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We introduce a digraph (directed graph) on bounded residuated lattice. We prove that the undirected graph associated to the digraph is connected and its diameter is at most 2. In addition, using the properties of the digraph, it is given some conditions under which a bounded residuated lattice is: M Valgebra; M T L-algebra. We prove that every dominating set of a strongly connected digraph constructed on a residuated lattice is an M T L-filters. We also prove that residuated lattices homomorphisms are digraphs homomorphisms.

Introduction

The data representation has all the time been an important matter in the field of Mathematics. Graph theory therefore appears as a solution to this problem. Graphs are mathematical structures used to model pairwise relations between objects. Graph theory has found its applications in engineering and computer science [Banasode and Umathar(2018), Singh(2014), Vinutha and Arathi(2015)], also in many daily life problems like wedding problem; time table problem [START_REF] Bondy | Graph theory with applications[END_REF] Bondy, Murty, et al.]. The connection between graph theory and algebra structure, with the hope that this will be mutually beneficial for both of them came from the Beck's work [Beck(1988)]. He introduced the notion of zero-divisor graph on commutative rings and used it to define coloring ring. On a commutative ring R, Anderson and Livingston [Anderson and Badawi(2008)] investigated the link between the ring-theoretic properties of R and the graph-theoretic properties of a simple graph Γ(R). Following the same trend, Lida et al. [Torkzadeh and Ahmadpanah(2014)] study the zero-divisor graph in residuated lattice. [START_REF] Gan | [END_REF]] introduced and study the zero-divisor graphs on MV-algebras and they succeeded to classify all MV-algebras of cardinality up to seven. In [START_REF] Kologani | Graphs based on hoop algebras[END_REF] Kologani, Borzooei, and Kim] the authors constructed implicative graph on a Hoop algebra, showed that it is connected and gave conditions under which it is a star or a tree. Most often, the connection between graphs and algebras structures consists in constructing graph from properties of algebra but it does not unveil the importance of these graphs for the algebraic structure. In this work we establish the connection between graph theory and residuated lattices. More precisely, we use the properties of the digraph derived from a residuated lattice to characterize it. To achieve that goal, the paper is organized as follows. In Section 2, we review some basic definitions and results about residuated lattices and graph theory. In Section 3, given a residuated lattice L, we introduce a digraph D(L). These digraphs are weakly connected and the associated undirected graph is connected with diameter at most 2. We prove that the implicative graph introduced by Kologani in [START_REF] Kologani | Graphs based on hoop algebras[END_REF] Kologani, Borzooei, and Kim] is a subgraph of the undirected graph associated to a digraph D(L); both of them constructed on the same residuated lattice. In Section 4 some properties of residuated lattices are studied based on the digraphs D(L). In fact exploiting the properties of the digraph constructed from a residuated lattice, we give conditions under which the residuated lattice is either an M V -algebra or an M T L-algebra. We prove that every dominating set of a strongly connected digraph D(L) of a bounded residuated lattice L is an M T L-filters. We also prove in section 5 that residuated lattices homomorphisms are digraphs homomorphisms.

Fundamentals on residuated lattices and graphs theory

In this section, we recall the definition of a bounded residuated lattice, Hoop algebra and give some useful related properties. For the better understanding of the work, we recall also some basics notions from graph theory. Definition 2.1. [START_REF] Galatos | Residuated lattices: an algebraic glimpse at substructural logics[END_REF] Galatos, Jipsen, Kowalski, and Ono] A bounded commutative residuated lattice is an algebraic structure L = (L; ∧, ∨, , →, 0, 1) defined on a non empty set L where: 1. (L; ∧, ∨, 0, 1) is a bounded lattice; 2. (L; , 1) is a commutative monoid with unit element 1;

3. for all x, y, z ∈ L, z ≤ x → y if and only if x z ≤ y.

From now on, all the residuated lattices will be considered to be commutative.

