N
N

N

HAL

open science

A novel approach for Software Architecture Product
Line Engineering
Mohamed Lamine Kerdoudi, Tewfik Ziadi, Chouki Tibermacine, Salah Sadou

» To cite this version:

Mohamed Lamine Kerdoudi, Tewfik Ziadi, Chouki Tibermacine, Salah Sadou. A novel approach for
Software Architecture Product Line Engineering. ICSA 2023 - 20th IEEE International Conference

on Software Architecture, Mar 2023, L’Aquila, Italy. hal-04445840

HAL Id: hal-04445840
https://hal.science/hal-04445840
Submitted on 8 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-04445840
https://hal.archives-ouvertes.fr

A Novel Approach for Software Architecture Product Line Engineering

Mohamed Lamine Kerdoudi?, Tewfik Ziadi®, Chouki Tibermacine®, Salah Sadoud

“Computer Science Department University of Biskra, Algeria
L.Kerdoudi@univ-biskra.dz
bSorbonne Université CNRS, LIP6, F-75005 Paris, France
Tewfik.Ziadi @lip6.fr
¢LIRMM, CNRS and Montpellier University, France
Chouki.Tibermacine @ lirmm.fr
4IRISA, University of South Brittany, France
Salah.Sadou@irisa.fr

Abstract

A large software system exists in different forms, as different variants targeting different business needs and users. This kind of
systems is provided as a set of “independent” products and not as a “single-whole”. Developers use ad-hoc mechanisms to manage
variability. We defend a vision of software development where we consider an SPL architecture starting from which the architecture
of each variant can be derived before its implementation. Indeed, each derived variant can have its own life. In this paper, we propose
a novel approach for Software Architecture Product Line (SAPL) Engineering. It consists of, i) a generic process for recovering an
SAPL model which is a product line of “software architectures” from large-sized variants. ii) a forward-engineering process that
uses the recovered SAPL to derive new customized software architecture variants. The approach is firstly experimented on thirteen
Eclipse variants to create a new SAPL. Then, an intensive evaluation is conducted using an existing benchmark which is also based
on Eclipse IDE. Our results showed that we can accurately reconstruct such an SAPL and derive effectively pertinent variants. Our
study provides insights that recovering SAPL and then deriving software architectures offers good documentation to understand the

software before changing it.

Keywords: Software Architecture; SPLE; Software Architecture Product Line; BUT4Reuse; Software Architecture Recovery;

Component/Service-based Software

1. Introduction

Software Product Line Engineering (SPLE) aims to improve
reuse by focusing not on the development of a single software
product but on a family of related products. The systems in
a Software Product Line (SPL) approach are developed from
a common set of assets in a prescribed way, in contrast to be-
ing developed separately, from scratch, or in an ad-hoc manner.
This production economy makes the software product line ap-
proach attractive. SPLE considers the existence of a single ar-
chitecture model describing all the variants that implement dif-
ferent software products of a single product line. The particu-
larity of this “single” architecture model is that it includes what
is refereed as a variability model (also called feature model), in
which variability and commonality are explicitly specified us-
ing high level characteristics of the so-called features [[1]. These
are then mapped to components, which are organized according
to the identified features. Specific software variants can be de-
rived (generated) by choosing from the feature model a set of
desired features, then SPL tools choose and assemble the ap-
propriate components mapped to the selected features [1]].

During recent years, multiple approaches have been pro-

posed addressing SPL implementation, or software product deriva-

tion [1}2]]. However, there are many software systems that exist
as several “independent” software variants and not as a “single

Preprint submitted to Journal of Systems and Software

whole”. Indeed, large component software systems exist in dif-
ferent forms, as different software variants targeting different
business needs and users. For example, IDEs like Eclipse ex-
ist as several variants targeting different kinds of software en-
gineers [3]]. These software variants often use ad-hoc mecha-
nisms to manage variability and they do not take complete ben-
efits from the SPLE framework. For developers of new soft-
ware variants that are built upon existing ones, the presence of
a single model describing the architecture of the whole system
with an explicit specification of commonality and variability is
of great interest [4} 5]]. Indeed, this enables to see the common
part of the whole, on top of which new functionality can be
built, in addition to the different features they can use.

