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Preface

To Pierre Deligne and to the memory of Jean Louis Verdier

The purpose of this volume is to prove the existence of special structures on
the cohomology of a family of complex projective varieties, namely Lefschetz
and Hodge decompositions. We mention:

1. The construction of perverse extension of degenerating variation of graded
polarized mixed Hodge structures (VMHS) along a normal crossing divi-
sor (NCD).

2. The decomposition theorem of the derived image of a perverse extension
of degenerating polarized variation Hodge structures (VHS) by a projec-
tive morphism on complex algebraic varieties by methods of algebraic
topology.

3. The proof of local purity on complex varieties adapted from the proof on
varieties of characteristic p > 0, and an other new proof.

4. The construction of perverse extension of degenerating variation of polar-
ized Hodge structures (VHS) on compact complex varieties by application
of the decomposition theorem to a desingularization.

5. The definition of perverse variation of mixed Hodge structures (VMHS)
on complex algebraic varieties.

Actually, there exist two proofs of the decomposition theorem. The first
is on algebraic varieties over fields of characteristic p > 0 which extends to
polarized variation of Hodge structures (VHS) of geometric origin on com-
plex varieties. The second proof is for Hodge modules and equivalently for
polarized VHS on complex algebraic varieties.
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We give two new proofs by methods of algebraic topology of complex
algebraic varieties. The first is based on a generalization of the construction
of mixed Hodge complex on the nearby cycles complex.

The second is based on a description of the weight filtration on the log-
arithmic complex Ω∗L := Ω∗X(LogY ) ⊗OX LX with coefficients in Deligne’s
extension LX of a VHS L on the complement of a NCD Y ⊂ X.

The local purity theorem, states conditions on the weights of a NCD con-
tracting into an isolated stratum in a Thom-Whitney stratification. As an
application of the decomposition theorem, we adapt the original unpublished
proof by Deligne and Gabber to complex algebraic varieties.

In particular, we prove the local and global invariant cycle theorems. We
give also an other direct proof of local purity.

To figure the interest in these results, let us recall the developments after
1950 in this field of algebraic geometry by the schools influenced the work of
J.P. Serre, A. Grothendieck, P. Deligne and Ph. Griffiths.

1. Weight and Hodge filtrations. The cohomology groups of a com-
plex algebraic variety X, constructed with the transcendental topology, are
enriched by the definition of filtrations by sub-spaces reflecting the geometry
and the topology of the variety and its singularities.

In the case of a compact non singular algebraic variety X, a Hodge filtra-
tion F is defined on the de Rham cohomology groups Hi(X,C).

Using the conjugate F̄ of F with respect to the Q−structure of the co-
homology defined by the embedding Hi(X,Q) ⊂ Hi(X,C), a Hodge decom-
position of the cohomology is defined by the finite direct sum of subspaces
Hp,q = F p ∩ F̄ q for p+ q = i.

The Hodge filtration F is already defined on the de Rham complex but the
proof of the induced decomposition on the cohomology is based on advanced
analysis on varieties. Two homeomorphic varieties which are not isomorphic,
give rise to two different decompositions in general, after identification of the
cohomology spaces.

In the case of non singular but non compact algebraic varieties, the Hodge
filtration on the de Rham complex does not give a satisfactory structure on
the cohomology. Instead, it is necessary to embed a non singular X into a non
singular compact algebraic variety with a normal crossing divisor (NCD) as
complement (at infinity), which is possible thanks to Hironaka’s desingular-
ization theorem. The presence of the NCD at infinity leads to an additional
filtration W on the cohomology with Q−coefficients called the weight filtra-
tion.

For a first reading, the definition of all terms can be found in the following
book

Claire Voisin: Hodge theory and complex algebraic geometry I, II. Cambridge
University Press, 76, 77, 2007.

For an advanced reading, we refer to the foundational work of
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Pierre Deligne: Théorie de Hodge II. Publ. Math. IHES, Paris 40:5–57, 1972.
Théorie de Hodge III. Publ. Math. IHES, Paris 44:6–77, 1975.
Conjecture de Weil II. Publ. Math. IHES, Paris 52, 1980.

As well, other basic references are cited in the text.
2. Mixed Hodge structure (MHS) In the case of non compact non

singular varieties, Deligne introduced a new complex called the logarithmic
complex on which both the weight and Hodge filtrations are defined and
induce the correct filtrations on the cohomology spaces. We remark that this
correct Hodge filtration contains additional information at infinity.

Both weight W and Hodge F filtrations figure in a precise positions in the
cohomology space and satisfy strong linear algebraic conditions called mixed
Hodge structure (MHS).

Such MHS are also defined on the cohomology of singular algebraic vari-
eties. Thus, the cohomology of any complex algebraic variety has a naturally
defined MHS. It is surprising that the theory of MHS is motivated by the
concept of purity and weight on `−adic cohomology of varieties over fields of
positive characteristic. In fact, the theory of MHS is motivated by Deligne’s
results on the Weil conjecture. A ” heuristic dictionary ” developed by Deligne
helps to translate results from one language into the other:

Pierre Deligne: Théorie de Hodge I. Cong. intern. math.Nice, Tome 1, 425–
430, 1970.

3. Polarization and Lefschetz decomposition of the cohomology of
complex non singular projective varieties. The cohomology class of an hy-
perplane section of a non singular projective variety X, defines Lefschetz
isomorphisms on the cohomology by iteration of the cup-product with its
cohomology class. From which we deduce, with Poincaré’s duality, a scalar
product on the cohomology Hi(X,C) and a Lefschetz decomposition into a
direct sum of polarized subspaces.

Reciprocally, Deligne’s proof of Lefschetz isomorphisms by induction is
based on the existence of the polarization (Weil II, 4.1, Lemma 4.1.4).

4. Variation of mixed Hodge structures (VMHS). In the case of a
family of algebraic varieties defined by an algebraic morphism f : X → V ,
the cohomology of the fibres form a constructible complex: there exists a
stratification S of the complex variety V such that the restriction of the i-
th cohomology sheaf of the derived image by f of the constant sheaf QX
is locally constant on each stratum S. The locally constant sheaf on S, is
determined by a monodromy representation of the fundamental group of S
on the i-th cohomology of the fibres.

To go beyond topology, in the case of a proper smooth family, the Hodge
filtration F of the cohomology space Hi(Xv,C) of non singular complex com-
pact algebraic fibers Xv at v ∈ V , defines a variation of Hodge structures
(VHS) on V . Griffith gave sense to the fact that the variation of the Hodge
filtration is analytic, or in other terms the filtration is defined by analytic sub-
bundles of the flat bundle Rif∗C⊗COV . The VHS has an additional property



viii

called Griffith’s transversality with respect to the connection determined by
the local system of the i-th cohomology Rif∗C on V .

In the case of a projective family, we obtain a VMHS on each stratum S
of a stratification S of V .

In this volume we describe results on the degeneration and the extension
of VMHS on the boundary of a stratum S by algebraic topology techniques
in order to give a proof of the decomposition and purity theorems.

In a family, singular fibers occur in general. For example, any pencil of
curves on a surface contains singular special curves. The behavior of the
family near the singular fiber is useful (for example to the classification of
the families).