The following proposition provides some properties of bounded residuated lattices. These properties are very useful for calculus on residuated lattices Proposition 2.1. [START_REF] Galatos | Residuated lattices: an algebraic glimpse at substructural logics[END_REF] Galatos, Jipsen, Kowalski, and Ono] Let L be a bounded residuated lattice. The following conditions hold, for all x, y, z ∈ L:

1. x → x = 1, 1 → x = x; 2. x ≤ y =⇒ x → y = 1; 3. x → y ≤ (z → x) → (z → y); 4. x → y ≤ (x → z) → (y → z); 5. x → (y → z) = y → (x → z) = (x y) → z; 6. x (x → y) ≤ y, x ≤ y → x; 7. if x ≤ y then y → z ≤ x → z and z → x ≤ z → y; 8. x → y ≤ (x z) → (y z); 9. x (y → z) ≤ y → (x z) ≤ (x y) → (x z).
The residuated lattices are classified with respect to some properties that verify the adjoint pair of operators. The next definition gives some particular type of residuated lattices. Definition 2.2. [START_REF] Galatos | Residuated lattices: an algebraic glimpse at substructural logics[END_REF] Galatos, Jipsen, Kowalski, and Ono] A bounded residuated lattice L is called:

1. a Heyting algebra if x y = x ∧ y for all x, y ∈ L;

2. an M V -algebra if (x → y) → y = (y → x) → x for all x, y ∈ L; 3. a BL-algebra if x (x → y) = x ∧ y and (x → y) ∨ (y → x) = 1 for all x, y ∈ L; 4. an M T L-algebra if (x → y) ∨ (y → x) = 1 for all x, y ∈ L;
5. a Godel algebra if it is a BL-algebra for which x x = x for all x ∈ L . Definition 2.3. [START_REF] Kologani | Graphs based on hoop algebras[END_REF] Kologani, Borzooei, and Kim] A Hoop algebra is algebraic structure (A; , →, 1) where (A; , 1) is a commutative monoid with unit element 1 and for all x, y, z ∈ A the following hold:

1. x → x = 1; 2. (x y) → z = x → (y → z); 3. x (x → y) = y (y → x).
Definition 2.4. [START_REF] Piciu | Gődel filters in residuated lattices. Analele ştiinţifice ale Universităţii[END_REF] Piciu, Dan, and Dina] A non empty subset F of a bounded residuated lattice L is:

1. A deductive system if: (a) 1 ∈ F ; (b) (∀x, y ∈ L)(x ∧ x -→ y ∈ F =⇒ y ∈ F ). 2. A filter if: (a) (∀x, y ∈ F )(x ≤ y, x ∈ F =⇒ y ∈ F ); (b) For all x, y ∈ F , x y ∈ F .
In what follows we give some notions on graphs and directed graphs which can be found e.g, in [Bang-Jensen and Gutin(2008), Oystein(1962)]. An undirected graph G is an ordered pair (V (G), E(G)) consisting of a set V (G) of vertices(nodes) and a set E(G) of edges, disjoint from V (G), together with an incidence function ψ G (relation) that associates with each edge an unordered pair of elements of V (G) (not necessarily distinct). If e is an edge and u and v are vertices such that ψ G (e) = {u, v}, then e is said to join u and v, and the vertices u and v are called the ends of e. The ends of an edge are said to be incident with the edge, and vice versa. Two vertices which are incident with a common edge are adjacent, and two distinct adjacent vertices are neighbours. The set of neighbours of a vertex v in a graph is denoted by N (v). A graph is a star graph if it has a vertex which is adjacent to every other vertex and this is the only adjacency relation. A directed graph, also called digraph D is a graph in which the edges have a direction (orientation). A digraph consists of a non-empty set V (D) of elements called vertices and a set A(D) of ordered pairs of vertices called arcs. We call V (D) the vertex set and A(D) the arc set of D. For an arc (u, v), u is called the head and v the tail; we also say that u dominates v and v absorbs

u. If x is a vertex of D, then the ex-neighborhood of x is the set {z ∈ V (D) : (x, z) ∈ A(D)}, denoted by N + (x) and the in-neighborhood of x is the set {z ∈ V (D) : (z, x) ∈ A(D)}, denoted by N -(x). The out-degree d + D (x) of a vertex x is the number of vertices in N + (x).
A graph is said to be connected if, for every partition of its vertex set into two nonempty sets Xand Y , there is an edge with one end in X and one end in Y otherwise, the graph is disconnected. A graph is said to be simple if it has no loops or parallel edges. A complete graph is a simple graph in which any two vertices are adjacent. A null graph is a simple graph in which there are no edges(it consists only of isolated vertices). A path is a simple graph whose vertices can be arranged in a linear sequence in such a way that two vertices are adjacent if they are consecutive in the sequence and are nonadjacent otherwise. The length of a path is the number of its edges. A clique is path with the same ends.

