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Abstract

The symmetric simple exclusion process (SEP) is a paradigmatic model of diffusion in
a single-file geometry, in which the particles cannot cross. In this model, the study of
currents have attracted a lot of attention. In particular, the distribution of the integrated
current through the origin, and more recently, of the integrated current through a mov-
ing reference point, have been obtained in the long time limit. This latter observable is
particularly interesting, as it allows to obtain the distribution of the position of a tracer
particle. However, up to now, these different observables have been considered indepen-
dently. Here, we characterise the joint statistical properties of these currents, and their
correlations with the density of particles. We show that the correlations satisfy closed
integral equations, which generalise the ones obtained recently for a single observable.
We also obtain boundary conditions verified by these correlations, which take a simple
physical form for any single-file system. As a consequence of our results, we quantify the
correlations between the displacement of a tracer, and the integrated current of particles
through the origin.

Contents
1 Introduction 2
2 Summary of the main results 3
2.1 Equations for the correlations and the cumulants 4
2.2 Consequences on the observables 6
2.3 Discussion 8
3 Hydrodynamic description using Macroscopic Fluctuation Theory 9
4 The example of the low density limit 11
5 Derivation of the main equations 12
5.1 Boundary conditions 12
5.2 Bulk equations 14
5.2.1 Mapping to the AKNS equations 14
5.2.2 Solution using the scattering technique 15
5.3 Determination of the remaining constants a and f3 18



SciPost Physics Submission

6 Perturbative solution for the first joint cumulants 19
6.1 For the currents 19
6.2 For the current/tracer correlations 22

7 Conclusion 23

A Mapping the boundary conditions for other observables 24

B Relation between the physical boundary conditions and the microscopic equa-

tions for the SEP 25
C Numerical resolution of the integral equation 26
D Numerical resolution of the MFT equation 26
References 27

1 Introduction

The Symmetric Exclusion Process (SEP) is a paradigmatic model of single-file diffusion [1,2],
which has been the object of several recent and important developments [3-8]. In this model,
particles perform symmetric random walks in continuous time on an infinite one-dimensional
lattice, with the constraint that there can be at most one particle per site. In this context,
several quantities have attracted attention : (i) the integrated current through the origin Q,
(defined as the number of particles which have crossed the origin from left to right, minus those
from right to left, up to time t) [8-11]; (ii) the position X, of a tracer [5-7,12-18], initially
placed at the origin; (iii) the generalised current J, which counts the number of particles which
cross a moving boundary! at position x, (counted positively from left to right, and negatively
from right to left) [3,4, 12]. This latter observable actually provides an alternative way to
study the displacement of a tracer, since its position X, corresponds to the value of x, for
which J; = 0, because the order of the particles is conserved [3,4,12].

The statistical properties of the current Q, have been fully characterised by the computation
of its cumulant generating function using Bethe ansatz [9]. Concerning the position X, of a
tracer, its fluctuations have first been quantified by the computation of the variance [12]. The
full distribution has later been computed, first in the high-density limit [19], then in the low-
density limit [16, 17,20, 21], and finally at arbitrary density [3, 4] by relying on tools from
integrable probabilities (which give a microscopic solution). These latter works [3,4] actually
provide the full cumulant generating function of the generalised current J,, from which the
statistical properties of the position of the tracer is deduced.

Recently, combining microscopic and macroscopic approaches, it has been shown that, in
the long time limit, all these results can be easily recovered from the solution of a simple
integral equation [6,7]. This equation is satisfied by generalized density profiles [5, 6], which
characterise the correlations between the observable under consideration (Q,, J; or X;) and the
density of particles in the SEP. On top of providing a more direct way to obtain the statistical
properties of these observables, this equation constitutes a strikingly simple closure of the

I This observable is also called a height function since it is involved in a classical mapping between exclusion
processes and interface models [3,4].
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infinite hierarchy of equation satisfied by these generalized density profiles [6,7]. These results
are part of a context of intense activity around exact solutions for one-dimensional interacting
particle systems [8,22-25].

Although the individual properties of Q,, J; or X, have been characterised, the determi-
nation of their correlations remains an open question. These observables are indeed expected
to be strongly correlated since, for instance, if the tracer (initially at the origin) moves to a
position X, to the right, then the current Q, through the origin can only be positive. The
determination of these correlations is the main goal of this article.

Here, relying only on a macroscopic description of the SEB we show that the integral equa-
tion of [6,7] can be generalised to describe the joint correlations between the currents Q,, J;
and the density of particles of the SEP in the long time limit. As a consequence, we deduce the
joint statistical properties of Q, and J,, and, as a byproduct, those of Q, and X,. Importantly,
this equation is completed by boundary conditions, which were derived from microscopic con-
siderations in [5-7]. Here, we provide a macroscopic derivation of these boundary relations,
and extend them beyond the SEP to any single-file system. Furthermore, thanks to this gener-
alisation, we give a clear physical meaning to these relations.

The article is organised as follows. We first present in Section 2 a summary of our main
results, followed by a discussion of these results and their consequences in Section 2.3. We then
present in Section 3 the Macroscopic Fluctuation Theory (MFT) [26-28], which gives a large
scale description of diffusive systems, and is our starting point. In Section 4 we first illustrate
on the simpler case of low density how this approach can be used to study joint properties of
different observables. We give in Section 5 the derivation of our main results, which rely both
on the MFT and on the inverse scattering technique [29] which has recently been applied to
MFT and related problems [8,22-25]. We give in Section 6 a perturbative solution of our main
equations, from which the first joint cumulants of Q,, J, and X, are obtained. We finish by
several concluding remarks in Section 7.

2 Summary of the main results

We consider a SEP in which particles hop with rate 1. We describe the state of the system by
the set of occupation numbers {n;(t)};cz, with n;(t) = 1 if site i is occupied at time ¢, and O
otherwise. Initially, we consider that each site is filled independently with probability p. for
i>0and p_fori<O.

The integrated current Q, counts the total number of particles that cross the origin from
left to right, minus the number from right to left, up to time t. It can be written explicitly
in terms of the occupation numbers by comparing the number of particles to the right of the
origin at times t and 0,

Q= (6)=7,(0)). Y
r>0
Similarly, the generalised current J, counts the number of particles that cross a fictitious mov-
ing boundary located at x, at time t. It can be expressed in terms of the occupation numbers,
by comparing the number of particles to the right of x, at time t, and the number of particles
to the right of xy = 0 at initial time. Explicitly, it can be written as

Xt

Je= D ()=, (0)]— > n,(0), )

r>Xx; r=1

which can equivalently be expressed in a slightly different manner by subtracting the mean
density at infinity p, and separating the sums.
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This gives the definition

Jo= 2 () =p) =D (0 =p)—pixe, x =[EVil. 3)

r>Xx, r>0

We have chosen a specific expression for x,, such that x, ~ 4/t for large t since the system is
diffusive. We will consider only the case & > 0, but the case £ < 0 can be obtained similarly.

Our main results concern the joint cumulant generating function of the two currents Q, (1)
and J, (3), in the long time limit

ng(l, v, t) = 1n<eAQt+VJt> tfoo ‘/E’(/SE(AJ 'V) ) (4)

and their correlation with the density of surrounding particles, encoded in the generalised
density profiles [5]

()

(n:(0) %) (x_ r )

Wr(k, v t)= o~ = ﬁ

<eAQt+th> t—00

The profile ¢ also depends on A, v and &, but we omit the dependency on these variables to
simplify the notations. These profiles actually correspond to the average occupations of the
sites in the so-called tilted or canonical path ensemble [30-32]. This ensemble describes the
dynamics of the system under a bias due to the exponential terms in (5), which favors the
realisations in which Q, and J, differ from their expected values. The profiles w,, and thus
®, measure the response of the density of particles to this bias. In particular, if for instance
A > 0, the exponential in (5) favors realisations in which Q, is larger than its average. In
these realisations, we expect an accumulation of particles to the right of the origin, and a
depletion of the left, due to the particles that have crossed the origin from left to right. This
is indeed what we observe in Fig. 1, left. The same interpretation holds for J,. Furthermore,
expanding (5) in powers of A and v, w, generates all the correlations <nr(t)Q’;Jtm )C between
the currents Q,, J; and the occupations 7,(t). In particular we discuss below the lowest order
correlations.

