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ABSTRACT Drug-resistant bacteria are a serious threat to human health as antibiotics 
are gradually losing their clinical efficacy. Comprehending the mechanism of action 
of antimicrobials and their resistance mechanisms plays a key role in developing new 
agents to fight antimicrobial resistance. The lipopeptide daptomycin is an antibiotic 
that selectively disrupts Gram-positive bacterial membranes, thereby showing slower 
resistance development than many classical drugs. Consequently, it is often used as a 
last resort antibiotic to preserve its use as one of the least potent antibiotics at our 
disposal. The mode of action of daptomycin has been debated but was recently found 
to involve the formation of a tripartite complex between undecaprenyl precursors of 
cell wall biosynthesis and the anionic phospholipid phosphatidylglycerol. BceAB-type 
ABC transporters are known to confer resistance to antimicrobial peptides that sequester 
some precursors of the peptidoglycan, such as the undecaprenyl pyrophosphate or lipid 
II. The expression of these transporters is upregulated by dedicated two-component 
regulatory systems in the presence of antimicrobial peptides that are recognized by 
the system. Here, we investigated whether daptomycin evades resistance mediated by 
the BceAB transporter from the bacterial pathogen Streptococcus pneumoniae. Although 
daptomycin can bind to the transporter, our data showed that the BceAB transporter 
does not mediate resistance to the drug and its expression is not induced in its presence. 
These findings show that the pioneering membrane-active daptomycin has the potential 
to escape the resistance mechanism mediated by BceAB-type transporters and confirm 
that the development of this class of compounds has promising clinical applications.

IMPORTANCE Antibiotic resistance is rising in all parts of the world. New resistance 
mechanisms are emerging and dangerously spreading, threatening our ability to treat 
common infectious diseases. Daptomycin is an antimicrobial peptide that is one of 
the last antibiotics approved for clinical use. Understanding the resistance mechanisms 
toward last-resort antibiotics such as daptomycin is critical for the success of future 
antimicrobial therapies. BceAB-type ABC transporters confer resistance to antimicrobial 
peptides that target precursors of cell-wall synthesis. In this study, we showed that 
the BceAB transporter from the human pathogen Streptococcus pneumoniae does not 
confer resistance to daptomycin, suggesting that this drug and other calcium-depend­
ent lipopeptide antibiotics have the potential to evade the action of this type of ABC 
transporters in other bacterial pathogens.

KEYWORDS antibiotic resistance, antimicrobial peptides, ABC transporters, two-com­
ponent regulatory systems, antibiotics, Streptococcus pneumoniae

S everal cyclic lipopeptide antibiotics have been discovered, but apart from polymyx­
ins and antifungal echinocandins, daptomycin is the only one to have reached 

clinical approval (1). Daptomycin is a cyclic antimicrobial lipopeptide that was originally 
isolated in the 1980s from the Gram-positive soil actinomycete Streptomyces roseosporus. 
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It was the first in class of a novel group of calcium-dependent lipopeptides with potent 
activity against Gram-positive bacteria (1). The commercialization of daptomycin 
is one of the last antibiotic classes introduced into the market (2). First approved in 
2003 for the treatment of complicated skin and skin-structure infections, daptomycin 
was subsequently approved in 2006 for the treatment of right-sided endocarditis and 
bacteremia (3). Remarkably, daptomycin is one of the few peptide antibiotics that can be 
administered systemically and is generally prescribed as a last-resort antimicrobial agent 
in treating severe infections due to Gram-positive pathogens. These include drug-resist­
ant bacteria such as methicillin-resistant and vancomycin-resistant Staphylococcus aureus 
(MRSA & VRSA) and vancomycin-resistant Enterococci.