For this reason, we introduce the concept of degeneration of the MHS near
a singularity on the parameter space V . At a singularity v ∈ V , the degener-
ation reflects the properties of the family on a punctured neighborhood of v.
In particular we can blow up v to study the degeneration.

For this reason, the study of the degeneration is reduced in general to the
complement of a normal crossing divisor (NCD) in a non singular variety.

The singularities appear also when it is not possible to extend the local
system or the Hodge filtration of the VHS on a non singular parameter variety
V . For example, a singularity of the connection defined by the local system
may exists on a non singular V . The problems of the degeneration of the
filtration F are of analytic nature.

5. Decomposition of derived image of polarized VHS. The polariza-
tion on a VHS leads to a decomposition into irreducible polarized sub-VHS.

Moreover Lefschetz and Hodge structures on the fibers of a smooth pro-
jective morphism f : X → V , lead to the degeneration of Leray’s spectral
sequence of f .
This degeneration may be interpreted as a decomposition (in the derived
filtered category D+F (V,C) of abelian sheaves on V ), of the complex K :=
f∗CX on V defined by the derived image of the constant sheaf C on X, into
its cohomology sheaves. We refer to:

P. Deligne, Théorèmes de Lefschetz et critères de dégénérescence de suites
spectrales, Publ. Math. IHES, 35, 107–126, 1968.

6. Degeneration of VMHS. In the case of an abstract analytic polarized
VHS on a punctured complex disc D∗, the main result is the existence of
Schmid’s limit Hodge filtration F on the space of multiple sections of the
local system L underlying the VHS on D∗. We refer to:

Philip Griffiths and Wilfried Schmid: Recent developments in Hodge theory.
Bombay Colloquium on: Discrete subgroups of Lie Groups, Oxford University
Press 1973,
for a first reading and to the foundational work of

Wilfried Schmid: Variation of Hodge structure: the singularities of the period
mapping. Invent. Math. 22:211–319, 1973.
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Moreover, the monodromy filtration W (N) defined by the logarithm of
the monodromy and the limit filtration F form a MHS. The VHS is said to
degenerate into a limit MHS.

In the text Weil II by Deligne, as well in the article of Steenbrink, the
theory appears for an algebraic family over curves.

Graded polarized VMHS. In the case of an abstract VMHS on D∗ with fil-
trations W and F , there is no natural limit Hodge filtration F . The existence
of a limit Hodge filtration is added by definition of a class of VMHS called
admissible.

In this case Deligne defined a relative monodromy filtrationM := M(N,W )
and asked for precise properties which must be satisfied by M and the limit
F , in particular (M,F ) form a MHS on the limit vector space defined by the
local system underlying the VMHS on D∗.

The properties required of an admissible VMHS are inspired by the case
of algebraic families and all algebraic families over a punctured disc define
admissible VMHS on D∗ called geometric.

We refer to Weil II on varieties over fields of characteristic p > 0, where
many problem originated.

In the case of higher dimensional variations, the degeneration of a VHS
(resp VMHS) over a product of punctured discs (D∗)n is far more difficult
to study and the results present compatibility relations between the various
degenerations along the components of the NCD at ”infinity” in Dn.

In this text, degeneration results are recalled but not proved since there
exist many references cited in the text.

7. Extension of VHS. In the case of curves, in Weil II by Deligne and
in the corresponding work by Zucker on a complex curve V , an answer to the
problem of extension is given along a singularity v ∈ V of a polarized VHS
on a locally constant sheaf L.

Let j∗L denotes the sheaf extending L such that the section at v of j∗L
are defined by the invariant subspace under the action of monodromy near
v, with its induced limit MHS at v including the limit Hodge filtration F .

The main result is that the cohomology (Hi(V, j∗L), F ) with the induced
filtration F is a pure HS. This is the first example of a Hodge structure not
deduced from HS defined by compact non singular varieties.

In the case where dimV > 1, the main problem is the extension of a VHS
defined on the big stratum S of V . For example on a surface S, the critical
case is an isolated stratum on the boundary of S.

No progress has been made until the work by Goresky and Mac-Pherson
in 1980 on Intersection cohomology satisfying Poincaré duality on topological
spaces eventually singular, appeared.

8. Perverse sheaves. The interpretation by Deligne of Intersection co-
homology in the language of derived category and Poincaré-Verdier duality,
leads to the theory of intermediate extensions of a local system and more
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generally to the definition of perverse sheaves developed in 1983 on varieties
over fields of strictly positive characteristic. We refer to:

A. Beilinson, J. Bernstein, P. Deligne, O. Gabber: Analyse et Topologie sur
les espaces singuliers Vol.I, Astérisque, France 100, 1983.

9. Purity. The long awaited theory of purity, well understood in the case
of curves in Weil II, makes sense in all dimensions as follows:

In the case of an abstract analytic polarized VHS underlying a local system
L on a product of punctured complex discs (D∗)n, the correct extension is
a complex of sheaves called the intermediate extension of L with induced
filtration defined by the limit Hodge filtration F .

Globally, if a polarized Hodge filtration (L, F ) is given on the complemen-
tary of a NCD Y ⊂ X, the intermediate extension is defined in this text as a
sub-complex IC∗L of the logarithmic complex Ω∗L := Ω∗X(LogY ) ⊗OX LX
with coefficients in Deligne’s extension LX with induced filtration F deduced
from the degenerate Hodge filtration.

The hypercohomology of the sub-complex (IC∗L, F ) on a projective vari-
ety X with its induced Hodge filtration carry a pure HS.

After the development of the theory of perverse sheaves the interest shifted
to the property of decomposition of pure perverse sheaves.

The first purity result in the domain is proved over fields of strictly positive
characteristic by Deligne and Gabber in 1981 and has been a motivation of
subsequent work on Hodge theory on complex varieties. We cite among the
consequences, the proof of local and global invariant cycle theorems and local
purity.

In the case of a normal crossing divisor Y in a complex algebraic variety
X contracting to an isolated stratum v ∈ V in a stratified algebraic variety
V , local purity has consequences on the classical cohomology with support
in Y in terms of restrictions on the weights, related to the contractibility of
the NCD to a point.

Although the proofs are on varieties over fields of strictly positive charac-
teristic, it is possible to deduce the result in the case where the coefficients
are VHS of geometric origin on complex varieties.

In parallel, the relation to D−modules appears in the thesis of Brylinski in
1982, the work of Kashiwara in 1983 and the work of Saito who introduced
Hodge modules in 1988 and proved the property of decomposition of such
modules.

The theory of differential modules is a natural domain to study the degen-
eration and leads to the fact that Hodge modules are direct sums of variations
of intermediate extensions of Hodge structures.

It is surprising that perverse sheaves have been defined and studied first
in the language of derived category.

10. Perverse extension of VMHS. A central problem is the definition of
the extension of a polarized VHS (L, F ) on a stratum S of a stratified complex
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variety V (S is non singular but V may be singular along S). We give in this
text a definition of the extension of the filtration F by desingularization using
algebraic topology constructions. We apply the result to develop the theory
of perverse VMHS on a singular variety.

A general and useful study of extensions of perverse sheaves along a locally
principal divisor by considering the nearby and vanishing cycles figures in the
work of J. L. Verdier. The application to Hodge theory is written by M. Saito
in the language of D−modules.