We also characterise the correlations between the currents and the initial density of parti-
cles, encoded in the initial profile

W (4, v, ) = <e7LQt+th> (o0 e x= ﬁ
which has a similar interpretation to the profile at final time (5). For instance, for A > 0, the
configurations favored by the exponential are the ones which yield a larger current Q,. At
t = 0, this is realised by a fluctuation of the initial condition with more particles on the left of
the origin, and less on the right. Then, the dynamics will make these particles flow through
the origin, yielding a large current Q,. This is what is shown in Fig. 1, right.

We have obtained equations satisfied by the profiles ® and &, from which the cumulant
generating function 1/35 is deduced. We first present these main equations, before giving some
of their consequences on the correlations between the different observables and finally dis-
cussing the status of these results and relations with the recent works [6, 7].

6)

(n,(0) eA+e) ] ( r ) |

2.1 Equations for the correlations and the cumulants

Instead of the profiles at final time ® and initial time ®, we found that it is their derivatives
which verify closed equations. More precisely, we define the functions

a_®'(x) forx<O0
Qx)={ qy®'(x) forO<x<& , Qx)= {
a,®(x) forx>¢&

b_®'(x) forx <0

_ 7
b,®'(x) forx>0 7
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Figure 1: Profiles ® (left) and & (right) obtained from the numerical resolution of
the integral equations (8,9) with the conditions (11-17) (solid red lines), compared
to the numerical resolution of the MFT equations (blue points). Here, we have set
£ =24/2, A =2and v =5. These can be interpreted as a mean density profile, under
the condition that Q, = 0.83 and J, = 0.27. The numerical schemes used to obtain
these curves are described in Appendix C and Appendix D.

with multiplicative constants a_, ag, a,, b_ and b, to be determined. We find that the func-
tions 2 and (2 satisfy the following integral equations

Q(x) + aJ Q)Ax—y)o(y —x)dy + 3 J QY)Ax +&—y)B(y —x)dy
0 g

oo 3
+a/3f dyf dz Q(y)QE@)UAXx+E—y —2)0(y +2—x—&)=K(x), (8)
& 0

Q(x) +f Q()Qx — y)O(y —x)dy =K(x), C)
0

where © is the Heaviside step function, and the kernels

N /o /o Jir

which involve additional parameters a and 3. The multiplicative constants in the defini-
tions (7) are determined by the following boundary conditions

x4 X4 (x84 ¢ e (x+y—£)?/4
K(x)= K(x)=a +B +tapf | QUy)——F=—dy, (10)
0

W@ — @O ) = A, u@E)—u@E D)) =7, 11)
[Bu(®)1 =0, [Bu@®) =0, (12)
u(@(01) —u(®(07)) =—(A+ ») +plps) —ulp-), [Bu@)IL =0, (13)

which involve the chemical potential u. For the SEB it takes the simple form

1
‘u(p)=—ln(——1). (14)
P
We also have boundary conditions at infinity,
Jm e(x)=px, lim &(x)=p. (15)



SciPost Physics Submission

The last constants a and 3 are determined by conservation equations

f [®(x)—®(x)]dx =0. (16)
oo 3
f f((x)dx=a+/3+a/5f Q(y)dy = w, 17
—00 0
where
w=p (e =1 +p_ (M =D+ p,p_ (e —1)(e"—1) (18)

coincides with the single parameter identified in the SEP [9,10,33], but with two parameters
Aand v.

Together, Egs.(8-16) fully determine the profiles & and ®. Their knowledge allows to
deduce the joint cumulant generating function by using (see below)

oo

VR =f [&(x)—&(x)]dx, O, = J [®(x +&)—d(x)]dx —p,&.  (19)
0 0

2.2 Consequences on the observables

We only present the results for the case of a flat initial density p, = p_ = p because they take
a simpler form, but the results from the general case p, # p_ can be obtained similarly. From
the above equations, we recover the known results on Q, [9] and J, [4], for instance

1 1
A, 7@ =0. lig 2 =-pt, (20)

52

tim (@)= 22022 tim - (52), = p1- p)(z%werf(g)), (1)

z 2 . . - . .
where erf(z) = % fo e dx. In addition, we obtain the joint statistical properties of these
two observables, such as their covariance

_&
tl_l)rgo 7 Q). =p(1—p) (% —%erfc(g)) , (22)

where erfc(z) = 1 —erf(z) is the complementary error function. This shows that Q, and J, are
strongly correlated for £ — 0, and their correlation decay when £ — o0, as

£
(QtJt) ~ \/> for g - O

im ———— ~
t—00 <Q%><Jt2> 3 1/4\/_ for§ —» co.
T

Remarkably, these behaviours do not depend on the density p of the particles, but only on &.
This is not expected to hold for a step of density p, # p_.

The knowledge of the statistical properties of J, allows to deduce those of the position of
a tracer X, [3,4]. For instance, we recover the known variance [12],

(23)

(24)
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and obtain the covariance

1 _2(0-p)

lim — (Q,X,) = , 25
t_l)rglo ‘/? (Qt t) \/E ( )
from which we deduce that these quantities are fully correlated, since
(QcXy)

lim —2ot =1, (26)
T @) (x?)

This is due to the fact that, Q, = pX, at leading order in time, which results from

.1 2
tgrgoﬁ«(zt—pxt) )=0. 27)
However, the two observables Q, and X, are not simply proportional, even in the long time
limit, since for instance

lim % In (eMQPX)) = ﬁp(l —p)lPAt+ON). (28)

This means that the variance of Q; — pX; is nonzero, since the higher order cumulants do
not vanish. However, the expression of this variance is out of reach of our approach, since
we can only describe the leading +/t with the MFT. Note that (28) is not symmetric in p and
1 — p, since following a tracer (which is a particle) breaks the particle-hole symmetry of the
SEP In particular, Eq. (28) vanishes faster when p — 1 compared to p — 0. In the dense limit,
both ln(emt) and ln<exxf> are of order 1 — p, while (28) vanishes as (1 — p)3. This shows
that Q, = X, in this limit, as can be seen from the fact that they have identical cumulants in
that case [9,19]. On the other hand, in the dilute limit, X, = O(1/p) and Q, = O(1), with
ln<emf> = O(p). This time (28) does not vanish faster than the cumulants of the current,
and thus Q, # pX,, as illustrated from the fact that their cumulants differ [9,17] in that case.
In addition to the joint statistical properties of Q, and J,, we also obtain the profiles & and

& which quantify the correlation between the density of particles and the observables, at final
and initial times. At lowest orders in A and v, we recover the profiles obtained previously [6,7]

) p(1—p) (lxl) p(1—p) erfc(%) for x > &
o ——erfe| — J ~ =
(Tler)c t—00 Slgn(x) 2 eric 2 > ('nr t)c t—00 2 _erfc(_g) fOl’X < g
(29)
with x = r/+/t. We additionally obtain the joint profiles, such as
B B erfc(3) forx>¢
(0, QT = Pl p)2(1 20) | foro0<x <& . (30)

erfc (—%) forx <0

To understand the meaning of this expression, we can rewrite it as

(N, QeJe)e = COV(nr,ﬁ(Qt’Jt)) , where cov(Q.,J) =(Q, —{(Q ) — (Jp)) (3D

is the empirical covariance. This means that this profile measures the covariance between the
density of particles on one hand, and the correlations between Q, and J, on the other hand.
From (30), we see that it is positive for p < % and negative for p > % This means that adding
particles when p < % increases the correlation between Q, and J,, while it decreases it when
p > % This behavior is expected, since the maximal currents are reached for p = % In
addition, (30) is extremal near x = 0~ and x = £*. In other words, a change of the number

of particles in these sectors affects strongly the correlation between Q, and J,. This is due to
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Figure 2: Correlation function (1,Q,J,) as a function of r/+/t, for a mean density of
the SEP p = 0.25, and for £ = 1.5. The solid red line is the analytical result (30).
The blue line is the result of a direct numerical simulation of the SEP with 1000 sites,
250 particles, measured at time t = 1000 and averaged over 107 realisations.

the fact that the particles in these regions are more likely than distant particles to cross the
two "walls" x = 0 and x = & and thus affect both Q, and J,. Conversely, the profile (30)
vanishes between 0 and &, indicating that adding more particles in that region does not affect
the correlation between Q, and J,. This is also expected, since these particles can only cross
one "wall"? either at x = 0 or x = &, and can thus affect only one of these observables. This is
confirmed by numerical simulations of the SEB as shown in Fig. 2.

