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We investigate the matter-antimatter asymmetry within the framework of quantum field theory in
de Sitter spacetime. While conventional perspectives often attribute this asymmetry to dynamical
mechanisms such as CP violation in the early Universe, our analysis proposes a novel kinematical
origin. Our findings suggest that this asymmetry may be an observational anomaly, observable only
by local observers with causal access to a specific segment of the Universe. This unconventional
insight, while grounded in de Sitter cosmology (an idealized scenario for real-world cosmology), has
the potential to challenge established perspectives and drive a paradigm shift in our understanding
of the observed asymmetry in the distribution of matter and antimatter throughout the Universe.

In this letter, we systematically present our rationale in four distinct steps, maintaining a technical approach by
consistently employing natural units, where the fundamental constants c, ℏ are set equal to 1.

I. The d-dimensional de Sitter (dSd) spacetime

Recent observations, as reported, for instance, in Refs. [1–4], indicate an accelerating cosmic expansion, hinting
at the presence of a small yet nonvanishing positive cosmological constant. This implies that our Universe could
presently be entering a phase reminiscent of dSd=4, approaching a pure dSd=4 spacetime.

Furthermore, dSd spacetime and anti-dSd spacetime form a fundamental class of curved spacetimes on which
the quantum field theory (QFT) description of elementary systems (or free fields) can be developed with a robust
mathematical foundation. This aligns with Fronsdal’s 1965 notion [5]:

“A physical theory that treats spacetime as Minkowskian flat must be obtainable as a well-defined limit

of a more general physical theory, for which the assumption of flatness is not essential.”

The dSd and anti-dSd spacetimes are indeed maximally symmetric solutions to the vacuum Einstein equations, cor-
responding to positive and negative cosmological constants, respectively. In this context, Einstein-Poincaré relativity
can be viewed as the idealized null-curvature limit of both dSd and anti-dSd relativities. For further details, see Refs.
[6, 7] and the references therein.

Topologically, dSd spacetime examined in this study is homeomorphic to R1×Sd−1. Geometrically, the most expos-
itory depiction of dSd spacetime is as a one-sheeted hyperboloid embedded within a (1 + d)-dimensional Minkowski
spacetime R1+d:

dSd =
{
x ∈ R1+d ; (x)2 = x · x = ηαβx

αxβ = −H−2
}
, (1)

where α, β = 0, 1, . . . , d, ηαβ = diag(1,−1, . . . ,−1), and H is a positive constant. In the real four-dimensional case

(dSd=4), H corresponds to the Hubble constant.
The dSd (relativity) group is SO0(1, d) — indicating the connected subgroup of O(1, d) — or any of its covering

groups. A recognizable manifestation of the corresponding Lie algebra is attained through the linear span of the
Killing vectors:

Kαβ = xα∂β − xβ∂α . (2)
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II. The necessity of analyticity within the complexified dSd manifold (dS
(C)
d )

The entire argument we present in this letter stems from the imperative need for analyticity within the complexified
dSd manifold (dSCd ):

dS
(C)
d =

{
z = x+ iy ∈ C1+d ; (z)2 = ηαβz

αzβ = −H−2

or equivalently ; (x)2 − (y)2 = −H−2, x · y = 0
}
. (3)

This analyticity requirement is crucial for describing elementary systems in the global structure of dSd through QFT.
A foundational argument strongly supports this necessity. Expanding beyond the familiar flat Minkowski spacetime

to dSd introduces a fundamental challenge to the QFT description of elementary systems. The challenge lies in the
absence of a well-defined spectral condition [8]. Regardless of the chosen QFT approach to field quantization on dSd
spacetime, formulating requirements for locality (microcausality) and covariance is a relatively straightforward task.
However, establishing any condition on the spectrum of the “energy” operator proves to be a formidable challenge.
Strictly speaking, in dSd spacetime, granted that no globally timelike Killing vector exists, neither time nor energy
can be globally defined. This inherent ambiguity results in the emergence of numerous inequivalent QFTs (vacuum
states) for a single field model on dSd spacetime. Each of these theories is typically linked to a specific choice of the
time coordinate, leading to associated frequency splitting.