A digraph is called weakly connected if for all vertices v and w, either (v, w) or (w, v) is ordered pair. A digraph is said to be strongly connected if for all vertices v and w, (v, w) and (w, v) are ordered pair. Strongly connected component of a digraph is set of vertices in which there is an arc between any pair of vertices. A loop is an arc whose head and tail coincide. Parallel (also called multiple) arcs are pairs of arcs with the same tail and the same head A tournament is a directed graph where every pair of distinct vertices are adjacent. A graph G is called a star graph if there is a vertex x in G such that every other vertex in G is connected to x and with no other vertex. A tree is a graph which is connected and acyclic (every path has different ends ). The distance d(a, b) between a pair of vertices a and b is the length of the shortest path between them. The diameter of a graph G denoted by diam(G) is defined as the Supremum of the distances between any pair of vertices vertices u and v are said to be n-branches reachable if there are n connected nodes between then. A graph H is called subgraph of the graph M if V (H) ⊆ V (M ) and the edges(arcs) of H are edges(arc) of M . Definition 2.5. [Blumenthal(2019)] Let D be a digraph. A set of vertices S to be dominating in a directed graph D if for every v ∈ V (G) -S there exists some v ∈ S such that (u, v) ∈ A(D)

Digraph on residuated lattices

In this section, we introduce a digraph on bounded residuated lattices and study some properties thereof.

Definition 3.1. Let L be a residuated lattice.

We called D(L) the digraph whose vertices are elements of L and for distinct elements x, y ∈ L, there is an arc from x to y if and only if x → y = y. then Id = (Id(Z 20 ); ∨, ∧, , →, I 0 , I 1 ) is a bounded residuated lattice. We give table of the implication. 
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The next proposition gives some first properties of the digraph D(L).

Proposition 3.1. Let D(L) be a digraph defined on a bounded residuated lattice L. The following hold:

1. If |L| = n, then |N + (1)| = |N -(1)| = n -1. 2. |N + (0)| = 1.
3. If there exist x, y ∈ L -{1} such that (x, y) is an arc, then D(L) has at least one clique.

4. If there exist x, y ∈ L -{1} such that (x, y) and (y, x) are arcs of the digraph, then D(L) has at least one strongly connected component.

Any subset of the vertices set containing 1 is a dominating set.

Proof: Let L be a bounded residuated lattice and D(L) be the digraph of L.

1. Assume that |L| = n. |N + (1)| = |N -(1)| = n -1 since for all x ∈ L{1}, 1 → x = x and x → 1 = 1.
2. By Proposition 2.1 (2), |N + (0)| = 1.

3. Let x, y ∈ L -{1} such that (x, y) is an arc, then the path 1xy1 form a clique.

4. Let x, y ∈ L -{1} such that there is an arc (x, y), then we have (1, x), (x, y), (y, 1). Hence {x, y, 1} is a strongly connected component.

5. This is straightforward from the definition.

Remark 3.1.

1. The Proposition 3.1 ( 5) also state that {1} is a minimal dominating set and {1} c is the maximal dominating set of the digraph D(L). [Oystein(1962)].

The dominating number of a graph is the cardinality of minimum dominating set

It was pointed out in [Vinutha and Arathi(2015)] that the problem of finding that number is NP-hard. This problem is solved for the case of digraph constructed on bounded residuated lattices meaning the algebraic structure from which this graph derived could suggest a simplest way of determining this number.

In the following proposition, we give some properties satisfied by the undirected graph G(L) obtain from the digraph D(L) such that {x, y} ∈ G(L) if (x, y) ∈ D(L) or (y, x) ∈ D(L) for a given residuated lattice L. Proposition 3.2. If L is a totally ordered bounded residuated lattice, then the following hold:

1. G(L) is a star.

G(L) is 1-branching reachable.

Proof: Let L be a totally ordered bounded residuated lattice and D(L) be the digraph of L.

1. For all x ∈ L -{1}, we have the edge {1, x}. Let y ∈ L if x ≤ y then x → y = 1 = y; if y ≤ x then y → x = 1 = x. So there is no edge between x and y for all x, y ∈ L -{1}. Therefore G(L) is a star.