Membrane-active antibiotics thus hold great promise for slower resistance develop­
ment and have recently attracted renewed interest in drug development. Daptomy­
cin’s mechanism of action has been highly debated and many controversial results 
accumulated over the years did not permit to clearly establish its molecular target. 
Recently, however, Ca2+-daptomycin was shown to specifically interact with undecap­
renyl precursors of cell walls in the presence of the anionic phospholipid phosphatidyl­
glycerol (PG), forming a tripartite complex (4). These precursors of cell wall synthesis 
include undecaprenyl-pyrophosphate (C55-PP or UPP), undecaprenyl-phosphate (C55-P 
or UP), and lipid II, which are also targeted by a number of other antimicrobial peptides 
such as bacitracin for UPP (5–9). Daptomycin-resistant phenotypes can be linked to 
alterations in the composition of the bacterial membrane and changes in cell wall 
biosynthesis (10–12). Consistent with the daptomycin mode of action, a common 
resistance mechanism involves the alteration of the cell surface charge leading to the 
repulsion of daptomycin molecules, or changes related to the bacterial phospholipid 
phosphatidylglycerol (PG). For instance, daptomycin resistance in S. aureus is classically 
associated with mutations in mprF, which encodes a bifunctional membrane protein that 
performs lysylation of PG, effectively masking PG on the membrane (3). Another known 
resistance mechanism involves the alteration of complex transcriptional regulatory 
networks involved in the cell wall stress response and membrane homeostasis. For 
instance, transcriptional changes of the walKR or vraSR two-component regulatory 
systems (TCS) have been linked to increased daptomycin resistance in S. aureus (13). 
It was recently suggested that BceAB-type ABC transporters, whose expressions are also 
regulated by dedicated TCS systems (14, 15), provide resistance via target protection 
by transiently releasing lipid II cycle intermediates from the inhibitory sequestration 
of antimicrobial peptides (16). While many Gram-positive bacteria contain up to six 
BceAB-type transporters with both distinct and overlapping substrate specificities (17), 
Streptococcus pneumoniae contains a single one that provides resistance to a large 
number of antimicrobial peptides targeting lipid II (18). In this study, we investigated 
whether this BceAB transporter confers resistance to daptomycin in S. pneumoniae. This 
bacterium causes each year over one million deaths in the world, mostly in children, 
elderly, and immunocompromised people. It usually colonizes the human nasopharynx 
but can sometimes invade distant sites, causing infections such as sinusitis and otitis 
media but also life-threatening invasive diseases such as pneumonia, meningitis, and 
septicemia (19, 20). As for most pathogenic bacteria, antibiotic resistance is an increasing 
issue in pneumococcal infections (21). In 2017, the WHO listed S. pneumoniae as one 
of the 12 priority targets for research and development of new antibiotics. Currently, 
this pathogen is the fourth leading pathogen for deaths associated with resistance, 
behind Escherichia coli, Staphylococcus aureus, and Klebsiella pneumoniae (21). Although 
daptomycin is strongly active against S. pneumoniae in vitro (22–24), it is inhibited 
by lung surfactant (25) and hence is not effective for the treatment of pneumonia 
(26, 27). However, daptomycin is highly effective in preventing S. pneumoniae-induced 
septic death (26) and in a rabbit model of meningitis (28). Hence, understanding the 
mechanism and molecular resistance determinants toward last-resort antibiotics such 
as daptomycin is important to optimize future antimicrobial therapies against bacterial 
pathogens, including Streptococcus pneumoniae.
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RESULTS

Analysis of daptomycin resistance mediated by the BceAB/TCS01 system in S. 
pneumoniae

In S. pneumoniae, the BceAB-type ABC transporter confers resistance to a number of 
antimicrobial peptides targeting the undecaprenyl-pyrophosphate or the lipid II (18). 
These molecules include bacitracin, nisin, actagardin, planosporicin, or NAI-802. We 
previously demonstrated that the expression of the bceAB genes is upregulated by TCS01 
in the presence of the antimicrobial peptides that are recognized by the system (Fig. 1). 
The ΔbceAB and Δtcs01 strains displayed the same increased sensitivity to the aforemen­
tioned AMPs as compared to the wild-type strain. Here, using a similar strategy, we 
investigated whether BceAB and/or TCS01 provide resistance to daptomycin. We used 
the broth microdilution method to determine the Minimum Inhibitory Concentration 
(MIC) of daptomycin for the wild-type and the two mutant strains ΔbceAB and Δtcs01. 
The experiments were first conducted with the R6 avirulent strain that lacks a polysac­
charide capsule and that is classically used for the investigation of pneumococcal biology 
(29). First, and as reported before (18), the deletion of bceAB and/or tcs01 genes did 
not impair bacterial growth in Todd-Hewitt broth supplemented with 0.5% yeast extract 
(THY) (Fig. 2). In the presence of increasing concentrations of daptomycin, the growth of 
the mutant and wild-type strains remained similar, and the same MIC was determined at 
4 µg/mL (Fig. 2 and Table 1). Similar results were observed with the R800 strain, which is 
a derivative of the R6 strain that contains a streptomycin-resistant mutation to facilitate 
the selection of the constructs of interest (30), although the MIC for daptomycin was 
8 µg/mL (Fig. 3 and Table 1). These results indicate that the absence of BceAB nor TCS01 
does not modulate pneumococcal sensitivity to daptomycin.

