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Single-file transport refers to the motion of particles in a narrow channel, such that they cannot
bypass each other. This constraint leads to strong correlations between the particles, described by
correlation profiles, which measure the correlation between a generic observable and the density of
particles at a given position and time. They have recently been shown to play a central role in
single-file systems. Up to now, these correlations have only been determined for diffusive systems in
the hydrodynamic limit. Here, we consider a model of reflecting point particles on the infinite line,
with a general individual stochastic dynamics. We show that the correlation profiles take a simple
universal form, at arbitrary time. We illustrate our approach by the study of the integrated current
of particles through the origin, and apply our results to representative models such as Brownian
particles, run-and-tumble particles and Lévy flights. We further emphasise the generality of our
results by showing that they also apply beyond the 1d case, and to other observables.

Introduction.— Single-file transport, where particles
move in narrow channels with the constraint that they
cannot bypass each other, has become a fundamental
model for transport in confined systems [1–5]. Exper-
imentally, this situation has been observed in various
physical, chemical or biological systems, such as zeolites,
colloidal suspensions, or carbon nanotubes [3–6]. The-
oretically, it is a central field of statistical physics, rel-
evant both at equilibrium and out-of-equilibrium [7, 8].
In this context, two key observables have received a no-
table attention: (i) the integrated current through the
origin Qt (defined as the number of particles which have
crossed the origin from left to right, minus those from
right to left, up to time t) [9–15]; (ii) the position Xt of a
tracer [1, 2, 16–26], which can be monitored experimen-
tally at various scales [3–5].

Because the order of the particles is conserved at all
times, strong correlations between these observables and
the density of particles ρ(x, t) emerge. For instance, an
increase of Qt imposes a density at the right of the origin
higher than average, and a lower on the left. A similar
effect occurs with Xt: a large displacement of the tracer
in a given direction involves the displacement of more
and more particles in the same direction. This leads to
a striking subdiffusive behaviour ⟨X2

t ⟩ ∝
√
t [16] in con-

trast with the regular diffusion ⟨X2
t ⟩ ∝ t.

Despite their importance, the quantification of the cou-
pling between Qt or Xt and ρ(x, t) remains a broadly
open question. Recently, they have been characterised
for the Symmetric Exclusion Process, and other paradig-
matic models of single-file diffusion [24–26]. In addition
to their clear physical relevance, these correlations have
also acquired a technical importance since they have been
shown to satisfy a closed equation for these systems [24–
26][27]. However, these results are limited to (i) the case
of diffusive systems (in which the individual particles

have a diffusive motion); (ii) the long time behaviour;
(iii) the specific case of Xt and Qt.

Here, by considering a model of reflecting point par-
ticles on the infinite line, with an arbitrary individual
stochastic dynamics, we overcome these limitations. We
show that the correlation profiles take a simple univer-
sal form (with respect to the individual motion of the
particles), at arbitrary time, and for a large class of ob-
servables (as defined below).

More precisely, we illustrate our approach by the study
the integrated current of particles through the origin, and
apply our results to representative processes which go
beyond Brownian particles, such as (i) run-and-tumble
particles which are a key model to describe active trans-
port [28, 29]; and (ii) Lévy flights which is an emblematic
model of superdiffusion [30]. We further emphasise the
generality of our results by showing that they also apply
beyond the 1d case, and to other observables.

Model.— We first consider N particles on the real line,
with position {xi(t)}i=1,...,N at time t. In a second step,
we will take the thermodynamic limit N → ∞. Initially,
the N particles are independently picked from a density
ρ0(x), normalised such that