Beyond the perturbative expansion in A and v, we can also plot the profiles for finite
values of the these parameters by solving numerically the integral equations (8,9). These
profiles have the interpretation of mean density profiles under the condition that Q, and J,
take given values [6]. They are represented in Fig. 1. For instance, the plot in Fig. 1 (left)
corresponds to having currents Q, and J, larger than their mean values. This is why there is
an accumulation of particles to the right of the two "walls" x = 0 and x = £, and a depletion to
the left. Conversely, for the corresponding initial profile ® (Fig. 1, right), there is an increase
of particles to the left of the origin, and a depletion to the right, so that with the diffusive time
evolution, these particles will cross the origin, and &, to contribute to a larger value of Q, and
J,.

2.3 Discussion

Integral equations. — The Wiener-Hopf integral equation obtained previously in the case of
a single observable (Q,, J, or X,) [6,7] can be recovered from (8) and (9) by setting either
A =0 or v=0. This corresponds to a = 0 or 8 = 0 respectively in Egs (8,9), so that the two
profiles at initial and final time satisfy the same equation, as noted previously [7, 8].

Note that if we set & = 0, we recover the equations of [6,7]. This is expected since then,
J, =Q, and thus ® and & involve a single observable.

In the case a # 0 and 3 # 0, the equation for the profile at final time (8) is more com-
plicated than the one obtained in the case of a single observable [6, 7], as it now involves a
double convolution. On the other hand, the equation for the initial profile (9) keeps a simpler
Wiener-Hopf structure, but with a more complicated kernel which involves the solution at final

2Particles can of course cross several times both walls, but an odd number of times only one of them, resulting
in this net effect.
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time (10).

These integral equations extend the ones discovered in [6, 7] in the case of a single ob-
servable (current Q, or J,, tracer position X,). This further emphasises the key role of such
strikingly simple integral equations involving partial convolutions in interacting particle sys-
tems.

Boundary conditions. — We stress that the boundary equations (11,12) hold for any single-file
system, and not only for the SEP. Furthermore, these equations take a simple physical form in
terms of the chemical potential u, which can be written as

Jo)
u(p) = J 2D(r) 4 (32)

o(r)

in terms of the diffusion coefficient D and the mobility o, which describe the system at large
scale [26-28]. For the SER D(p) =1 and o(p) = 2p(1 — p), which gives the expression (14)
for the chemical potential of the SEP

Explicitly, (11) states that the chemical potential in the system is discontinuous at x =0
and x = &, with a discontinuity given by the parameters A and v of the joint generating
function (4). From a physical point of view, this can be understood as follows. The parameters
A and v play the role of conjugate variables (in the sense of thermodynamics) to the integrated
currents Q, and J,, which count particles. The conjugate quantity to the particle number being
the chemical potential, it is expected that A and v are related to the chemical potential. Finally,
A and v have an effect on the density of particles. For instance, when A > 0, the exponentials
in the definitions of the profiles (5) give more weight to the realisations in which Q, > 0, and
thus we expect an increase of the number of particles to the right of the origin. This results
from a higher chemical potential to the right of the origin compared to the left, as described
by (11).

Remarkably, the equations (11,12) obtained for the case of the currents Q, and J, can be
extended to other observables. For instance, it has been recently shown that the current Q, in
a single-file model can be mapped onto the position of a tracer in a dual single-file model [34].
Under this mapping, the relations (11,12) become, for the new system (see Appendix A)

P(®(07)—P(2(07)=A, o u(®)lo+ = du(®)lo- , (33)
where P is the pressure®
Ie)
P(p) = f 2P0, (34)
o(r)

and & is now the long time limit of the correlation between the position X, of the tracer and
the density in the reference frame of the tracer, ®(x = r/+/t) 2 <p(r +X,, t)e”f)/(e’le)

Finally, in the case of the SEB these relations (11,12) and (33) reduce to the ones ob-
tained from microscopic considerations in [5-7]. The precise relation with the corresponding
microscopic equations is given in Appendix B.

3 Hydrodynamic description using Macroscopic Fluctuation The-
ory

The Macroscopic Fluctuation Theory (MFT) gives an effective description at large scales of
a diffusive system [26-28]. Introducing a scaling factor T, which corresponds to the large

3The relation involving the pressure Eq.(33), left, has been first guessed by Alexis Poncet during private ex-
changes prior to this work.
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observation time, the density of particles is defined as

prlx,t)= %Zni(tTﬁ (x—‘/%) . (35)

In the limit T — oo, this density converges to a continuous stochastic function p(x, t). The
probability of observing an initial profile p(x,0) evolves to another profile p(x,1) at time
t =1 (corresponding to the large time T in the SEP) takes a large deviation form [10]

P[p(x,0) = p(x, )] = f Dlp(x, )ID[H(x, t)] e YT, (36)
where H is a conjugate field, and S is the MFT action
oS} 1 O'( )
Slp,H]= f dxf de [Hatp +D(p)8,pd.H — Tp(axH)ﬂ . (37)
—00 0

For the SEB D(p) =1 and o(p) = 2p(1 — p). This result was first proved for the SEP [35],
and was later extended to arbitrary 1D diffusive systems, which can be described by other
transport coefficients D(p) and o(p) [26-28]. See for instance [34] for a list of models, and
their corresponding coefficients.

Initially, the system is described by the random density p(x, 0), which fluctuates around a
given density py(x), of distribution [10]

PO 9D(2)

dz ——=(p(x,0)—2). (38)
o(z)

P[p(x,0)] e VT IP0] f[p(x,O)]:deJ
po(x)

For the moment, we consider an arbitrary initial condition py(x), which we will later specify to
the case py(x) = p,O(x)+p_O(—x). Microscopically, it corresponds to picking independently,
for each site i of the SEB an occupation number 1;(0) = 1 with probability po(i/+/T). In the
continuous limit, this becomes (38).

The two currents Q, (1) and J, (3) can be expressed in terms of the density p(x,t) (35)

as
% = Q[p]zJo [p(x,1)—p(x,0)]dx, (39a)
j_TT =Jlpl=—ps&+ f_oo[(p(x, 1)—p)0(x —&)—(p(x,0)—p)O(x)]dx.  (39b)

Within this formalism, the joint moment generating function of Q; and J reads
(e?@remin) = J Dlp(x, OIDIH(x, 0)] f Dlp(x,0)]e VTIpHIFpCe0N-ACle 12Tl D) (40)

In the long time limit T — oo, these integrals can be evaluated by a saddle point method,
which yields

A — T 1 AQ+vJ \ — — —
Ye(2, ”‘#E&ﬁln(e Q) = 2.0[q] + vJq]— Slq,p]— Flq(x,0)], (41)

where we have denoted (q, p) the saddle point of (o, H). It can be determined by minimising
the terms in the exponential, which yields the MFT equations

0,q = 9,[D(q),q]—3,[o(q)ocp], (42)
1,
8:p =—D(q)3’p— g (Q)(3.p)*, (43)

10
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completed by the boundary conditions

q(x,0)
p(x, 1) =2A0(x)+vO(x—&), p(x,0)=(A+ v)@(x)+J erD_(r). (44)

o) o)
The expression of the cumulant generating function can be simplified by taking a derivative

with respect to A or v, and using that the saddle point solution (q, p) is the minimum of the
action:

e =0lql, 8, =JTlql. (45)

These are standard relations in the context of large deviations [36,37].
The profiles w,. (5) can be obtained from the same procedure, for instance,

f Dp(x, t)ID[H(x, )] f D[p(x,o)]p(L,1)e—ﬁ(s[p,H]+F[p(x,0)]—AQ[p]—vj[p])

T
w.(A, v, T) ~ VT
J D[p(x,t)ID[H(x, t)]f D[p(x,0)] o~ VT(Slp.HI+Flp(x,0)]-2Qlp]-vT[p])
(46)
Performing again the saddle point estimate, we obtain,
r
w,. (A, v,T) Tfooq(x— ﬁ,l):é(x). “47)
Similarly, the correlation with the initial occupations w,. (6) reads
_ r e
w,.(A,v,T) ! (x = ﬁ’ O) =d(x). (48)

The MFT profile q at initial and final time actually coincides with the correlations w, and w,
in the long time limit, as shown in [5,6]. Furthermore, the joint cumulant generating function
2 ¢ is fully determined by the knowledge of the profile g, thanks to (45). Our goal is thus to
determine these profiles.

