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Introduction

The Symmetric Exclusion Process (SEP) is a paradigmatic model of single-file diffusion [START_REF] Chou | Non-equilibrium statistical mechanics: from a paradigmatic model to biological transport[END_REF][START_REF] Mallick | The exclusion process: A paradigm for non-equilibrium behaviour[END_REF], which has been the object of several recent and important developments [START_REF] Imamura | Large deviations of a tracer in the symmetric exclusion process[END_REF][START_REF] Imamura | Distribution of a tagged particle position in the one-dimensional symmetric simple exclusion process with two-sided bernoulli initial condition[END_REF][START_REF] Poncet | Generalized correlation profiles in singlefile systems[END_REF][START_REF] Grabsch | Exact closure and solution for spatial correlations in single-file diffusion[END_REF][START_REF] Grabsch | Exact spatial correlations in single-file diffusion[END_REF][START_REF] Mallick | Exact solution of the macroscopic fluctuation theory for the symmetric exclusion process[END_REF]. In this model, particles perform symmetric random walks in continuous time on an infinite one-dimensional lattice, with the constraint that there can be at most one particle per site. In this context, several quantities have attracted attention : (i) the integrated current through the origin Q t (defined as the number of particles which have crossed the origin from left to right, minus those from right to left, up to time t) [START_REF] Mallick | Exact solution of the macroscopic fluctuation theory for the symmetric exclusion process[END_REF][START_REF] Derrida | Current fluctuations of the one dimensional symmetric simple exclusion process with step initial condition[END_REF][START_REF] Derrida | Current fluctuations in one dimensional diffusive systems with a step initial density profile[END_REF][START_REF] Krapivsky | Fluctuations of current in nonstationary diffusive lattice gases[END_REF]; (ii) the position X t of a tracer [START_REF] Poncet | Generalized correlation profiles in singlefile systems[END_REF][START_REF] Grabsch | Exact closure and solution for spatial correlations in single-file diffusion[END_REF][START_REF] Grabsch | Exact spatial correlations in single-file diffusion[END_REF][START_REF] Arratia | The motion of a tagged particle in the simple symmetric exclusion system on z[END_REF][START_REF] Burlatsky | Motion of a driven tracer particle in a one-dimensional symmetric lattice gas[END_REF][START_REF] Landim | Driven tracer particle in one dimensional symmetric simple exclusion[END_REF][START_REF] Krapivsky | Large deviations in single-file diffusion[END_REF][START_REF] Krapivsky | Dynamical properties of single-file diffusion[END_REF][START_REF] Sadhu | Large deviation function of a tracer position in single file diffusion[END_REF][START_REF] Grabsch | Driven tracer in the symmetric exclusion process: Linear response and beyond[END_REF], initially placed at the origin; (iii) the generalised current J t which counts the number of particles which cross a moving boundary1 at position x t (counted positively from left to right, and negatively from right to left) [START_REF] Imamura | Large deviations of a tracer in the symmetric exclusion process[END_REF][START_REF] Imamura | Distribution of a tagged particle position in the one-dimensional symmetric simple exclusion process with two-sided bernoulli initial condition[END_REF][START_REF] Arratia | The motion of a tagged particle in the simple symmetric exclusion system on z[END_REF]. This latter observable actually provides an alternative way to study the displacement of a tracer, since its position X t corresponds to the value of x t for which J t = 0, because the order of the particles is conserved [START_REF] Imamura | Large deviations of a tracer in the symmetric exclusion process[END_REF][START_REF] Imamura | Distribution of a tagged particle position in the one-dimensional symmetric simple exclusion process with two-sided bernoulli initial condition[END_REF][START_REF] Arratia | The motion of a tagged particle in the simple symmetric exclusion system on z[END_REF].

The statistical properties of the current Q t have been fully characterised by the computation of its cumulant generating function using Bethe ansatz [START_REF] Derrida | Current fluctuations of the one dimensional symmetric simple exclusion process with step initial condition[END_REF]. Concerning the position X t of a tracer, its fluctuations have first been quantified by the computation of the variance [START_REF] Arratia | The motion of a tagged particle in the simple symmetric exclusion system on z[END_REF]. The full distribution has later been computed, first in the high-density limit [START_REF] Illien | Active transport in dense diffusive single-file systems[END_REF], then in the lowdensity limit [START_REF] Krapivsky | Dynamical properties of single-file diffusion[END_REF][START_REF] Sadhu | Large deviation function of a tracer position in single file diffusion[END_REF][START_REF] Hegde | Universal large deviations for the tagged particle in single-file motion[END_REF][START_REF] Krapivsky | Tagged particle in single-file diffusion[END_REF], and finally at arbitrary density [START_REF] Imamura | Large deviations of a tracer in the symmetric exclusion process[END_REF][START_REF] Imamura | Distribution of a tagged particle position in the one-dimensional symmetric simple exclusion process with two-sided bernoulli initial condition[END_REF] by relying on tools from integrable probabilities (which give a microscopic solution). These latter works [START_REF] Imamura | Large deviations of a tracer in the symmetric exclusion process[END_REF][START_REF] Imamura | Distribution of a tagged particle position in the one-dimensional symmetric simple exclusion process with two-sided bernoulli initial condition[END_REF] actually provide the full cumulant generating function of the generalised current J t , from which the statistical properties of the position of the tracer is deduced.

Recently, combining microscopic and macroscopic approaches, it has been shown that, in the long time limit, all these results can be easily recovered from the solution of a simple integral equation [START_REF] Grabsch | Exact closure and solution for spatial correlations in single-file diffusion[END_REF][START_REF] Grabsch | Exact spatial correlations in single-file diffusion[END_REF]. This equation is satisfied by generalized density profiles [START_REF] Poncet | Generalized correlation profiles in singlefile systems[END_REF][START_REF] Grabsch | Exact closure and solution for spatial correlations in single-file diffusion[END_REF], which characterise the correlations between the observable under consideration (Q t , J t or X t ) and the density of particles in the SEP. On top of providing a more direct way to obtain the statistical properties of these observables, this equation constitutes a strikingly simple closure of the infinite hierarchy of equation satisfied by these generalized density profiles [START_REF] Grabsch | Exact closure and solution for spatial correlations in single-file diffusion[END_REF][START_REF] Grabsch | Exact spatial correlations in single-file diffusion[END_REF]. These results are part of a context of intense activity around exact solutions for one-dimensional interacting particle systems [START_REF] Mallick | Exact solution of the macroscopic fluctuation theory for the symmetric exclusion process[END_REF][START_REF] Krajenbrink | Inverse scattering of the zakharov-shabat system solves the weak noise theory of the kardar-parisi-zhang equation[END_REF][START_REF] Krajenbrink | Inverse scattering solution of the weak noise theory of the kardar-parisi-zhang equation with flat and brownian initial conditions[END_REF][START_REF] Krajenbrink | Crossover from the macroscopic fluctuation theory to the kardar-parisi-zhang equation controls the large deviations beyond einstein's diffusion[END_REF][START_REF] Bettelheim | Inverse scattering method solves the problem of full statistics of nonstationary heat transfer in the kipnis-marchioro-presutti model[END_REF].

Although the individual properties of Q t , J t or X t have been characterised, the determination of their correlations remains an open question. These observables are indeed expected to be strongly correlated since, for instance, if the tracer (initially at the origin) moves to a position X t to the right, then the current Q t through the origin can only be positive. The determination of these correlations is the main goal of this article.

Here, relying only on a macroscopic description of the SEP, we show that the integral equation of [START_REF] Grabsch | Exact closure and solution for spatial correlations in single-file diffusion[END_REF][START_REF] Grabsch | Exact spatial correlations in single-file diffusion[END_REF] can be generalised to describe the joint correlations between the currents Q t , J t and the density of particles of the SEP in the long time limit. As a consequence, we deduce the joint statistical properties of Q t and J t , and, as a byproduct, those of Q t and X t . Importantly, this equation is completed by boundary conditions, which were derived from microscopic considerations in [START_REF] Poncet | Generalized correlation profiles in singlefile systems[END_REF][START_REF] Grabsch | Exact closure and solution for spatial correlations in single-file diffusion[END_REF][START_REF] Grabsch | Exact spatial correlations in single-file diffusion[END_REF]. Here, we provide a macroscopic derivation of these boundary relations, and extend them beyond the SEP to any single-file system. Furthermore, thanks to this generalisation, we give a clear physical meaning to these relations.

The article is organised as follows. We first present in Section 2 a summary of our main results, followed by a discussion of these results and their consequences in Section 2.3. We then present in Section 3 the Macroscopic Fluctuation Theory (MFT) [START_REF] Bertini | Large deviation approach to non equilibrium processes in stochastic lattice gases[END_REF][START_REF] Bertini | Stochastic interacting particle systems out of equilibrium[END_REF][START_REF] Bertini | Macroscopic fluctuation theory[END_REF], which gives a large scale description of diffusive systems, and is our starting point. In Section 4 we first illustrate on the simpler case of low density how this approach can be used to study joint properties of different observables. We give in Section 5 the derivation of our main results, which rely both on the MFT and on the inverse scattering technique [START_REF] Ablowitz | Solitons and the inverse scattering transform[END_REF] which has recently been applied to MFT and related problems [START_REF] Mallick | Exact solution of the macroscopic fluctuation theory for the symmetric exclusion process[END_REF][START_REF] Krajenbrink | Inverse scattering of the zakharov-shabat system solves the weak noise theory of the kardar-parisi-zhang equation[END_REF][START_REF] Krajenbrink | Inverse scattering solution of the weak noise theory of the kardar-parisi-zhang equation with flat and brownian initial conditions[END_REF][START_REF] Krajenbrink | Crossover from the macroscopic fluctuation theory to the kardar-parisi-zhang equation controls the large deviations beyond einstein's diffusion[END_REF][START_REF] Bettelheim | Inverse scattering method solves the problem of full statistics of nonstationary heat transfer in the kipnis-marchioro-presutti model[END_REF]. We give in Section 6 a perturbative solution of our main equations, from which the first joint cumulants of Q t , J t and X t are obtained. We finish by several concluding remarks in Section 7.

Summary of the main results

We consider a SEP in which particles hop with rate 1. We describe the state of the system by the set of occupation numbers {η i (t)} i∈ , with η i (t) = 1 if site i is occupied at time t, and 0 otherwise. Initially, we consider that each site is filled independently with probability ρ + for i > 0 and ρ -for i ≤ 0.

The integrated current Q t counts the total number of particles that cross the origin from left to right, minus the number from right to left, up to time t. It can be written explicitly in terms of the occupation numbers by comparing the number of particles to the right of the origin at times t and 0,

Q t = r>0 (η r (t) -η r (0)) . (1) 
Similarly, the generalised current J t counts the number of particles that cross a fictitious moving boundary located at x t at time t. It can be expressed in terms of the occupation numbers, by comparing the number of particles to the right of x t at time t, and the number of particles to the right of x 0 = 0 at initial time. Explicitly, it can be written as

J t = r>x t [η r (t) -η r (0)] - x t r=1 η r (0) , (2) 
which can equivalently be expressed in a slightly different manner by subtracting the mean density at infinity ρ + and separating the sums.

This gives the definition

J t = r>x t (η r (t) -ρ + ) - r>0 (η r (0) -ρ + ) -ρ + x t , x t = ⌊ξ t⌋ . (3) 
We have chosen a specific expression for x t , such that x t ∼ t for large t since the system is diffusive. We will consider only the case ξ > 0, but the case ξ < 0 can be obtained similarly.