∫
ρ0(x)dx = N . Each par-

ticle has a stochastic dynamics in time, described by its
propagator Gt(x|y), i.e. the prob. to find the particle
at position x at time t, knowing that it was at position
y at time 0. When this dynamics leads to a crossing
between two particles, they are simply exchanged, lead-
ing to a reflection of the particles. This dynamics can
be mapped onto the one of noninteracting particles (see
Fig 1). While this formally applies to any propagator,
this is especially relevant for Markovian dynamics, since
the definition of the contact is more tricky in the non-
Markovian case. The time evolution of the particles be-
ing independent from their initial distribution, we define
two different types of averaging: (i) the average over the
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FIG. 1. The motion of reflective particles (illustrated by the
arrows) can be mapped onto the motion of noninteracting
particles (solid and dashed lines). Left: illustration with by
run-and-tumble particles, which move at a constant speed,
and flip their direction at random times. When two particles
collide, they flip their direction. Right: Lévy flights. When
a particle collides another, it stops and the next particle is
pushed. This can lead to a series of collisions.

time evolution of the particles, denoted for any function
f ,

⟨f({xi(t)})⟩ =
∫ N∏

i=1

dxnKt({xi}|{xi(0)}) f({xi}) , (1)

with Kt the N -particles propagator, and (ii) the average
over the initial positions,

f({xi(0)}) =
∫ N∏

n=1

dyn
ρ0(yn)

N
f({yi}) . (2)

Although our approach can be applied to many observ-
ables, we will focus for concreteness on the integrated
current through the origin, which measures the variation
of the number of particles on the positive axis,

Qt =
∑
i

[Θ(xi(t))−Θ(xi(0))] , (3)

where Θ is the Heaviside step function. We are interested
in the statistical properties of this observable, and its
correlations with the global density of particles

ρ(x, t) =
∑
i

δ(x− xi(t)) . (4)

These two quantities are indeed expected to be strongly
correlated. These correlations are encoded in the joint

cumulant generating function ln
〈
eλQt+χρ(x,t)

〉
, where λ

and χ are the parameters of the generating function. We
have used here the annealed averaging, as usually defined
in statistical mechanics, which corresponds to averaging
over both the time evolution and all the initial positions.
For simplicity, we will focus on the lowest orders in χ,
which are the cumulant generating function of the in-
tegrated current, ψA(λ, t) ≡ limN→∞ ln ⟨eλQt⟩, and the
correlation profile [24]

wA(x, λ, t) ≡ lim
N→∞

⟨ρ(x, t)eλQt⟩
⟨eλQt⟩

. (5)

These correlation profiles have been show to play an im-
portant role, since they verify simple closed equations for
several important models of single-file systems [24–26].
We also consider the case of a quenched initial condi-

tion, which corresponds to averaging over the time evo-
lution of the typical initial positions of the particles. The
initial condition is well-known to play a key role in single-
file systems, as exemplified by ”everlasting” effects on
various observables [19, 20, 31–33]. In this case, the

joint cumulant generating function is ln
〈
eλQt+χρ(x,t)

〉
.

At lowest orders in χ, this gives the quenched cumu-
lant generating function ψQ(λ, t) ≡ limN→∞ ln ⟨eλQt⟩,
and the quenched correlation profile

wQ(x, λ, t) ≡ lim
N→∞

⟨ρ(x, t)eλQt⟩
⟨eλQt⟩

. (6)

Results.— The key ingredient is the joint propagator
of the N particles, which takes the form [34]

Kt(x⃗|y⃗) =
1

N !

∑
σ

N∏
i=1

Gt(xi|yσ(i)) , (7)

where the sum runs over all permutations σ of the N
particles. Computing first the averages (1,2), and then
taking the thermodynamic limit N → ∞ [35], we obtain
that the cumulant generating function and the correla-
tion profiles take a simple universal form (see Supplemen-
tary Material (SM) [36] for details of the derivation). In
the annealed case,

ψA(λ, t) =

∫
dy ρ0(y)

∫
(G̃

(λ)
t (x|y)−Gt(x|y))dx , (8)

wA(x, λ, t) =

∫
ρ0(y)G̃

(λ)
t (x|y)dy , (9)

where we have defined the tilted propagator

G̃
(λ)
t (x|y) = eλΘ(x)Gt(x|y)e−λΘ(y) . (10)