In this work, we defend a vision of software development
where we consider an SPL architecture starting from which the
software architecture of each software variant can be derived.
Indeed, each derived software variant can have its own life.
This life is regulated by evolution needs whose origin often de-
pends on the context which is specific to each software. From
the point of view of the responsible of the software mainte-
nance, the architecture is a crucial artifact for two reasons [|6}[7]]:
i) understand the software before making changes on it, and
ii) notify changes made on the software to keep its documen-
tation compliant with its implementation. However, the situa-

December 17, 2021

tion where the software variants do not have their own/proper
architecture raises problems during the maintenance stage of
a software on the two points mentioned above: i) referring
to a generic architecture to understand a given software is a
very difficult task. Knowing that comprehension is the most
costly activity during maintenance [8]], this will generate con-
siderable additional costs; ii) modifying a generic architecture,
to take into account the modifications made on one of its soft-
ware products, is a task that is not only difficult and error prone,
but also with unforeseeable consequences on the other software
products. Our vision is that the different software variants can
be created from the same SPL, but must have their standalone
software architectures to be able to evolve independently and
without constraints. However, it is commonly known that hav-
ing the software architecture of a system is better than dealing
with its source code [9].

Our approach for solving the two problems mentioned above
is that the product line must first produce the software archi-
tecture of a software product, before its corresponding soft-
ware artifact. This paper considers the challenge of analyzing
the source code and the software architectures of existing vari-
ants of component-based software systems to reverse-engineer
a software architecture to all the existing software variants. We
call this constructed architecture a Software Architecture Prod-
uct Line (SAPL) that represents the unique software architec-
ture that supports the software product line and common to all
the software variant members of the SPL.

Most of existing SPL extractive approaches focus only on
source code [[L0,[11]. They mainly recover feature models from
the source code and maintain traceability links between each
feature and its associated code fragments. In our case, we re-
cover SAPL including a special kind of feature models, where
features are related to architecture fragments. In addition, the
obtained SAPL enables thereby to derive a software architec-
ture for a given product rather than only showing traceability
links. Besides, in the literature, and to our best knowledge,
there are few works that combine in a complete process the ben-
efits of software architecture recovery techniques with SPL ex-
tractive approaches. Such works were analyzed and discussed
in a mapping study [12], where the authors state that it is un-
clear how software architecture techniques which have been
mostly developed for a single system can be utilized effectively
in an SPL context.

In this work, we propose a novel approach for Software Ar-
chitecture Product Line Engineering. The overall process of
our approach was initially introduced in our previous work [[13],
which is substantially extended in this paper according two main
dimensions: i) A more detailed and extended specification of
the two steps. In particular, we describe the SAPL-Forward
Engineering step in a new complete way, and ii) a new larger
experimentation. This approach consists of a complete process
that aims to exploit the benefits of software architecture recov-
ery techniques for single systems in the context of SPL. The
proposed approach is composed of two processes: i) a process

for SAPL-reverse-engineering that extends the BUT4Reuse frame-

work, which is considered as one of the most effective methods
for SPL-reverse-engineering [14}[15]. This framework was pro-

posed as a generic and extensible framework for SPL reverse-
engineering. For enabling extensibility, BUT4Reuse relies on
adapters for the different artifact types. These adapters are im-
plemented as the main components of the framework. Sev-
eral adapters covering a wide range of artifact types are al-
ready available [[16]]. In this work, we followed the extensibility
mechanisms of the BUT4Reuse Framework to implement a new
adapter for SAPL reverse-engineering from large component-
based software systems from a collection of their existing vari-
ants. The produced SAPL architectures are of great interest
since they enable to see the variability points in the software
variants as well as maintain the dependency between these vari-
ants [4] [5]]. ii) a forward engineering process that uses the re-
covered SAPL to derive new customized software architecture
variants. Several configurations can be created starting from
this SAPL. They represent an exhaustive enumeration of all
the possible valid configurations. In this process, the discov-
ered constraints from the bottom-up process are used to derive
valid and consistent variants. Thus, we followed the extensibil-
ity mechanisms of the FeatureIDE Framework [17] to develop
a software architecture composer that allows to select starting
from the SAPL a set of desired features (a possible configura-
tion) that meet a given set of user requirements and derive the
software architecture of the new variant.

The approach is firstly experimented on thirteen Eclipse
IDE variants to create a new SAPL. Then, an intensive eval-
uation is conducted using an existing benchmark which is also
based on Eclipse IDE. We built the architecture model of Eclipse
IDE SPL and derive new software architecture variants. The
results of the experiments showed that our approach can effec-
tively reconstruct such an SAPL and derive valid and pertinent
variants. One of the insights that can be provided based on our
study is that recovering SAPL is of great interest since it al-
lows to derive the software architectures of new variants before
their implementations. This is an important activity in software
maintenance and evolution since it offers good documentation
to understand the software product before changing it.