4 The example of the low density limit

The MFT equations for the SEP (42,43) being rather complicated, we first focus on the simpler
case of the low density limit. In this limit, the SEP becomes equivalent to a model of reflecting
Brownian particles on the real line [3]. The MFT equations reduce to

atq = ax[axq]_ax[zqaxp]’ (49)

o:p =—92p—(8.p)*. (50)
These equations can be reduced to diffusion equations by the Cole-Hopf transform P = eP and
Q=qe?[10,21], so that

8.Q=032Q, o,P=-3?P. (51)

The initial and final conditions (44) become
P(x,1) = *o000—8) | q(x,0) = py(x)e 0. (52

We straightforwardly obtain the solution ¢ = QP, and thus the profiles both at initial and final
times,

A0 0G—8) | e € N
®(x) =q(x,1) = rOLIHO— dz po(z)e 0= , (53)
1 oo Po Varn

11
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A_ v_ _
$(x) = q(x,0) = py(x)e” A0 [e“”— % erfc(g) et 5 1 erfc(x 5 E)} , (54)

where we have assumed that & > 0 for ®. The expression is similar in the case & < 0. The
cumulant generating function can be obtained from the relations (45), which gives

7 = o) [ g4, AeEveE—n e
= dx pgo(x)e IO f dg e TEETS) ————[0(2) —0(x)],  (55)
) o N o N e—(x—z)2/4
avwg — J dx Po(x)e_( +v)@(x)f dze @(z)+v@(z—€)T [O(z—&)—0(x)]. (56)
PN —o0 v

Integrating with the initial value 1,[3(0, 0) =0, we get

p 20(2)+v0(z—&)—(A+7)8(x) e
A, V)= dx po(x dz [ eOE)FYOLE— )~ A+WIO) _ 1 . (57)
Ye(A,v) J_ Pol )J_ [ ] =

Note that this expression is compatible with the very recent study [38].
Finally, the density profiles of the SEP assume simple explicit forms in the low density limit.

5 Derivation of the main equations

We now address the case of arbitrary density of the SEP To obtain the equations satisfied by
the initial and final profiles & and ®, we will rely on the inverse scattering approach which
has recently been applied to solve systems of equations related to (42,43), in the context of
the KPZ equation or MFT [8,22-25,39]. As we will see below, this formalism is powerful to
obtain the bulk equations for & and ¢, but introduces unknown constants which can be tricky
to determine. Here, we will obtain these constants by making use of boundary conditions
which are deduced from the MFT equations (42-44).

5.1 Boundary conditions

We first derive the boundary conditions (11-13), which are direct consequence of the MFT
equations (42-44). These equations will take a simple form, in terms of physical quantities.
The equation satisfied by p (43) is an antidiffusion, with no singularity in the rh.s. for t <1,
except a discontinuity for g at t = 0. Therefore, the solution p(x,0) is a smooth function of x,
and in particular at x = 0. The boundary conditions are thus straightforwardly deduced from
the initial condition (44), which takes the from,

p(x,0) = (A + v)O(x) + ulq(x,0)) — ulpe(x)), (58)

where we have introduced the chemical potential u(p), defined by (32). Evaluating (58) at
x = 0" and x = 0, and taking the difference and using the continuity of p(x,0) at x = 0, we
get the first boundary condition for g(x,0) = &(x)

u(2(0)) — u(2(07)) = —(A + v) + u(po(0™)) — ulpo(07)) - (59

Similarly, writing the continuity of the first derivative of p(x, 0) at x = 0, we deduce from (58)

O, 1u(®)] g — Bettl(®)] - = BP0l — BtiPo)lo- - (60)

For po(x) = p,O(x) + p_O(—x), these relations become (13).

12
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To obtain the conditions at final time, we rely on a time-reversal mapping, which extends
the time-reversal symmetry discussed in [10] for the case of the current Q,. In that work, the
MFT action was found to be invariant under time reversal symmetry p(x,t) — p(x,1—1t)
and j(x,t) —» —j(x,1—t), with a density p and a current j satisfying the conservation re-
lation 6,p + 9,j = 0. At the saddle point of the MFT action, the density becomes q and the
current becomes j = —D(q)d,q + 0(q)d,p [10]. The time reversal symmetry then becomes
qx, 1) = q(x, 1-1), j(x, ) = [-D(@)2:q + 0(@)2:p ]l ) > ~[~D(9):q + 7(9)3cp ]l 10
Here, we do not have the time-reversal symmetry, because at final time the currents are mea-
sured at positions 0 and &, which are different from the initial position 0. Nevertheless, we
define two new fields g and p by

2D(q)

qlx,t)=q4(x,1—t), I,plx,t)=—-0,p(x,1—t)+ —0,q . (61)
o(q) (x,1-t)
Integrating the second relation gives
p(x,t)=—p(x,1-0)+u(g(x,1-t)) +c, (62)

with ¢ a constant. Inserting these relations into the MFT equations (42,43), we find that § and
D obey the same equations:

o AvA A AvA A . ava2a L soa .
34 = 0,[D(@)8,4]= [0 (@a,p], 8 =—D(@)97p— 50" (D)(3H)*- (63)
This was already noticed in [40]. The initial and final conditions (44) become
p(x,0) = u(g(x,0))+c—A0(x)—v0(x—&), p(x,1) =—(A+)0(x)+u(po(x))—c. (64)

These conditions are different from the original ones (44), and they are the source of the
breaking of time-reversal symmetry*. We can however still use a similar argument as we used
above at t = 0. The conjugate field p obeys an antidiffusion equation, which is not singular for
t < 1. Therefore p(x, 0) is smooth. From (64) left, this straightforwardly yields the conditions
for g(x,0) =q(x,1) = ®(x),

u(@(0M)— (@0 =21, w(EN—u@E N =", (65)

and from the derivative,

Ot ®@or = 0@, B @)]gx = Bp(®)| - - (66)

These are the relations (11,12) announced above. Note that these equations for ® hold for
any initial density profile p.

Important remark: We have derived the boundary conditions for & in the case of an an-
nealed initial condition. One could also consider a quenched initial condition, which corre-
sponds to q(x,0) = py(x). In this case, the mapping (61) can still be performed. One obtains
the same MFT equations (42,43), but with the initial and final conditions

p(x,0) = u(G(x,0)) +c—A6(x) = v0(x =€), p(x,1) =—p(x,0) +u(po(x))—c. (67)

The second relation involves the unknown function p(x, 0), which is smooth, but the first rela-
tion is identical to the annealed case. The same argument as above applies, and the boundary
conditions (65,66) still hold in the quenched case.

“If we consider the current Q, only, v = 0. In the case of an initial step density p,(x) = p,0(x) + p_0(—x),
the system has time-reversal symmetry. Indeed, by choosing ¢ = u(p_), the new initial and final conditions are
identical to the original ones, upon changing A — u(p.)—u(p_) — A. This is indeed the relation found in [10].