Our main results concern the joint cumulant generating function of the two currents Q t (1) and J t (3), in the long time limit

ψ ξ (λ, ν, t) = ln e λQ t +νJ t ≃ t→∞ t ψξ (λ, ν) , (4) 
and their correlation with the density of surrounding particles, encoded in the generalised density profiles [START_REF] Poncet | Generalized correlation profiles in singlefile systems[END_REF] w r (λ,

ν, t) = η r (t) e λQ t +νJ t e λQ t +νJ t ≃ t→∞ Φ x = r t . ( 5 
)
The profile Φ also depends on λ, ν and ξ, but we omit the dependency on these variables to simplify the notations. These profiles actually correspond to the average occupations of the sites in the so-called tilted or canonical path ensemble [START_REF] Touchette | The large deviation approach to statistical mechanics[END_REF][START_REF] Derrida | Large deviations conditioned on large deviations i: Markov chain and langevin equation[END_REF][START_REF] Derrida | Large deviations conditioned on large deviations ii: fluctuating hydrodynamics[END_REF]. This ensemble describes the dynamics of the system under a bias due to the exponential terms in [START_REF] Poncet | Generalized correlation profiles in singlefile systems[END_REF], which favors the realisations in which Q t and J t differ from their expected values. The profiles w r , and thus Φ, measure the response of the density of particles to this bias. In particular, if for instance λ > 0, the exponential in [START_REF] Poncet | Generalized correlation profiles in singlefile systems[END_REF] favors realisations in which Q t is larger than its average. In these realisations, we expect an accumulation of particles to the right of the origin, and a depletion of the left, due to the particles that have crossed the origin from left to right. This is indeed what we observe in Fig. 1, left. The same interpretation holds for J t . Furthermore, expanding [START_REF] Poncet | Generalized correlation profiles in singlefile systems[END_REF] in powers of λ and ν, w r generates all the correlations η r (t)Q n t J m t c between the currents Q t , J t and the occupations η r (t). In particular we discuss below the lowest order correlations.

We also characterise the correlations between the currents and the initial density of particles, encoded in the initial profile

wr (λ, ν, t) = η r (0) e λQ t +νJ t e λQ t +νJ t ≃ t→∞ Φ x = r t , (6) 
which has a similar interpretation to the profile at final time [START_REF] Poncet | Generalized correlation profiles in singlefile systems[END_REF]. For instance, for λ > 0, the configurations favored by the exponential are the ones which yield a larger current Q t . At t = 0, this is realised by a fluctuation of the initial condition with more particles on the left of the origin, and less on the right. Then, the dynamics will make these particles flow through the origin, yielding a large current Q t . This is what is shown in Fig. 1, right.

We have obtained equations satisfied by the profiles Φ and Φ, from which the cumulant generating function ψξ is deduced. We first present these main equations, before giving some of their consequences on the correlations between the different observables and finally discussing the status of these results and relations with the recent works [START_REF] Grabsch | Exact closure and solution for spatial correlations in single-file diffusion[END_REF][START_REF] Grabsch | Exact spatial correlations in single-file diffusion[END_REF].

Equations for the correlations and the cumulants

Instead of the profiles at final time Φ and initial time Φ, we found that it is their derivatives which verify closed equations. More precisely, we define the functions 

Ω(x) ≡    a -Φ ′ (x) for x < 0 a 0 Φ ′ (x) for 0 < x < ξ a + Φ ′ (x) for x > ξ , Ω(x) ≡ b - Φ′ (x) for x < 0 b + Φ′ (x) for x > 0 , (7) 
+ = = 0.5 = 2, = 5 MFT (num.) integ. eq.

Figure 1: Profiles Φ (left) and Φ (right) obtained from the numerical resolution of the integral equations [START_REF] Mallick | Exact solution of the macroscopic fluctuation theory for the symmetric exclusion process[END_REF][START_REF] Derrida | Current fluctuations of the one dimensional symmetric simple exclusion process with step initial condition[END_REF] with the conditions (11-17) (solid red lines), compared to the numerical resolution of the MFT equations (blue points). Here, we have set ξ = 2 2, λ = 2 and ν = 5. These can be interpreted as a mean density profile, under the condition that Q t = 0.83 and J t = 0.27. The numerical schemes used to obtain these curves are described in Appendix C and Appendix D.

with multiplicative constants a -, a 0 , a + , b -and b + to be determined. We find that the functions Ω and Ω satisfy the following integral equations

Ω(x) + α ∞ 0 Ω( y)Ω(x -y)Θ( y -x)d y + β ∞ ξ Ω( y)Ω(x + ξ -y)Θ( y -x)d y + αβ ∞ ξ d y ξ 0 dz Ω( y)Ω(z)Ω(x + ξ -y -z)Θ( y + z -x -ξ) = K(x) , (8) 
Ω(x) + ∞ 0 Ω( y) Ω(x -y)Θ( y -x)d y = K(x) , ( 9 
)
where Θ is the Heaviside step function, and the kernels

K(x) = e -x 2 /4 4π , K(x) = α e -x 2 /4 4π + β e -(x-ξ) 2 /4 4π + αβ ξ 0 Ω( y) e -(x+ y-ξ) 2 /4 4π d y , (10) 
which involve additional parameters α and β. The multiplicative constants in the definitions [START_REF] Grabsch | Exact spatial correlations in single-file diffusion[END_REF] are determined by the following boundary conditions

µ(Φ(0 + )) -µ(Φ(0 -)) = λ , µ(Φ(ξ + )) -µ(Φ(ξ -)) = ν , ( 11 
) [∂ x µ(Φ)] 0 + 0 -= 0 , [∂ x µ(Φ)] ξ + ξ -= 0 , ( 12 
)
µ( Φ(0 + )) -µ( Φ(0 -)) = -(λ + ν) + µ(ρ + ) -µ(ρ -) , [∂ x µ( Φ)] 0 + 0 -= 0 , (13) 
which involve the chemical potential µ. For the SEP, it takes the simple form

µ(ρ) = -ln 1 ρ -1 . ( 14 
)
We also have boundary conditions at infinity,

lim x→±∞ Φ(x) = ρ ± , lim x→±∞ Φ(x) = ρ ± . ( 15 
)
SciPost Physics

Submission

The last constants α and β are determined by conservation equations

∞ -∞ [Φ(x) -Φ(x)]dx = 0 . ( 16 
) ∞ -∞ K(x)dx = α + β + αβ ξ 0 Ω( y)d y = ω , (17) 
where

ω = ρ + (e -λ-ν -1) + ρ -(e λ+ν -1) + ρ + ρ -(e λ+ν -1)(e -λ-ν -1) (18) 
coincides with the single parameter identified in the SEP [START_REF] Derrida | Current fluctuations of the one dimensional symmetric simple exclusion process with step initial condition[END_REF][START_REF] Derrida | Current fluctuations in one dimensional diffusive systems with a step initial density profile[END_REF][START_REF] Derrida | Current fluctuations in the one-dimensional symmetric exclusion process with open boundaries[END_REF], but with two parameters λ and ν. Together, Eqs. [START_REF] Mallick | Exact solution of the macroscopic fluctuation theory for the symmetric exclusion process[END_REF][START_REF] Derrida | Current fluctuations of the one dimensional symmetric simple exclusion process with step initial condition[END_REF][START_REF] Derrida | Current fluctuations in one dimensional diffusive systems with a step initial density profile[END_REF][START_REF] Krapivsky | Fluctuations of current in nonstationary diffusive lattice gases[END_REF][START_REF] Arratia | The motion of a tagged particle in the simple symmetric exclusion system on z[END_REF][START_REF] Burlatsky | Motion of a driven tracer particle in a one-dimensional symmetric lattice gas[END_REF][START_REF] Landim | Driven tracer particle in one dimensional symmetric simple exclusion[END_REF][START_REF] Krapivsky | Large deviations in single-file diffusion[END_REF][START_REF] Krapivsky | Dynamical properties of single-file diffusion[END_REF] fully determine the profiles Φ and Φ. Their knowledge allows to deduce the joint cumulant generating function by using (see below)

∂ λ ψξ = ∞ 0 [Φ(x) -Φ(x)]dx , ∂ ν ψξ = ∞ 0 [Φ(x + ξ) -Φ(x)]dx -ρ + ξ . ( 19 
)

Consequences on the observables

We only present the results for the case of a flat initial density ρ + = ρ -= ρ because they take a simpler form, but the results from the general case ρ + ̸ = ρ -can be obtained similarly. From the above equations, we recover the known results on Q t [START_REF] Derrida | Current fluctuations of the one dimensional symmetric simple exclusion process with step initial condition[END_REF] and J t [START_REF] Imamura | Distribution of a tagged particle position in the one-dimensional symmetric simple exclusion process with two-sided bernoulli initial condition[END_REF], for instance

lim t→∞ 1 t 〈Q t 〉 = 0 , lim t→∞ 1 t 〈J t 〉 = -ρξ , (20) 
lim

t→∞ 1 t Q 2 t = 2ρ(1 -ρ) π , lim t→∞ 1 t J 2 t c = ρ(1 -ρ) 2e -ξ 2 4 π + ξ erf ξ 2 , ( 21 
)
where erf(z) = 2 π z 0 e -x 2 dx. In addition, we obtain the joint statistical properties of these two observables, such as their covariance

lim t→∞ 1 t 〈Q t J t 〉 c = ρ(1 -ρ) 1 + e -ξ 2 4 π - ξ 2 erfc ξ 2 , ( 22 
)
where erfc(z) = 1 -erf(z) is the complementary error function. This shows that Q t and J t are strongly correlated for ξ → 0, and their correlation decay when ξ → ∞, as

lim t→∞ 〈Q t J t 〉 Q 2 t J 2 t ≃        1 - ξ 2 π 2 for ξ → 0 , 1 2 3/4 π 1/4 ξ for ξ → ∞ . ( 23 
)
Remarkably, these behaviours do not depend on the density ρ of the particles, but only on ξ. This is not expected to hold for a step of density ρ + ̸ = ρ -. The knowledge of the statistical properties of J t allows to deduce those of the position of a tracer X t [START_REF] Imamura | Large deviations of a tracer in the symmetric exclusion process[END_REF][START_REF] Imamura | Distribution of a tagged particle position in the one-dimensional symmetric simple exclusion process with two-sided bernoulli initial condition[END_REF]. For instance, we recover the known variance [START_REF] Arratia | The motion of a tagged particle in the simple symmetric exclusion system on z[END_REF],

lim t→∞ 1 t X 2 t = 2(1 -ρ) ρ π , ( 24 
)
and obtain the covariance

lim t→∞ 1 t 〈Q t X t 〉 = 2(1 -ρ) π , (25) 
from which we deduce that these quantities are fully correlated, since

lim t→∞ 〈Q t X t 〉 Q 2 t X 2 t = 1 . ( 26 
)
This is due to the fact that, Q t = ρX t at leading order in time, which results from

lim t→∞ 1 t (Q t -ρX t ) 2 = 0 . ( 27 
)
However, the two observables Q t and X t are not simply proportional, even in the long time limit, since for instance

lim t→∞ 1 t ln e λ(Q t -ρX t ) = 1 4 π ρ(1 -ρ) 3 λ 4 + O(λ 5 ) . ( 28 
)
This means that the variance of Q t -ρX t is nonzero, since the higher order cumulants do not vanish. However, the expression of this variance is out of reach of our approach, since we can only describe the leading t with the MFT. Note that ( 28) is not symmetric in ρ and 1 -ρ, since following a tracer (which is a particle) breaks the particle-hole symmetry of the SEP. In particular, Eq. ( 28) vanishes faster when ρ → 1 compared to ρ → 0. In the dense limit, both ln e λQ t and ln e χ X t are of order 1 -ρ, while (28) vanishes as (1 -ρ) 3 . This shows that Q t = X t in this limit, as can be seen from the fact that they have identical cumulants in that case [START_REF] Derrida | Current fluctuations of the one dimensional symmetric simple exclusion process with step initial condition[END_REF][START_REF] Illien | Active transport in dense diffusive single-file systems[END_REF]. On the other hand, in the dilute limit, X t = O(1/ρ) and Q t = O(1), with ln e λQ t = O(ρ). This time [START_REF] Bertini | Macroscopic fluctuation theory[END_REF] does not vanish faster than the cumulants of the current, and thus Q t ̸ = ρX t , as illustrated from the fact that their cumulants differ [START_REF] Derrida | Current fluctuations of the one dimensional symmetric simple exclusion process with step initial condition[END_REF][START_REF] Sadhu | Large deviation function of a tracer position in single file diffusion[END_REF] in that case.