FIG 1 Functional module involving TCS01 and BceAB in Streptococcus pneumoniae. In the absence of antimicrobial peptides, our current understanding is mostly 

based on work performed on the homologous system in Bacillus subtilis. BceAB and the histidine kinase likely form a relatively stable complex (31), and the 

transporter maintains its cognate kinase in an inactive state in the absence of bacitracin (32). Recognition of antimicrobial peptides and ATP binding/hydrolysis 

by BceAB are necessary to trigger phosphorelay signaling through BceS (33) (HK01 in S. pneumoniae). This signaling involves the autophosphorylation of the 

histidine kinase, and the phosphoryl group is then passed on to a conserved aspartate residue of the response regulator. Our previous work showed that the 

BceAB/TCS01 from the S. pneumoniae module can recognize the presence of antimicrobial peptides targeting undecaprenylpyrophosphate (UPP) or lipid II. In the 

presence of antimicrobial peptides, the phosphorylated RR01 upregulates the expression of the operon containing the bceAB genes but does not regulate the 

tcs01 operon (18). The overexpression of BceAB mediates antimicrobial peptide resistance. Figure created with Biorender.com.
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Daptomycin does not significantly induce the expression of the bceAB genes

To analyze the expression of the BceAB transporter when S. pneumoniae is challenged 
by antimicrobial peptides, we previously engineered a R800 strain in which the gfp 
gene was fused to the 3′-end of the gene encoding the nucleotide-binding domain 
BceA at its endogenous chromosomal location. Importantly, the GFP fusion did not 
impair the functionality of BceAB since the engineered strain displayed comparable 
resistance for bacitracin, nisin, and actagardin as compared to the wild-type strain 
(18). We submitted S. pneumoniae cells to either bacitracin/actagardin as controls or 
daptomycin and analyzed the levels of GFP fluorescence in each sample after migration 
on a SDS-PAGE since GFP is not denatured in SDS-polyacrylamide gels run under certain 
conditions (34, 35). In contrast to bacitracin or actagardin treatment, subinhibitory 
concentrations of daptomycin failed to increase the expression of bceAB-gfp (Fig. 4). To 

FIG 2 Growth of wild-type and mutant R6 strains in the absence or presence of various concentrations of daptomycin. The daptomycin concentrations are 

indicated on top of the graphs. Cultures were performed in microplates, in the presence of 50 µg/mL of CaCl2. Data shown here are the average of technical 

duplicates. These experiments were confirmed with biological replicates shown in Table 1.
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complement this global analysis, we further quantified the production of BceAB-GFP at 
the single-cell level by fluorescence microscopy. While bacitracin substantially increased 
the expression of the BceAB transporter, as shown before (18), actagardin induced the 
overexpression of the transporter at much higher levels (Fig. 5). By contrast, various 
subinhibitory concentrations of daptomycin failed to upregulate the expression of the 
BceAB transporter.

FIG 3 Growth of wild-type and mutant R800 strains in the absence or presence of various concentrations of daptomycin. The daptomycin concentrations are 

indicated on top of the graphs. Cultures were performed in microplates, in the presence of 50 µg/mL of CaCl2. Data shown here are the average of technical 

duplicates. These experiments were confirmed with biological replicates shown in Table 1.