Interestingly, within the Minkowskian framework, a notable observation highlights a direct link between the charac-
teristics of analytic continuation in complexified spacetime and the spectral property of the model under consideration.
Specifically, in the context of (1 + d)-dimensional Minkowski spacetime R1+d, the spectral property can be expressed
as follows: for each n > 1, the Wightman n-point function corresponds to the boundary value, in the distribution
sense, of a function that is holomorphic within the tube T+(n) defined as:

T+(n) =
{
(z1, . . . , zn) ∈ Cn(1+d) ; Im(zj+1 − zj) ∈ V +

}
, (4)

where 1 ⩽ j ⩽ n− 1 and V ± =
{
y ∈ R1+d ; (y)2 > 0, y0 ≷ 0

}
.

In the context of dSd spacetime (embedded in R1+d), a natural alternative to this property is to propose that the
Wightman n-point function Wn(x1, . . . , xn) acts as the boundary value, in the distributional sense, for a function that
is holomorphic within:

T +(n) = T+(n) ∩
[
dS

(C)
d

]n
. (5)

As a matter of fact, studies by Bros et al. [9, 10] have shown that T +(n) forms a domain and a tuboid — bounded by
reals — in a manner that maintains the relevance of the concept of the “distribution boundary value of a holomorphic
function from this domain”. Consequently, it becomes feasible to impose:

• Weak spectral condition. For each n > 1, the Wightman n-point function Wn(x1, . . . , xn) is derived from the
distributional boundary value of a function Wn(z1, . . . , zn), which is holomorphic within the domain T +(n).

Focusing on a generalized free dSd field, which represents the simplest scenario in this context, the assertion of normal
analyticity can be explicitly expressed as follows:

• The corresponding two-point function W2(x1, x2) arises as the distributional boundary value of a function
W2(z1, z2) that is analytically defined within the tuboid domain T +(2) given by:

T +(2) =
{
(z1, z2) ; z1 ∈ T −, z2 ∈ T +

}
, (6)

where T ± =
{
Rd+1 + iV ±} ∩ dS

(C)
d . Note that T ± are referred to as the forward and backward tubes of dS

(C)
d ,

respectively.

This elegant resolution effectively circumvents all ambiguities in dSd QFTs, which arise from the absence of a
genuine spectral condition in dSd spacetime [9, 10]. It leads to the derivation of “vacua” that, despite exhibiting
thermal properties, serve as precise analogs of Minkowski vacuum representations. The latter emerges as the limit of
the former when the curvature tends to zero.

For additional arguments supporting the necessity of analyticity in the complexified dSd manifold, readers are
referred to Refs. [6, 11] and the references therein.
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III. The dSd static patch and the analyticity requirement

Following the approach outlined in Ref. [12], let us adopt the viewpoint of a local observer (on dSd) in motion
along the geodesic g(x•) that traverses through the point x• = (0, . . . , 0, xd = H−1):

g(x•) =
{
x = x(t) ; x0 = H−1 sinhHt, x = (x1, . . . , xd−1) = 0, xd = H−1 coshHt, t ∈ R

}
. (7)

Note that the chosen point x• is located in the (x0, xd)-plane. It is also worth noting that the choice of this point is
entirely arbitrary, given the SO0(1, d) symmetry of dSd.

FIG. 1: The static patch of dSd, linked with an observer traveling along the geodesic g(x•).

The set of all “events” in dSd that can be linked to the observer via the reception and emission of light signals is
given by:

Dg(x•)
=

{
x ∈ dSd ; xd > |x0|

}
. (8)

This domain is delineated by two distinct boundaries:

B±
g(x•)

=
{
x ∈ dSd ; x0 = ±xd, xd > 0

}
. (9)

These boundaries are respectively termed the “future horizon” and “past horizon” of the observer following the
geodesic g(x•).

