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The widely held expectation of equal matter and antimatter production during the Big Bang
sharply contrasts with the observable Universe’s current predominant composition of matter. This
persistent asymmetry poses an intriguing puzzle and remains a paramount challenge in modern
physics. In this study, we delve into the enigma of antimatter, focusing on the matter-antimatter
asymmetry within the context of de Sitter spacetime as the classical background. De Sitter space-
time, representing a scenario where the cosmological constant governs, leading to accelerated expan-
sion, emerges as a pivotal model essential for comprehending the dynamics of the present Universe.
Our analysis, rooted in a fundamental requirement of the quantum field theory description of de
Sitterian elementary systems — specifically, the analyticity requirement in the complexified de Sit-
ter manifold, offers a novel perspective. It suggests that the matter-antimatter asymmetry is an
observational anomaly discernible exclusively by local observers with causal access to a specific seg-
ment of de Sitter spacetime. In contrast to local observations, the global structure of this spacetime
maintains a perfect matter-antimatter symmetry. This unconventional insight challenges established
perspectives, ushering in a paradigm shift in our understanding of the observed asymmetry in the
distribution of matter and antimatter throughout the Universe.

In this letter, we systematically present our rationale
in four distinct steps, maintaining a technical approach
by consistently employing natural units, where the fun-
damental constants c, ℏ are set equal to 1.

I. The d-dimensional de Sitter (dSd) spacetime

Recent observations, as reported, for instance, in Refs.
[1–4], indicate an accelerating cosmic expansion, hinting
at the presence of a small yet nonvanishing positive cos-
mological constant. This implies that our Universe could
presently be entering a phase reminiscent of dSd=4, ap-
proaching a pure dSd=4 spacetime.
The dSd spacetime represents the maximally symmet-

ric solution to the vacuum Einstein’s equations with a
positive cosmological constant. Topologically, it is de-
fined by R1×Sd−1. Geometrically, the most intuitive de-
piction of dSd spacetime is as a one-sheeted hyperboloid
embedded within a (1+d)-dimensional Minkowski space-
time R1+d:

dSd =
{
x ∈ R1+d ; (x)2 = x · x = ηαβx

αxβ = −H−2
}
,

(1)

where α, β = 0, 1, . . . , d, ηαβ = diag(1,−1, . . . ,−1), and
H stands for the Hubble constant.

The dSd (relativity) group is SO0(1, d), indicating the
connected subgroup of O(1, d), or any of its covering
groups. A recognizable manifestation of the correspond-
ing Lie algebra is attained through the linear span of the
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Killing vectors:

Kαβ = xα∂β − xβ∂α . (2)

II. The necessity of analyticity within the

complexified dSd manifold (dS
(C)
d )

The entire argument we present in this letter directly
emerges from the imperative need for analyticity require-

ment within the complexified dSd manifold (dS
(C)
d ), par-

ticularly in the context of describing elementary systems
in dSd through quantum field theory (QFT):

dS
(C)
d =

{
z = x+ iy ∈ C1+d ; (z)2 = ηαβz

αzβ = −H−2

or equivalently ; (x)2 − (y)2 = −H−2, x · y = 0
}
. (3)

A foundational argument strongly supports this ne-
cessity. Expanding beyond the familiar flat Minkowski
spacetime to dSd introduces a fundamental challenge to
the QFT description of elementary systems. The chal-
lenge lies in the absence of a well-defined spectral condi-
tion [5]. Regardless of the chosen QFT approach to field
quantization on dSd spacetime, formulating requirements
for locality (microcausality) and covariance is a relatively
straightforward task. However, establishing any condi-
tion on the spectrum of the “energy” operator proves
to be a formidable challenge. Strictly speaking, in dSd
spacetime, granted that no globally timelike Killing vec-
tor exists, neither time nor energy can be globally de-
fined. This inherent ambiguity results in the emergence
of numerous inequivalent QFTs (vacuum states) for a
single field model on dSd spacetime. Each of these the-
ories is typically linked to a specific choice of the time
coordinate, leading to associated frequency splitting.
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Interestingly, within the Minkowskian framework, a
notable observation highlights a direct link between the
characteristics of analytic continuation in complexified
spacetime and the spectral property of the model un-
der consideration. Specifically, in the context of (1 + d)-
dimensional Minkowski spacetime R1+d, the spectral
property can be expressed as follows: for each n > 1, the
Wightman n-point function corresponds to the bound-
ary value, in the distribution sense, of a function that is
holomorphic within the tube T+(n) defined as:

T+(n) =
{
(z1, . . . , zn) ∈ Cn(1+d) ; Im(zj+1 − zj) ∈ V +

}
,

(4)

where 1 ⩽ j ⩽ n − 1 and V ± =
{
y ∈ R1+d ; (y)2 >

0, y0 ≷ 0
}
.

