1,1 − P0,0 − P0,0P2,1 + P0,0P1,1 +
P0,1P2,0 − P0,1P1,0.

Using (3), we define the variance of real-time reconstruction
error for an observation interval [1, T ] as

Var(Et)= lim
T→∞

1

T

T∑
t=1

1(Et ̸= 0)2−

(
lim

T→∞

1

T

T∑
t=1

1(Et ̸= 0)

)2

= lim
T→∞

1

T

T∑
t=1

1

(
Xt ̸= X̂t

)2
−

(
lim

T→∞

1

T

T∑
t=1

1

(
Xt ̸= X̂t

))2

= PE − P 2
E .

(18)

Remark. We can analytically prove that for a three-state
DTMC information source, the randomized stationary policy
has higher time-averaged reconstruction error for pαs < 1
compared to the semantics-aware policy, while it has lower
time-averaged reconstruction error in comparison with the
change-aware policy only if pαs ⩾ 2p

1−ps(1−2p) .

IV. TIMING-AWARE ERROR METRICS

In this section, we introduce two performance metrics of
interest. There are several real-time and/or mission-critical
applications where being consecutively in an erroneous state
for some time may lead to safety issues or could even have
catastrophic consequences for the system. For that, we propose
the consecutive error metric, which is defined as the number
of consecutive time slots that the system is in an erroneous
state1. This metric captures the temporal sequence/evolution of
errors, which can cumulatively have a serious impact on the
actuation performance. We also propose a companion metric,
coined cost of memory error, which considers the memory of
the actuation error when the system is not in a synced state
over several consecutive time slots and it can be utilized as a
penalty.

Our objective is to obtain the average consecutive error
and the cost of memory error as a means to evaluate the
performance. To this end, we describe the evolution of the
state of consecutive error by a Markov Chain as illustrated
in Fig. 2. In this DTMC model, the synced state is denoted
by 0, whereas {1, 2, · · · } denote time slots during which the
system is in an erroneous state. The stationary distribution of
this DTMC model can be obtained as

π0 =
1− pe,e

1 + p0,e − pe,e
, πn =

p0,e(1− pe,e)p
n−1
e,e

1 + p0,e − pe,e
, (19)

where π0 is the probability the system is in synced state, and
πn is the probability the system is in an erroneous state for
n consecutive time slots. Also, p0,e, and pe,e are defined as
p0,e=Pr

[
Et+1 ̸=0

∣∣Et= 0
]

and pe,e = Pr
[
Et+1 ̸= 0

∣∣Et ̸= 0
]
.

Using (19), the average consecutive error can be written as

C̄E =
∞∑
x=1

xπx =
p0,e

1 + p0,e − 2pe,e − p0,epe,e + p2e,e
. (20)

1A similar metric was defined first in [23] and then in [24].

· · ·210

1− p0,e
p0,e pe,e

1− pe,e

1− pe,e

pe,e

1− pe,e

Fig. 2. DTMC describing the state of the consecutive error.

We define the memory of actuation error as

CM(x) =

{
0, x = 0,

κx, x = 1, 2, · · · , n,
(21)

where n is finite. Using CM(x), we can define the cost of
memory error over n consecutive time slots as

C̄M
E =

n∑
x=1

CM(x)πx =
κp0,e(1− pe,e)

(
1− (κpe,e)

n
)(

1− κpe,e
)(
1 + p0,e − pe,e

) . (22)

V. COST OF ACTUATION ERROR

In this section, we study the significance of erroneous
actions at the receiver side and how different errors may
have diverse impact on the system performance. For that, we
consider the cost of actuation error. At time slot t, we denote
Ci,j the cost of error when the state of the source is i, i.e.,
Xt = i, and the state of the reconstructed source is j ̸= i, i.e.,
X̂t = j. We assume that Ci,j is fixed over time. Now, using
Ci,j , we calculate the average cost of actuation error for an
N -state DTMC model of the information source as

C̄A =

N−1∑
i=0

N−1∑
j=0
j ̸=i

Ci,jπi,j , (23)

where πi,j is the stationary distribution of the two-dimensional
DTMC describing the joint status of the reconstructed source
regarding the current state at the original source when the
system is in an erroneous state, i.e.,