The remaining of the paper is organized as follows. In Sec-
tion[2] we expose background material about Software Product
Line Engineering and the extractive adoption of SPLs. We also
introduce an example which serves as a running example for
illustrating our proposals. Section [3| presents a general picture
of the proposed approach. In Section 4], we expose our SAPL-
Reverse Engineering process, the proposed SAPL Metamodel
for Component-Based Software Variants, and its instantiation
for the OSGi systems. Section [5] describes our SAPL-Forward
Engineering Process. We show the results of our experiments
in Section [} We finally discuss the related work in Section
before concluding the paper in Section 8]

2. Background & Problem Illustration

Many development settings of software systems start from a
software architecture, which is particularly necessary for large-
scale systems. Reusing software architectures across a set of
related systems allows to maximize the return on investment of

Domain
engineering

Domain analysis Domain implementation

{ Feature
\ model,

Reusable
assels,,
2

<
9

Prpduct derivation

Derivation

mechanism,
o B

o

Products

|
Feature model Reusable assets,

E-Shep
T S
= Calalius Daiment Sscuni Search

. 8 =0
Catalogue = Payment Security | Search
BankTransfer | CreditCard _ High Standard

//.\\ /Q \

N AY
BankTransfer CreditCard High | Standard

CreditCard = High

Figure 1: SPLE Process

time and effort. Indeed, we leverage the good practices (pat-
terns, styles, etc.) and thereby the quality attributes imple-
mented in this architecture. There are many ways this happens
in practice. Indeed, several systems or products resemble each
other more than they differ. This is an opportunity for reusing
the architecture across these similar products. Thus, SPL sim-
plify the creation of new members of a family of similar sys-
tems. We present in this section relevant concepts related to
Software Product Line Engineering.

2.1. Software Product Line Engineering

The Software Engineering Institute at Carnegie Mellon Uni-
versity defines a Software Product Line (SPL) as a set of sys-
tems sharing a common managed set of features satisfying the
specific needs of a particular market segment or mission and
that are developed from a common set of core assets in a pre-
scribed way [18]].

The Software Product Line Engineering paradigm separates
two processes that are illustrated in Figure [T| [I9]]: i) Domain
engineering: this process is responsible for establishing the
reusable software artifacts (assets) such as requirements, de-
sign, realisation, tests, etc. and thus for defining the commonal-
ity and the variability of the product line. Traceability links be-
tween these artifacts facilitate systematic and consistent reuse.
ii) Application engineering: this process is responsible for de-
riving product line applications from the software artifacts es-
tablished in domain engineering. It exploits the variability of
the product line and ensures the correct binding of the variabil-
ity according to the applications’ specific needs.

Features of the SPL are specified in what is called a vari-
ability model (a.k.a. feature model). Feature models (FM) are
widely used in SPLE to describe both variability and common-
ality in a family of product variants [20]. The graphical repre-
sentation of a feature model is a tree where each feature has a
parent feature except for the root feature. Each feature is de-
composed into one or more features. In order to derive a new
product variant, we need to select a set of features that meet the
rules (mandatory, optional, or, alternative) given by the feature
model. The selection of a feature implies that its parent is also

IDE Legend:
& Mandatory
d Optional a IDE
A Or Core
Core Team Android CPP A Alternative a [¥] Team
GIT
7 SVN
CPP > Core « V! Android
GIT ¥V SVN CPP

GIT | | SN Team A CPP => SUN

Constraints

(a) IDE Feature Model (b) Configuration

Figure 2: SPL Feature Model

included. Figure[2]shows an example of a feature model regard-
ing an illustrative and simplified example of IDE architecture.
The IDE FM consists of a mandatory feature Core, two possible
Team functionalities from which one or both could be selected,
two optional Android and CPP features. The concept of core
assets refers to the software artifact needed to implement the
SPL.

Furthermore, cross-tree constraints can be specified to de-
fine further relationships between features (not in parental rela-
tionship). These constraints are arbitrary propositional formu-
las which must be valued to true. Adding constraints between
features can provide more reliable definition of the variability
model [21]. Two kinds of cross-tree constraints can be used for
any pair of features, namely requires and excludes constraints.
For instance, in Figure [2] the following constraints are:

— “CPP” requires “Core”: which means, if CPP is included
then Core must also be included.