2. For all x, y ∈ L, we have the edges {x, 1} and {y, 1}. This means that x and y are reachable from the node 1.

Theorem 3.1. Let L be a bounded residuated lattice, D(L) the digraph of L. G(L) is a connected graph and its diameter is at most 2.

Proof: Let x, y ∈ L. We have 1 → x = x thus 1 is connected to all the elements of L. Hence G(L) is connected. If D(L) is completed digraph then diam(G(L)) = 1. Else, there exist x, y ∈ L such that x = y, {x, y} / ∈ E(G(L)). For all x, y ∈ L such that x = y and {x, y} / ∈ E(G(L)), we have d(x, y) = 2 because {1, x} and {1, y} belong to E(G(L)). Hence diam(G(L)) = 2.
In the next theorem we provide a link between G(L) to the implicative graph from [START_REF] Kologani | Graphs based on hoop algebras[END_REF] Kologani, Borzooei, and Kim] constructed on Hoop algebras. In fact there are Hoop algebras which are bounded residuated lattices [START_REF] Borzooei | [END_REF]]. First of all, we recall the definition of an implicative graph of a Hoop algebra. Let (A; , →, 1) be a Hoop algebra. For any nonempty subset X of A, let r(X) := {a ∈ A|x → a = 1, ∀x ∈ X}. Definition 3.2. [START_REF] Kologani | Graphs based on hoop algebras[END_REF] Kologani, Borzooei, and Kim] An implicative graph of a Hoop algebra (A; , →, 1) denoted Ω(A) is a graph whose vertices are elements of A and for distinct x, y ∈ Ω(A), there is an edge connecting x and y if and if r({x, y}) = {1}.

Since some bounded residuated lattices are Hoop algebras (in the case the inequalities in Proposition 2.1 (9) are equalities), we can compare Ω(L) and G(L).

Theorem 3.2. Let L be a bounded residuated lattice. The implicative graph Ω(L) is a subgraph of the graph G(L).

Proof: Let x, y ∈ L such that {x, y} is an edge in the graph Ω(L). From the definition of implicative graph, we have r({x, y}) = {1}. This implies that x → 1 = 1 and y → 1 = 1. From Proposition 2.1 (6), we have y ≤ x → y, left to prove that x → y ≤ y. From Proposition 2.1 (9),

x → (y ⊗ 1) ≤ (x ⊗ y) → (x ⊗ 1) =⇒ x → y ≤ (x ⊗ y) → 1, f rom P roposition2.1(5) =⇒ x → y ≤ y → (x → 1) =⇒ x → y ≤ 1 → (y → 1) =⇒ (x → y) ≤ y.
Hence {x, y} is an edge of the graph G(L). Since x, y are taken arbitrarily in Ω(L), we conclude that Ω(L) is a subgraph of G(L). 
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The implicative graph Ω(L) and the G(L) graph are given below: 

Some properties of residuated lattice based on graphs

Here, we give necessary conditions on the digraph of a residuated lattice that makes this residuated lattice an M V -algebra or an M T L-algebra. Example 4.2. Let L be a bounded residuated lattice with L = {0, p, q, r, s, 1}. The operations and → on L are given by the tables: → 0 p q r s 1 0 1 1 1 1 1 1 p s 1 1 1 1 1 q p p 1 1 1 1 r 0 p s 1 s 1 s p q r 1 1 1 1 0 p q r s 1 0 p q r s 1 0 0 0 0 0 0 0 p 0 0 0 p 0 p q 0 0 q q q q r 0 p q r q r s 0 0 q q s s 1 0 p q r s 1 (L; ∨, ∧, , →, 0, 1) is a M T L-algebra but D(L) is not weakly connected. Because there is not arc between q and r since r → q = s and q → r = 1. 

Homomorphisms of a digraph D(L).

Let L 1 and L 2 be bounded residuated lattices, a map f : L 1 -→ L 2 is a homomorphism of residuated lattices if for all x, y ∈ L and α ∈ {∧, ∨, , →}, f (xαy) = f (x)αf (y) and f (0) = 0. Let D and D be any digraphs. A homomorphism from D to D , written as f : The next proposition provide some properties of the functor D. Recall that a functor is said to be an embedding provided that it is injective on morphisms; it is called a faithful provided that all the hom-set restrictions are injective see [START_REF] Adámek | Abstract and concrete categories[END_REF].