In the context of dSd spacetime (embedded in R1+d), a
natural alternative to this property is to propose that the
Wightman n-point function Wn(x1, . . . , xn) acts as the
boundary value, in the distributional sense, for a function
that is holomorphic within:

T +(n) = T+(n) ∩
[
dS

(C)
d

]n
. (5)

As a matter of fact, studies by Bros et al. [6, 7] have
shown that T +(n) forms a domain and a tuboid —
bounded by reals — in a manner that maintains the rele-
vance of the concept of the “distribution boundary value
of a holomorphic function from this domain”. Conse-
quently, it becomes feasible to impose:

• Weak spectral condition. For each n > 1, the
Wightman n-point function Wn(x1, . . . , xn) is de-
rived from the distributional boundary value of
a function Wn(z1, . . . , zn), which is holomorphic
within the domain T +(n).

In the simplest scenario, considering a general dSd two-
point function, the assertion of normal analyticity can be
explicitly expressed as follows:

• The two-point functionW2(x1, x2) arises as the dis-
tributional boundary value of a function W2(z1, z2)
that is analytically defined within the tuboid do-
main T +(2) given by:

T +(2) =
{
(z1, z2) ; z1 ∈ T −, z2 ∈ T +

}
, (6)

where T ± =
{
Rd+1 + iV ±}∩ dS

(C)
d . Note that T ±

are referred to as the forward and backward tubes
of dS

(C)
d , respectively.

This elegant resolution effectively circumvents all am-
biguities in dSd QFTs, which arise from the absence of
a genuine spectral condition in dSd spacetime [6, 7]. It
leads to the derivation of “vacua” that, despite exhibiting
thermal properties, serve as precise analogs of Minkowski
vacuum representations. The latter emerges as the limit
of the former when the curvature tends to zero.

For additional arguments supporting the necessity of
analyticity in the complexified dSd manifold, readers are
referred to Refs. [8, 9] and the references therein.

III. The dSd static patch and the analyticity
requirement

Following the approach outlined in Ref. [10], let us
adopt the viewpoint of an observer (on dSd) in motion
along the geodesic g(x•) that traverses through the point
x• = (0, . . . , 0, xd = H−1):1

g(x•) =
{
x = x(t) ; x0 = H−1 sinhHt,

x = (x1, . . . , xd−1) = 0,

xd = H−1 coshHt, t ∈ R
}
. (7)

Note that the chosen point x• is located in the (x0, xd)-
plane.

FIG. 1: The static patch of dSd, linked with an observer
traveling along the geodesic g(x•).

The set of all “events” in dSd that can be linked to the
observer via the reception and emission of light signals is
given by:

Dg(x•)
=

{
x ∈ dSd ; xd > |x0|

}
. (8)

This domain is delineated by two distinct boundaries:

B±
g(x•)

=
{
x ∈ dSd ; x0 = ±xd, xd > 0

}
. (9)

1 It is worth noting that the choice of this point is entirely arbi-
trary, given the SO0(1, d) symmetry of dSd.
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These boundaries are respectively termed the “future
horizon” and “past horizon” of the observer following the
geodesic g(x•).

The parameter t in expression (7) signifies the proper
time experienced by the observer moving along the
geodesic g(x•). This enables us to designate the
“time-translation group linked with g(x•)” as the one-
parameter subgroup Tg(x•)

(isomorphic to SO0(1, 1)) of

the dSd group SO0(1, d). The Tg(x•)
’s transformations

involve hyperbolic rotations parallel to the (x0, xd)-plane.
To characterize how these transformations operate on the
domain Dg(x•)

, let x = x(t, x̃) represent an arbitrary

point within this domain:

x(t, x̃) =


x0 =

√
H−2 − (x̃)2 sinhHt ,

x̃ = (x1, . . . , xd−1) ,

xd =
√

H−2 − (x̃)2 coshHt , t ∈ R ,

(10)

while (x̃)2 = (x1)2+ . . .+(xd−1)2 < H−2. The operation
of Tg(x•)

on x(t, x̃) is expressed as follows:

Tg(x•)
(τ) ⋄ x(t, x̃) = x(t+ τ, x̃) = xτ , τ ∈ R . (11)

It defines a group of isometric automorphisms within the
domain Dg(x•)

. The associated orbits gx̃(x•) depict sep-

arate hyperbolic branches in Dg(x•)
. These hyperbolas

lie in two-dimensional plane sections that are parallel
to the (x0, xd)-plane. Within these orbits, the singular
one that defines a geodesic of dSd is g(x•) = gx̃=0(x•).
Hence, understanding the group Tg(x•)

as time transla-

tion is particularly applicable to observers in motion on
or near g(x•), with the assumption that the proximity is
significantly smaller than the dSd radius of curvature.
Now, let us evaluate the depicted scenario by acknowl-

edging the necessity of analyticity within the complexi-

fied dSd manifold (dS
(C)
d ). The complex orbits of Tg(x•)

are denoted as:

g
(C)
x̃ (x•) =

{
zτ = z(t+ τ, x̃), τ ∈ C

}
. (12)