We develop in the text the results on the extension of graded polarized
VMHS in terms of perverse sheaves and uilding on results of Kashiwara in the
case of NCD, we give an alternative definition in terms of algebraic topology.

11. Proof of the decomposition and purity theorems. The main
simplification in the exposition of the text consists in the proof of the decom-
position and local purity theorems for a projective morphism by reduction to
the case of a NCD contracting to an isolated stratum v in V (not merely an
isolated singularity) and its application to define the perverse extension of a
V HS in general.

For this reason, we insist in this text to state the decomposition theorem in
terms of Thom stratification of a morphism f : X → V of algebraic varieties
and we express the decomposition theorem in terms of the stratification.
The reduction to isolated strata is by induction and restriction to a general
hyperplane section.

In the case of an isolated stratum v, the proof is reduced to the case of
existence of a projection of V to the projective line defined by a general
hyperplane section through v. The spectral sequence of the nearby cycles
functor with respect to the monodromy weight filtration is relatively simple
to study in this case.

This allows the simple definition of the category of intermediate extension
of variations of Hodge structures and the category of variations of mixed
Hodge structures over singular varieties.

We recall, that even if we start with constant coefficients, the derived
direct image consists of a complex with constructible cohomology sheaves
with additional structure of intermediate extensions of polarized VHS.

Thus, instead of constant coefficients, the general theory is carried with
cohomology coefficients in polarized VHS and more generally VMHS.

Organization of the book. The text is divided in three sections.

1. The first section covers three chapters.
Chapter 1 gives the statements of the local purity theorem, the decompo-
sition theorem in terms of Tom-Whitney stratification and the extension
of a polarized VHS.
Chapter 2 covers the preliminaries on perverse sheaves and on the degen-
eration of VMHS.
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Chapter 3 centers on perverse sub-sheaves of the logarithmic complex in
the case of a normal crossing divisor (NCD) at infinity.

2. The second section covers chapters (4− 8).
In chapter 4, we introduce in the case of a unipotent VHS: (L, F ), the
nearby cycles complex Ψ∗IL, to define the limit Hodge filtration F and
transfer the filtration to the unipotent part of the nearby cycles complex
ψuf j!∗

pL with coefficients in the intermediate extension of L.
We prove in chapter 5 the existence of a natural structure of mixed Hodge
complex on the nearby and vanishing cycles complex with coefficients in
an intermediate extension j!∗

pL of a (shifted) polarized variation of Hodge
structure (L, F ).
We give a proof of the decomposition and purity theorems in chapter 6
and deduce in chapter 7 the Hodge filtration on perverse intermediate
extensions on singular varieties by desingularization, the local and global
invariant cycle theorems.
This allows us to adapt in chapter 8 the proof of the local purity theorem
by Deligne and Gabber to the case of complex varieties.

3. The third section covers chapters (9− 12).
In chapter 9, the weight filtration on the logarithmic complex in the case
of a NCD at infinity is defined directly along the NCD.
In chapter 10 a combined simple proof of the decomposition and pu-
rity theorems is given in terms of Intersection morphism and a relative
interpretation of local purity.

June 2022 The Editors

Key words: Algebraic geometry, Mixed Hodge structure, Local Purity, De-
composition, Derived category, Perverse sheaves, Stratifications.
Mathematics Subject Classification(2000):Primary 14D07, 32G20; Secondary
14F05
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Chapter 1

Introduction

An overview of the domain of research is presented in the preface. This volume
is divided in three sections. The first section covers chapters 1− 3.
In this chapter, the statement of the local purity and of the decom-
position theorems as well the extension of a polarized VHS on a
complex algebraic variety, are given.

In chapter 2, preliminaries on perverse sheaves and variation of mixed
Hodge structures may be useful for a first reading.

We develop in chapter three the normal crossing divisor case in details. It
is an example of perverse sheaves.

The Abbreviations and Conventions figure in §2.4.0.2 and the induced fil-
trations on perverse cohomology in §2.4.

1.1 Local purity

In an unpublished note [DeG 81], Deligne and Gabber announced the follow-
ing result, known as the purity theorem on a projective variety over a field
of positive characteristic:

Theorem. Let Fq be a finite field, X0 a smooth scheme of finite type over
Fq, j : V0 ↪→ X0 an open subset of X0, and K0 a perverse sheaf on V0. If K0

is pure of weight w, the complex j!∗K0 is pure of same weight.

Let j : V → X denote the extension of j : V0 → X0 over an algebraic
closure of Fq and K the extension of K0 on V . We may also say that j!∗K is
pure of same weight as K.

The proof by induction on an hyperplane section leads to the following
local purity statement:

5
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Local purity theorem. Let E0 be a finite set of zero dimensional points in
X0, V0 := X0 \E0, E ⊂ X the extensions over an algebraic closure of Fq and
K the extension on V of a pure complex K0 of weight pw on V0.

Let Bv be a henselization of X at a zero dimensional point v of E. The
weight w of the cohomology Hi(Bv \ {v},K), satisfies the inequalities:

w ≤ pw + i if i ≤ −1 and w > pw + i if i ≥ 0.

Next, we give the interpretation and application of this theorem on complex
varieties. It is a central result in the development of Hodge theory. Moreover,
it is related to the proof of the decomposition theorem.

1.1.0.1 Deligne’s dictionary

According to Deligne [De 71], the henselization of a complex algebraic variety
V at a point v corresponds to a ball Bv, defined by a local embedding of V
in CN at v, as the intersection with V of a ball of CN centered at v of small
radius, such that Bv is a cone over a topological space called the Link L of
V at v which is a topological invariant independent of the embedding in CN .

Purity in positive characteristic corresponds to Hodge structure (HS) on
cohomology [De 72] and the theory of weight is translated into a weight fil-
tration local purity theorem.

In particular the conditions on the weights above can be translated in the
transcendental case into conditions on the weights of a natural filtration W
mentioned in the text as the local purity theorem.

1.1.1 Local purity on complex varieties

The Intersection complex on a complex algebraic variety V , defined with
coefficients in a local system on a non singular locally closed Zariski subset,
has been introduced first by a topological construction [GMacP 83].

Later, Deligne extended the definition to algebraic varieties over finite
fields (see [Br 82]). The Intersection complex appears as the Intermediate
extension in the general theory of perverse sheaves ([BBD 83] Definition 2.1.5
and Proposition 2.1.11).

Let V ∗ denote a smooth algebraic open dense subset of a complex algebraic
variety V of pure dimension, and j : V ∗ ↪→ V the open embedding. Let L
denote a polarized variation of Hodge structures (VHS) of weight w′ on V ∗.

We attach to L the perverse sheaf pL = L[dimV ] on V ∗. Due to the shift
in degrees, the perverse sheaf pL is concentrated in degree −dimV and has
weight pw = w′ + dimV . Let j!∗

pL denote the Intermediate extension of pL
(see §2.2), v a zero dimensional point of V , iv : v → V and k : (V \ v)→ X.
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In the text, we prove the local purity theorem in terms of the mixed
Hodge structure (MHS) on the cohomology space H∗(i∗vk∗k

∗j!∗
pL) (a derived

functor RF in the text will be denoted simply by F , in particular k∗ stands
for Rk∗).