(
Xt, X̂t

)
=
(
i, j
)
, i ̸=

j. In the following subsections, we consider a two- and a
three-state DTMC information source and obtain πi,j . Then,
one can utilize the same procedure to obtain πi,j for N -state
DTMC sources. To obtain πi,j , we first assume N = 2 and
obtain the state stationary πi,j using a two-dimensional DTMC
describing the joint status of the information source regarding
the current state at the original source, i.e., (Xt, X̂t) as follows

π0,0=
p+(1−p)pαsps

4p+2pαsps(1− 2p)
,π0,1=

p(1−pαsps)

4p+2pαsps(1− 2p)
,

π1,0=
p(1−pαsps)

4p+2pαsps(1− 2p)
,π1,1=

p+(1−p)pαsps

4p+2pαsps(1− 2p)
. (24)

For the change-aware policy, (24) can be written as

π0,0 = π1,1 =
1

4− 2ps
, π0,1 = π1,0 =

1− ps

4− 2ps
. (25)

Furthermore, for the semantics-aware policy, πi,j is given by

π0,0=π1,1=
p+ps−pps

4p+2ps−4pps
, π0,1=π1,0=

p(1−ps)

4p+2ps−4pps
. (26)



Similarly, πi,j for a three-state DTMC can be obtained as

πi,i=
p+pαsps−ppαsps

9p+3pαsps−9ppαsps
, ∀i ∈ {0, 1, 2}

πi,j=
p−ppαsps

9p+3pαsps−9ppαsps
, ∀i, j ∈ {0, 1, 2}, i ̸= j. (27)

For the change-aware policy, πi,j in (27) can be written as

πi,i =
1 + ps

9− 3ps
, ∀i ∈ {0, 1, 2}

πi,j =
1− ps

9− 3ps
, ∀i, j ∈ {0, 1, 2}, i ̸= j. (28)

For the semantics-aware policy, πi,j can be written as

πi,i =
p+ ps − pps

9p+ 3ps − 9pps
, ∀i ∈ {0, 1, 2}

πi,j =
p(1− ps)

9p+ 3ps − 9pps
, ∀i, j ∈ {0, 1, 2}, i ̸= j. (29)

VI. OPTIMIZATION PROBLEM

The objective here is to find an optimal randomized sta-
tionary policy to minimize the time-averaged reconstruction
error, while keeping the time-averaged sampling cost under
a given threshold. Let δ and δmax be strictly positive real
values, representing the cost of sampling at each attempted
transmission and the total average sampling cost, respectively.
Therefore, we formulate the optimization problem as

minimize
pαs

PE (30a)

subject to lim
T→∞

1

T

T∑
t=1

δ1{αs
t = 1} ⩽ δmax, (30b)

and we define η = δmax
δ ⩽ 1. The constraint in (30b) is the

time-averaged sampling cost which can be simplified as

pαs ⩽ η. (31)

To solve this optimization problem we consider a two-state
DTMC information source; this can be easily extended to an
N -state DTMC with N > 2. Using (24), the time-averaged
reconstruction error can be calculated as

PE = π0,1 + π1,0 =
2
(
p− ppαsps

)
4p+ 2pαsps − 4ppαsps

. (32)

Now, using (31) and (32), the optimization problem can be
formulated as follows

minimize
pαs

2
(
p− ppαsps

)
4p+ 2pαsps − 4ppαsps

(33a)

subject to pαs ⩽ η. (33b)

It can be readily shown that the objective function given
in (33a) is decreasing with pαs , that is, ∂PE

∂pαs
< 0 for all

values of p and ps. In other words, the objective function
has its minimum value when pαs is maximum. Now, using
the constraint given in (33b), the optimal value of sampling

probability, i.e., p∗αs , is η. Therefore, the minimum value of
the optimization problem, P ∗

E , is obtained as

P ∗
E =

2
(
p− ppsη

)
4p+ 2psη − 4ppsη

. (34)

Remark. In what follows, RS policy is the abbreviation for
randomized stationary policy, while RSC policy refers to the
randomized stationary policy in the constrained optimization
problem.