In addition to the joint statistical properties of Q t and J t , we also obtain the profiles Φ and Φ which quantify the correlation between the density of particles and the observables, at final and initial times. At lowest orders in λ and ν, we recover the profiles obtained previously [START_REF] Grabsch | Exact closure and solution for spatial correlations in single-file diffusion[END_REF][START_REF] Grabsch | Exact spatial correlations in single-file diffusion[END_REF] 

〈η r Q t 〉 c ≃ t→∞ sign(x) ρ(1 -ρ) 2 erfc |x| 2 , 〈η r J t 〉 c ≃ t→∞ ρ(1 -ρ) 2 erfc x 2 for x > ξ -erfc -x 2 for x < ξ , (29) 
with x = r/ t. We additionally obtain the joint profiles, such as

〈η r Q t J t 〉 c ≃ t→∞ ρ(1 -ρ)(1 -2ρ) 2    erfc x 2 for x > ξ 0 for 0 < x < ξ erfc -x 2 for x < 0 . ( 30 
)
To understand the meaning of this expression, we can rewrite it as

〈η r Q t J t 〉 c = Cov η r , cov(Q t , J t ) , where cov(Q t , J t ) = (Q t -〈Q t 〉)(J t -〈J t 〉) (31) 
is the empirical covariance. This means that this profile measures the covariance between the density of particles on one hand, and the correlations between Q t and J t on the other hand. From [START_REF] Touchette | The large deviation approach to statistical mechanics[END_REF], we see that it is positive for ρ < 1 2 and negative for ρ > 1 2 . This means that adding particles when ρ < 1 2 increases the correlation between Q t and J t , while it decreases it when ρ > 1 2 . This behavior is expected, since the maximal currents are reached for ρ = 1 2 . In addition, [START_REF] Touchette | The large deviation approach to statistical mechanics[END_REF] is extremal near x = 0 -and x = ξ + . In other words, a change of the number of particles in these sectors affects strongly the correlation between Q t and J t . This is due to The blue line is the result of a direct numerical simulation of the SEP with 1000 sites, 250 particles, measured at time t = 1000 and averaged over 10 7 realisations.

the fact that the particles in these regions are more likely than distant particles to cross the two "walls" x = 0 and x = ξ and thus affect both Q t and J t . Conversely, the profile [START_REF] Touchette | The large deviation approach to statistical mechanics[END_REF] vanishes between 0 and ξ, indicating that adding more particles in that region does not affect the correlation between Q t and J t . This is also expected, since these particles can only cross one "wall"2 either at x = 0 or x = ξ, and can thus affect only one of these observables. This is confirmed by numerical simulations of the SEP, as shown in Fig. 2.

Beyond the perturbative expansion in λ and ν, we can also plot the profiles for finite values of the these parameters by solving numerically the integral equations [START_REF] Mallick | Exact solution of the macroscopic fluctuation theory for the symmetric exclusion process[END_REF][START_REF] Derrida | Current fluctuations of the one dimensional symmetric simple exclusion process with step initial condition[END_REF]. These profiles have the interpretation of mean density profiles under the condition that Q t and J t take given values [START_REF] Grabsch | Exact closure and solution for spatial correlations in single-file diffusion[END_REF]. They are represented in Fig. 1. For instance, the plot in Fig. 1 (left) corresponds to having currents Q t and J t larger than their mean values. This is why there is an accumulation of particles to the right of the two "walls" x = 0 and x = ξ, and a depletion to the left. Conversely, for the corresponding initial profile Φ (Fig. 1, right), there is an increase of particles to the left of the origin, and a depletion to the right, so that with the diffusive time evolution, these particles will cross the origin, and ξ, to contribute to a larger value of Q t and J t .

Discussion

Integral equations. -The Wiener-Hopf integral equation obtained previously in the case of a single observable (Q t , J t or X t ) [START_REF] Grabsch | Exact closure and solution for spatial correlations in single-file diffusion[END_REF][START_REF] Grabsch | Exact spatial correlations in single-file diffusion[END_REF] can be recovered from ( 8) and ( 9) by setting either λ = 0 or ν = 0. This corresponds to α = 0 or β = 0 respectively in Eqs [START_REF] Mallick | Exact solution of the macroscopic fluctuation theory for the symmetric exclusion process[END_REF][START_REF] Derrida | Current fluctuations of the one dimensional symmetric simple exclusion process with step initial condition[END_REF], so that the two profiles at initial and final time satisfy the same equation, as noted previously [START_REF] Grabsch | Exact spatial correlations in single-file diffusion[END_REF][START_REF] Mallick | Exact solution of the macroscopic fluctuation theory for the symmetric exclusion process[END_REF].

Note that if we set ξ = 0, we recover the equations of [START_REF] Grabsch | Exact closure and solution for spatial correlations in single-file diffusion[END_REF][START_REF] Grabsch | Exact spatial correlations in single-file diffusion[END_REF]. This is expected since then, J t = Q t and thus Φ and Φ involve a single observable.

In the case α ̸ = 0 and β ̸ = 0, the equation for the profile at final time ( 8) is more complicated than the one obtained in the case of a single observable [START_REF] Grabsch | Exact closure and solution for spatial correlations in single-file diffusion[END_REF][START_REF] Grabsch | Exact spatial correlations in single-file diffusion[END_REF], as it now involves a double convolution. On the other hand, the equation for the initial profile (9) keeps a simpler Wiener-Hopf structure, but with a more complicated kernel which involves the solution at final time [START_REF] Derrida | Current fluctuations in one dimensional diffusive systems with a step initial density profile[END_REF].

These integral equations extend the ones discovered in [START_REF] Grabsch | Exact closure and solution for spatial correlations in single-file diffusion[END_REF][START_REF] Grabsch | Exact spatial correlations in single-file diffusion[END_REF] in the case of a single observable (current Q t or J t , tracer position X t ). This further emphasises the key role of such strikingly simple integral equations involving partial convolutions in interacting particle systems.

Boundary conditions. -We stress that the boundary equations [START_REF] Krapivsky | Fluctuations of current in nonstationary diffusive lattice gases[END_REF][START_REF] Arratia | The motion of a tagged particle in the simple symmetric exclusion system on z[END_REF] hold for any single-file system, and not only for the SEP. Furthermore, these equations take a simple physical form in terms of the chemical potential µ, which can be written as

µ(ρ) = ρ 2D(r) σ(r) dr , ( 32 
)
in terms of the diffusion coefficient D and the mobility σ, which describe the system at large scale [START_REF] Bertini | Large deviation approach to non equilibrium processes in stochastic lattice gases[END_REF][START_REF] Bertini | Stochastic interacting particle systems out of equilibrium[END_REF][START_REF] Bertini | Macroscopic fluctuation theory[END_REF]. For the SEP, D(ρ) = 1 and σ(ρ) = 2ρ(1 -ρ), which gives the expression [START_REF] Landim | Driven tracer particle in one dimensional symmetric simple exclusion[END_REF] for the chemical potential of the SEP. Explicitly, [START_REF] Krapivsky | Fluctuations of current in nonstationary diffusive lattice gases[END_REF] states that the chemical potential in the system is discontinuous at x = 0 and x = ξ, with a discontinuity given by the parameters λ and ν of the joint generating function [START_REF] Imamura | Distribution of a tagged particle position in the one-dimensional symmetric simple exclusion process with two-sided bernoulli initial condition[END_REF]. From a physical point of view, this can be understood as follows. The parameters λ and ν play the role of conjugate variables (in the sense of thermodynamics) to the integrated currents Q t and J t , which count particles. The conjugate quantity to the particle number being the chemical potential, it is expected that λ and ν are related to the chemical potential. Finally, λ and ν have an effect on the density of particles. For instance, when λ > 0, the exponentials in the definitions of the profiles [START_REF] Poncet | Generalized correlation profiles in singlefile systems[END_REF] give more weight to the realisations in which Q t > 0, and thus we expect an increase of the number of particles to the right of the origin. This results from a higher chemical potential to the right of the origin compared to the left, as described by [START_REF] Krapivsky | Fluctuations of current in nonstationary diffusive lattice gases[END_REF].

Remarkably, the equations [START_REF] Krapivsky | Fluctuations of current in nonstationary diffusive lattice gases[END_REF][START_REF] Arratia | The motion of a tagged particle in the simple symmetric exclusion system on z[END_REF] obtained for the case of the currents Q t and J t can be extended to other observables. For instance, it has been recently shown that the current Q t in a single-file model can be mapped onto the position of a tracer in a dual single-file model [START_REF] Rizkallah | Duality relations in single-file diffusion[END_REF]. Under this mapping, the relations [START_REF] Krapivsky | Fluctuations of current in nonstationary diffusive lattice gases[END_REF][START_REF] Arratia | The motion of a tagged particle in the simple symmetric exclusion system on z[END_REF] become, for the new system (see Appendix A)

P(Φ(0 + )) -P(Φ(0 -)) = λ , ∂ x µ(Φ)| 0 + = ∂ x µ(Φ)| 0 -, ( 33 
)
where P is the pressure3 

P(ρ) = ρ 2r D(r) σ(r) dr , ( 34 
)
and Φ is now the long time limit of the correlation between the position X t of the tracer and the density in the reference frame of the tracer,

Φ(x = r/ t) ≃ t→∞ ρ(r + X t , t)e λX t / e λX t .
Finally, in the case of the SEP, these relations [START_REF] Krapivsky | Fluctuations of current in nonstationary diffusive lattice gases[END_REF][START_REF] Arratia | The motion of a tagged particle in the simple symmetric exclusion system on z[END_REF] and ( 33) reduce to the ones obtained from microscopic considerations in [START_REF] Poncet | Generalized correlation profiles in singlefile systems[END_REF][START_REF] Grabsch | Exact closure and solution for spatial correlations in single-file diffusion[END_REF][START_REF] Grabsch | Exact spatial correlations in single-file diffusion[END_REF]. The precise relation with the corresponding microscopic equations is given in Appendix B.

Hydrodynamic description using Macroscopic Fluctuation Theory

The Macroscopic Fluctuation Theory (MFT) gives an effective description at large scales of a diffusive system [START_REF] Bertini | Large deviation approach to non equilibrium processes in stochastic lattice gases[END_REF][START_REF] Bertini | Stochastic interacting particle systems out of equilibrium[END_REF][START_REF] Bertini | Macroscopic fluctuation theory[END_REF]. Introducing a scaling factor T , which corresponds to the large SciPost Physics Submission observation time, the density of particles is defined as

ρ T (x, t) = 1 T i η i (t T )δ x - i T . ( 35 
)
In the limit T → ∞, this density converges to a continuous stochastic function ρ(x, t). The probability of observing an initial profile ρ(x, 0) evolves to another profile ρ(x, 1) at time t = 1 (corresponding to the large time T in the SEP) takes a large deviation form [10]

[ρ(x, 0) → ρ(x, t)] ≃ D[ρ(x, t)]D[H(x, t)] e -T S[ρ,H] , ( 36 
)
where H is a conjugate field, and S is the MFT action

S[ρ, H] = ∞ -∞ dx 1 0 dt H∂ t ρ + D(ρ)∂ x ρ∂ x H - σ(ρ) 2 (∂ x H) 2 . ( 37 
)
For the SEP, D(ρ) = 1 and σ(ρ) = 2ρ(1 -ρ). This result was first proved for the SEP [START_REF] Kipnis | Hydrodynamics and large deviation for simple exclusion processes[END_REF], and was later extended to arbitrary 1D diffusive systems, which can be described by other transport coefficients D(ρ) and σ(ρ) [START_REF] Bertini | Large deviation approach to non equilibrium processes in stochastic lattice gases[END_REF][START_REF] Bertini | Stochastic interacting particle systems out of equilibrium[END_REF][START_REF] Bertini | Macroscopic fluctuation theory[END_REF]. See for instance [START_REF] Rizkallah | Duality relations in single-file diffusion[END_REF] for a list of models, and their corresponding coefficients. Initially, the system is described by the random density ρ(x, 0), which fluctuates around a given density ρ 0 (x), of distribution [START_REF] Derrida | Current fluctuations in one dimensional diffusive systems with a step initial density profile[END_REF] 

[ρ(x, 0)] ≃ e -T F [ρ(x,0)] , F[ρ(x, 0)] = dx ρ(x,0) ρ 0 (x) dz 2D(z) σ(z) (ρ(x, 0) -z) . ( 38 
)
For the moment, we consider an arbitrary initial condition ρ 0 (x), which we will later specify to the case ρ 0 (x) = ρ + Θ(x)+ρ -Θ(-x). Microscopically, it corresponds to picking independently, for each site i of the SEP, an occupation number η i (0) = 1 with probability ρ 0 (i/ T ). In the continuous limit, this becomes [START_REF] Grabsch | Universal correlation profiles in single-file systems[END_REF].