We find it more suggestive to say that we put a MHS on the hyperco-
homology of a punctured small ball B∗v := Bv \ v by fixing an isomorphism
H∗(i∗vk∗k

∗j!∗
pL) ' H∗(Bv \ v, j!∗pL) for Bv small enough. The local purity

theorem is stated in terms of the weight w of a natural MHS as follows:

Theorem 1.1 (Local purity). Let j!∗
pL be the intermediate extension of

weight pw, v a zero dimensional point of V , iv : v → V and k : (V \ v)→ X.
The weight w of the space Hi(i∗vk∗k

∗j!∗
pL), isomorphic to the Intersection

cohomology Hi(Bv \{v}, j!∗pL) of a small punctured ball Bv at v, satisfies the
relations:

w ≤ pw + i if i ≤ −1 and w > pw + i if i ≥ 0

The proof in [DeG 81] is adapted to complex variety in chapter 8. A new proof
is given in chapters 10 and 10.3. Already, in the simplest case of an isolated
singularity v ∈ V , the theorem has important consequences on the weights of
the cohomology with support Hi

v(V,Q). A direct proof of these consequences
appears in the work of Navarro Aznar [Na 85], where the results are treated
in terms of the exceptional NCD in a desingularization and the MHS of the
isolated singularity v.

1.2 Decomposition theorem and Perverse cohomology

The introduction of the category of perverse sheaves and perverse cohomol-
ogy lead (see §2.2 for a summary) to vast developments in the theory and
to the unification of the language and the structure of proofs in positive
characteristic as well on complex algebraic varieties.

To state the decomposition theorem in ([BBD 83]) we need to introduce
the perverse cohomology sheaves pHi(K) of a complex K on V (cf §2.2).

Let X0 be a separated scheme of finite type over a finite field Fq of q
elements of characteristic p, and X := X0⊗FqF its extension over an algebraic
closure F of Fq.

Let l 6= p and let j : U → X be the inclusion of a smooth connected open
subset of pure dimension d and a Ql-smooth irreducible sheaf pL on U .

Let f : X0 → V0 be a projective morphism. The purity theorem states
the decomposition of pHj(f∗j!∗pL) into a finite direct sum of intermediate ex-
tension on the projective variety V non necessarily smooth, of Ql-smooth ir-
reducible sheaves pLi on locally closed Zariski subsets ji : Ui → V ([BBD 83],
théorème 5.3.8):

pHj(f∗j!∗pL) ' ⊕i∈Iji!∗pLi (1.1)
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The relative Hard Lefshetz theorem ([BBD 83], théorème 5.4.10) states
that the class ` ∈ H2(X,Ql(1)) of an hyperplane section (or a relatively
ample bundle) induces isomorphisms for i ≥ 0:

`i : pHi(f∗j!∗pL)
∼→ pHi(f∗j!∗pL) (1.2)

Both equations 1.2 and 1.1 are known as the Decomposition theorem.

1.2.0.1 Geometric statements

To deduce results concerning geometric statements on schemes of finite type
over C from corresponding statements in characteristic p > 0, a general pro-
cedure, described in ([BBD 83], §6), applies to perverse sheaves of geometric
origin ([BBD 83], §6.2.4).

Let f : X → Y be a proper morphism and P a simple perverse sheaf over
X(C) of geometric origin, there exists a decomposition ([BBD 83], théorème
6.2.5)

f∗P ' ⊕i pHi(f∗P )[−i] ∈ Db
c(V (C),C) (1.3)

in the derived category [Ve 77]. Moreover, each perverse cohomology pHi(f∗P )
decomposes into a direct sum of simple perverse sheaves of geometric origin.

Example 1.1. Let g : Z → Y be a proper morphism, by definition any simple
component of pHi(g∗C) is of geometric origin.

We recommend strongly to read the full proof in chapter 6 of [BBD 83].
Indeed, the argument consists of general conditions and steps to deduce

theorems on algebraic complex varieties from theorems on varieties over fields
of characteristic p > 0, as an application of Thom-Whitney stratifications.

1.2.0.2 Analytic statements

On complex varieties, Intermediate extensions of polarized VHS correspond
to pure Intermediate extensions in positive characteristic.

Purity. In the case of a polarized VHS L of weight w′ on a Zariski
open subset j : U → X complement of a normal crossing divisor (NCD)
Y in a non singular complex projective variety X, the Intersection cohomol-
ogy Hi(X, j!∗L) has an induced pure HS of weight w′ + i ([CaKSc 87] and
[KaK 87]).

Decomposition. Let f : X → V be a projective morphism of complex
algebraic varieties. There exists a decomposition of the perverse cohomology
into a finite direct sum of intermediate extensions of polarized VHS pLi on
locally closed Zariski subsets ji : Ui → V :

pHi(f∗j!∗pL)
∼−→ ⊕i∈I ji!∗pLi (1.4)
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and there exists a decomposition in the category Db
c(V,Q)

f∗j!∗L ' ⊕i∈ZpHi(f∗j!∗pL)[−i]. (1.5)

The decomposition is proved for polarized Hodge modules [Sa 88] and [Sa 90]
in terms of the theory of differential modules (DX -modules). We give a proof
inspired by [DeG 81].

1.2.1 Decomposition and Intersection morphisms

In the text we give a proof of the decomposition theorem in terms of strat-
ifications and Intersection morphisms, by induction on the dimension of X,
using Hodge theory on the complex of nearby and vanishing cycles in chapter
6. In the last chapters 10 and 11 we give a combined simple proof using the
weight filtration on the logarithmic complex Ω∗L.

Intersection morphisms. Let f : X → V be a projective morphism of alge-
braic varieties. We express the results in terms of a Thom-Whitney stratifi-
cation of f (Definition 2.3) adapted to j!∗

pL in the sense that the restriction
of the cohomology groups of j!∗

pL, to the various strata of X, are locally
constant. The cohomology groups of f∗(j!∗

pL) are locally constant when re-
stricted to the strata of V .

Let Db
c(V,Q) denote the derived category of complexes with constructible

cohomology sheaves on V , XS := f−1(S) the inverse image of a stratum
S ∈ V , fS : XS → S the restriction of f , iXS : XS → X and iS : S → V the
embeddings.

The intersection morphism in the derived category Db
c(V,Q)

I : i!XS j!∗
pL→ i∗XS j!∗

pL (1.6)

is defined by the composition of iXS∗i
!
XS
j!∗

pL → j!∗
pL with the restriction

morphism j!∗
pL → iXS∗i

∗
XS
j!∗

pL ([BBD 83] subsection 1.4.6 and Definition
2.1.2).

Definition 1.1. For each stratum S, the local system LiS on S is the image
of the induced morphism by I:

LiS := Im

{
R− dimS+ifS∗(i

!
XS j!∗

pL)
IS→ R− dimS+ifS∗(i

∗
XS j!∗

pL)

}
(1.7)

such that pLiS := LiS [dimS] is perverse.