TABLE 1 Minimum inhibitory concentrations (μg/mL) of daptomycin against the R6 and R800 strainsa

MIC (µg/mL)       Fold change

Strain R6
  WT ΔbceAB Δtcs01 ΔbceAB Δtcs01
  4 4 4 1 1
Strain R800
  WT ΔbceAB Δhk01 ΔbceAB Δhk01
  8 8 8 1 1
aIn the R6 strain, the whole operon of the tcs01 was deleted (∆tcs01) while in the R800 strain, only the histidine 
kinase gene was deleted (∆hk01). Data correspond to four biological replicates, each of them with technical 
duplicates.
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Interaction of daptomycin with the BceAB transporter

We previously showed that we could express this transporter in E. coli (36) and purify it 
to homogeneity (18). After reconstitution in proteoliposomes, the transporter displays 
a substantial ATPase activity that can be stimulated up to twofold by antimicrobial 

FIG 4 Visualization of BceA-GFP fluorescence on the gel. The culture of the R800 bceA-gfp strain 

was performed until OD600nm = 0.3. Bacteria were incubated for 30 min in the presence of different 

concentrations of daptomycin (in the presence of CaCl2). Incubation in the presence of bacitracin 

(4 µg/mL) or the presence of actagardin (8 µg/mL) was used as positive control. Once treated, the 

bacterial pellets were loaded onto a 15% SDS-PAGE gel. In-gel fluorescence of BceA-GFP was scanned 

with a typhoon imager.

FIG 5 Analysis of BceAB-GFP expression in S. pneumoniae upon daptomycin treatment. These experiments were conducted in the R800 bceAB-gfp strains. 

Bacitracin (1 µg/mL) and actagardin (8 µg/mL) are used here as positive controls. Three daptomycin concentrations were tested: 2 µg/mL, 4 µg/mL, and 8 µg/mL. 

(A) Fluorescence microscopy of S. pneumoniae cells analyzing the drug-dependent expression of BceAB-GFP. Phase contrast (left panel), GFP fluorescent signal 

(middle panel), and overlays between phase contrast and GFP images (right panel) are shown. Enlargement is shown on the upper right corners of each panel. 

Scale bar, 1 µm. (B) Violin plots showing the distribution of cellular fluorescence mean intensities in individual cells corresponding to panel A. The boxes in the 

violin plots indicate the 25th to the 75th percentiles and the whiskers indicate the minimum and maximum value. The mean and the median are indicated with 

a dot and a line in the box, respectively. Significance was determined using Kruskal–Wallis and Dunn’s multiple comparison tests. A total of 11,185 cells were 

analyzed: actagardin n = 2,153; bacitracin n = 2,024; no drug n = 2,023; daptomycin 2 µg/mL n = 2,013, 4 µg/mL n = 1,673, 8 µg/mL n = 1,299.
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peptides to which it confers resistance to, while the other AMPs either do not affect or 
inhibit the ATPase activity (18). Since ATP and AMPs interact on opposite sides of the 
transporter, we used experimental conditions that permeabilize the lipid vesicles (10 mM 
Mg2+, 37°C). Such a strategy was successfully employed to measure the substrate-stimu­
lated ATPase activities of various ABC importers in proteoliposomes since their activities 
strongly depend on a substrate-binding protein interacting on the extracellular side 
of the membrane (37, 38). Here, we sought to determine whether the ATPase activity 
of the transporter is sensitive to daptomycin, which would indicate that daptomycin 
can bind to the transporter without inducing resistance. We observed that daptomycin 
could inhibit 30%–40% of the basal ATPase activity (Fig. 6), suggesting that the drug can 
indeed bind to the transporter without eliciting induction and resistance, as previously 
shown for ramoplanin in our previous study (18).