— “GIT” excludes “SVN”: which means, if GIT is included
then SVN should not be included, and vice versa.

2.2. Extractive Adoption of SPLs

Besides, SPL reverse-engineering approaches consider as
input a set of existing variants and propose a solution to con-
struct the SPL. This mainly includes the identification of the
features, the synthesis of the feature model and the extraction
of the reusable assets [14]. Many SPL extraction approaches
have been proposed in the last years. Assunc¢ao et al. [11} 22]
present a complete survey and a systematic mapping on these
existing works. Among them the BUT4Reuse framework that
we use in this paper.

BUT4Reuse [14, 23] framework is considered as one of the
most popular Frameworks that provides a unified environment
for mining software artifact variants. It is a generic and exten-
sible framework for extractive SPL adoption. It is generic be-
cause it can be used in different scenarios with product variants
of different software artifact types (e.g., source code in Java,
C, models, requirements, or plugin-based architectures). It is
extensible by allowing to add different concrete techniques or
algorithms for the relevant activities of extractive SPL adoption
(i.e., feature identification, feature location, mining feature con-
straints, extraction of reusable assets, feature model synthesis
and visualizations). Several validation studies of BUT4Reuse
using different software artifact types or different extensions
have already been published [21] [24] 25]].

2.3. Problem Illustration

For illustrating the problem, we use the systems that are de-
veloped under the OSGi framework such as Eclipse IDE. The
OSGi specification defines a component model and a frame-
work for creating highly modular Java systems [26]. The archi-
tecture of Eclipse is fully developed around the notion of plu-
gin conforming with the OSGi standard. Eclipse-based IDEs
run on top of Equinoxﬂ which is the reference implementa-
tion of the OSGi specification. These IDEs are a collection
of similar software products that share a set of software assets.
The Eclipse Foundation provides integrated development envi-
ronments (IDEs) targeting a variety of developers. It offers a
set of “software products” (following Eclipse terminology they
are called “packages”) where each one is a large-sized system
composed of hundreds to thousands of components, registering
and consuming hundreds of services. This complex structure
requires a considerable effort to understand all dependencies
when building a new Eclipse IDE software variant.

Currently, if a developer wants to create a customized Eclipse-
based IDE, she/he has to select one of the default productf]
(for instance, IDE for C/C++ Developers) and then manually
install new features which meet her/his requirements, before
adding new functionality to the IDE. Besides, for a given set of
Eclipse IDE variants, it is not easy to see the variability points
among them. Developers often use ad-hoc mechanisms to man-
age variability and they do not benefit from the SPLE frame-
work. It is difficult to create a new customized Eclipse IDE
variant that only contains a set of desired features (not all the
predefined features of an existing product). In fact, the devel-
opers should manually analyze and understand the components
of the Eclipse IDE variants to identify the common features and
then adding the desired features. This task is a cumbersome and
error-prone activity for a developer especially that in most cases
Eclipse IDEs are too large and complex. In addition, the differ-
ent Eclipse IDE variants that can be derived from the same SPL,
must be able to evolve independently and without constraints.

In this paper, we consider an SAPL as a model starting from
which the new customized software product variants can be de-
rived. We aim to adopt the SAPL approach in order to be able
to develop efficiently a new customized Eclipse IDE (Software
architecture and its implementation). Thus, this SAPL main-
tains the dependency between the different variants and makes
it possible to have specific documentation for each of the soft-
ware variants and therefore to be able to maintain and evolve
independently. In the following sections, we use Eclipse-based
IDEs to illustrate our solutions, but the proposed approach is
generic and is not related to OSGi or Eclipse.

3. Approach Overview

In this section, we provide an overview of our solution which
consists of a novel approach for software architecture product

"https://wuw.eclipse.org/equinox/
Zavailable here: https://www.eclipse.org/downloads/packages/
release

line engineering. Indeed, most of the existing extractive ap-
proaches in the literature focus on the feature model extraction
from the source code of a collection of software variants. As
we aforementioned in the introduction, there are few works that
combine the benefits of software architecture recovery tech-
niques with SPL extractive approaches. In our approach, we
reverse-engineer the SPL source code in order to extract the
SAPL where commonality and variability between fragment of
architectures are explicitly specified. The recovered SAPL in-
cludes a special kind of feature models, where features are re-
lated to architecture fragments. The produced SAPL is used
then to derive new software architecture variants. These archi-
tectures are important for the maintenance and evolution needs.
Thus, in this paper, we propose to revisit the SPL problem from
the software architecture (SA) perspective.