Similarly, in the quenched case,

ψQ(λ, t) =

∫
dy ρ0(y) ln

[∫ ∞

−∞
G̃

(λ)
t (x|y)dx

]
, (11)

wQ(x, λ, t) =

∫
dy ρ0(y)

G̃
(λ)
t (x|y)∫∞

−∞ G̃
(λ)
t (z|y)dz

. (12)

These expressions hold for any propagator Gt of an indi-
vidual particle, for any initial density of particles ρ0, and
at arbitrary time t. They constitute the main results of
this article. Note that our results hold in presence of ex-
ternal forces (a situation studied for instance in [37]) [38].
The key point of our derivation is that all the particles
have the same dynamics (with the requirement that the



3

memory of the past is lost upon collision), and feel the
presence of the other particles only when a collision oc-
curs. The only ingredient needed is the one particle prop-
agator Gt, either analytically or numerically [39]. We
now give the example of run-and-tumble particles, for
which the propagator is known explicitly. This will allow
us to discuss on a concrete example the physics of these
correlation profiles. Formulas for the cases of Brownian
particles and Lévy flights are given in SM [36].

Application: run-and-tumble particles.— We consider
a system of run-and-tumble particles, which is an impor-
tant model of active particles, involved in various con-
texts [28, 29]. These particles move at constant speed
v0, and flip their direction of motion with rate γ. When
two particles collide, they are reflected (see Fig. 1). For
simplicity, we will consider a step initial density of par-
ticles ρ0(x) = ρ+Θ(x) + ρ−Θ(−x). The Laplace trans-
form of the propagator of an individual particle takes
a simple form [28]. We can easily obtain the annealed
profile and cumulant generating function in the Laplace
domain since the expressions (8,9) are linear in the prop-
agator. The inverse Laplace transform can be computed
explicitly using the expressions given in [12], and we get
ψA(λ, t) =

ω
2 v0t e

−γt(I0(γt) + I1(γt)), where we have de-
noted ω = ρ+(e

−λ − 1) + ρ−(e
λ − 1), by analogy with

the single parameter identified in the simple exclusion
process (SEP) [9], and Iν is a modified Bessel function.
Similarly, the correlation profile reads

wA(x > 0, λ, t) = ρ+ +
ρ−e

λ − ρ+
2

Θ(v0t− x)

×

e− γx
v0 +

γx

v0

∫ v0t
x

1

e−
γxT
v0 I1(

γx
v0

√
T 2 − 1)

√
T 2 − 1

dT

 . (13)

This profile, represented in Fig. 2, quantifies the correla-
tion between the observable Qt and the density of parti-
cles ρ(x, t). When λ > 0, wA(x > 0, λ, t) ≥ ρ+, indicat-
ing that an increase of the current yields an increase of
the density at the right of the origin. We emphasise that
(i) our approach captures the full dynamics of the profile
wA (13), illustrated in Fig. 2. In particular it presents a
sharp cutoff at x = v0t, which is a consequence of the fi-
nite speed v0 of the particles, showing that Qt and ρ(x, t)
are decorrelated for x > v0t; (ii) the dependence of the
profile (13) in ρ+, ρ− and λ is in fact a general feature
which holds for any propagator Gt, and is only a conse-
quence of the choice of the observable Qt and the initial
step of density ρ0(x).

We now demonstrate that our approach can be ex-
tended in several important directions (see SM [36] for
details).

Extension: other geometry.— Our approach can be ex-
tended beyond the one dimensional case, in particular to
any tree geometry. An important example which has gen-
erated lots of works is the comb lattice [40–42]. Comb
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FIG. 2. Annealed correlation profile wA (13) for run-and-
tumble particles, with v0 = 1 and γ = 1. Left: Profile as a
function of x for different times. Right: Profile as a function
of the rescaled variable x/

√
t at different times. For t → ∞,

it converges to the profile for diffusive particles (solid black
lines), with a diffusion constant D = v20/(2γ) =

1
2
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FIG. 3. Correlation profile wA(r⃗ = (x, y), λ, t) for random
walkers on a comb lattice in the annealed case (represented
on the right plot), in the continuous limit. Left: 2D represen-

tation. The profile is a scaling function of x/t1/4 and y/
√
t.