13
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5.2 Bulk equations

5.2.1 Mapping to the AKNS equations

We adapt the inverse scattering approach that was applied to the case of the integrated current
Q, in the SEP in [8] to the case of the joint distribution of Q, and J,. The first step is to introduce
the new functions [8]

1
1—2q

1 x x
) [q(l _q)e—f,oo(l—Zq)axp] v=— 8 el cc(1720)2:p (68)

T ap™

Under this transformation, the MFT equations for the SEP (42,43) become the AKNS equa-
tions [41]

Ju= 8xzu —2u®v, Qv= —8x2v + 2uv?. (69)

These equations are integrable and can be solved using the inverse scattering transform [29].
Before entering the resolution in more details, let us study the initial and final conditions for
u and v. From the conditions on p and g (44) and the transformation (68), we obtain

u(x,0)=[3,q—q(1—q)o,p] e oo (1203, p

t=0

=q(1—q) [(l +1)5(x)— ﬂ] e [loo(1-20)0:p

(70)
Po(1—po)

t=0

From now on, we consider the case of a step initial density py(x) = p,O(x) + p_O(—x). In
Eq. (70), the term 0, p thus gives another 6(x) term, but with an unknown prefactor, because
Py is discontinuous at 0. Even in the case of a constant density p, = p_, the prefactor of the
remaining 6 function is unknown, because q is discontinuous at x = 0. Therefore, we can only
write

u(x,0) =c¢y6(x), (71)

with an unknown constant c¢,. Similarly, for v(x, t = 1) at final time, we get

v(x,1)= —0,p ef 0o 1-20)0p L =a 6(x)+cy0(x—8), (72)
with two other unknown constants ¢; and c,, coming from the fact that the term in the expo-
nential is not well defined since p and g are discontinuous at x = 0 and x = &. Actually, we can
get rid of one of these unknown constants by using the invariance of the AKNS equations (69)
under the transformation u(x,t) — u(x, t)/K and v(x,t) — Kv(x,t). Choosing K = cj, we
have the initial and final conditions

u(x,0)=06(x), vix,1)=ad(x)+po(x—¢&), (73)

with a = ¢j¢y and 8 = cycy. We will see below how we can determine the constants a and
B. The simplicity of these conditions will allow for an explicit solution of the AKNS equations
at initial and final times. Furthermore, this solution will yield the desired equations for the
profiles, since d, p(x, 1) is a sum of § functions as seen from (44),

) a_od,q(x,1) forx <0
u(x,1) = 2 [8:q—q(—)aple =02030 | = § 4,0,9(x,1) foro<x<& (74
=1 a,0,q(x,1) forx>¢&

with different proportionality constants a_, ay and a, for each domain x < 0,0 < x < &
and x > & because p(x, 1) is discontinuous at both x = 0 and x = &, hence the value of the

14
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exponential differs in each interval (by an unknown factor, since g(x, 1) is also discontinuous
at these points). Similarly,

v(x,0) = —Kd,p el ec(1-2002:p (75)

t=0

We can simplify this equation in the following way. We take the derivative of the boundary
condition (44) at t = 0, which gives,

ap(x,0) = 245D sy o f (1-29)3,p

i n q(1—q)

+c,0(x), (76
t=0 P—(l_P—) “ (X) ( )

with new constants c3 and ¢, (which we will not need to determine). Indeed, combining
with (75), we get
b_d,.q(x,0) forx <O
v(x,0) = <d(x,0) , (77)
b,.3,q(x,0) forx>0
with two different proportionality constants b_ and b, for x < 0 and x > 0.
To summarize, the solutions u(x, t) and v(x, t) of the AKNS equations are directly related
to the derivative of the profiles at initial (48) and final times (47),

a_®'(x) forx<O0
Q)=u(x,1)=1{ ay®'(x) for0O<x<é& |, Qx)=v(x,0)= {
a,®'(x) forx>¢&

b_®'(x) forx<O0
b,®'(x) forx>0

(78)
with constants a_, ag, a,, b_ and b, that will be determined by the boundary conditions
derived in Section 5.1. The other relations are given by (73), with the constants a and f that
remain to be determined.

5.2.2 Solution using the scattering technique

Our goal is now to obtain integral equations verified by £ and €. To solve the AKNS equations
we rely on the standard approach [29], recently used in [8,22,24], and introduce the auxiliary
linear problem for the two-component vector ¥,

—ik v 2k?+uv  2ikv—23,v
GY=U¥, G¥=VY, U_(u ik)’ V_(Ziku—l—axu —2k2—uv)' 79

The compatibility condition between the first two equations, J,8,¥ = 3,0,V is equivalent to
the AKNS equations (69). The idea is therefore to solve the simpler linear problem (79), and
deduce the solution for u(x, t) and v(x, t). Since d,q — 0 and J,p — 0 for x — 00, u(x,t)
and v(x, t) decay to 0 at £00. The matrix U then becomes diagonal at £c0, and therefore ¥
is a superposition of plane waves in this limit. We introduce two independent solutions ¢ and

¢, defined by their behaviour at —oo,

—ikx
$lx,t) =~ ez"zt(e 0 ) Pl t) = e_Zth(_Oikx) : (80)

— — e

2 T . . .
where we have placed the factors e=2<"t so that ¢ and ¢ satisfy the time evolution equa-

tion (79) at —oo. For x — +00, we can write the solution as the superposition of the same
two plane waves,

a(k, t)e ikx - b(k, t)e ikx
d)(x’ t) x—ﬁoo ( b(k, t)eikx ) ? t;b(X, t) x—ioo (—C_l(k, t)eikx) ) (81)
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This defines a scattering problem, in which plane waves at —oo are scattered by the potentials
u(x, t) and v(x, t) into a superposition of plane waves at +00. The coefficients a, a, b, b are
called the scattering amplitudes. All the information on the functions u(x,t) and v(x, t) are
encoded in the scattering amplitudes, so that u(x,t) and v(x, t) can be reconstructed from
a, a, b, b. This is called the inverse scattering procedure, and is quite complicated to do in
practice. Here, we will follow a different route, used in [8,22-25,39,42]: we will determine
the scattering amplitudes at initial and final times in terms of the functions u(x,1) = Q(x)
and v(x,0) = Q(x), and relate them using the time evolution (79) to obtain integral equa-
tions satisfied by these functions. Indeed, one strength of the scattering approach is that it
transforms the complicated time evolution of the AKNS equations (69) into a very simple time
dependence of the scattering amplitudes. Their time evolution can be computed using the
matrix V(4+00) = Diag(2k?, —2k?) in (79) at + 00, which directly gives

d,a(k,t) = 2k%a(k,t), d,b(k,t) = —2k?b(k,t), (82a)

d,a(k,t) = —2k?a(k, t), 3,b(k,t) =2k?*b(k, t), (82b)
and thus

a(k, t) = e2*ta(k,0), b(k,t) = e 2K(b(k,0), (83a)

a(k,t) = e 2"a(k,0), bk, t) = e*’tb(k,0). (83b)

There only remains to determine the scattering amplitudes at t = 0 and ¢t = 1. For this,
we solve the spatial equation involving the matrix U (79). Let us first write this equation at
t = 0. For the second component of ¢ = (¢; ¢,)', we get

B Le™ ¢a(x,0)] = 5(x)p1(x,0), (84)

and the same equation holds for ¢,. Integrating this equation with the boundary conditions
at —oo (80), we obtain

e y(x,0)=O(x)$1(0,0), € hy(x,0) =~1+6(x)$1(0,0). 85)

Using these expressions in the equations for the first components ¢, and ¢, (79) yields
d,[e" ¢1(x,0)] = Q(x)e* ™ O(x)¢1(0,0), (86a)
3. [e** P (x,0)] = Q(x)eZ ¥ [—1 + ©(x)$,(0,0)]. (86b)

Integrating with the boundary conditions (80), we obtain
X
"1 (x,0) = 1+0(x)¢1 (0, O)J Q(x")e* dx’, 87)
0
e, (x,0) = —f O(x")e? > dx’ +©(x) 1 (0, O)J O(x" e dx . (88)
—00 0

From these expressions, we deduce the expressions at x =0,
0

$1(0,0)=1, 431(0,0):—[ Q(x")edkx dx’ . (89)

—0Q
Combining the results (85,87,88) with the asymptotic behaviour (81), we deduce the scatter-
ing amplitudes

b(k,0)=1, (90a)

[ele) 0 [ele]
b(k,0) = — f Q(x)e?**dx — ( f S_Z(x)emkxdx) U Q(x/)eZikx/dx’) . (90b)
—0 —00 0
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The amplitudes a(k,0) and a(k, Q) can also be determined, but we will not need them in the
following, so we do not write their expressions explicitly.