The local systems LiS are necessarily components of any decomposition. The
shift by −dimS in R− dimS+ifS∗ is motivated by the conventions on perverse
sheaves. The local system LiS = i∗SH

−`( pHi(K)) is uniquely defined by the
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decomposition. On a stratum S = U open subset of V of dimension m,
LiU := R−m+ifS∗j!∗

pL.
For example if X is smooth of dimension n and pL = Q[n]. At a point

v ∈ U : (LiU )v = Hn−m+i(Xv,Q), which leads to a Hard Lefschetz formula
centered at 0 on the fiber Xv of dimension n−m.
SinceXS → S is a topological fibrationRifS∗(Ri

!
XS
j!∗

pL) andRifS∗(i
∗
XS
j!∗

pL)
are local systems on S. For a general normal section Ns at s ∈ S such that
XNs := f−1(Ns) is transversal to the strata of X, we have

1. RifS∗(Ri
!
XS
j!∗

pL)s ' Hi
Xs

(XNs , j!∗
pL) is a MHS of weight w ≥ pw + i

2. RifS∗(Ri
!
XS
j!∗

pL)s ' Hi
Xs

(XNs , j!∗
pL) is a MHS of weight w ≥ pw + i.

Then, Rii!XS j!∗
pL and RifS∗(i

∗
XS
j!∗

pL) endowed with induced filtrations W

and F are variations of MHS (VMHS) (§2.3) and pLiS is a shifted VHS of
weight pw + i on each stratum S.

1.2.1.1 Decomposition theorem on complex varieties

Let K := f∗j!∗
pL ∈ Db

c(V,Q) and iS : S → V the embedding of a stratum S
in V . The cup product with the class c1 ∈ H2(X,Z) of an hyperplane section
of X induces morphisms ([BBD 83], Théorème 5.4.10):

η : K → K[2], η : iS !∗
pLiS → iS !∗

pLi+2
S and η : pHi(K)→ pHi+2(K).

The proof in chapter 6 of the following statement of decomposition is
based on the use of nearby and vanishing cycles complexes in [DeG 81], whose
construction in chapters 4 and 5 extends Steenbrink’s construction.

We do not use the theory of Hodge modules as in [Sa 88] and [Sa 90] but a
parallel method by induction on the dimension of X. Instead we rely on the
abelian category of IMHS ([Ka 86] Prop. 5.2.6). The theorem will be proved
by a different method in chapters 10 and 11.

Theorem 1.2. Let f : X → V be a projective morphism of complex algebraic
varieties, pL a shifted polarized variation of Hodge structure of weight pw, S
a Thom-Whitney stratification of V adapted to f , j!∗

pL and K = f∗j!∗
pL.

i) There exists a decomposition of the perverse cohomology on V for all
i ∈ Z

pHi(K)
∼−→ ⊕S∈S(iS)!∗

pLiS (1.8)

into a direct sum of intermediate extensions of shifted polarized VHS pLiS
(Equation 1.7) of weight pw + i on the strata S.

ii) Hard Lefschetz: The iterated cup-product with the class of a relatively
ample line bundle on X

ηi : pH−i(K)
∼→ pHi(K)

is an isomorphism over V for all i ∈ N. The perverse cohomology pH−i(K) is
dual to pHi(K) and the duality is compatible with the natural decomposition
in i).
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iii) The (perverse) spectral sequence with respect to the perverse filtration
pτ on K (Equation 2.2.0.1) degenerates at the term E1. We have a natural
decomposition into a direct sum of polarized HS of weight pw + i+ j

Gr
pτ
i Hi+j(X, j!∗pL) ' Hj(V, pHi(K))

∼−→ ⊕S∈S Hj(V, iS !∗
pLiS). (1.9)

Moreover, there exists an isomorphism in the derived category of con-
structible sheaves Db

c(V,Q)

K ' ⊕i∈ZpHi(K)[−i]. (1.10)

Remark 1.1. i) Let V0 be be the union of the zero dimensional strata of V
and let v ∈ V0, then by (Equation 1.8)

Hj(i!v
pHi(K)) ' ⊕S∈SHj(i!v(iS)!∗

pLiS) = 0 if j < 0 andH0(i!v
pHi(K)) ' pLiv

Hj(i∗v
pHi(K)) ' ⊕S∈SHj(i∗v(iS)!∗

pLiS) = 0 if j > 0 andH0(i∗v
pHi(K)) ' pLiv

hence pLiv ' ImH0(i!v
pHi(K)) → H0(i!v

pHi(K)) and by Equation 1.10, we
have:

pLiv ' (ImHi(i!vK)→ Hi(i!vK)).

At a general point s ∈ S, we apply this argument to the intersection with
a normal section to S at s, which explains the interest in the intersection
morphisms (Equation 1.7).

ii) We have: H0( pHi(K)) ' ⊕v∈V0
pLiv.

iii) The local systems pLiS are shifted polarized VHS on S, pL−iS is dual to
pLiS , and ηi is an isomorphism pL−iS

∼→ pLiS for each i and S.
Let Vl := ∪S∈S,dimS≤lS denote the union of the strata of V of dimension

≤ l and kj : (V \ Vj)→ V . We have:

Im

(
pHi(kj !k

∗
jK)→ pHi(K)

)
= kj !∗k

∗
j
pHi(K) (1.11)

iv) The decomposition in (Equation 1.10) is not canonical (see [De 93] for
a preferred choice of decomposition).

v) The proof is local on V . Hence, along the proof we may suppose X and
V projective varieties by reduction to a Zariski affine open subset od V and
then take its projective closure. Then, the proof is by induction and reduction
to ample hyperplane sections.

1.2.1.2 Scheme of the proof

We give here a guide to follow the full proof in chapter 6, based on the
necessary technical constructions in chapters 3−5. The new method of proof
introduced in the text occurs in the abelian category of infinitesimal mixed
Hodge structures (IMHS) defined by M. Kashiwara (ch. 2, §2.3.2) and avoid
the axiomatic definition of the category of Hodge D−modules in Saito’s proof.
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The elements necessary to read the statements such as perverse sheaf,
intermediate extension, perverse truncation of a constructible complex of
sheaves and perverse cohomology are recalled in chapter 2.

Induced filtration. First, to define the Hodge structure on perverse coho-
mology, we suppose the perverse truncation pτi of K := f∗j!∗

pL defined by
a sub-complex of K (see the remark by Deligne that any morphism of com-
plexes is homotopic to an embedding of complexes in chapter 2 §2.3.2),

Thus, the filtration f∗F is induced on pτi and then projected on pτi/
pτi−1.

In this way, we are entitled to apply the theory developed by Deligne in
[De 72] on filtered and bi-filtered derived functor. Remark that the sub-
complexes defined by the filtration F are not not constructible and their
perverse filtration is not defined or used in the text. Another option is to use
the concept of spectral objects by Verdier ([Ve 77], [De 93]).

Induction on dimX. If X is singular, we consider a desingularization π :
X ′ → X, and then it suffices to prove the theorem for π and π ◦ f ([De 68],
Proposition 2.16) (see ch. 6, 6.2.2.2). The case dimX = 0 is trivial while the
case dimX = 1 follows essentially from [Zu 79].

We suppose V projective,X smooth and projective. Let S denotes a Thom-
Whitney stratification of f (2.1.3.1) (including one Whitney stratification of
V and one of X). The inverse image of a general section L of V transversal to
the strata of V is a non singular subvariety L′ of X. The perverse cohomology
of f∗K has good reduction to L.