DISCUSSION

Whereas many Gram-positive bacteria contain up to six of these BceAB-type transporters 
with both distinct and overlapping substrate specificities (17), S. pneumoniae contains 
a single one that displays a relatively wide specificity. For instance, YvcRS (renamed 
PsdAB) confers resistance to nisin while BceAB allows resistance to actagardin and 
bacitracin in Bacillus subtilis. By contrast, BceAB in S. pneumoniae promotes resistance 
to the three AMPs. While BceAB-type transporters can recognize structurally unrelated 
AMPs, they can also display a clear selectivity between similar compounds; hence, the 
selectivity of individual BceAB-type transporters is hardly predictable. Nevertheless, the 
molecules that are recognized by these transporters mostly target precursors of cell 
wall biosynthesis, that is, UPP or lipid II. Because daptomycin likely targets undecaprenyl 
precursors in the presence of the anionic phospholipid PG, we investigated here whether 
this antibiotic is subject to AMP resistance mediated by the BceAB transporter in S. 
pneumoniae. Little is known about daptomycin resistance mediated by BceAB-type 
transporters and, to the best of our knowledge, such resistance was only reported 
with the transporter VraDEH from S. aureus (39). VraH is an additional small membrane 
protein that likely interacts with the BceAB transporter VraDE to modulate its substrate 

FIG 6 ATPase activities of the BceAB transporter reconstituted in proteoliposomes. Data are the average 

of three replicates and error bars indicate the standard deviation of the replicates. Statistical signifi­

cance was calculated by Student´s t-test with Welch’s correction between the conditions indicated with 

brackets. Statistically significant differences are indicated with ** (P ≤ 0.01).
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specificity, and only VraDEH provides high levels of daptomycin resistance. No homolog 
of VraH is present in Streptococus pneumoniae, which is consistent with our results. 
Indeed, we showed that the BceAB transporter of S. pneumoniae does not confer 
resistance to daptomycin and that this antibiotic is not able to induce the expression 
of the transporter. Possibly the binding of daptomycin to the large extracellular domain 
of BceAB fails to stimulate the ATPase activity of the transporter since a functional 
ATPase activity is essential for the upregulation of its genes and the establishment of 
resistance (33, 40). Although sensing/signaling and resistance are functionally intercon­
nected, there is not always a good correlation between the strength of induction and the 
rate of resistance conferred by the induced BceAB transporters. For instance, actagardin 
is the strongest inducer of the PsdRS-AB system in B. subtilis, but this system does 
not confer any detectable resistance (41). This observation suggests that sensing and 
target removal of AMPs are two separable functions of BceAB-like transporters (42). This 
assumption has been verified for BceAB in B. subtilis since several mutations could be 
identified that strongly affected one activity of the transporter but with only minor 
effects on the other (43). The fact that daptomycin does not trigger the expression 
of the BceAB transporter from S. pneumoniae was important to address because the 
use of daptomycin would not induce resistance toward other antimicrobial peptides or 
antibiotics. Combinations of antibiotics is an effective strategy to fight drug-resistant 
bacteria (44) but their optimization requires a deep understanding of the molecular 
mechanisms underpinning their action since their combinations and dosages have been 
largely determined empirically in clinical settings (45). It is also noteworthy that the 
signaling pathway initiated by BceAB involves the activation of TCS01 (Fig. 1), which 
strongly contributes to pneumococcal virulence in several infection models (46–48). 
Pioneering work has notably evidenced that disruption of tcs01 genes causes a dramatic 
attenuation of the growth (by 105 fold) in a mouse respiratory tract infection model 
(47). Therefore, daptomycin might be a last-resort drug of choice in the treatment of 
severe complications of pneumococcus diseases, including bacteremia and septicemia 
(26). The rise of antibiotic resistance is a global concern that threatens to undermine 
many aspects of modern medicine. Addressing this menace will require the discovery 
and development of new antibiotics that operate by unexploited modes of action and 
escape common resistance mechanisms. The calcium-dependent lipopeptide antibiotics 
are an important emerging class of natural products that provide a source of mechanis­
tically diverse antimicrobial agents (49). The fact that daptomycin is not subject to the 
antimicrobial peptide resistance mediated by the BceAB transporter from S. pneumoniae 
is promising since this drug may also escape the action of this type of ABC transporter 
in other bacterial pathogens. Investigation of these aspects and other daptomycin 
resistance mechanisms will certainly increase our global knowledge and contribute to 
the optimization of future treatments.

MATERIALS AND METHODS

Source of antimicrobial peptides

The AMPs were purchased from Sigma-Aldrich (Bacitracin), Adipogen (Actagardin), and 
TOKU-E (Daptomycin).