Right: Profile as a function of x for fixed values of y.

structures have been developed to represent diffusion in
critical percolation clusters, with the backbone and teeth
of the comb mimicking the quasi-linear structure and the
dead ends of percolation clusters [43]. More recently, the
comb model has been used to account for transport in
real systems such as spiny dendrites [44], diffusion of cold
atoms [45] and diffusion in crowded media [46]. It is a
two dimensional lattice in which all the links parallel to
the x-axis have been removed, except those on the axis
itself, called the backbone (see the inset in Fig. 3). The
propagator of a particle performing a random walk on
this lattice is given in [41]. In the continuous limit, the
results (8,9,11,12) straightforwardly extend to this case,
and leads to the correlation profile wA(r⃗, λ, t) shown in
Fig. 3. It presents a different scaling with time in the
two directions x and y, because particles can diffuse in
the teeth of the comb, but horizontal motion is slowed
down because it is only possible at y = 0.
Extension: other observables.—The above discussion

can be extended to observables of the form

Ot[f, g] =
∑
i

[f(xi(t))− g(xi(0))] , (14)

where f and g are two given functions, with f(x) ≃
x→±∞

g(x) to ensure convergence of the sum. The case of the
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integrated current Qt corresponds to f = g = Θ. In
general, the above results (8,9,11,12) still hold, but with
the tilted propagator

G̃
(λ)
t (x|y) = eλf(x)Gt(x|y)e−λg(y) . (15)

This provides in particular the profiles in the case of a
generalised current Jt(X), defined by f(x) = Θ(x − X)
and g(x) = Θ(x). This observable measures the differ-
ence between the number of particles at the right of X
at time t with the number of particles on the positive
axis at t = 0. It has proved to be especially relevant
since it can be used to find the position Xt of a tracer
particle [47, 48], given by Jt(Xt) = 0, meaning that no
particle can cross the tracer. However, this only provides
the final position Xt, and not the displacement Xt −X0

(X0 being the position of the first particle to the right of
the origin, which is random).

Extension: tracer particle.— Nevertheless, our method
can be adapted to directly study the displacement of a
tracer (placed initially at the origin for simplicity). So
far, the only available studies concern the distribution of
the tracer only [34, 49], and not its correlations with the
other particles, which are our main focus here.

Extending the ideas of [1, 20, 34, 49, 50], the correla-
tion profiles can be computed by noticing that the tracer
can be mapped onto the ”middle” particle of the sys-
tem of noninteracting particles introduced above. We
now consider a finite system of 2N+1 particles, with ini-
tially N particles on the negative axis (positions x−n(t)),
N particles on the positive axis (positions xn(t)), and a
tracer initially at the origin (x0(t)). We define the aver-
age over the initial positions as

f({xi(0)}) =
∫ 0

−∞

N∏
n=1

ρ0(y−n)dy−n

N

∫ ∞

0

N∏
n=1

ρ0(yn)dyn
N

f(y−N , . . . , y−1, y0 = 0, y1, . . . yN ) . (16)

The average over the time evolution is still given by (1).
The probability of finding the tracer at positionX at time
t, with initially the particles at positions {xi(0)} can be
obtained by imposing that there are still N particles to
the left of the tracer, and N to the right,

Pt(X|{xi(0)}) ≡ ⟨δ(X − x0(t))⟩

∝
∫ X

−∞

N∏
n=1

dx−n

∫ ∞

X

N∏
n=1

dxnKt({xn}|x0=X |{xi(0)}).