The two currents Q t (1) and J t (3) can be expressed in terms of the density ρ(x, t) (35) as

Q T T ≡ Q[ρ] = ∞ 0 [ρ(x, 1) -ρ(x, 0)]dx , (39a) 
J T T ≡ J [ρ] = -ρ + ξ + ∞ -∞ [(ρ(x, 1) -ρ + )Θ(x -ξ) -(ρ(x, 0) -ρ + )Θ(x)]dx . ( 39b 
)
Within this formalism, the joint moment generating function of Q T and J T reads

e λQ T +νJ T = D[ρ(x, t)]D[H(x, t)] D[ρ(x, 0)] e -T (S[ρ,H]+F [ρ(x,0)]-λQ[ρ]-νJ [ρ]) . ( 40 
)
In the long time limit T → ∞, these integrals can be evaluated by a saddle point method, which yields

ψξ (λ, ν) = lim T →∞ 1 T ln e λQ t +νJ t = λQ[q] + νJ [q] -S[q, p] -F[q(x, 0)] , (41) 
where we have denoted (q, p) the saddle point of (ρ, H). It can be determined by minimising the terms in the exponential, which yields the MFT equations

∂ t q = ∂ x [D(q)∂ x q] -∂ x [σ(q)∂ x p] , ( 42 
)
∂ t p = -D(q)∂ 2 x p - 1 2 σ ′ (q)(∂ x p) 2 , ( 43 
)
completed by the boundary conditions

p(x, 1) = λΘ(x) + νΘ(x -ξ) , p(x, 0) = (λ + ν)Θ(x) + q(x,0) ρ 0 (x) dr 2D(r) σ(r) . ( 44 
)
The expression of the cumulant generating function can be simplified by taking a derivative with respect to λ or ν, and using that the saddle point solution (q, p) is the minimum of the action:

∂ λ ψξ = Q[q] , ∂ ν ψξ = J [q] . ( 45 
)
These are standard relations in the context of large deviations [START_REF] Grabsch | Capacitance and charge relaxation resistance of chaotic cavities-Joint distribution of two linear statistics in the Laguerre ensemble of random matrices[END_REF][START_REF] Cunden | A shortcut through the Coulomb gas method for spectral linear statistics on random matrices[END_REF].

The profiles w r (5) can be obtained from the same procedure, for instance,

w r (λ, ν, T ) ≃ D[ρ(x, t)]D[H(x, t)] D[ρ(x, 0)] ρ r T , 1 e -T (S[ρ,H]+F [ρ(x,0)]-λQ[ρ]-νJ [ρ]) D[ρ(x, t)]D[H(x, t)] D[ρ(x, 0)] e -T (S[ρ,H]+F [ρ(x,0)]-λQ[ρ]-νJ [ρ])
.

(46) Performing again the saddle point estimate, we obtain,

w r (λ, ν, T ) ≃ T →∞ q x = r T , 1 ≡ Φ(x) . (47) 
Similarly, the correlation with the initial occupations wr (6) reads wr (λ, ν, T ) ≃

T →∞ q x = r T , 0 ≡ Φ(x) . (48) 
The MFT profile q at initial and final time actually coincides with the correlations w r and wr in the long time limit, as shown in [START_REF] Poncet | Generalized correlation profiles in singlefile systems[END_REF][START_REF] Grabsch | Exact closure and solution for spatial correlations in single-file diffusion[END_REF]. Furthermore, the joint cumulant generating function ψξ is fully determined by the knowledge of the profile q, thanks to (45). Our goal is thus to determine these profiles.

The example of the low density limit

The MFT equations for the SEP [START_REF] Krajenbrink | The weak noise theory of the o'connell-yor polymer as an integrable discretisation of the nonlinear schrodinger equation[END_REF][START_REF] Owen | A table of normal integrals[END_REF] being rather complicated, we first focus on the simpler case of the low density limit. In this limit, the SEP becomes equivalent to a model of reflecting Brownian particles on the real line [START_REF] Imamura | Large deviations of a tracer in the symmetric exclusion process[END_REF]. The MFT equations reduce to

∂ t q = ∂ x [∂ x q] -∂ x [2q∂ x p] , ( 49 
)
∂ t p = -∂ 2 x p -(∂ x p) 2 . ( 50 
)
These equations can be reduced to diffusion equations by the Cole-Hopf transform P = e p and Q = qe -p [START_REF] Derrida | Current fluctuations in one dimensional diffusive systems with a step initial density profile[END_REF][START_REF] Krapivsky | Tagged particle in single-file diffusion[END_REF], so that

∂ t Q = ∂ 2 x Q , ∂ t P = -∂ 2 x P . ( 51 
)
The initial and final conditions (44) become

P(x, 1) = e λΘ(x)+νΘ(x-ξ) , Q(x, 0) = ρ 0 (x)e -(λ+ν)Θ(x) . ( 52 
)
We straightforwardly obtain the solution q = QP, and thus the profiles both at initial and final times,

Φ(x) = q(x, 1) = e λΘ(x)+νΘ(x-ξ) ∞ -∞ dz ρ 0 (z)e -(λ+ν)Θ(z) e -(x-z) 2 /4 4π , ( 53 
) Φ(x) = q(x, 0) = ρ 0 (x)e -(λ+ν)Θ(x) e λ+ν - e λ -1 2 erfc x 2 -e λ e ν -1 2 erfc x -ξ 2 , (54) 
where we have assumed that ξ > 0 for Φ. The expression is similar in the case ξ < 0. The cumulant generating function can be obtained from the relations (45), which gives

∂ λ ψξ = ∞ -∞ dx ρ 0 (x)e -(λ+ν)Θ(x) ∞ -∞ dz e λΘ(z)+νΘ(z-ξ) e -(x-z) 2 /4 4π [Θ(z) -Θ(x)] , (55) 
∂ ν ψξ = ∞ -∞ dx ρ 0 (x)e -(λ+ν)Θ(x) ∞ -∞ dz e λΘ(z)+νΘ(z-ξ) e -(x-z) 2 /4 4π [Θ(z -ξ) -Θ(x)] . ( 56 
)
Integrating with the initial value ψ(0, 0) = 0, we get

ψξ (λ, ν) = ∞ -∞ dx ρ 0 (x) ∞ -∞ dz e λΘ(z)+νΘ(z-ξ)-(λ+ν)Θ(x) -1 e -(x-z) 2 /4 4π . ( 57 
)
Note that this expression is compatible with the very recent study [START_REF] Grabsch | Universal correlation profiles in single-file systems[END_REF].

Finally, the density profiles of the SEP assume simple explicit forms in the low density limit.

Derivation of the main equations

We now address the case of arbitrary density of the SEP. To obtain the equations satisfied by the initial and final profiles Φ and Φ, we will rely on the inverse scattering approach which has recently been applied to solve systems of equations related to [START_REF] Krajenbrink | The weak noise theory of the o'connell-yor polymer as an integrable discretisation of the nonlinear schrodinger equation[END_REF][START_REF] Owen | A table of normal integrals[END_REF], in the context of the KPZ equation or MFT [START_REF] Mallick | Exact solution of the macroscopic fluctuation theory for the symmetric exclusion process[END_REF][START_REF] Krajenbrink | Inverse scattering of the zakharov-shabat system solves the weak noise theory of the kardar-parisi-zhang equation[END_REF][START_REF] Krajenbrink | Inverse scattering solution of the weak noise theory of the kardar-parisi-zhang equation with flat and brownian initial conditions[END_REF][START_REF] Krajenbrink | Crossover from the macroscopic fluctuation theory to the kardar-parisi-zhang equation controls the large deviations beyond einstein's diffusion[END_REF][START_REF] Bettelheim | Inverse scattering method solves the problem of full statistics of nonstationary heat transfer in the kipnis-marchioro-presutti model[END_REF][START_REF] Bettelheim | Full statistics of nonstationary heat transfer in the kipnis-marchioro-presutti model[END_REF]]. As we will see below, this formalism is powerful to obtain the bulk equations for Φ and Φ, but introduces unknown constants which can be tricky to determine. Here, we will obtain these constants by making use of boundary conditions which are deduced from the MFT equations (42-44).

Boundary conditions

We first derive the boundary conditions [START_REF] Krapivsky | Fluctuations of current in nonstationary diffusive lattice gases[END_REF][START_REF] Arratia | The motion of a tagged particle in the simple symmetric exclusion system on z[END_REF][START_REF] Burlatsky | Motion of a driven tracer particle in a one-dimensional symmetric lattice gas[END_REF], which are direct consequence of the MFT equations [START_REF] Krajenbrink | The weak noise theory of the o'connell-yor polymer as an integrable discretisation of the nonlinear schrodinger equation[END_REF][START_REF] Owen | A table of normal integrals[END_REF](44). These equations will take a simple form, in terms of physical quantities. The equation satisfied by p (43) is an antidiffusion, with no singularity in the r.h.s. for t < 1, except a discontinuity for q at t = 0. Therefore, the solution p(x, 0) is a smooth function of x, and in particular at x = 0. The boundary conditions are thus straightforwardly deduced from the initial condition (44), which takes the from,

p(x, 0) = (λ + ν)Θ(x) + µ(q(x, 0)) -µ(ρ 0 (x)) , ( 58 
)
where we have introduced the chemical potential µ(ρ), defined by [START_REF] Derrida | Large deviations conditioned on large deviations ii: fluctuating hydrodynamics[END_REF]. Evaluating (58) at x = 0 + and x = 0 -, and taking the difference and using the continuity of p(x, 0) at x = 0, we get the first boundary condition for q(x, 0) ≡ Φ(x)

µ( Φ(0 + )) -µ( Φ(0 -)) = -(λ + ν) + µ(ρ 0 (0 + )) -µ(ρ 0 (0 -)) . ( 59 
)
Similarly, writing the continuity of the first derivative of p(x, 0) at x = 0, we deduce from (58)

∂ x µ( Φ) 0 + -∂ x µ( Φ) 0 -= ∂ x µ(ρ 0 )| 0 + -∂ x µ(ρ 0 )| 0 -. ( 60 
)
For ρ 0 (x) = ρ + Θ(x) + ρ -Θ(-x), these relations become [START_REF] Burlatsky | Motion of a driven tracer particle in a one-dimensional symmetric lattice gas[END_REF].

To obtain the conditions at final time, we rely on a time-reversal mapping, which extends the time-reversal symmetry discussed in [START_REF] Derrida | Current fluctuations in one dimensional diffusive systems with a step initial density profile[END_REF] for the case of the current Q t . In that work, the MFT action was found to be invariant under time reversal symmetry ρ(x, t) → ρ(x, 1 -t) and j(x, t) → -j(x, 1 -t), with a density ρ and a current j satisfying the conservation relation ∂ t ρ + ∂ x j = 0. At the saddle point of the MFT action, the density becomes q and the current becomes j = -D(q)∂ x q + σ(q)∂ x p [START_REF] Derrida | Current fluctuations in one dimensional diffusive systems with a step initial density profile[END_REF]. The time reversal symmetry then becomes q(x, t) → q(x,

1-t), j(x, t) = [-D(q)∂ x q + σ(q)∂ x p]| (x,t) → -[-D(q)∂ x q + σ(q)∂ x p]| (x,1-t) .
Here, we do not have the time-reversal symmetry, because at final time the currents are measured at positions 0 and ξ, which are different from the initial position 0. Nevertheless, we define two new fields q and p by

q(x, t) = q(x, 1 -t) , ∂ x p(x, t) = -∂ x p(x, 1 -t) + 2D(q) σ(q) ∂ x q (x,1-t) . ( 61 
)
Integrating the second relation gives

p(x, t) = -p(x, 1 -t) + µ(q(x, 1 -t)) + c , (62) 
with c a constant. Inserting these relations into the MFT equations [START_REF] Krajenbrink | The weak noise theory of the o'connell-yor polymer as an integrable discretisation of the nonlinear schrodinger equation[END_REF][START_REF] Owen | A table of normal integrals[END_REF], we find that q and p obey the same equations:

∂ t q = ∂ x [D(q)∂ x q] -∂ x [σ(q)∂ x p] , ∂ t p = -D(q)∂ 2 x p - 1 2 σ ′ (q)(∂ x p) 2 . ( 63 
)
This was already noticed in [START_REF] Polychronakos | Solitons in fluctuating hydrodynamics of diffusive processes[END_REF]. The initial and final conditions (44) become

p(x, 0) = µ(q(x, 0)) + c -λΘ(x) -νΘ(x -ξ) , p(x, 1) = -(λ + ν)Θ(x) + µ(ρ 0 (x)) -c . ( 64 
)
These conditions are different from the original ones (44), and they are the source of the breaking of time-reversal symmetry 4 . We can however still use a similar argument as we used above at t = 0. The conjugate field p obeys an antidiffusion equation, which is not singular for t < 1. Therefore p(x, 0) is smooth. From (64) left, this straightforwardly yields the conditions for q(x, 0) = q(x, 1) ≡ Φ(x),

µ(Φ(0 + )) -µ(Φ(0 -)) = λ , µ(Φ(ξ + )) -µ(Φ(ξ -)) = ν , (65) 
and from the derivative,

∂ x µ(Φ)| 0 + = ∂ x µ( Φ) 0 -, ∂ x µ(Φ)| ξ + = ∂ x µ( Φ) ξ -. (66) 
These are the relations [START_REF] Krapivsky | Fluctuations of current in nonstationary diffusive lattice gases[END_REF][START_REF] Arratia | The motion of a tagged particle in the simple symmetric exclusion system on z[END_REF] announced above. Note that these equations for Φ hold for any initial density profile ρ 0 .