We can proceed similarly at final time ¢t = 1, this time starting with the equations for the
first components, as it is the one that involves the 6 functions,

Oc[e™ 1 (x, D] = (ab(x) + Pe*C5(x — £))e ™y (x, 1), oD

with again the same equation for ¢,. Integrating with the asymptotic at —oo (80) yields
e $1(x,1) = e + a(0,1)0(x) + Be*§(€,1)O(x — &), (92a)
e b1 (x,1) = a5(0,1)0(x) + Be' §,(E, 1)O(x — ). (92b)

Inserting these expressions into the equations for ¢, and ¢,, we get
8, L7 y(x, 1)] = Q(x)e 2 [ 2 + apy(0,1)O(x) + feE (£, DO(x —£) ], (932)
B[ da(x, D] = Q(x)e [ad2(0,1)O(x) + B py(E,1)0(x — &) ] - (93b)
Integrating with the asymptotic behaviour (80), we obtain

e Ry (x, 1) = e f

—0Q

X

Q(x")e 2R dx’ + a®(x) (0, 1)J Q(x")e 2k qx’
0

X

+ BO(x — &)¢py(&, 1elke f e Q(x)dx’,  (94)
3

pe
e B, (x,1) = —e 2 + a®(x) (0, 1) J Q(x")e 2k qx’
0

X

+BO(x — &), (&, 1)ei’<€J e 2k 0(x)dx’ . (95)
3

We therefore deduce o

$5(0,1) = &2 J Q(x")e 2k qx’ | (96)

—00

3
(;bz(g, 1)e—ik£ — e2k2 f Q(x/)e—zikx’dx/

—00
0 3
+e2k2aU Q(x’)e—ZikX’dx’) ( f sz(x’)e‘z”""dX’)’ 7
—00 0

3

$5(0,1) = —e2K | F,(E,1)e K = —¢ 2K (1 + aJ Q(x’)e—ZikX’dx’) . (98)
0

From the solutions (92a,94), we can read the asymptotic behaviours (81) and deduce the
scattering amplitudes

+00 0 +00
b(k,1)e 2" = f Q(x)e 2 dx’ + (J Q(x’)e_zikxldx’) (f Q(x’)e_Zik"/dx’)
—00 —00 0
g +o00
+ ﬂeZikg (J Q(x/)e—Zikx'dxl) (J Q(X/)e—Zikx'dxl)
—00 é
0 & +o00
+ aﬁeZikE (f Q(X/)G_ZikX/dX/) (J Q(x/)e—Zikx/dx/) (J Q(x/)e—Zikx/dX/) , (99)
—00 0 3
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3
b(k, 1)e2k2 =—a— /5@2”‘E (1 + af

Q(x’)e—ZikX’dx’) . (100)
0
Again, a and a can be obtained similarly but we will not need them here.

The last step is to relate the scattering amplitudes b and b at initial time (90a) with the
ones at final time t = 1 (99,100) by using the time evolution (83a). This gives the following

equations for Q and Q:

+00 0 +00
J Q(X/)e—Zikx/dx/ +a (J Q(X/)e—Zikx/dx/) (f Q(x’)e_zikxldx’)
—00 —00 0
0 13 +00
+ aﬁ eZikE (J Q(x/)e—Zikxldx/) (J Q(X/)e—Zikxldx/) (J Q(x/)e—Zikxldxl)
—00 0 13
13 +00
+ ﬁe2ik§ (J Q(x/)e—zikx'dx/) (f Q(x/)e—Zikx’dx/) — e—4k2 . ao1)
—oo £

oo 0 oo
f Q(x)e? dx + (J Q(x)ezjkxdx) (J Q(x')ezjkx/dx’)
—00 —00 0
g
=4 (a + fJ’eZikg + 01/362”‘5 f Q(x/)e_Zikx/dx/) . (102)
0

We can obtain equations in real space by taking the inverse Fourier transform. More precisely,
multiplying (101) by ¢?** /7t and integrating over k yields the equation for  (8). Similarly,
multiplying (102) by e~2** /7t and integrating over k, we obtain the equation for  (9).

These integral equations (8,9) clearly admit a unique solution when a = f# = 0, given by
Q(x) = K(x) and Q(x) = 0. One can then use this starting point to look for a perturbative
solution for small a and f3, as it is done in Section 6 below. This leads us to expect that these
equations admit a unique solution, at least for small a and f3.

This concludes our derivation of the integral equations (8,9). There only remains to de-
termine the constants a and f3.

5.3 Determination of the remaining constants a and f3

We now turn to the determination of the last constants @ and 8 which appear in the integral
equations (8,9). A first equation can be obtained from the conservation of the number of
particles in the SEP between initial and final time, i.e.,

o0
J [®(x)—®(x)]dx =0. (103)
—0oQ
This equation can be derived from the MFT equation (42), by integration on x from —o0 to
+00, which yields ff:o 3:q(x, t)dx =0, since J,p and J,q decay to 0 at +0o0.

The second equation can be determined by following the approach used in [8], which relies
on the scattering formalism. The scattering amplitudes defined in (81) can be equivalently
defined by regrouping the two vectors ¢ and ¢ in a single matrix, so that

a(k,t) b(k,t)
b(k,t) —a(k,t)

] ) 1 eZkzt 0
= lim lim M(x,t;k)M(y,t;k) N (104)

X—00 y—>—00
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where the matrix M(x; k, t) satisfies

O M(x,t;k) =UM(x,t;k), IM(x,t;k)=VM(x,t;k), (105)

with the matrices U and V given in (79). Remarkably, the spatial equation for M can be
explicitly solved when k = 0 by using the specific form of the functions u and v in terms of p
and q (68). The solution is given in the Supplemental Material of Ref. [8], and reads

VK 0 [ e (1—02p — [ 0 40:p 1 )
M(x, t:k) = ( . ¢ - P | . (106)
0 —=)l- _p)ef,wq P p e~ | 0o(1=0)2:p 0 VK

where K is the constant we introduced above Eq. (73) to get rid of the constant in front of the
6 function in the initial condition for u. Using the asymptotic behaviours q(x, t) oo, P
—>xT 00

p(x,t) e 0 and p(x, t) et A+ v, we get

C eMH C 1 1
lim M(t)= _ 1 —auls lim M(t)= , (107
i, M(£) (—(1—p+)C L pycle? “) dm M) (—(1—p_) p+) (107

where we have denoted C = e~ /-0 9%P, Using these expressions in (104), we obtain a simple
expression for the product of the diagonal elements at k =0,

—b(0,)b(0, ) =w=p, (e "=+ p_("" =D+ p, p_(e*"=1)(e?"—=1), (108)

with w the single parameter identif_ied for the SEP in [9, 33], still with two parameters A and
v. Using the expressions of b and b at t = 0 (90a), and the bulk equation for Q (102), this
last equation yields

3
a+p+ap J Q(xNdx' = w. (109)
0

Note that the same equation can be obtained from the expressions at t =1 (99,100). Compar-
ing with the definition of the kernel K (10), we notice that this equation can also be written
in the compact form

+00
J K(x)dx =w. (110)
—0oQ0

With this last derivation, we now have all the equations needed to determine the profiles ®
and ® and thus deduce the cumulants from (45).

6 Perturbative solution for the first joint cumulants

We do not have an explicit solution of the equation for Q (8), so we will rely on a perturbative
solution in A and ».