The parameter t in expression (7) signifies the proper time of the observer moving along the geodesic g(x•).
This enables us to designate the “time-translation group linked with g(x•)” as the one-parameter subgroup Tg(x•)

(isomorphic to SO0(1, 1)) of the dSd group SO0(1, d). The Tg(x•)
’s transformations involve hyperbolic rotations

parallel to the (x0, xd)-plane. To characterize how these transformations operate on the domain Dg(x•)
, let x = x(t, x̃)

represent an arbitrary point within this domain:

x(t, x̃) =


x0 =

√
H−2 − (x̃)2 sinhHt ,

x̃ = (x1, . . . , xd−1) ,

xd =
√
H−2 − (x̃)2 coshHt , t ∈ R ,

(10)
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while (x̃)2 = (x1)2 + . . .+ (xd−1)2 < H−2. The operation of Tg(x•)
on x(t, x̃) is expressed as follows:

Tg(x•)
(τ) ⋄ x(t, x̃) = x(t+ τ, x̃) = xτ , τ ∈ R . (11)

It defines a group of isometric automorphisms within the domain Dg(x•)
. The associated orbits gx̃(x•) depict separate

hyperbolic branches in Dg(x•)
. These hyperbolas lie in two-dimensional plane sections that are parallel to the (x0, xd)-

plane. Within these orbits, the singular one that defines a geodesic of dSd is g(x•) = gx̃=0(x•). Hence, understanding
the group Tg(x•)

as time translation is particularly applicable to observers in motion on or near g(x•), with the

assumption that the proximity is significantly smaller than the dSd radius of curvature.
Now, let us evaluate the depicted scenario by acknowledging the necessity of analyticity within the complexified

dSd manifold (dS
(C)
d ). The complex orbits of Tg(x•)

are denoted as:

g
(C)
x̃ (x•) =

{
zτ = z(t+ τ, x̃), τ ∈ C

}
. (12)

Note that all nonreal points linked to the complex orbits g
(C)
x̃ (x•) reside in T ±, the very domains of analyticity

required for the QFT description of elementary systems in the global structure of dSd spacetime (see Eq. (6)). In
this context, due to the analytic nature of dSd QFTs, a notable connection emerges between the domain Dg(x•)

and

its corresponding mirror region, as shown in FIG. 1:

Dg(−x•)
=

{
x = (x0, x̃, xd) ∈ dSd ; (−x0, x̃,−xd) ∈ Dg(x•)

}
, (13)

To see the point, with the coordinate system (10) in consideration, setting Im(τ) = π in (12) suffices. For a given
dSd elementary system, specifically a free quantum field in the global structure of dSd spacetime, this connection
inherently establishes a significant and highly nontrivial link between the physical interpretation of the elementary
system in Dg(x•)

and the mirror region Dg(−x•)
. Refer to Ref. [10] for a comprehensive exploration of this connection.

Here, it is crucial to highlight that the intrinsic time variable pertinent to an observer moving along the geodesic
g(−x•) (within the mirror region Dg(−x•)

) is equivalent to −t. This arises from the fact that the associated time-

translation group Tg(−x•)
validates the relationship Tg(−x•)

(τ) = Tg(x•)
(−τ); it is noteworthy that Tg(−x•)

is derived

from Tg(x•)
, for instance, through conjugation in the form Tg(−x•)

= RTg(x•)
R−1, where R represents a rotation of

angle π in a plane orthogonal to the x0-axis. This characteristic serves as yet another indication of the fact that dSd
spacetime lacks a globally timelike Killing vector.

This pivotal property forms the cornerstone of our reasoning, as elaborated further in the subsequent sections.