Bacterial strains and growth

Bacterial strains are from reference (18). Cells were grown at 37°C in a Todd-Hewitt 
medium supplemented with yeast extract (0.5%—THY), in an anaerobic condition, 
without agitation.

Research Article Microbiology Spectrum

February 2024  Volume 12  Issue 2 10.1128/spectrum.03638-23 8

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/s

pe
ct

ru
m

 o
n 

08
 F

eb
ru

ar
y 

20
24

 b
y 

19
3.

54
.1

10
.5

5.

https://doi.org/10.1128/spectrum.03638-23


MIC determination

The MIC of various antimicrobial peptides for R6 and R800 strains was determined 
by the classical twofold broth dilution method. Cells were first grown in THY 
medium at 37°C without agitation and in anaerobic conditions until  the absorbance 
reached approximately 0.3. Cells were then diluted to a final OD600 nm  = 0.002 in 
96-well plates containing 300 µL of THY medium with serial dilutions of antimicro­
bial peptides. Pneumococcal growth was monitored by a microplate reader (TECAN) 
at 37°C without agitation. The absorbance was followed at 600  nm every 15 min for 
15 h.

Microscopy

Pneumococcal cells were grown at 37°C until OD600nm = 0.3 in C + Y medium (50). 
Cells were incubated with or without antimicrobial peptide for 30 min at 37°C, without 
agitation. Cells were imaged with a Nikon TiE fitted with an Orca-CMOS Flash4 V2 camera 
with a 100×/1.45 numerical aperture objective Images were collected using NIS-Ele­
ments (Nikon) and analyzed using ImageJ (http://rsb.info.nih.gov/ij/) and the plugin 
MicrobeJ (51). For each cell in each panel, the mean fluorescence intensity (a.u.) was 
automatically extracted and plotted with MicrobeJ to generate violin plots. Statistical 
analysis was performed using Prism 9 (GraphPad software).

Typhoon imaging

The strains were cultured in 15 mL THY until OD600nm = 0.3. One mL of culture was 
incubated without or with antimicrobial peptides for 30 min at 37°C. The cultures 
(OD600nm ~ 0.6 for the untreated and daptomycin samples, and OD600nm ~ 0.44 for the 
actagardin and bacitracin and positive controls) were centrifuged for 15 min at 7,000 × g 
and the pellet was recovered in 20 µL of 1× Laemmli without SDS or β-mercaptoethanol. 
The samples were plated on an 18% SDS-PAGE and migrated in a cold chamber at 180 
V. The fluorescence of the gel was revealed using fluorescence imaging (TyphoonTM FLA 
9500).

Purification and reconstitution of the BceAB transporter

The transporter was expressed and purified as previously described (18). The proteolipo­
somes were essentially prepared as described for the ABC transporter BmrA (52). Eighty 
microliters of Escherichia coli phospholipids total extract (Avanti Polar lipids) at 25 mg/mL 
(water) was incubated under stirring at room temperature with 20 µL of 10% n-dodecyl-
β-D-maltoside (Anatrace). After 1 h, 100 µg of protein was added in a final volume of 
500 µL (50 mM HEPES/KOH, pH 8). After 45 min incubation, three successive additions 
of 40 mg Bio-Beads SM2 (Bio-Rad) were performed every hour. The proteoliposome 
solution was removed from the Biobeads and kept at 4°C.

ATPase assays

Since ATP and antimicrobial peptides interact on opposite sides of the transporter, we 
used experimental conditions that permeabilize the proteoliposomes (10 mM Mg2+, 
37°C), as originally described (37). Activities were measured in 700 µL total volume in 
buffer HEPES-KOH 50 mM pH 8, 10 mM MgCl2, 4 mM phosphoenolpyruvate, 32 µg/mL of 
lactate dehydrogenase, 60 µg/mL pyruvate kinase, and 5 mM ATP. The buffer was heated 
at 37°C for 5 min before adding the protein. Activities of 2 µg BceAB in proteoliposomes 
were then measured by absorbance at 340 nm for 20 min at 37°C.
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