All nonreal points linked to the complex orbits g
(C)
x̃ (x•)

reside in T ±, the very domains of analyticity required
for the QFT description of dSd elementary systems. In
this context, due to the analytic nature of dSd QFTs, a
notable connection emerges between the domain Dg(x•)

and its corresponding mirror region:

Dg(−x•)

=
{
x = (x0, x̃, xd) ∈ dSd ; (−x0, x̃,−xd) ∈ Dg(x•)

}
,

(13)

To see the point, with the coordinate system (10)
in consideration, setting Im(τ) = π in (12) suffices.
This connection inherently establishes a significant and
highly nontrivial link between the QFT description

within Dg(x•)
and its mirrored counterpart in the re-

gion Dg(−x•)
. [For a comprehensive exploration of the

two-point correlation functions in the domain Dg(x•)
and

their mirrored counterparts in the region Dg(−x•)
, refer

to Ref. [7].] This pivotal link forms the cornerstone of
our reasoning, as elaborated further in the subsequent
step.

IV. Matter-antimatter asymmetry?

So far, in the initial two steps, we have articulated the
foundational assumptions guiding our reasoning. Firstly,
we assumed that our Universe presently reflects a phase
akin to dSd=4, converging toward a pure dSd=4 space-
time — a proposition bolstered by observational data
[1–4]. Secondly, we emphasized the imperative of an-

alyticity within the complexified dSd manifold (dS
(C)
d ),

underscored by the inherent requirement for a natural
substitution of the spectral condition. This necessity, in
turn, facilitates a coherent QFT depiction of elementary
systems within the dSd framework [5–9]. Based on these
foundational assumptions in the third step, we demon-
strated that the physics in a region observable to a local
observer on the dSd manifold is intricately connected to
the physics residing in the corresponding mirror region.

Referring to the mathematical content presented in the
preceding step, it is essential to highlight the fundamen-
tal concept that the intrinsic time variable pertinent to
an observer moving along the geodesic g(−x•) (within
the mirror region Dg(−x•)

) is equivalent to −t. This

arises from the fact that the associated time-translation
group Tg(−x•)

validates the relationship Tg(−x•)
(τ) =

Tg(x•)
(−τ); it is noteworthy that Tg(−x•)

is derived from

Tg(x•)
, for instance, through conjugation in the form

Tg(−x•)
= RTg(x•)

R−1, where R represents a rotation

of angle π in a plane orthogonal to the x0-axis. [This
characteristic serves as yet another indication of the fact
that dSd spacetime lacks a globally timelike Killing vec-
tor.] This feature remarkably implies that any mat-
ter/antimatter elementary system observed by a local
observer on the dSd manifold has an anti-counterpart in
the corresponding mirror region; recall that the Feyn-
man–Stueckelberg interpretation states that antimatter
and antiparticles behave exactly like regular particles but
travel backward in time.

Considering our basic assumptions, this intriguing
property suggests that the matter-antimatter asymme-
try is an observational anomaly discernible exclusively
by local observers with causal access to a specific seg-
ment of the Universe. In contrast to local observations,
the global structure of the Universe maintains a per-
fect matter-antimatter symmetry; our observable Uni-
verse has a mirror, nonobservable anti-Universe!

Final remarks: First. The above result serves as
yet another illustration of how even a small, nonvanish-
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ing cosmological constant can have highly nontrivial im-
plications for our comprehension of elementary systems.
It is crucial to highlight that this observation becomes
entirely irrelevant when considering elementary systems
within the context of flat Minkowski spacetime, where
the cosmological constant vanishes.

Second. In the domain of inflationary models [11, 12],
where the effective cosmological constant surpasses the
currently observed value by several orders of magnitude,
particles, including those responsible for mass, were ef-
fectively massless. Consequently, it is reasonable to ex-
pect that during this inflationary period, the observation
would not align with the notion of “our observable Uni-
verse having a mirror, nonobservable anti-Universe”.

Third. The (a)symmetry we demonstrate is based on
analyticity extensions valid for massive systems (in the de
Sitterian sense). It is crucial to emphasize, however, that
the quantization approach, rooted in the criterion of an-
alyticity, encounters limitations when applied to specific

fields within the dSd framework. Notably, this constraint
becomes apparent in the case of the so-called “tachyonic”
scalar fields, for instance. As a result, a departure from
the established framework becomes essential, prompt-
ing the adoption of an alternative approach grounded
in a Krein structure (endowed with an indefinite inner
product), diverging from the conventional Hilbertian ap-
proach. [See Ref. [8] for more details.] The examina-
tion of such fields, particularly in the context of matter-
antimatter (a)symmetry, is deferred to future work.
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