6.1 For the currents

The equations for  (8) and  (9) only involve the parameters a and 3. We thus first write
the solutions of these equations perturbatively in @ and f3, and in a second step express them
in terms of A and v by using relations (11)-(16). We denote the expansions of Q and Q as

o0 oo

Qx)= D @B Qu(x), Qx)= D a’pm Q. (x). (111)

n,m=0 n,m=0
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Inserting these expansions into the integral equations (8,9), we obtain

x2
e 4
Qyo(x)=K(x) = , (112)
0,0(x) =K(x) N
e ] U k=gl
Qi o(x)=— erfc( ), Qo1(x)=— erfc( — ), (113)
N T O ) R L W - W,
_x2 _=9)?
Ooo(x) =0, Qo(x)=5—, Oy (x)=2 (114)
0,0 5 1,0 »\/4_7'[," 0,1 \/4_71 5
x2 _ (28?2

)=~ ere( BL), = ere( L)
Qy0(x) = 2 erfc(zﬁ , Qoalx)= W erfc Wik (115)

(x=£)?
8

'x|+5) . (116)

Ql’l(x)=—62ﬁ erfc( Wi

To deduce ® and &, we integrate  and Q (7) with respect to x, with the boundary conditions
at infinity (15),

p_+%ffooQ forx <0
d(x)=1{ do+x [( Q@ forO<x<g

) p_+biff Q forx<O0

, B0 = -
p+—ifxooﬂ forx > ¢& b
(117)
For the above expressions, these integrals can be computed using the tables in [43]. We will
also need the integral of ® and @ in Egs. (16,17), which correspond to double integrals of €.
This is not convenient to compute in practice, and it is more practical to use integration by

parts

oo oo oo oo
J dyf dz Q(z) = —xJ Q(y)dy + J yQ(y)dy, (118)
X y X X
which can now be computed using the tables in [43].
Next, we expand all the parameters in powers of A and v,
Z= > Zyn A", (119)

n,m=0

with Z € {a, 8,a_,ag,a,,b_, b,,dy}. Inserting these expansions into the boundary conditions
at x = 0 and x = £ (11,13) and into the conservation equations (17,16), we obtain the
coefficients of these expansions up to order 4 included for a and 8 and up to order 3 included
for b, b_, dy, %, alo and é in the case p, = p_ = p. This difference of orders come from
the fact that a and 8 begin at order 2 in A and v,

a=AA+p(1l—p)+---, B=v(A+v)p(1—p)+---, (120)

therefore so does €, while Q already has non zero terms at order 0. On the other hand, & and
® have terms at first order in A and v. This is why the expansions of b, and b_ begin at order
1, while those of a ., ay and a_ have terms in 1/A or 1/v.
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Figure 3: Profile ¢ at final time obtained from the numerical solution of the integral
equations (8,9) with the conditions (11-17) (dashed red lines), compared to the
perturbative solution (121) up to order 4 in A and » (solid blue line). Remarkably,
the perturbative solution is in good agreement even for values A = v = 1 which
are not small (left), but ultimately differs from the correct solution when A or v is
increased (right).

Consequently, we obtain the lowest orders of the profiles & and ®. For instance,

d(x>&)=p+ (7L+v)p(1 p)erfc( )+ ~(A+v)?p(1— p)(1—2p)erfc( )

+—p(1 p)(A+ v)? [Zerfc(ﬁ) ((A+ v)(l—3p(1—p))+3vp(1—P)erf(§))

24
—3p(1— p)(SvT(j_ 5)+8 T(gzx,l‘g )+2”erf(§)

—2verf(§2 )+7L rfc( ) )]+C’)(A4, v, (121)

where T(z,a) is Owen’s T-function, defined by [43]

T(z,a) = erf(ﬁ) dt. (122)

‘/_

We compare this perturbative expression to the result obtained from the numerical resolution
of the integral equations (8,9) in Fig. 3. Although the perturbative solution is expected to be
in good agreement with the actual solution for values of A and v which are small, we observe
a reasonnable agreement up to A = v = 1. To accurately describe larger values of A or v, one
should include higher orders the perturbation series.
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From the expressions of ® and ®, we deduce 1,[: ¢ from (19), which yields

n B 1 2__2 13 AA+v) v
el ) =—vEp +p(1—p) 51}(?\+v)(7—€ f(z))+7+7

—= 2
T vp(1—p)(1—2p) 1(7“4”)(23_ _te f(g)) Mz"j_”) rt

p(1—p) 2 2 2e_;_ 3 2 2 2., .4
+—24 (A + v)RA“+Av+ v )( N éerfc(z))+ﬁk(k+ MA“+Av+2v* +u"E)

AT ) PR (2e—% - gerfc(é)) AR+ N(ZAR+ VIAY +40D)
7T 2

4 v

RO (e o)+

2 9
—Vz(l-l-v)z(ze —£erfc(£))+merfc(§) + 0%, %), (123)

V2 V2 v

One can check that, for » = 0, we recover the first orders® of the cumulant generating function
of [9], for A = 0 it gives the first orders of the one obtained in [3], and for £ = 0, since J, = Q,,
we recover the first orders of the one for Q, [9], evaluated at A + v. Taking derivatives of this
expression with respect to A and v, we obtain the different joint cumulants (Q’;J - >C of the

two currents,
A Aty
b= ), o — 2 (@um). (124)

n,m=>0

The first cumulants are written in Section 2.

6.2 For the current/tracer correlations

The distribution of the position of a tracer can be obtained from the distribution of the cur-
rent J, [3,4]. The idea is that, since the particles remain in the same order, the number of
particles to the right of the tracer is conserved, the tracer is located at the position X, such
that J,(X,) = 0. This relation is not quite exact, since there could be several values for which
J.(x) = 0. Actually, X, corresponds to the smallest of these values. However, in the long time
limit, this indeterminacy becomes a subdominant correction, and this relation becomes exact
at leading order in t. This implies that P(X, = x) = P(J,(x) = 0). We can directly extend this
relation to the joint distribution of Q, and X,,

P(Q;=q&X,=x)=P(Q;, =q&J,(x)=0). (125)
We have computed the joint cumulant generating function of the two currents, which implies

< AQt+vJ[(xt) ZZ Aq+vj P(Q, = q &J,(x) _]) ~ ew/-“t,bgUL ) (126)
q j

°In fact, not only the first orders, but the full cumulant generating function of [9] is recovered from (8) which
can be solved in this case. Similar comments apply to the specific cases A =0 and £ = 0.
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We can take the inverse Laplace transform in v, which can be evaluated by a saddle point
approximation for large t, which gives a mixed distribution/generating function

(%50, (x)—jVD) = e Viesh, (127)
where ¢; is given by the Legendre transform

()= v (M Di— (A (A1), (A, )|, =] (128)

Using the relation between J; and X, (125), we deduce

(U5, —EVD) = e VP10 (129)

t—

We can obtain the joint cumulant generating function of the current Q, and the position X, by
another Legendre transform,

.1 .
lim — In{e %) = y " (4, )~ (A 0),  Fepe(A,0)|.. = 1. (130)

t—o0 ,\/?

This procedure extends the one of [3,4] to the joint distribution of Q, and X,. It can be carried
out explicitly starting from the expression of 1)+ at lowest orders (123), and yields

2 3

i, (e ) = 2Ly app - EBh a4 2y HU=L0 D)
_2x(=pY AyOp+)0-p) 222G +x)A=p) x°CGe+x)0—-p)

4V 4v/mp? 4vn 4/mp3

L xGp+ x)’(1—p)? L20Cp + )0 -p) Qo+ x)1-p) (Ao +x)'Q—p)
323 3y/mp2 3J/mp2 2v/2mp2
2 2
_Ax"(Ap +);)\(/1E;2p) 1=2p) lx(l+xl(j%;x)(1 —p) OGS 5. 31

This directly gives the first joint cumulants of Q, and X,, which are given in Section 2. In
particular, setting ¥ = —p A, this gives the generating function of Q, — pX,,

1 _ p(1—p)°
lim — In{eM@PXJ)) = B2 _F2 344 0(1%). (132)
(=00 /T { ) 47 (A7)
Remarkably, there is no term in A2, indicating that the variance of Q, —pX, is smaller than +/t
for large t, indicating strong correlations between the current Q, and the positions X, of the
tracer. However, this does not indicate that Q, and X, are proportional, since the higher order
cumulants grow as +/t. This indicates that Var(Q, — pX,) is nonzero, but grows slower than

Jt.