Hence by induction on dimX, we can deduce the theorem on a neighbor-
hood of L from the case f ′ : L′ → L where dimL′ = dimX − 1.

However, such argument apply over the open subset V ∗ := V \ V0 com-
plement of the isolated strata but does not apply for L through the strata
of dimension zero in V0 since then L is not general. In this way the proof is
reduced to a local problem concerning a neighborhood at each point v ∈ V0.

Proof via nearby and vanishing cycles. The first proof of purity in [DeG 81],
is based on the nearby cycles complex defined by a general section L := g−1(0)
through a point v ∈ V0, that is transversal to the strata outside v. In this
case the vanishing cycles complex is supported by v.

Let h : U → D be a proper analytic morphism defined on an open analytic
subset of X onto a disc D of C ⊃ 0 such that U0 := h−1(0) is a NCD in
U . We use Hodge theory in the context of normal crossing divisors (NCD)
to construct a complex Ψ∗IL ' ψhj!∗

pL in chapter 4 such that a Hodge
filtration F and the weight monodromy filtration W are well defined on Ψ∗IL.
Moreover GrWk Ψ

∗IL decomposes into a direct sum of intermediate extensions
on the smooth intersections of components (see chapter 5).

Weight spectral sequence. Returning to f : X → V and using a Lefschetz
pencil intersecting the projective variety V , the proof is reduced to the case
where there exist g : V → P1

C, v ∈ L := g−10, L is transverse to the strata of
V \ v and moreover f−1L is a NCD in X consisting of the union of the fiber
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Xv := f−1v and the strict transform L′ of L (we may need many blowings
up above the fiber f−1v to reach this situation).

In this situation we construct the complex Ψ∗IL ' ψug◦f j!∗
pL such that a

Hodge filtration F and the weight monodromy filtration W are well defined
on Ψ∗IL (see chapters 3 and 4).

In this situation, the weight spectral sequence defined by the monodromy
filtration W on the nearby cycle complex ψug◦f j!∗

pL splits into a spectral
sequence degenerating at rank 1 and a spectral sequence of MHS degenerating
at rank 2 (see chapter 5). This is an important simplification of the proof.

Precisely, the terms E1 of the weight spectral sequence involves

1. the hypercohomology of intermediate extensions on the intersections of
components of the NCD Xv

2. the derived image of intermediate extensions on the ”horizontal” smooth
component L′ above L

The terms E1 of the spectral sequence above v form a spectral sequence of
Hodge structures Ep,q1 of weight q degenerating at rank 2.

The other terms involving the decomposition of L′ → L form a spectral
sequence which degenerates at rank 1 (Ep,q2 = Ep,q1 ).

Proof of the decomposition. The proof is reduced to the decomposition of
the vanishing cycle complex ϕgj!∗

pL by application of Verdier’s classification
of extensions of a perverse sheaf along a divisor [V 85-1] (see §2.2.3).

Singular X. In the case where X is singular, let j : U ↪→ X be a non
singular Zariski open subset, (L, F ) a polarized VHS on U , π : X ′ → X
a desingularization of X and j′ : U ↪→ X ′. The Hodge filtration on the
intermediate extension j!∗

pL on X is defined as a component of π∗j
′
!∗
pL by

the decomposition theorem applied to π.

Relation to the proof based on the theory of Hodge D−modules ([Sa 88]
and [Sa 90]). M. Saito covers the weight spectral sequence of any ψgK; in
this case the weight spectral sequence does not split, but degenerates at rank
2 in the category of Hodge modules still to define. Effectively this category
is defined axiomatically and then the proof is carried coherently with the
definition.

In our exposition, the category corresponding to Hodge D−modules is not
needed in the proof of decomposition since we use the degeneration at rank 2
only in the category of MHS. Moreover, since ϕ is concentrated on one point,
the decomposition occurs in the abelian category of IMHS ([Ka 86], 4.3, see
Definition 2.14). After the proof of the decomposition, the definition of the
category of perverse VHS corresponding to Hodge D−modules is developed
easily in chapter 7.

The relation between DX−modules and perverse complexes is given by
Kashiwara’s proof that the de Rham complex of a holonomic DX−module
(see [PS 08] Equation (XIII-24)) is a perverse complex [Ka 74].

This basic result has been completed by Mebkhout [Me 80] and [Me 89]
into a Riemann-Hilbert correspondence between the derived category of
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bounded complexes of coherent D−modules with regular holonomic coho-
mology sheaves and Db

c(X,C) (see [PS 08], Theorem 13.65).
The intermediate extension j!∗

pL in terms ofD−modules figure in ([KaK 87],
Lemma 3.4.1 and [KaK 86]). The correspondence with the theory in terms
of D−modules is not given here. For more information on D−modules (see
[Sch 20], [Shi 93] and [PS 08], ch.13 and 14).

1.2.1.3 Perverse extension of a polarized VHS

As an application of the decomposition theorem we give the definition of the
extension of a polarized VHS (L, F ) defined on a stratum S of a stratified
complex variety V (S is non singular but V may be singular along S).

Let j : S → V denote the embedding of the locally closed subset S (equiv-
alently j is the embedding into the closure S̄ of S). Let pL := L[dimS]
denote the associated perverse local system (by convention we shift the de-
gree of L into a complex with cohomology L in degree −dimS). There exists
a unique intermediate extension j!∗

pL of pL by a complex in the category of
constructible complexes Db

c(V,C).
The problem is to construct the correct filtration F on j!∗

pL, then the
abelian category of VHS on singular varieties.

The category of VMHS is defined by the fact that the graded object with
respect to the weight W is a polarized VHS.

We give a definition of the extension of the filtration F by desingularization
in terms of algebraic topology constructions as follows.

Theorem 1.3. Let (L, F ) be a polarized VHS on a non singular open al-
gebraic subset U of a variety V . There exists a canonical filtration F on
the intermediate extension j!∗

pL on V defined in the filtered derived category
DbF (V,C).

Let j : U → V (resp. j′ : U → V ′) be the inclusion in V (resp. in a desingu-
larization V ′ of V with complement of U a NCD). We define the extension
(j′∗

pL, F ) on V ′ by an explicit definition of a sub-complex IC∗ pL′ of the de-
rived image Ω∗ pL′ ' j′∗

pL with the induced degenerated filtration F in the
case of a NCD. Let π : V ′ → V be the canonical morphism. We push forward
F into a filtration π∗F of π∗IC

∗ pL′.
Since the perverse filtration pτ is naturally defined on π∗IC

∗ pL′, the two
filtrations pτ and π∗F define a bifiltered complex in the category DbF2(V,C)
of bifiltered complexes, then a natural induced filtration F is defined on the
perverse cohomology pHi(π∗j′!∗ pL). We use the decomposition theorem to
embed j!∗

pL in pHi(π∗j′!∗ pL) and to induce the filtration F on j!∗
pL.
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1.2.1.4 Local and global invariant cycle theorems

Basic results such as the local and global invariant cycle theorems with
constant coefficients ([De 80] §3.6, [NaG 90], resp. [De 72] Corollaire 3.2.18,
[De 80] §6.2.11, [Vo 2007] Théorème II.4, 24), are generalized to coefficients
in an intermediate extension of polarized VHS (see ch. 7, Theorems 4.1 and
4.2), which allow us to adapt the proof of local purity [DeG 81] to complex
varieties in chapter 8. The text give a faithful account of the geometrical
constructions in [DeG 81].