Important remark: We have derived the boundary conditions for Φ in the case of an annealed initial condition. One could also consider a quenched initial condition, which corresponds to q(x, 0) = ρ 0 (x). In this case, the mapping (61) can still be performed. One obtains the same MFT equations [START_REF] Krajenbrink | The weak noise theory of the o'connell-yor polymer as an integrable discretisation of the nonlinear schrodinger equation[END_REF][START_REF] Owen | A table of normal integrals[END_REF], but with the initial and final conditions p(x, 0) = µ(q(x, 0)) + c -λΘ(x) -νΘ(xξ) , p(x, 1) = -p(x, 0) + µ(ρ 0 (x)) -c . (67)

The second relation involves the unknown function p(x, 0), which is smooth, but the first relation is identical to the annealed case. The same argument as above applies, and the boundary conditions (65,66) still hold in the quenched case.

Bulk equations

Mapping to the AKNS equations

We adapt the inverse scattering approach that was applied to the case of the integrated current Q t in the SEP in [START_REF] Mallick | Exact solution of the macroscopic fluctuation theory for the symmetric exclusion process[END_REF] to the case of the joint distribution of Q t and J t . The first step is to introduce the new functions [START_REF] Mallick | Exact solution of the macroscopic fluctuation theory for the symmetric exclusion process[END_REF] 

u = 1 (1 -2q) ∂ x q(1 -q)e -x -∞ (1-2q)∂ x p , v = - 1 1 -2q ∂ x e x -∞ (1-2q)∂ x p . ( 68 
)
Under this transformation, the MFT equations for the SEP [START_REF] Krajenbrink | The weak noise theory of the o'connell-yor polymer as an integrable discretisation of the nonlinear schrodinger equation[END_REF][START_REF] Owen | A table of normal integrals[END_REF] become the AKNS equations [41]

∂ t u = ∂ 2 x u -2u 2 v , ∂ t v = -∂ 2 x v + 2uv 2 . ( 69 
)
These equations are integrable and can be solved using the inverse scattering transform [START_REF] Ablowitz | Solitons and the inverse scattering transform[END_REF].

Before entering the resolution in more details, let us study the initial and final conditions for u and v. From the conditions on p and q (44) and the transformation (68), we obtain

u(x, 0) = [∂ x q -q(1 -q)∂ x p] e -x -∞ (1-2q)∂ x p t=0 = q(1 -q) (λ + ν)δ(x) - ∂ x ρ 0 ρ 0 (1 -ρ 0 ) e -x -∞ (1-2q)∂ x p t=0 . ( 70 
)
From now on, we consider the case of a step initial density ρ 0 (x) = ρ + Θ(x) + ρ -Θ(-x). In Eq. ( 70), the term ∂ x ρ 0 thus gives another δ(x) term, but with an unknown prefactor, because ρ 0 is discontinuous at 0. Even in the case of a constant density ρ + = ρ -, the prefactor of the remaining δ function is unknown, because q is discontinuous at x = 0. Therefore, we can only write u(x, 0) = c 0 δ(x) ,

with an unknown constant c 0 . Similarly, for v(x, t = 1) at final time, we get

v(x, 1) = -∂ x p e x -∞ (1-2q)∂ x p t=1 = c 1 δ(x) + c 2 δ(x -ξ) , (72) 
with two other unknown constants c 1 and c 2 , coming from the fact that the term in the exponential is not well defined since p and q are discontinuous at x = 0 and x = ξ. Actually, we can get rid of one of these unknown constants by using the invariance of the AKNS equations (69) under the transformation u(x, t) → u(x, t)/K and v(x, t) → K v(x, t). Choosing K = c 0 , we have the initial and final conditions

u(x, 0) = δ(x) , v(x, 1) = α δ(x) + β δ(x -ξ) , (73) 
with α = c 1 c 0 and β = c 2 c 0 . We will see below how we can determine the constants α and β. The simplicity of these conditions will allow for an explicit solution of the AKNS equations at initial and final times. Furthermore, this solution will yield the desired equations for the profiles, since ∂ x p(x, 1) is a sum of δ functions as seen from (44),

u(x, 1) = 1 K [∂ x q -q(1 -q)∂ x p] e -x -∞ (1-2q)∂ x p t=1 =    a -∂ x q(x, 1) for x < 0 a 0 ∂ x q(x, 1) for 0 < x < ξ a + ∂ x q(x, 1) for x > ξ (74)
with different proportionality constants a -, a 0 and a + for each domain x < 0, 0 < x < ξ and x > ξ because p(x, 1) is discontinuous at both x = 0 and x = ξ, hence the value of the exponential differs in each interval (by an unknown factor, since q(x, 1) is also discontinuous at these points). Similarly,

v(x, 0) = -K∂ x p e x -∞ (1-2q)∂ x p t=0 . ( 75 
)
We can simplify this equation in the following way. We take the derivative of the boundary condition (44) at t = 0, which gives,

∂ x p(x, 0) = ∂ x q(x, 0) q(1 -q) +c 3 δ(x) ⇒ x -∞ (1 -2q)∂ x p t=0 = ln q(1 -q) ρ -(1 -ρ -) +c 4 Θ(x), ( 76 
)
with new constants c 3 and c 4 (which we will not need to determine). Indeed, combining with (75), we get

v(x, 0) = b -∂ x q(x, 0) for x < 0 b + ∂ x q(x, 0) for x > 0 , ( 77 
)
with two different proportionality constants b -and b + for x < 0 and x > 0.

To summarize, the solutions u(x, t) and v(x, t) of the AKNS equations are directly related to the derivative of the profiles at initial (48) and final times (47),

Ω(x) ≡ u(x, 1) =    a -Φ ′ (x) for x < 0 a 0 Φ ′ (x) for 0 < x < ξ a + Φ ′ (x) for x > ξ , Ω(x) ≡ v(x, 0) = b - Φ′ (x) for x < 0 b + Φ′ (x) for x > 0 , (78) 
with constants a -, a 0 , a + , b -and b + that will be determined by the boundary conditions derived in Section 5.1. The other relations are given by (73), with the constants α and β that remain to be determined.

Solution using the scattering technique

Our goal is now to obtain integral equations verified by Ω and Ω. To solve the AKNS equations we rely on the standard approach [START_REF] Ablowitz | Solitons and the inverse scattering transform[END_REF], recently used in [START_REF] Mallick | Exact solution of the macroscopic fluctuation theory for the symmetric exclusion process[END_REF][START_REF] Krajenbrink | Inverse scattering of the zakharov-shabat system solves the weak noise theory of the kardar-parisi-zhang equation[END_REF][START_REF] Krajenbrink | Crossover from the macroscopic fluctuation theory to the kardar-parisi-zhang equation controls the large deviations beyond einstein's diffusion[END_REF], and introduce the auxiliary linear problem for the two-component vector Ψ,

∂ x Ψ = UΨ , ∂ t Ψ = V Ψ , U = -ik v u ik , V = 2k 2 + uv 2ikv -∂ x v 2iku + ∂ x u -2k 2 -uv . ( 79 
)
The compatibility condition between the first two equations, 69). The idea is therefore to solve the simpler linear problem (79), and deduce the solution for u(x, t) and v(x, t). Since ∂ x q → 0 and ∂ x p → 0 for x → ±∞, u(x, t) and v(x, t) decay to 0 at ±∞. The matrix U then becomes diagonal at ±∞, and therefore Ψ is a superposition of plane waves in this limit. We introduce two independent solutions φ and φ, defined by their behaviour at -∞,

∂ x ∂ t Ψ = ∂ t ∂ x Ψ is equivalent to the AKNS equations (
φ(x, t) ≃ x→-∞ e 2k 2 t e -ikx 0 , φ(x, t) ≃ x→-∞ e -2k 2 t 0 -e ikx , ( 80 
)
where we have placed the factors e ±2k 2 t so that φ and φ satisfy the time evolution equation (79) at -∞. For x → +∞, we can write the solution as the superposition of the same two plane waves,

φ(x, t) ≃ x→+∞ a(k, t)e -ikx b(k, t)e ikx , φ(x, t) ≃ x→+∞ b(k, t)e -ikx -ā(k, t)e ikx . ( 81 
)
This defines a scattering problem, in which plane waves at -∞ are scattered by the potentials u(x, t) and v(x, t) into a superposition of plane waves at +∞. The coefficients a, ā, b, b are called the scattering amplitudes. All the information on the functions u(x, t) and v(x, t) are encoded in the scattering amplitudes, so that u(x, t) and v(x, t) can be reconstructed from a, ā, b, b. This is called the inverse scattering procedure, and is quite complicated to do in practice. Here, we will follow a different route, used in [8, 22-25, 39, 42]: we will determine the scattering amplitudes at initial and final times in terms of the functions u(x, 1) = Ω(x) and v(x, 0) = Ω(x), and relate them using the time evolution (79) to obtain integral equations satisfied by these functions. Indeed, one strength of the scattering approach is that it transforms the complicated time evolution of the AKNS equations (69) into a very simple time dependence of the scattering amplitudes. Their time evolution can be computed using the matrix V (+∞) = Diag(2k 2 , -2k 2 ) in (79) at +∞, which directly gives

∂ t a(k, t) = 2k 2 a(k, t) , ∂ t b(k, t) = -2k 2 b(k, t) , ( 82a 
)
∂ t ā(k, t) = -2k 2 ā(k, t) , ∂ t b(k, t) = 2k 2 b(k, t) , ( 82b 
)
and thus

a(k, t) = e 2k 2 t a(k, 0) , b(k, t) = e -2k 2 t b(k, 0) , (83a) ā(k, t) = e -2k 2 t ā(k, 0) , b(k, t) = e 2k 2 t b(k, 0) . ( 83b 
)
There only remains to determine the scattering amplitudes at t = 0 and t = 1. For this, we solve the spatial equation involving the matrix U (79). Let us first write this equation at t = 0. For the second component of φ = (φ 1 φ 2 ) T , we get

∂ x [e -ik x φ 2 (x, 0)] = δ(x)φ 1 (x, 0) , (84) 
and the same equation holds for φ2 . Integrating this equation with the boundary conditions at -∞ (80), we obtain

e -ik x φ 2 (x, 0) = Θ(x)φ 1 (0, 0) , e -ikx φ2 (x, 0) = -1 + Θ(x) φ1 (0, 0) . ( 85 
)
Using these expressions in the equations for the first components φ 1 and φ1 (79) yields

∂ x [e ik x φ 1 (x, 0)] = Ω(x)e 2ikx Θ(x)φ 1 (0, 0) , (86a) ∂ x [e ik x φ1 (x, 0)] = Ω(x)e 2ikx [-1 + Θ(x) φ1 (0, 0)] . ( 86b 
)
Integrating with the boundary conditions (80), we obtain

e ik x φ 1 (x, 0) = 1 + Θ(x)φ 1 (0, 0) x 0 Ω(x ′ )e 2ikx ′ dx ′ , ( 87 
)
e ik x φ1 (x, 0) = - x -∞ Ω(x ′ )e 2ikx ′ dx ′ + Θ(x) φ1 (0, 0) x 0 Ω(x ′ )e 2ikx ′ dx ′ . ( 88 
)
From these expressions, we deduce the expressions at x = 0,