7 Conclusion

We have studied the joint distribution of the current Q, through the origin and the current
J, through a moving boundary in the SEB as well as their correlations with the density of
particles. These correlations are described by generalised density profiles. We have obtained
integral equations satisfied by these generalised density profiles. These integral equations
extend the ones discovered in [6,7] in the case of a single observable (current Q, or J,, tracer
position X,). This further emphasises the key role of such strikingly simple integral equations
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involving partial convolutions in interacting particle systems. In the case of a single observable,
the integral equations naturally obtained are bilinear, but surprisingly they are equivalent to
linear equations at the expense of introducing analytic continuations [6,7]. An important
open question is whether the equation obtained here, which is trilinear, can be reduced to
such linear equations (for which an explicit solution can be obtained).

We have also obtained simple boundary conditions for the generalised density profiles.
These boundary conditions take a simple physical form, in terms of the chemical potential,
and can be applied to any model of single-file diffusion. This extends the relations that have
been obtained for the SEP from microscopic considerations [5-7].

As a consequence of these equations, we have characterised the joint statistics of the cur-
rent through the origin Q, and the position of a tracer X,, initially at the origin. These variables
are strongly correlated, and even become equal in the high density limit.

This work opens the way to the study of more than two observables, such as multiple
currents or tracers, in the SEP and other models of single-file systems.

Acknowledgements We thank Alexis Poncet for illuminating discussions and in particular
for sharing his guess of the Eq. (33), left, involving the pressure.

A Mapping the boundary conditions for other observables

In this Appendix, we show that the boundary conditions (11,12) obtained for the currents Q,
and J, can be mapped onto other physical boundary conditions for other observables, such
as the position X, of a tracer. In Ref. [34], it has been shown that the current Q, in a single-
file system described by the coefficients D(p) ans o(p) corresponds to the opposite of the
displacement of a tracer in a dual single-file system, with

~ 1 1 . 1

D(p) = —ZD(—), G(p)=p0(—)- (133)
P P p

The mapping is as follows. The density § in the dual system, in the reference frame of the

tracer at X, = —Q,, can be expressed in terms of the density p of the initial system as [34]

-
pk(x,t),t)’

Since this mapping is valid for all realisations of p, it is also valid for the saddle point (g, p)
solution of the MFT equations (42,43), and thus for the profile ® (47),

p(x,t) = k(x,t) =J p(y, t)dy . (134)
0

1 X
®(x) = m, Z(X)=J0 ®(y)dy . (135)

The dual profile & corresponds to [34]

<,5(Xt+r,t)e_ut> B r
) -3)
with an unusual minus sign in the exponential, due to the fact that X, = —Q,.
The chemical potential (32) becomes

_(P2p), ‘l’ZD(l/r)dr_ ’l’ZrD(r) (1
ule) = J amdf——J mr—z—‘J s or=b(5)

(136)
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where P is the pressure (34) for the dual system.
Combining these relations with (12), we obtain

P(®0M)—D(®(07)=-A. (138)

Changing A — —A to remove the minus sign in the definition (136), we obtain (33), left. For
the relation involving the derivative, we need

2,5 =—0,iu(®). (139)

3xu(‘1>) = 6‘(&3) %

2D(¢)o,® 2&>3D(&>)@a (1) _ _2f)(<i>)
o(®) 5(@) Ix “\ N

From (12), we thus straightforwardly deduce (33), right.

B Relation between the physical boundary conditions and the mi-
croscopic equations for the SEP

In the case of the SEB other boundary conditions have been obtained for the different observ-
ables considered here (individually), from microscopic considerations [5-7]. Note that they
have been obtained with a different choice for the time scale, with D(p) = % ando(p) = p(1—p).
Here, we show that they are equivalent to the physical boundary conditions (11,12,33) ob-
tained in this article.

For the case of the current Q,, they take the form [6]

01)(1—-2(07) _ ,

IrATY T 1
s0)1—s@) ¢ ¥ )_:FZ"’(

1—e

i @(0*)) : (140)

where & has been defined in [6] with a slightly different scaling

(nreAQt> . r
ey (=) e

Taking the logarithm of the first equation in (140), we get

)L:—ln((b((lﬁ)—1)+ln(¢((1)_)—1) , (142)

which is exactly the relation (12) with the expression of the chemical potential for the SEP (14).
Combining the relations (140) right to eliminate 1), and combining with the first relation to

remove the e**, we get
_2(07)(@(01)—2(07) _ #'(07)(@(07)—2(0M) (143)
2(07)(1—2(0%)) 2(07)(1—2(07))
Rewriting it in terms of the chemical potential for the SEP (14), we obtain,
' (2(07)@'(07) = p'(2(07)2'(07), (144)

which is indeed Eq. (12).
In the case of a tracer at position X,, different relations have been obtained [5] which read

2¢)

eth —1

1-9(07) _ 2
1—®(0t) ’

(05 =7 $(0%), (145)
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with the profiles defined as

(nXt+reut> _r

As for the current, taking the logarithm of the first equation in (145) yields
A =—In(1—®(0")+In(1—®(07)) = P(®(07))—P(®(07)), with P(p)=—In(1—p) (147)

for the SEP. This is indeed (33), left. Combining the relations in (145) to eliminate 1[) and A,
we obtain

POD 07— a(0) = —— 22

T30N1-2(0") B CRTETCR AR

This is identical to the case of the current (143), hence it yields again (33), right.

C Numerical resolution of the integral equation

To solve the integral equations (8,9), we discretize the integrals by using the trapezoidal rule
b
J £(x)dx JM5 +Zf(a+k5x)5x (149)

where N =|(b—a)/6x ] and 6 x is the discretization length. Furthermore, since lim,_, o, 2(x) =0
and lim,_,, o Q(x) = 0, we solve (8,9) on a finite interval [—L, L] with the condition that
Q(x) = Q(x) =0 if x ¢ [—L,L]. By doing so, the integral equations (8,9) become a finite
system of nonlinear equations in Q(—L +i 6x) and Q(—L +i6x) with0<i <N =|2L/5x].
This system can be solved using standard gradient descent algorithms.

The profiles ® and & are then obtained from these solutions by discrete integration of (7).
The parametersa_, ay, a, and b_, b, are determined from the boundary conditions (11,12,13).
This procedure gives the profiles ® and &, given a and f3 as input. Performing a final gradient
descent, a and f3 are determined from the parameters A, p_ and p, from (16,17).

D Numerical resolution of the MFT equation

The coupled MFT equations have a forward/backward structure: p obeys an antidiffusion
equation (43) with a final condition (44) (left); while g obeys a diffusion equation (42) with
an initial condition (44) (right). To solve this system, we use the standard scheme described
for instance in [11]. which we briefly summarize here.

1. First solve the equation for g (42) using the initial guess p(x,t) = A0(x) + vO(x — &),
corresponding to the terminal condition (44) (left) extended to all times.

2. Then, use the resulting solution g(x, t) to solve the equation for p (43).

3. Iterate the process, by replacing at each step either p or q by the newly obtained function.
After a few iterations (~ 3), it is usually helpful to replace the functions by a linear
combination of the last two, e.g.,

q(X, t) — aqnew(x: t) + (1 - a)qold(xa t) 5 (150)

to avoid oscillating between two solutions. For instance, we use a = 0.75.
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4. Repeat until the difference between the last two solutions is small enough, which can be
measured for instance by

J[qnew(x;t)_qold(x,t)]dedt . (151)

To use standard methods for partial differential equations, we regularise the Heaviside ©

function by . h(ax)
+ tanh(ax

2 )
with a ~ 150. This regularization causes a small discrepancy between the numerical solution
and the exact one near the discontinuity of the function g(x, 1).

O(x) ~ (152)
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