However, in chapter 10, we see that the decomposition theorem leads to a
simplification of the proof of the local purity theorem.

1.2.1.5 Perverse extension of polarized VMHS

The most general definition of polarized VMHS is in terms of D−modules
by M. Saito [Sa 90]. We mention in (ch. 7, §7.1.1) similar results in terms
of PVMHS under the conditions of admissibility and the existence of the
relative monodromy filtration. Such conditions should coincide in general
with the conditions stated in the theory of mixed Hodge modules.

1.2.1.6 Direct construction of the weight filtration and Relative
local purity

In chapter 9, we give a direct construction of the weight filtration W on the
logarithmic complex Ω∗L ' j∗L in terms of the local monodromy along the
components of the NCD. The weight filtration W is induced by the mon-
odromy filtration on the nearby cycles complex (see §5.2.1.4).

In chapter 10 a new combined direct geometric proof of the local purity
(ch. 1, Theorem 1.1) and the decomposition theorem (ch. 1, Theorem 1.2) is
given in terms of the relative version of local purity.

In particular, the proof of local purity differs from the proof in [DeG 81]
and an interpretation in terms of Intersection morphisms is given at the end.





Chapter 2

Preliminaries

We start by a summary on derived categories [Ve 77] in order to fix the
notations and conventions and the nature of the isomorphisms of complexes
in the text (quasi-isomorphisms).

We give a guide to basic results on perverse sheaves introduced in [BBD 83],
without proofs. Namely, we recall the definitions of perverse sheaves and per-
verse cohomology (see §2.2).

In the next chapter, perverse sheaves with singularities along NCD are
described. Even in such case one should not under estimate the theoretical
study. Indeed, the theory has not been developed until the Intersection coho-
mology sheaf has been discovered by M. Goresky, R. MacPherson, based on
the search for an auto-dual cohomology of singular spaces [GMacP 83]. An
exposition on the level of graduate texts is given in [Max 19].

It is remarkable that this abelian category has been defined first in the
context of derived category. Its relation to the category of DX−modules has
been established later by J.L. Brylinski and M. Kashiwara [KaS 90], which
lead to the theory of Hodge modules by M. Saito ([Sa 88]).

In view of the application to Hodge theory, we recall also results on the lo-
cal structure of a degenerating polarized variation of Hodge structure (VHS)
(resp. Variation of mixed Hodge structure (VMHS)) (see §2.3), which is
needed to define the weight and Hodge filtrations on the de Rham com-
plex Ω∗L with coefficients in a graded polarized admissible variation of MHS
on a local system.

2.1 Derived categories

LetA denote an abelian category and C(A) the abelian category of complexes
of A. Two morphisms of complexes ψ,ϕ : X → Y are homotopic if there exits
a family hi : Xi → Y i−1 such that di−1 ◦ hi + hi+1 ◦ di = ψi −ϕi : Xi → Y i.
Let Ht(X,Y ) denote the subgroup of morphisms X → Y homotopic to 0.

17



18 2 Preliminaries

The category K(A) is defined with the same objects of C(A) but the
morphisms of complexes are equivalence classes up to homotopy:

HomK(A)(X,Y ) := HomA(X,Y )/Ht(X,Y ).

Homotopical morphisms ϕ in a class induce on cohomology a unique family
of morphisms ϕi : Hi(X)→ Hi(Y ) for i ∈ Z.

Mapping Cone. The mapping cone of a morphism ϕ : X → Y is the
complex C(ϕ) defined by dnC : Cn := Xn+1 ⊕ Y n → Cn+1 := Xn+2 ⊕ Y n+1

dnC = ((−1)dn+1
X + ϕn+1, dnY )

The translation functor T (denoted also by [1] : C → C) is defined by
(X[1])n := Xn+1 and d(X[1])n := −dn+1

X .
There exist natural morphisms i : Y → C(ϕ) and p : C(ϕ) → X[1]

satisfying the following sequence of morphisms

X
ϕ−→ Y

i−→ C(ϕ)
p−→ X[1]

called a distinguished triangle. We remark that there exists a morphism in
the category K(A): φ : X[1] → C(i) such that we have an isomorphism of
sequences

Y

id

��

i // C(ϕ)

id

��

p // X[1]

φ

��

−ϕ[1] // Y [1]

id

��
Y

i // C(ϕ)
i′ // C(i)

p′ // Y [1]

We refer to ([KaS 90] Lemma 1.4.2) for a proof. The morphism φ is not unique
and it is an isomorphism in K(A) (up to homotopy), but not in C(A). As
a consequence, X[1] may be constructed as the cone C(i). A distinguished
triangle is embedded in a turning sequence of distinguished triangles.

Remark 2.1. i) Let ϕ and ψ be two morphisms: X → Y . Given an homo-
topy h from ϕ to ψ, we can deduce an isomorphism C(h) : C(ϕ) → C(ψ)
depending on h, hence the construction of the cone in K(A) is unique up to
an isomorphism but this isomorphism is not unique.

ii) Since the morphism ϕ is defined up to homotopy, the choice of C(ϕ)
is not natural which is a problem in the context of mixed Hodge complexes
(MHC) [De 72]. In this case, there exists a problem of compatibility between
the rational and complex level of construction.
To obtain the naturality of the mixed Hodge structure, Deligne used the
concept of simplicial varieties to avoid compatibility problems.

iii) Second homotopy. If h and h′ are two homotopies from ϕ to ψ, an
homotopy from h to h′ leads to an isomorphism of diagrams between the
corresponding isomorphisms C(h) and C(h′).

iv) The category K(A) is not abelian ([Max 19] Example 4.5.3).
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The derived category D(A).
The classical cohomology theories of a topological space X may be defined as
derived functors of the global section functor F := Γ (X, ∗) on the category
of sheaves on X [G 58].

A functor F : A → B of abelian categories extends to a functor F • :
C(A) → C(B) defined by F •(X•) := Y • where Y i := F (Xi). A morphism
of complexes ϕ : X• → Y • is called a quasi-isomorphism if it induces iso-
morphisms on cohomology in each degree. We remark that the image of a
quasi-isomorphism is not a quasi-isomorphism unless F is exact.

When A has enough injectives (every object of A may be embedded in an
injective object of A) and F is left exact, for any bounded below complex X•

there exists an injective resolution (a quasi-isomorphism X• → I• and F •

transforms a quasi-isomorphism of complexes of injective objects I•
∼−→ J•

into a quas-isomorphism.
To construction of the i− th satellite functor RiF (we should write RiF •),

we fix an injective resolution of X•, that is a quasi-isomorphism X•
∼−→ I•

and define RiF (X•) := Hi(F (I•) (we should write RiF •(X•)).
To construct in general the derived category D(A), we remark that a

quasi-isomorphism is not necessarily an isomorphism in K(A).
The purpose of derived categories is to construct a category of complexes

where the quasi-isomorphisms are isomorphisms. The right derived functor
RF of a left exact functor F is defined as a complex RF (X) := F (I•) and
not merely its cohomology objects: the satellites RiF . If F is right exact we
consider projective resolutions P• ∼−→ X and define the left derived functor
LF by F (P•).
Later in the text we often denote also by F the derived functor.