In this context, we identified five main challenges: i) How
to extract a software architecture from the source code of each
variant; ii) How to compare the software architecture variants
to identify the common parts and find then different features;
iii) How to construct the SAPL with an explicit specification
of the variability at an architectural level; iv) How to simplify
and reduce the complexity of the recovered architectures. The
extraction should be generic and extensible to support all these
different aspects; v) Once the SAPL is constructed, one remain-
ing challenge is related to the derivation of new variants. How
the SAPL can be used to derive new pertinent SA variants?

This paper proposes an approach to cover all these chal-
lenges. Our approach consists on a complete process that aims
to exploit the benefits of software architecture recovery tech-
niques for single systems in the context of SPL. It proceeds first
by analyzing the source code of existing software variants to ex-
tract the software architecture of each variant. The source code
of these software variants is created using opportunistic reuse
(extractive adoption of SPLs). Our approach supports also the
reconstruction of the architectures from products that already
belong to an SPL. After that, we reverse-engineer a software
architecture called SAPL following that is common to all these
software architecture variants. This SAPL is built with an ex-
plicit specification of commonality and variability. Second, this
SAPL can be used in a SPLE’s derivation process in order to de-
rive new customized variants (software architectures and their
implementation). The developer is involved to select which
features that represent a possible configuration for generating
a given variant. The overall process of our approach is illus-
trated in Figure[3] It is composed of two main sub-processes (in
Figure[3): i) A Bottom-Up Process for Recovering SAPL; this
sub-process starts first with the Reverse-Engineering of Soft-
ware Architectures from the source code of each software vari-
ant (we call this: “step 0”). Second, it reconstructs an SAPL for
these software architecture variants and ii) A SAPL Forward-
Engineering Process which allows to derive new variants (Soft-
ware Architecture Variants).

In the next sections, we describe in detail each sub-process.

https://www.eclipse.org/equinox/
https://www.eclipse.org/downloads/packages/release
https://www.eclipse.org/downloads/packages/release

Software Architecture Product Line

Bottom-Up Process for
Recovering SAPL

1
®© €
Software ArchitectureProduct Line BUTéReuse
Construction |
-y
Decomposition In :
i Block Identification M|_Depend
rchitecture i Identification
Elements and Feature Naming
) I
! Views 1
L ’
Multi-View SAPL Construction]

SAPL-Forward
Engineering Process

£ IDE
" A _ . - calure
Software Architecture Variants Derivation S e

Analyze and Select a set of deslred
Understand the SAPL Features J

Derive a new Software Check constraints and
Architecture Variant « add missing features

VE & &

Software Architecture Variants

1

—

Source Code of Software Variants

Reverse Engineering of
Software Architecture
Variants

e i -

Drived Software
Architecture Variants

Figure 3: Proposed Approach for SAPL Engineering

4. Bottom-Up Process for Recovering SAPL

Before presenting each step, we first describe the generic
meta-model that is supported by our approach.

4.1. SAPL Meta-model for Component-Based Software Archi-
tecture Variants

Figure [depicts our generic SAPL meta-model which is
used for creating an architecture for a set of component-based
software variants. To specify the variability model, we have
been inspired in the definition of this meta-model by the feature
meta-model in [27]. As mentioned above, a feature model is
defined with a set of features that can be related by constraints
and operators such as alternative, choice, optional and xor. So,
the left part of the meta-model of Figure [shows the intro-
duced concepts to specify feature models. We enriched it by
adding component-based architecture elements. An instance of
this meta-model serves as a feature model that represents the
variability in a family of software product variants and a com-
prehensive architecture (modules / components) that helps the
developer to understand the structure of the SPL features and
the relations between them.

As our meta-model is used for representing component-based
systems, it has been defined based on top of an abstract syntax
of a software component model. The latter is used to repre-
sent any kind of component-based system such as an OSGI or a
Spring-based one. A generally accepted definition of a software

E SAPLArchitecture

- [#Boolearl [
= graphTypeTree : Boolean ‘ String

1 CompositeElemen
features !
model 1. | = name : String
source 0.1 root
ox

5 Feature compor
=id : String -] ComponentElemen:
19rget 0.4 - name : String { Connector_[0.* (0.7
0.1 = selected : Boolean

|

= mandatory : Boolean] q provi
11

0. J constraints

5 Constraint
© text : String

& Require

 Operator,

B An%4 0Orl [Xor|
|

operator | = description : String 11

= abstract : Boolean -1 { source 0. 0.