D → D is a mapping f : V (D) → V (D ) such that (f (u), f (v)) ∈ E(D ) whenever (u, v) ∈ E(D).
Proposition 5.4. The functor D is an embedding and faithful functor.

This follows from Proposition 5.1.

Example 3. 1 .

 1 Let consider the residuated lattice L with the universal set {0, a, b, c, d, e, f, 1}. Lattice ordering is such that 0 ≤ d ≤ c ≤ b ≤ a ≤ 1; 0 ≤ d ≤ e ≤ f ≤ a ≤ 1 and elements {b, f } and {c, e} are pairwise incomparable. The operations of implication and multiplication are given by the tables:

Figure 1 :

 1 Figure 1: Diraph D(L).

Figure 2 :

 2 Figure 2: D(Id).

Example 3. 3 .

 3 Let L be a residuated lattice such that L = {0, a, b, c, d, 1}, with 0 < a, b < c < 1; 0 < b < d < 1, a, b and respective c, d incomparable be a finite residuated lattice. Defined the operations and → on L by the following tables.

Figure 4 :

 4 Figure 3: Ω(L) graph.

Theorem 4. 1 .

 1 Figure 5: D(L) graph

Corollary 4. 1 .

 1 If L in Theorem 4.2 is a BL-algebra, then it is also a Heyting algebra.In the next proposition, we characterize the dominating set of a strongly connected digraph. Different types of filters of residuated lattice exist in the literature. The notion of M T L-filter was introduced by Zhem [Ma(2012)] but the definition given below comes from Picui[?].Definition 4.1. [?] A filter F is called an M T L-filter if (x → y) ∨ (x → y) ∈ F for all x, y ∈ F .Proposition 4.1. Let L be a residuated lattice. If D(L) is a strongly connected digraph. Then any dominating set of D(L) is an M T L-filter. Proof: Let A be a dominating set of a D(L) digraph. From Proposition 3.1, 1 ∈ A. Let x, y ∈ L such that x and x → y are elements of A . Then there exists a ∈ L such that (x → y) → a = a. Since y = x → y then y → a = a. Thus y ∈ A. Hence A is a filter. Furthermore, for all x, y ∈ A, x → y = y and y → x = x. Thus (x → y) ∨ (y → x) = y ∨ x and (y ∨ x) → 1 = 1. Hence (x → y) ∨ (y → x) ∈ A. Example 4.3. In the Example 3.3, the dominating set F = {1, d} is an M T L-filter.

Proposition 5. 1 .

 1 Let L and L be two residuated lattices, f : L -→ L be a map. If f is an homomorphism from L to L then it is a digraph homomorphism from D(L) to D(L ). Proof: Let L and L be residuated lattices. Assume that f : L -→ L is homomorphism of residuated lattices and (a, b) ∈ E(D(L)), for a, b ∈ L. Then a → b = b. a→ b = b =⇒ f (a → b) = f (b), ⇔ f (a) → f (b) = f (b), ⇔ (f (a), f (b)) ∈ E(D(L )). Example 5.1. Let L be a bounded residuated lattice with L = {0, a, b, 1} such that 0 ≤ a ≤ 1; 0 ≤ b ≤ 1; {a, b} are incomparable. Define the operations and → on L as follow endomorphism f : L → L such that f (0) = 0; f (a) = c; f (c) = a; f (1) = 1, is a digraph homomorphism.Remark 5.1. The correspondence D which sends every residuated lattice L to its digraph D(L) extends to a functor from the category RL of residuated lattices and homomorphisms between them to the category Drph of digraphs and homomorphisms between them. Using the functor D, we can study the class of residuated lattices associated with the same digraph. As first results, we have the following properties. Proposition 5.2. If a bounded residuated lattice L is such that D(L) is strongly connected, then L is the unique residuated lattice associated with D(L). Proposition 5.3. Let L be a bounded residuated lattice. There is not residuated lattice L such that L L and D(L ) = D(L). Proof: Assume L L and |L | = n , |L| = m with n < m. Since 1 is connected to all the elements of L and L , then N + (1) = n -1 in D(L ) and N + (1) = m -1 in D(L). This means E(D(L)) = E(D(L )), therefore D(L ) = D(L).