φ 1 (0, 0) = 1 , φ1 (0, 0) = - 0 -∞ Ω(x ′ )e 2ikx ′ dx ′ . ( 89 
)
Combining the results (85,87,88) with the asymptotic behaviour (81), we deduce the scattering amplitudes

b(k, 0) = 1 , (90a) b(k, 0) = - ∞ -∞ Ω(x)e 2ik x dx - 0 -∞ Ω(x)e 2ikx dx ∞ 0 Ω(x ′ )e 2ikx ′ dx ′ . ( 90b 
)
The amplitudes a(k, 0) and ā(k, 0) can also be determined, but we will not need them in the following, so we do not write their expressions explicitly. We can proceed similarly at final time t = 1, this time starting with the equations for the first components, as it is the one that involves the δ functions,

∂ x [e ik x φ 1 (x, 1)] = (αδ(x) + β e 2ikξ δ(x -ξ))e -ikx φ 2 (x, 1) , ( 91 
)
with again the same equation for φ2 . Integrating with the asymptotic at -∞ (80) yields

e ik x φ 1 (x, 1) = e 2k 2 + αφ 2 (0, 1)Θ(x) + β e ikξ φ 2 (ξ, 1)Θ(x -ξ) , ( 92a 
)
e ik x φ1 (x, 1) = α φ2 (0, 1)Θ(x) + β e ikξ φ2 (ξ, 1)Θ(x -ξ) . ( 92b 
)
Inserting these expressions into the equations for φ 2 and φ2 , we get

∂ x [e -ik x φ 2 (x, 1)] = Ω(x)e -2ik x e 2k 2 + αφ 2 (0, 1)Θ(x) + β e ikξ φ 2 (ξ, 1)Θ(x -ξ) , (93a) ∂ x [e -ik x φ2 (x, 1)] = Ω(x)e -2ik x α φ2 (0, 1)Θ(x) + β e ikξ φ2 (ξ, 1)Θ(x -ξ) . ( 93b 
)
Integrating with the asymptotic behaviour (80), we obtain

e -ik x φ 2 (x, 1) = e 2k 2 x -∞ Ω(x ′ )e -2ikx ′ dx ′ + αΘ(x)φ 2 (0, 1) x 0 Ω(x ′ )e -2ikx ′ dx ′ + βΘ(x -ξ)φ 2 (ξ, 1)e ikξ x ξ e -2ikx ′ Ω(x ′ )dx ′ , (94) e -ik x φ2 (x, 1) = -e -2k 2 + αΘ(x) φ2 (0, 1) x 0 Ω(x ′ )e -2ikx ′ dx ′ + βΘ(x -ξ) φ2 (ξ, 1)e ikξ x ξ e -2ikx ′ Ω(x ′ )dx ′ . ( 95 
)
We therefore deduce

φ 2 (0, 1) = e 2k 2 0 -∞ Ω(x ′ )e -2ikx ′ dx ′ , (96) 
φ 2 (ξ, 1)e -ikξ = e 2k 2 ξ -∞ Ω(x ′ )e -2ikx ′ dx ′ + e 2k 2 α 0 -∞ Ω(x ′ )e -2ikx ′ dx ′ ξ 0 Ω(x ′ )e -2ikx ′ dx ′ , (97) φ2 (0, 1) = -e -2k 2 , φ2 (ξ, 1)e -ikξ = -e -2k 2 1 + α ξ 0 Ω(x ′ )e -2ikx ′ dx ′ . ( 98 
)
From the solutions (92a,94), we can read the asymptotic behaviours (81) and deduce the scattering amplitudes

b(k, 1)e -2k 2 = +∞ -∞ Ω(x ′ )e -2ik x ′ dx ′ + α 0 -∞ Ω(x ′ )e -2ikx ′ dx ′ +∞ 0 Ω(x ′ )e -2ikx ′ dx ′ + β e 2ikξ ξ -∞ Ω(x ′ )e -2ikx ′ dx ′ +∞ ξ Ω(x ′ )e -2ikx ′ dx ′ + αβ e 2ikξ 0 -∞ Ω(x ′ )e -2ik x ′ dx ′ ξ 0 Ω(x ′ )e -2ikx ′ dx ′ +∞ ξ Ω(x ′ )e -2ikx ′ dx ′ , (99) b(k, 1)e 2k 2 = -α -β e 2ikξ 1 + α ξ 0 Ω(x ′ )e -2ikx ′ dx ′ . (100) 
Again, a and ā can be obtained similarly but we will not need them here. The last step is to relate the scattering amplitudes b and b at initial time (90a) with the ones at final time t = 1 (99,100) by using the time evolution (83a). This gives the following equations for Ω and Ω:

+∞ -∞ Ω(x ′ )e -2ik x ′ dx ′ + α 0 -∞ Ω(x ′ )e -2ikx ′ dx ′ +∞ 0 Ω(x ′ )e -2ikx ′ dx ′ + αβ e 2ikξ 0 -∞ Ω(x ′ )e -2ik x ′ dx ′ ξ 0 Ω(x ′ )e -2ikx ′ dx ′ +∞ ξ Ω(x ′ )e -2ikx ′ dx ′ + β e 2ikξ ξ -∞ Ω(x ′ )e -2ikx ′ dx ′ +∞ ξ Ω(x ′ )e -2ikx ′ dx ′ = e -4k 2 , (101) ∞ -∞ Ω(x)e 2ik x dx + 0 -∞ Ω(x)e 2ikx dx ∞ 0 Ω(x ′ )e 2ikx ′ dx ′ = e -4k 2 α + β e 2ikξ + αβ e 2ikξ ξ 0 Ω(x ′ )e -2ikx ′ dx ′ . ( 102 
)
We can obtain equations in real space by taking the inverse Fourier transform. More precisely, multiplying (101) by e 2ik x /π and integrating over k yields the equation for Ω [START_REF] Mallick | Exact solution of the macroscopic fluctuation theory for the symmetric exclusion process[END_REF]. Similarly, multiplying (102) by e -2ik x /π and integrating over k, we obtain the equation for Ω [START_REF] Derrida | Current fluctuations of the one dimensional symmetric simple exclusion process with step initial condition[END_REF]. These integral equations [START_REF] Mallick | Exact solution of the macroscopic fluctuation theory for the symmetric exclusion process[END_REF][START_REF] Derrida | Current fluctuations of the one dimensional symmetric simple exclusion process with step initial condition[END_REF] clearly admit a unique solution when α = β = 0, given by Ω(x) = K(x) and Ω(x) = 0. One can then use this starting point to look for a perturbative solution for small α and β, as it is done in Section 6 below. This leads us to expect that these equations admit a unique solution, at least for small α and β.

This concludes our derivation of the integral equations [START_REF] Mallick | Exact solution of the macroscopic fluctuation theory for the symmetric exclusion process[END_REF][START_REF] Derrida | Current fluctuations of the one dimensional symmetric simple exclusion process with step initial condition[END_REF]. There only remains to determine the constants α and β.

Determination of the remaining constants α and β

We now turn to the determination of the last constants α and β which appear in the integral equations [START_REF] Mallick | Exact solution of the macroscopic fluctuation theory for the symmetric exclusion process[END_REF][START_REF] Derrida | Current fluctuations of the one dimensional symmetric simple exclusion process with step initial condition[END_REF]. A first equation can be obtained from the conservation of the number of particles in the SEP between initial and final time, i.e.,

∞ -∞ [Φ(x) -Φ(x)]dx = 0 . ( 103 
)
This equation can be derived from the MFT equation [START_REF] Krajenbrink | The weak noise theory of the o'connell-yor polymer as an integrable discretisation of the nonlinear schrodinger equation[END_REF], by integration on x from -∞ to +∞, which yields ∞ -∞ ∂ t q(x, t)dx = 0, since ∂ x p and ∂ x q decay to 0 at ±∞. The second equation can be determined by following the approach used in [START_REF] Mallick | Exact solution of the macroscopic fluctuation theory for the symmetric exclusion process[END_REF], which relies on the scattering formalism. The scattering amplitudes defined in (81) can be equivalently defined by regrouping the two vectors φ and φ in a single matrix, so that

a(k, t) b(k, t) b(k, t) -ā(k, t) = lim x→∞ lim y→-∞ M (x, t; k)M ( y, t; k) -1 e 2k 2 t 0 0 -e -2k 2 t , (104) 
where the matrix M (x; k, t) satisfies

∂ x M (x, t; k) = U M (x, t; k) , ∂ t M (x, t; k) = V M (x, t; k) , (105) 
with the matrices U and V given in (79). Remarkably, the spatial equation for M can be explicitly solved when k = 0 by using the specific form of the functions u and v in terms of p and q (68). The solution is given in the Supplemental Material of Ref. [START_REF] Mallick | Exact solution of the macroscopic fluctuation theory for the symmetric exclusion process[END_REF], and reads

M (x, t; k) = K 0 0 1 K e x -∞ (1-q)∂ x p e -x -∞ q∂ x p -(1 -ρ)e x -∞ q∂ x p ρ e -x -∞ (1-q)∂ x p 1 K 0 0 K , ( 106 
)
where K is the constant we introduced above Eq. ( 73) to get rid of the constant in front of the δ function in the initial condition for u. Using the asymptotic behaviours q(x, t) -→

t→±∞ ρ ± , p(x, t) -→ t→-∞ 0 and p(x, t) -→ t→+∞ λ + ν, we get lim t→+∞ M (t) = C e λ+µ C -(1 -ρ + )C -1 ρ + C -1 e -λ-µ , lim t→-∞ M (t) = 1 1 -(1 -ρ -) ρ + , (107) 
where we have denoted C = e -∞ -∞ q∂ x p . Using these expressions in (104), we obtain a simple expression for the product of the diagonal elements at k = 0,

-b(0, t) b(0, t) = ω ≡ ρ + (e -λ-ν -1) + ρ -(e λ+ν -1) + ρ + ρ -(e λ+ν -1)(e -λ-ν -1) , (108) 
with ω the single parameter identified for the SEP in [START_REF] Derrida | Current fluctuations of the one dimensional symmetric simple exclusion process with step initial condition[END_REF][START_REF] Derrida | Current fluctuations in the one-dimensional symmetric exclusion process with open boundaries[END_REF], still with two parameters λ and ν. Using the expressions of b and b at t = 0 (90a), and the bulk equation for Ω (102), this last equation yields

α + β + αβ ξ 0 Ω(x ′ )dx ′ = ω . ( 109 
)
Note that the same equation can be obtained from the expressions at t = 1 (99,100). Comparing with the definition of the kernel K (10), we notice that this equation can also be written in the compact form

+∞ -∞ K(x)dx = ω . (110) 
With this last derivation, we now have all the equations needed to determine the profiles Φ and Φ and thus deduce the cumulants from (45).

Perturbative solution for the first joint cumulants

We do not have an explicit solution of the equation for Ω (8), so we will rely on a perturbative solution in λ and ν.