8 chuindElemmq CiProvidedElement
|
0.%| out ulngEdge target |11
& Edge

Figure 4: SAPL Metamodel for Component-Based Software Architecture Vari-
ants

incomingEdge o

component is that it is a software unit with provided capabilities
and a set of requirements. The provided capabilities (Provid-
edElement in our meta-model) can include operations the com-
ponent is able to execute. The requirements (RequiredElement
in our meta-model) are needed by the component to produce
the provided capabilities.

4.2. Mapping of the SAPL Metamodel to OSGi Component Model

We show in this sub-section how to instantiate our generic
SAPL meta-model (in Figure[d) for a concrete component based
system which is related to the OSGi System. Figure 3] presents
the result of the instantiation for OSGi component model. In-

deed, a component in OSGi is known as a bundle or a plugin
(PluginElement in this meta-model) which packages a set of
Java types, resources and a manifest file. Plugin dependencies
are expressed as manifest headers that declare requirements and
capabilities. The “import-package” header is used to express a
plugin’s dependency upon packages that are exported by other
plugins. The “require-bundle” is used when a plugin requires
another plugin. The first plugin has access to all the exported
packages of the second. The manifest file declares also what are
the packages that are externally visible using “export-package”
(the remaining packages are all encapsulated). Furthermore,
the Java interfaces that are present in the exported and imported
packages are considered respectively as the plugin’s provided
and required interfaces (represented by ProvidedInterfaceEle-
ment and RequiredInterfaceElement).

Besides, the OSGi framework introduces a service-oriented
programming model which is a publish, find and bind model.
The registered services with the OSGi Service Registry are rep-
resented by the RegisteredServiceElement, while a consumed
service by a plugin is represented by a ConsumedServiceEle-
ment.

Services are not the only collaboration way between plug-
ins. Equinox provides a means of facilitating inter-plugin col-
laboration via Extension Registry. Plugins open themselves
for extension or configuration by declaring extension points
(ExtensionPointElement in this meta-model) and defining con-
tracts. Other plugins contribute by developing extensions (Ex-
tensionElement in this meta-model) using existing extension
points.

Our OSGi model allows to produce several software archi-
tecture with several points of view that represent different kinds
of plug-in’s capabilities and requirements. The supported ar-
chitecture points of view in our model are: interface, service,
package, and extension. Of course these points of view are not
orthogonal, there are intersections between each other. But, we
are convinced that the developers would not be able to under-
stand the whole software variant by analyzing all the points of
view together. Thanks to this meta-model, developers can pro-
gressively understand the software variant by analyzing each
architecture view separately. In addition, our framework can be
easily extended to support other points of view in order to cover
all the aspects that the developers need to know when they de-
velop a new variant.

4.3. Reverse-Engineering of Software Architecture Variants
The first step in our bottom-up process (step 0) uses reverse-
engineering techniques to extract a software architecture variant
from the source code of each software variants. For instance,
the reverse-engineering of software architectures from Eclipse
IDE variants is based on the analysis of the configuration files
and the source code of the different components (plugins).
Indeed, for recovering the SA variants, we analyze the Eclipse
artifacts as follows: i) for each Eclipse variant, we generate
a software architecture where the root element is a composi-
teElement with the name of this variant (for instance “Eclipse
for Java developers”). ii) for each plug-in in the Eclipse vari-
ant, we create a PluginElement with the plug-in’s character-

istics. iii) we parse the manifest file of each plug-in to iden-
tify the exported and imported package elements. iv) the pro-
vided and required interface elements are identified by analyz-
ing the Java source code and Bytecode (in case source code
is not available) in the exported and imported package fold-
ers. iv) the extension and extension-point elements are iden-
tified by parsing the “plugin.xml” files of each plug-in. v) fi-
nally, the programmatically registered and consumed services
are identified by parsing the source code and bytecode of each
class in the plug-in. We parse here the following statements:
<context>.registerService(..) and <context>.
getServiceReference(..) to capture the type of classes
that are instantiated and registered. In addition, the services that
are declared with the DS (Declarative Services) framework are
identified by parsing the “OSGI-INF/compone