IV. Discussion: matter-antimatter asymmetry?

So far, in the initial two steps, we have articulated the foundational assumptions guiding our reasoning. Firstly,
we assumed that our Universe presently reflects a phase akin to dSd=4, converging toward a pure dSd=4 spacetime
— a proposition bolstered by observational data [1–4]. Secondly, we emphasized the imperative of analyticity within

the complexified dSd manifold (dS
(C)
d ), underscored by the inherent requirement for a natural substitution of the

spectral condition. This necessity, in turn, facilitates a coherent QFT depiction of elementary systems within the
global structure of dSd spacetime [6, 8–11]. Building on these foundational assumptions, we demonstrated in the third
step that for a given dSd elementary system, specifically a free quantum field in the global structure of dSd spacetime,
the physical interpretation in a region observable by a local observer (Dg(x•)

, with proper time t) is intricately linked

to its interpretation in the corresponding mirror region (Dg(−x•)
, with proper time −t).

With these steps established, we now move on to the discussion:

1. Consider an elementary system, defined as a free quantum field, within the global structure of dSd spacetime.
Due to the absence of a preferred direction of time in dSd spacetime, in the sense given by Feynman-Stueckelberg1,
there is no inherent preference for interpreting this elementary system as matter over antimatter, or vice versa,
within the global structure of dSd spacetime.

1 The Feynman-Stueckelberg interpretation proposes that antimatter and antiparticles behave like ordinary particles but travel backward
in time.
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2. Before observation, therefore, the elementary system exhibits a dual nature, existing simultaneously as both
matter and antimatter. However, once a local observer fixes a time direction (proper time t), this act breaks
the time-reversal symmetry within the observable region of dSd spacetime (i.e., Dg(x•)

). Consequently, within

this causal domain accessible to the observer, the elementary system is identified as matter. In this context, the
origin of the current observable small amount of antimatter can be attributed to specific exceptions in Standard
Model interactions where baryon number conservation is broken (see Ref. [13]).

3. This choice, however, does not disrupt the inherent symmetry between matter and antimatter in the global
structure of dSd spacetime. Indeed, according to the Feynman-Stueckelberg interpretation and the intrinsic
connection established in the third step, in the mirror region of the observable segment (i.e., Dg(−x•)

, with

the reversed direction of proper time −t), the very same elementary system is interpreted as antimatter by the
very same observer, thus preserving the system’s dual nature as both matter and antimatter simultaneously.
Note that the two mirror regions (Dg(x•)

and Dg(−x•)
) are causally disconnected but for infinitesimally small

curvature radius values (H → ∞), characteristic of the inflationary epoch, quantum tunneling effects might
occur between these regions.

This discussion underscores how even a small, nonzero cosmological constant can have significant implications for
our understanding of elementary systems. However, these observations do not apply in flat Minkowski spacetime,
where the cosmological constant is zero.

In conclusion, it is important to recognize that the cosmological model considered in this letter, specifically the
dSd=4 Universe, represents an idealized scenario for real-world cosmology. While the cosmological constant appears
consistent with supernova data, indicating a dSd=4-like expansion, potential evidence of dynamical dark energy (pos-
sibly suggested by DESI data) could challenge this exact dSd=4 behavior. Moreover, although our Universe may
have undergone accelerated expansion during its early stages (such as during inflation), this expansion likely does not
precisely match the dSd=4 form.

To address these issues, it is crucial to extend this study to a less idealized cosmological scenario, specifically
the Friedmann-Robertson-Walker (FRW) spacetime, which asymptotically approximates a dSd=4 spacetime. This
approach will provide more concrete and robust conclusions, ensuring that our findings are applicable within a broader
and more realistic context. Despite the mathematical complexities involved, we anticipate that our key results will
extend beyond the specific case of dSd=4.

Furthermore, a deeper investigation into the matter-antimatter (a)symmetry within the context of dSd, particularly
through the lens of quantum electrodynamics in de Sitter space-time, would be a natural and valuable continuation
of this work, building upon previous studies [14, 15].
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