VII. SIMULATION RESULTS

In this section, we validate our analysis and assess the per-
formance of the sampling policies in terms of time-averaged
reconstruction error and cost of memory error 2. Simulation
results are obtained using 107 time slots and the parameters
are set to r = 30m, σ2 = −100dBm, α = 4 and Ptx = 1mW.
We also consider two SNR thresholds γ = 0 dB and 10 dB,
corresponding to ps = 0.922 and ps = 0.445, respectively.

The time-averaged reconstruction errors under the
semantics-aware, change-aware, uniform, and RS policies for
a three-state DTMC model describing the information source
are shown in Table I for different values of p, q, and ps. In
the uniform policy, a sample is acquired every 5 time slots.
The semantics-aware policy outperforms all other sampling
policies, especially when the source is rapidly changing.

In Table II, we show the minimum time-averaged recon-
struction error under a sampling cost constraint for ps = 0.5,
η = 0.5 and different values of p. We observe that the
semantics-aware policy outperforms the optimal RSC policy
for p ⩽ ηps

1−2η+2ηps
when the source is slowly varying3. Note

that the optimal values with red color for the semantics-aware,
change-aware, and RS policies are obtained for values of p and
pαs that violate the constraint requirement. This means that in
an unconstrained scenario, the performance of the optimal RS
and the semantics-aware sampling policies is the same, how-
ever in that case, the optimal solution for the RS is to sample
and transmit on every time slot, which results in the generation
of an excessive amount of samples. In sharp contrast, a key
result of this work is that when a constraint on the sampling
cost is imposed, which is a practically relevant scenario, the
proposed RS policy outperforms all other sampling policies for
a rapidly changing source. Fig. 3 shows the cost of memory
error for three-state DTMC information source as a function
of γ for n = 10, κ = 2, pαs = 0.7, and different values
of p and q. As seen in this figure, as γ increases, the cost of
memory error increases. This is because when γ increases, the
success probability ps decreases, thus a transmitted sample is
decoded with a lower probability. Note also that the semantics-
aware policy exhibits smaller cost of memory error compared
to all other policies. Thus, the semantics-aware policy does not
allow the system to operate in an erroneous state for several
consecutive time slots.

2In [25], the performance of sampling and transmission policies is investi-
gated in more detail with respect to a set of metrics.

3In the semantics-aware and the change-aware policies, the constraint of
the optimization problem can be obtained as p

2p+ps−2pps
⩽ η and p ⩽ η,

respectively.



TABLE I
TIME-AVERAGED RECONSTRUCTION ERROR FOR DIFFERENT VALUES OF

pαS = 0.7, pS , p AND q = 1− 2p.
p ps Semantics-aware Change-aware Uniform RS

0.1 0.922 0.016 0.075 0.322 0.094
0.1 0.445 0.181 0.434 0.485 0.266
0.3 0.922 0.047 0.075 0.529 0.220
0.3 0.445 0.352 0.434 0.601 0.443

TABLE II
MINIMUM OF RECONSTRUCTION ERROR FOR pS = 0.5, η = 0.5 AND

DIFFERENT VALUES OF p.
p Semantics-aware Change-aware Uniform RSC RS

0.1 0.083 0.333 0.299 0.187 0.083
0.3 0.187 0.333 0.417 0.321 0.187
0.5 0.250 0.333 0.450 0.375 0.250
0.7 0.291 0.333 0.464 0.404 0.291
0.9 0.321 0.333 0.468 0.422 0.321
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Fig. 3. Cost of memory error as a function of γ, for n = 10, κ = 2,
pαs = 0.7, and different values of p and q.

VIII. CONCLUSION

We considered a time-slotted communication system where
a device performs joint sampling and transmission over a
wireless channel to track the evolution of a Markov source. We
provided general expressions for the transition probabilities
and derived the time-averaged reconstruction error, the average
consecutive errors, and the cost of actuation error. Further-
more, we formulated an optimization problem to find the
optimal randomized stationary policy that minimizes the time-
averaged reconstruction error under a sampling cost constraint.
Our results show that the semantics-aware policy performs
the best except under a sampling cost constraint and when
the source is rapidly evolving, in which cases the proposed
randomized stationary policy is better.
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