For the currents

The equations for Ω [START_REF] Mallick | Exact solution of the macroscopic fluctuation theory for the symmetric exclusion process[END_REF] and Ω (9) only involve the parameters α and β. We thus first write the solutions of these equations perturbatively in α and β, and in a second step express them in terms of λ and ν by using relations ( 11)- [START_REF] Krapivsky | Dynamical properties of single-file diffusion[END_REF]. We denote the expansions of Ω and Ω as

Ω(x) = ∞ n,m=0 α n β m Ω n,m (x) , Ω(x) = ∞ n,m=0 α n β m Ωn,m (x) . ( 111 
)
Inserting these expansions into the integral equations [START_REF] Mallick | Exact solution of the macroscopic fluctuation theory for the symmetric exclusion process[END_REF][START_REF] Derrida | Current fluctuations of the one dimensional symmetric simple exclusion process with step initial condition[END_REF], we obtain

Ω 0,0 (x) = K(x) = e -x 2 4 4π , ( 112 
)

Ω 1,0 (x) = - e -x 2 8 4 2π erfc |x| 2 2 , Ω 0,1 (x) = - e -(x+ξ) 2 4 4 2π erfc |x -ξ| 2 2 , ( 113 
) Ω0,0 (x) = 0 , Ω1,0 (x) = e -x 2 4 4π , Ω0,1 (x) = e -(x-ξ) 2 4 4π , ( 114 
) Ω2,0 (x) = - e -x 2 8 4 2π erfc |x| 2 2 , Ω0,2 (x) = - e -(x-2ξ) 2 8 4 π erfc |x| 2 2 , ( 115 
) Ω1,1 (x) = - e -(x-ξ) 2 8 2 π erfc |x| + ξ 2 2 . ( 116 
)
To deduce Φ and Φ, we integrate Ω and Ω (7) with respect to x, with the boundary conditions at infinity [START_REF] Krapivsky | Large deviations in single-file diffusion[END_REF],

Φ(x) =        ρ -+ 1 a - x -∞ Ω for x < 0 d 0 + 1 a 0 x 0 Ω for 0 < x < ξ ρ + -1 a + ∞ x Ω for x > ξ , Φ(x) = ρ -+ 1 b - x -∞ Ω for x < 0 ρ + -1 b + ∞ x Ω for x > 0 .
(117) For the above expressions, these integrals can be computed using the tables in [START_REF] Owen | A table of normal integrals[END_REF]. We will also need the integral of Φ and Φ in Eqs. [START_REF] Krapivsky | Dynamical properties of single-file diffusion[END_REF][START_REF] Sadhu | Large deviation function of a tracer position in single file diffusion[END_REF], which correspond to double integrals of Ω. This is not convenient to compute in practice, and it is more practical to use integration by parts

∞ x d y ∞ y dz Ω(z) = -x ∞ x Ω( y)d y + ∞ x yΩ( y)d y , (118) 
which can now be computed using the tables in [START_REF] Owen | A table of normal integrals[END_REF].

Next, we expand all the parameters in powers of λ and ν,

Z = n,m≥0 Z n,m λ n ν m , (119) 
with Z ∈ {α, β, a -, a 0 , a + , b -, b + , d 0 }. Inserting these expansions into the boundary conditions at x = 0 and x = ξ [START_REF] Krapivsky | Fluctuations of current in nonstationary diffusive lattice gases[END_REF][START_REF] Burlatsky | Motion of a driven tracer particle in a one-dimensional symmetric lattice gas[END_REF] and into the conservation equations [START_REF] Sadhu | Large deviation function of a tracer position in single file diffusion[END_REF][START_REF] Krapivsky | Dynamical properties of single-file diffusion[END_REF], we obtain the coefficients of these expansions up to order 4 included for α and β and up to order 3 included for b + , b -, d 0 , 1 a -, 1 a 0 and 1 a + in the case ρ + = ρ -= ρ. This difference of orders come from the fact that α and β begin at order 2 in λ and ν,

α = λ(λ + ν)ρ(1 -ρ) + • • • , β = ν(λ + ν)ρ(1 -ρ) + • • • , ( 120 
)
therefore so does Ω, while Ω already has non zero terms at order 0. On the other hand, Φ and Φ have terms at first order in λ and ν. This is why the expansions of b + and b -begin at order 1, while those of a + , a 0 and a -have terms in 1/λ or 1/ν. Figure 3: Profile Φ at final time obtained from the numerical solution of the integral equations [START_REF] Mallick | Exact solution of the macroscopic fluctuation theory for the symmetric exclusion process[END_REF][START_REF] Derrida | Current fluctuations of the one dimensional symmetric simple exclusion process with step initial condition[END_REF] with the conditions (11-17) (dashed red lines), compared to the perturbative solution (121) up to order 4 in λ and ν (solid blue line). Remarkably, the perturbative solution is in good agreement even for values λ = ν = 1 which are not small (left), but ultimately differs from the correct solution when λ or ν is increased (right).

Consequently, we obtain the lowest orders of the profiles Φ and Φ. For instance,

Φ(x > ξ) = ρ + 1 2 (λ + ν)ρ(1 -ρ) erfc x 2 + 1 4 (λ + ν) 2 ρ(1 -ρ)(1 -2ρ) erfc x 2 + 1 24 ρ(1 -ρ)(λ + ν) 2 2 erfc x 2 (λ + ν)(1 -3ρ(1 -ρ)) + 3νρ(1 -ρ) erf ξ 2 -3ρ(1 -ρ) 8νT ξ 2 , x ξ + 8νT ξ + x 2 , 1 - 2x ξ + x + 2ν erf ξ 2 -2ν erf ξ + x 2 2 + λ erfc x 2 2 2 + O(λ 4 , ν 4 ) , ( 121 
)
where T(z, a) is Owen's T-function, defined by [START_REF] Owen | A table of normal integrals[END_REF] T

(z, a) = 1 2 2π ∞ -z e -t 2 2 erf at 2 dt . ( 122 
)
We compare this perturbative expression to the result obtained from the numerical resolution of the integral equations [START_REF] Mallick | Exact solution of the macroscopic fluctuation theory for the symmetric exclusion process[END_REF][START_REF] Derrida | Current fluctuations of the one dimensional symmetric simple exclusion process with step initial condition[END_REF] in Fig. 3. Although the perturbative solution is expected to be in good agreement with the actual solution for values of λ and ν which are small, we observe a reasonnable agreement up to λ = ν = 1. To accurately describe larger values of λ or ν, one should include higher orders the perturbation series.

From the expressions of Φ and Φ, we deduce ψξ from [START_REF] Illien | Active transport in dense diffusive single-file systems[END_REF], which yields

ψξ (λ, ν) = -νξρ + ρ(1 -ρ)   1 2 ν(λ + ν) 2e -ξ 2 4 π -ξ erfc ξ 2 + λ(λ + ν) π + ν 2 ξ 2   + νρ(1 -ρ)(1 -2ρ)   λ(λ + ν) 4 2e -ξ 2 4 π -ξ erfc ξ 2 - λ(λ + ν) 2 π - ν 2 ξ 6   + ρ(1 -ρ) 24   ν(λ + ν)(2λ 2 + λν + ν 2 ) 2e -ξ 2 4 π -ξ erfc ξ 2 + 2 π λ(λ + ν)(λ 2 + λν + 2ν 2 + µ 4 ξ)   + ρ 2 (1 -ρ 2 ) 4   λν(ν 2 -λ 2 ) 2e -ξ 2 4 π -ξ erfc ξ 2 - λ(λ + ν)( 2λ 2 + 2λν + 4ν 2 ) π - λν(λ + ν) 2 2 8e -ξ 2 8 2π -ξ erfc ξ 2 2 erfc ξ 2 2 -ξν 4 -ν 2 (λ + ν) 2 2e -ξ 2 2 2π -ξ erfc ξ 2 + 2λν(λ + ν) 2 π erfc ξ 2   + O(λ 5 , ν 5 ) . ( 123 
)
One can check that, for ν = 0, we recover the first orders 5 of the cumulant generating function of [START_REF] Derrida | Current fluctuations of the one dimensional symmetric simple exclusion process with step initial condition[END_REF], for λ = 0 it gives the first orders of the one obtained in [START_REF] Imamura | Large deviations of a tracer in the symmetric exclusion process[END_REF], and for ξ = 0, since J t = Q t , we recover the first orders of the one for Q t [START_REF] Derrida | Current fluctuations of the one dimensional symmetric simple exclusion process with step initial condition[END_REF], evaluated at λ + ν. Taking derivatives of this expression with respect to λ and ν, we obtain the different joint cumulants Q n t J m t c of the two currents, ψξ (λ, ν) = n,m≥0

λ n n! ν m m! Q n t J m t c . ( 124 
)
The first cumulants are written in Section 2.

For the current/tracer correlations

The distribution of the position of a tracer can be obtained from the distribution of the current J t [START_REF] Imamura | Large deviations of a tracer in the symmetric exclusion process[END_REF][START_REF] Imamura | Distribution of a tagged particle position in the one-dimensional symmetric simple exclusion process with two-sided bernoulli initial condition[END_REF]. The idea is that, since the particles remain in the same order, the number of particles to the right of the tracer is conserved, the tracer is located at the position X t such that J t (X t ) = 0. This relation is not quite exact, since there could be several values for which J t (x) = 0. Actually, X t corresponds to the smallest of these values. However, in the long time limit, this indeterminacy becomes a subdominant correction, and this relation becomes exact at leading order in t. This implies that (X t = x) = (J t (x) = 0). We can directly extend this relation to the joint distribution of Q t and X t ,

(Q t = q & X t = x) = (Q t = q & J t (x) = 0) . ( 125 
)
We have computed the joint cumulant generating function of the two currents, which implies

e λQ t +νJ t (x t ) = q j e λq+ν j (Q t = q & J t (x) = j) ≃ t→∞ e t ψξ (λ,ν) . ( 126 
)
We can take the inverse Laplace transform in ν, which can be evaluated by a saddle point approximation for large t, which gives a mixed distribution/generating function

e λQ t δ(J t (x t ) -j t) ≃ t→∞ e -tϕ ξ (λ, j) , (127) 
where ϕ ξ is given by the Legendre transform

ϕ ξ (λ, j) = ν ⋆ (λ, j) j -ψξ (λ, ν ⋆ (λ, j)) , ∂ ν ψξ (λ, ν) ν ⋆ = j . ( 128 
)
Using the relation between J t and X t (125), we deduce

e λQ t δ(X t -ξ t) ≃ t→∞ e -tϕ ξ (λ,0) . ( 129 
)
We can obtain the joint cumulant generating function of the current Q t and the position X t by another Legendre transform,

lim t→∞ 1 t ln e λQ t +χ X t = χξ ⋆ (λ, χ) -ϕ ξ ⋆ (λ,χ) (λ, 0) , ∂ ξ ϕ ξ (λ, 0) ξ ⋆ = χ . ( 130 
)
This procedure extends the one of [START_REF] Imamura | Large deviations of a tracer in the symmetric exclusion process[END_REF][START_REF] Imamura | Distribution of a tagged particle position in the one-dimensional symmetric simple exclusion process with two-sided bernoulli initial condition[END_REF] to the joint distribution of Q t and X t . It can be carried out explicitly starting from the expression of ψξ at lowest orders (123), and yields

lim t→∞ 1 t ln e λQ t +χ X t = 1 -ρ ρ π (χ + λρ) 2 - (1 -ρ) 2 ρ π λχ(χ + λρ) + λ 3 (1 -ρ)(λρ + χ) 12 π - λ 3 χ(1 -ρ) 3 4 π - λ 2 χ(λρ + χ)(1 -ρ) 3 4 πρ 2 + λ 2 χ(λρ + χ)(1 -ρ) 2 4 π - χ 3 (λρ + χ)(1 -ρ) 4 πρ 3 + χ(λρ + χ) 3 (1 -ρ) 3 π 3/2 ρ 3 + 2χ 3 (λρ + χ)(1 -ρ) 2 3 πρ 2 + χ 3 (λρ + χ)(1 -ρ) 3 πρ 2 - (λρ + χ) 4 (1 -ρ) 2 2 2πρ 2 - λχ 2 (λρ + χ)(1 -ρ) 2 (1 -2ρ) 2 πρ 2 + λχ(λ + χ)(λρ + χ)(1 -ρ) 4 πρ 2 + O(λ 5 , χ 5 ) . ( 131 
)
This directly gives the first joint cumulants of Q t and X t , which are given in Section 2. In particular, setting χ = -ρλ, this gives the generating function of

Q t -ρX t , lim t→∞ 1 t ln e λ(Q t -ρX t ) = ρ(1 -ρ) 3 4 π λ 4 + O(λ 5 ) . (132) 
Remarkably, there is no term in λ 2 , indicating that the variance of Q t -ρX t is smaller than t for large t, indicating strong correlations between the current Q t and the positions X t of the tracer. However, this does not indicate that Q t and X t are proportional, since the higher order cumulants grow as t. This indicates that Var(Q t -ρX t ) is nonzero, but grows slower than t.