(17)

Using the expression of the joint propagator (7), and av-
eraging over the time evolution and the initial positions
(assumed to be annealed for simplicity), we obtain the
distribution of x0(t) in the thermodynamic limit,

Pt(X) ≡ lim
N→∞

⟨δ(X − x0(t))⟩ =
∫ π

−π

ft(X, θ)e
ϕt(X,θ)dθ ,

(18)
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FIG. 4. Conditional density profiles w̃A, for reflecting Brow-
nian particles with diffusion coefficient D = 1

2
, with a tracer

at position X = ξ
√
t, at different times t. Left: case ξ = 0,

corresponding to a tracer conditioned to be at its mean posi-
tion. Right: ξ = 0.5.

where the integration over θ enforces the noncrossing con-
straint. The functions ft and ϕt are expressed in terms
of the propagator Gt (assumed translationally invariant
and symmetric), its integral Ft(z) =

∫∞
z
Gt(x|0)dx and

the initial density of particles ρ0. The exact expressions
are given in SM [36] The distribution (18) extends to the
out-of-equilibrium case of an arbitrary initial density ρ0,
such as a step initial condition, the result of [49] obtained
in the equilibrium case of a constant density. Here, we
obtain in addition the full spatial dependence of the cor-
relations between the position of the tracer and the den-
sity of surrounding particles, which takes the following
simple and universal form

w̃A(x,X, t) ≡ lim
N→∞

⟨ρ(x, t)δ(X − x0(t))⟩
⟨δ(X − x0(t))⟩

= α±
t (X)Gt(x|0) + β±

t (X)ρ∓Ft(±x) + ρ±Ft(∓x) ,
(19)

where the superscript ± stands for x ≷ X, with α±
t

and β±
t given explicitly in SM [36]. We stress that the

spatial dependence of these profiles are fully encoded
in the propagator Gt (and its integral Ft). Note that
we have considered in Eq. (19) here conditional pro-
files, which measure the mean density of particles condi-
tioned on having observed the tracer at X at time t. In
contrast, we have previously considered correlation pro-

files
〈
ρ(x, t)eλx0(t)

〉
/
〈
eλx0(t)

〉
. The two formulations are

equivalent in the limit t → ∞ [25, 36], but not at arbi-
trary time. It turns out that the correlation profiles are
more convenient to study observables of the form (14),
while the conditional profiles are more suited to study
tracer particles, since they take a simple form. These con-
ditional profiles are shown in Fig. 4 for reflective Brown-
ian particles. At long times, they reach their asymptotic
values computed in [24], but at arbitrary times they have
a more complex structure, mostly due to the presence of
the tracer at the origin at t = 0 (first term in (19)).
Extension: two tracers.— Our approach can be ex-

tended to the important and largely unexplored situa-
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tion of two tracers of positions X1(t) and X2(t). The
only available studies in single-file systems concern the
symmetric exclusion process and its limits [51–54], and
the distance between two different particles at different
times [55] which does not gives access to the joint posi-
tion of two tracers at the same time. We still obtain a
simple form for the density profile conditioned on observ-
ing the first tracer at X and the second tracer at Y . As
a byproduct, we obtain the strikingly simple, universal,
and to the best of our knowledge new expression for the
covariance of the displacements of two tracers,

Cov(X1, X2)√
Var(X1)Var(X2)

≃
t→∞

∫∞
z

dx
∫∞
x

dy g(y)∫∞
0

dx
∫∞
x

dy g(y)
, (20)

where z = [X1(0)−X2(0)]/σt, and σt the long time scal-
ing of the propagator Gt(x|y) = g(x−y

σt
)/σt.

Conclusion.—We have shown that the correlation pro-
files in single-file systems take the strikingly simple uni-
versal form (9-12). The approach is general and applies
to: (i) a broad range of dynamics (including with ex-
ternal forces or non-Markovian dynamics provided that
the memory is lost upon collision); (ii) arbitrary time
(note that these results are not accessible via the classi-
cal Macroscopic Fluctuation Theory [56], which is limited
to the large time behaviour of diffusive systems [57]); (iii)
different initial conditions (annealed and quenched [58]);
(iv) various observables (the form (14) includes the joint
statistics of several currents [36]); (v) geometries not re-
stricted to the single-file constraint (illustrated by the
comb geometry). In addition, beyond the clear phys-
ical relevance of the correlation profiles, the simplicity
of (9-12) further highlights their key role to describe
transport properties in confined geometry [13–15, 18, 24–
26, 47, 48, 59].
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[46] F. Höfling and T. Franosch, Rep. Prog. Phys. 76, 046602

(2013).
[47] T. Imamura, K. Mallick, and T. Sasamoto, Phys. Rev.