Conclusion

We have studied the joint distribution of the current Q t through the origin and the current J t through a moving boundary in the SEP, as well as their correlations with the density of particles. These correlations are described by generalised density profiles. We have obtained integral equations satisfied by these generalised density profiles. These integral equations extend the ones discovered in [START_REF] Grabsch | Exact closure and solution for spatial correlations in single-file diffusion[END_REF][START_REF] Grabsch | Exact spatial correlations in single-file diffusion[END_REF] in the case of a single observable (current Q t or J t , tracer position X t ). This further emphasises the key role of such strikingly simple integral equations involving partial convolutions in interacting particle systems. In the case of a single observable, the integral equations naturally obtained are bilinear, but surprisingly they are equivalent to linear equations at the expense of introducing analytic continuations [START_REF] Grabsch | Exact closure and solution for spatial correlations in single-file diffusion[END_REF][START_REF] Grabsch | Exact spatial correlations in single-file diffusion[END_REF]. An important open question is whether the equation obtained here, which is trilinear, can be reduced to such linear equations (for which an explicit solution can be obtained).

We have also obtained simple boundary conditions for the generalised density profiles. These boundary conditions take a simple physical form, in terms of the chemical potential, and can be applied to any model of single-file diffusion. This extends the relations that have been obtained for the SEP from microscopic considerations [START_REF] Poncet | Generalized correlation profiles in singlefile systems[END_REF][START_REF] Grabsch | Exact closure and solution for spatial correlations in single-file diffusion[END_REF][START_REF] Grabsch | Exact spatial correlations in single-file diffusion[END_REF].

As a consequence of these equations, we have characterised the joint statistics of the current through the origin Q t and the position of a tracer X t , initially at the origin. These variables are strongly correlated, and even become equal in the high density limit.

This work opens the way to the study of more than two observables, such as multiple currents or tracers, in the SEP and other models of single-file systems.

where P is the pressure (34) for the dual system.

Combining these relations with [START_REF] Arratia | The motion of a tagged particle in the simple symmetric exclusion system on z[END_REF], we obtain P( Φ(0 + )) -P( Φ(0 -)) = -λ . (138)

Changing λ → -λ to remove the minus sign in the definition (136), we obtain [START_REF] Derrida | Current fluctuations in the one-dimensional symmetric exclusion process with open boundaries[END_REF], left. For the relation involving the derivative, we need

∂ x µ(Φ) = 2D(φ)∂ x Φ σ(Φ) = 2 Φ3 D( Φ) σ( Φ) ∂ z ∂ x ∂ z 1 Φ = - 2 D( Φ) σ( Φ) ∂ z Φ = -∂ z μ( Φ) . (139) 
From ( 12), we thus straightforwardly deduce [START_REF] Derrida | Current fluctuations in the one-dimensional symmetric exclusion process with open boundaries[END_REF], right.

B Relation between the physical boundary conditions and the microscopic equations for the SEP

In the case of the SEP, other boundary conditions have been obtained for the different observables considered here (individually), from microscopic considerations [START_REF] Poncet | Generalized correlation profiles in singlefile systems[END_REF][START_REF] Grabsch | Exact closure and solution for spatial correlations in single-file diffusion[END_REF][START_REF] Grabsch | Exact spatial correlations in single-file diffusion[END_REF]. Note that they have been obtained with a different choice for the time scale, with D(ρ) = 1 2 and σ(ρ) = ρ(1-ρ). Here, we show that they are equivalent to the physical boundary conditions [START_REF] Krapivsky | Fluctuations of current in nonstationary diffusive lattice gases[END_REF][START_REF] Arratia | The motion of a tagged particle in the simple symmetric exclusion system on z[END_REF][START_REF] Derrida | Current fluctuations in the one-dimensional symmetric exclusion process with open boundaries[END_REF] obtained in this article.

For the case of the current Q t , they take the form [START_REF] Grabsch | Exact closure and solution for spatial correlations in single-file diffusion[END_REF] Φ(0 + )(1 -Φ(0 -)) Φ(0 -)(1 -Φ(0 + )) = e λ , Φ ′ (0 ± ) = ∓2 ψ 1 1 -e ∓λ -Φ(0 ± ) ,

where Φ has been defined in [START_REF] Grabsch | Exact closure and solution for spatial correlations in single-file diffusion[END_REF] with a slightly different scaling η r e λQ t e λQ t ≃ t→∞

Φ x = r 2t . ( 141 
)
Taking the logarithm of the first equation in (140), we get

λ = -ln 1 Φ(0 + ) -1 + ln 1 Φ(0 -) -1 , (142) 
which is exactly the relation [START_REF] Arratia | The motion of a tagged particle in the simple symmetric exclusion system on z[END_REF] with the expression of the chemical potential for the SEP [START_REF] Landim | Driven tracer particle in one dimensional symmetric simple exclusion[END_REF].

Combining the relations (140) right to eliminate ψ, and combining with the first relation to remove the e ±λ , we get

- Φ ′ (0 + )(Φ(0 + ) -Φ(0 -)) Φ(0 + )(1 -Φ(0 + )) = Φ ′ (0 -)(Φ(0 -) -Φ(0 + )) Φ(0 -)(1 -Φ(0 -)) . ( 143 
)
Rewriting it in terms of the chemical potential for the SEP [START_REF] Landim | Driven tracer particle in one dimensional symmetric simple exclusion[END_REF], we obtain,

µ ′ (Φ(0 + ))Φ ′ (0 + ) = µ ′ (Φ(0 -))Φ ′ (0 -) , (144) 
which is indeed Eq. ( 12).

In the case of a tracer at position X t , different relations have been obtained for the SEP. This is indeed [START_REF] Derrida | Current fluctuations in the one-dimensional symmetric exclusion process with open boundaries[END_REF], left. Combining the relations in (145) to eliminate ψ and λ, we obtain

- Φ ′ (0 + ) Φ(0 + )(1 -Φ(0 + )) (Φ(0 + ) -Φ(0 -)) = Φ ′ (0 -) Φ(0 -)(1 -Φ(0 -)) (Φ(0 -) -Φ(0 + )) . ( 148 
)
This is identical to the case of the current (143), hence it yields again [START_REF] Derrida | Current fluctuations in the one-dimensional symmetric exclusion process with open boundaries[END_REF], right.

C Numerical resolution of the integral equation

To solve the integral equations [START_REF] Mallick | Exact solution of the macroscopic fluctuation theory for the symmetric exclusion process[END_REF][START_REF] Derrida | Current fluctuations of the one dimensional symmetric simple exclusion process with step initial condition[END_REF], we discretize the integrals by using the trapezoidal rule

b a f (x)dx = f (a) + f (b) 2 δx + N -1 k=1 f (a + k δx)δx , (149) 
where N = ⌊(b-a)/δx⌋ and δx is the discretization length. Furthermore, since lim x→±∞ Ω(x) = 0 and lim x→±∞ Ω(x) = 0, we solve (8,9) on a finite interval [-L, L] with the condition that Ω(x) = Ω(x) = 0 if x / ∈ [-L, L]. By doing so, the integral equations (8,9) become a finite system of nonlinear equations in Ω(-L + i δx) and Ω(-L + i δx) with 0 ≤ i ≤ N = ⌊2L/δx⌋. This system can be solved using standard gradient descent algorithms.

The profiles Φ and Φ are then obtained from these solutions by discrete integration of (7). The parameters a -, a 0 , a + and b -, b + are determined from the boundary conditions [START_REF] Krapivsky | Fluctuations of current in nonstationary diffusive lattice gases[END_REF][START_REF] Arratia | The motion of a tagged particle in the simple symmetric exclusion system on z[END_REF][START_REF] Burlatsky | Motion of a driven tracer particle in a one-dimensional symmetric lattice gas[END_REF]. This procedure gives the profiles Φ and Φ, given α and β as input. Performing a final gradient descent, α and β are determined from the parameters λ, ρ -and ρ + from [START_REF] Krapivsky | Dynamical properties of single-file diffusion[END_REF][START_REF] Sadhu | Large deviation function of a tracer position in single file diffusion[END_REF].

D Numerical resolution of the MFT equation

The coupled MFT equations have a forward/backward structure: p obeys an antidiffusion equation ( 43) with a final condition (44) (left); while q obeys a diffusion equation ( 42) with an initial condition (44) (right). To solve this system, we use the standard scheme described for instance in [START_REF] Krapivsky | Fluctuations of current in nonstationary diffusive lattice gases[END_REF]. which we briefly summarize here.

1. First solve the equation for q (42) using the initial guess p(x, t) = λΘ(x) + νΘ(xξ), corresponding to the terminal condition (44) (left) extended to all times.

2. Then, use the resulting solution q(x, t) to solve the equation for p (43).

3. Iterate the process, by replacing at each step either p or q by the newly obtained function.

After a few iterations (∼ 3), it is usually helpful to replace the functions by a linear combination of the last two, e.g., q(x, t) ←-αq new (x, t) + (1 -α)q old (x, t) ,

to avoid oscillating between two solutions. For instance, we use α = 0.75.

4. Repeat until the difference between the last two solutions is small enough, which can be measured for instance by [q new (x, t) -q old (x, t)] 2 dxdt . (151)

To use standard methods for partial differential equations, we regularise the Heaviside Θ function by

Θ(x) ≃ 1 + tanh(a x) 2 , ( 152 
)
with a ∼ 150. This regularization causes a small discrepancy between the numerical solution and the exact one near the discontinuity of the function q(x, 1).
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 2 Figure2: Correlation function 〈η r Q t J t 〉 as a function of r/ t, for a mean density of the SEP ρ = 0.25, and for ξ = 1.5. The solid red line is the analytical result[START_REF] Touchette | The large deviation approach to statistical mechanics[END_REF]. The blue line is the result of a direct numerical simulation of the SEP with 1000 sites, 250 particles, measured at time t = 1000 and averaged over 10 7 realisations.
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This observable is also called a height function since it is involved in a classical mapping between exclusion processes and interface models[START_REF] Imamura | Large deviations of a tracer in the symmetric exclusion process[END_REF][START_REF] Imamura | Distribution of a tagged particle position in the one-dimensional symmetric simple exclusion process with two-sided bernoulli initial condition[END_REF].

Particles can of course cross several times both walls, but an odd number of times only one of them, resulting in this net effect.

The relation involving the pressure Eq.(33), left, has been first guessed by Alexis Poncet during private exchanges prior to this work.

If we consider the current Q t only, ν = 0. In the case of an initial step density ρ 0 (x) = ρ + Θ(x) + ρ -Θ(-x), the system has time-reversal symmetry. Indeed, by choosing c = µ(ρ -), the new initial and final conditions are identical to the original ones, upon changing λ → µ(ρ + ) -µ(ρ -) -λ. This is indeed the relation found in[START_REF] Derrida | Current fluctuations in one dimensional diffusive systems with a step initial density profile[END_REF].

In fact, not only the first orders, but the full cumulant generating function of[START_REF] Derrida | Current fluctuations of the one dimensional symmetric simple exclusion process with step initial condition[END_REF] is recovered from (8) which can be solved in this case. Similar comments apply to the specific cases λ = 0 and ξ = 0.
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A Mapping the boundary conditions for other observables

In this Appendix, we show that the boundary conditions [START_REF] Krapivsky | Fluctuations of current in nonstationary diffusive lattice gases[END_REF][START_REF] Arratia | The motion of a tagged particle in the simple symmetric exclusion system on z[END_REF] obtained for the currents Q t and J t can be mapped onto other physical boundary conditions for other observables, such as the position X t of a tracer. In Ref. [START_REF] Rizkallah | Duality relations in single-file diffusion[END_REF], it has been shown that the current Q t in a singlefile system described by the coefficients D(ρ) ans σ(ρ) corresponds to the opposite of the displacement of a tracer in a dual single-file system, with

The mapping is as follows. The density ρ in the dual system, in the reference frame of the tracer at X t = -Q t , can be expressed in terms of the density ρ of the initial system as [START_REF] Rizkallah | Duality relations in single-file diffusion[END_REF] ρ

Since this mapping is valid for all realisations of ρ, it is also valid for the saddle point (q, p) solution of the MFT equations [START_REF] Krajenbrink | The weak noise theory of the o'connell-yor polymer as an integrable discretisation of the nonlinear schrodinger equation[END_REF][START_REF] Owen | A table of normal integrals[END_REF], and thus for the profile Φ (47),

The dual profile Φ corresponds to [START_REF] Rizkallah | Duality relations in single-file diffusion[END_REF] ρ

with an unusual minus sign in the exponential, due to the fact that X t = -Q t . The chemical potential [START_REF] Derrida | Large deviations conditioned on large deviations ii: fluctuating hydrodynamics[END_REF] becomes

σ(r) dr = -