Lett. 118, 160601 (2017).
[48] T. Imamura, K. Mallick, and T. Sasamoto, Commun.

Math. Phys. 384, 1409 (2021).
[49] C. Hegde, S. Sabhapandit, and A. Dhar, Phys. Rev. Lett.

113, 120601 (2014).
[50] P. L. Krapivsky, K. Mallick, and T. Sadhu, J. Stat. Phys.

160, 885 (2015).
[51] S. Majumdar and M. Barma, Physica A 177, 366 (1991).
[52] O. Takeshi, S. Goto, T. Matsumoto, A. Nakahara, and

M. Otsuki, Phys. Rev. E 88, 062108 (2013).
[53] T. Ooshida and M. Otsuki, J. Phys. Condens. Matter 30,

374001 (2018).
[54] A. Poncet, O. Bénichou, V. Démery, and G. Oshanin,

Phys. Rev. E 97, 062119 (2018).
[55] S. Sabhapandit and A. Dhar, J Stat. Mech. 2015, P07024

(2015).
[56] L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, and

C. Landim, Rev. Mod. Phys. 87, 593 (2015).
[57] For diffusive systems, the MFT gives access to correla-

tion profiles of the form
〈
ρ(x, τT )eλOT

〉
/
〈
eλOT

〉
with T

large and 0 ≤ τ ≤ 1. Here, we have obtained correlation
profiles of the form

〈
ρ(x, t)eλOt

〉
/
〈
eλOt

〉
for arbitrary t.

[58] The quenched case is notoriously more difficult than the
annealed case: for instance while the annealed cumulant
generating function of the current in the symmetric ex-
clusion process has been determined in [9], its quenched
counterpart is still missing.

[59] A. Krajenbrink and P. Le Doussal, Phys. Rev. E 107,
014137 (2023).

https://doi.org/10.1103/PhysRevLett.115.220601
https://doi.org/10.1088/1751-8113/49/26/265001
https://doi.org/10.1088/1751-8113/49/26/265001
https://doi.org/10.1016/0378-4371(86)90060-9
https://doi.org/10.1016/j.chaos.2013.05.002
https://doi.org/10.1016/j.chaos.2013.05.002
https://doi.org/10.1103/PhysRevLett.108.093002
https://doi.org/10.1103/PhysRevLett.108.093002
https://doi.org/10.1088/0034-4885/76/4/046602
https://doi.org/10.1088/0034-4885/76/4/046602
https://doi.org/10.1103/PhysRevLett.118.160601
https://doi.org/10.1103/PhysRevLett.118.160601
https://doi.org/10.1007/s00220-021-03954-x
https://doi.org/10.1007/s00220-021-03954-x
https://doi.org/10.1103/PhysRevLett.113.120601
https://doi.org/10.1103/PhysRevLett.113.120601
https://doi.org/10.1007/s10955-015-1291-0
https://doi.org/10.1007/s10955-015-1291-0
https://doi.org/10.1016/0378-4371(91)90174-B
https://doi.org/10.1103/PhysRevE.88.062108
https://doi.org/10.1088/1361-648X/aad4cc
https://doi.org/10.1088/1361-648X/aad4cc
https://doi.org/10.1103/PhysRevE.97.062119
https://doi.org/10.1088/1742-5468/2015/07/P07024
https://doi.org/10.1088/1742-5468/2015/07/P07024
https://doi.org/10.1103/RevModPhys.87.593
https://doi.org/10.1103/PhysRevE.107.014137
https://doi.org/10.1103/PhysRevE.107.014137

	From Particle Currents to Tracer Diffusion: Universal Correlation Profiles in Single-File Dynamics
	Abstract
	References