The class of quasi-isomorphisms X → Y form a multiplicative system S
in the sense of Verdier [Ve 77]. By a construction, similar to the construction
of Q out of Z, it is possible to construct a derived category D(A) with the
same objects as K(A) but with group of morphisms obtained by inverting
quasi-isomorphisms: there exists a functor Q : K(A) → D(A) such that the
image of a quasi-isomorphism X → Y is an isomorphism in HomD(A)(X,Y ).

An important consequence is that any short exact sequence in K(A) is
isomorphic to a distinguished triangle in D(A) ([KaS 90] proposition 1.7.5).

2.1.0.1 The complex of Homomorphisms Hom•(∗, ∗)

We mention the following bifunctor on an abelian category A to the category
of abelian groups: Hom(∗, ∗) : A◦ ×A → Ab : (X,Y ) 7→ Hom(X,Y ).

If X• and Y • are complexes, we define the complex Hom•(X•, Y •) by

Homn(X•, Y •) =
∏
p∈Z

Hom(Xp, Y p+n) (2.1)
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dn =
∏
p∈Z d

n
p , dnp : Hom(Xp, Y p+n) → Hom(Xp, Y p+n+1) : dnp (ϕp) =

dn+p
Y • ◦ ϕp + (−1)n+1ϕp+1 ◦ dpX• .

The groupHi(Hom•(X•, Y •)) := H0(Hom•(X•, Y •)[i]) may be identified
with the group of classes of morphisms of complexes of degree i modulo the
sub-group of morphisms homotopic to zero.

Given a complex X• := (Xp, dp)p∈Z, the complex (X◦)• ∈ C(A)◦ is de-
fined by (X◦)r := X−r and the complex Hom• is defined by the double
complex Sp,q := Hom(X−p, Y q). We deduce a functor defined modulo ho-
motopy of complexes:

Hom• : K(A)• ×K(A)→ K(Ab).

If Y i is injective for all i, thenHom•(∗, Y •) transforms quasi-isomorphisms
into quasi-isomorphisms. Hence, if A admits enough injective objects, we
deduce a bifunctor Hom• : D(A)◦×D+(A)→ D(Ab) (this bifunctor may be
defined also by projective resolutions on the left). We deduce a right derived
functor RHom•(∗, ∗) : (D(A)◦ × (D+A)→ D(Ab) such that:
HomD(A)(X

•, Y •) = H0(RHom•(X•, Y •)) := Ext0Z(X•, Y •) and
ExtiZ(X•, Y •) = H0(RHom•(X•, Y •)[i]) for all i ∈ Z.

2.1.0.2 Triangulated categories

We list now some properties of the derived category D(A). It is an advan-
tage to abstract these properties into a set of axioms and define directly the
concept of triangulated categories.

Let C be an additive category with a translation functor [1]. A triangle of
C is defined as a sequence of morphisms X → Y → Z → X[1].

Definition 2.1. i)A triangulated category consists of an additive category
C with a translation functor and a family of triangles called distinguished
triangles satisfying four axioms TR1-4 stated in [Ve 77] such that any triangle
isomorphic to a distinguished triangle is in the family.

ii) An additive functor F : C → A to an abelian category is called a
cohomological functor if for any distinguished triangle X → Y → Z → X[1],
the sequence F (X)→ F (Y )→ F (Z) is exact.

Set F k := F ◦ T k, a long exact sequence follows from the axioms:
· · ·F−1(Z)→ F (X)→ F (Y )→ F (Z)→ F 1(X)→ F 1(Y )→ F 1(Z) · · ·
More about triangulated functors and the long exact sequence of cohomol-

ogy groups defined by a triangle figure in ([KaS 90] §1.7).

2.1.0.3 Derived category of sheaves D+(X,A) on a locally
compact space X

Let A a commutative Noetherian ring (for some results we need to add that
A has finite homological dimension but we may suppose A = Z or Q). We
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mention classical functors on the category of sheaves Sh(X,A) ( Sh(X) for
short) and refer to a basic reference such as [G 58] or to [KaS 90] for a full
study.

1) Tensor product ∗ ⊗ ∗ in A := Sh(X,A):

Let ⊗Z : A×A → A : (B1, B) 7→ B1 ⊗A B denote the tensor product in A.
The complex tensor product of two complexes B•1 and B• in K−A is

B•1 ⊗A B• ∈ K−A defined by (B•1 ⊗A B•)n =
∑
p+q=nA

p ⊗A Bq

with differential d := dB1 + (−1)ndB . This bifunctor is well defined up to
homotopy and it is right exact.

If F is a flat sheaf, the functor F ⊗ ∗ is exact on A. Since there exists flat
resolutions in D−A, we deduce the left derived functor

⊗LZ : D−A×D−A → D−A.

2) f∗ and f∗. Let f : X → V , the direct image of a sheaf F on X is a
sheaf denoted f∗F on V . The functor f∗ is left exact with a derived functor
Rf∗ often denoted also by f∗.

The inverse image of a sheaf G on V is a sheaf denoted f∗G on X. The
functor f∗ is exact and its derived functor Rf∗ is often denoted by f∗ (we
use the notation f∗ instead of f−1 on the level of the category Sh(V,A).

We have an isomorphism of groups Hom(G, f∗F ) ' Hom(f∗G,F ). It is
an example of the notion of adjoint functors: we say that f∗ is left adjoint
to f∗ and f∗ is right adjoint to f∗. On the level of morphisms of sheaves, we
have: Hom(G, f∗F ) ' f∗Hom(f∗G,F ).

In the case of a a subset Z of X, let j : Z ↪→ X. We write

F |Z := j∗F and Γ (Z,F ) := Γ (Z, j∗F ).

3) Direct image with proper support f!. The support of a section s of a
sheaf F on U is the complementary S in U of the open subsets V ⊂ U such
that s|V = 0, hence S := suppUs is closed in U :

suppUs := {x ∈ U : sx 6= 0}
The support of a sheaf F on X, is the subset S ⊂ X complementary of

open sets U ⊂ X such that F|U = 0, hence S := suppF is closed in X.

Let f : X → V be a continuous map. We say that f is proper if the image
of a closed set of X is closed in V , the fibers of f are compact and two distinct
points in a fiber have two disjoint neighborhoods in X. If X and V are locally
compact, f is proper if the inverse of any compact set in V is compact in X.
The sub-sheaf f!F ⊂ f∗F is defined by setting for open sets U ⊂ V :

Γ (U, f!F ) := {s ∈ F (f−1U): f |supp s : supp s→ U is proper }
This sheaf is called the direct image with proper supports.
In the case where V is reduced to a unique point, we write

Γc(X,F ) := {s ∈ Γ (X,F ) : supp s is compact and Hausdorff }.
If X and V are locally compact then: (f!F )x := Γc(f

−1(x), F ).

4) Extension by 0. Let Z be locally closed in X, j : Z → X and F a sheaf
on Z, then the sheaf j!F on X is the unique sheaf on X satisfying:
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(j!F )|Z = F, (j!F )|X\Z = 0 (2.2)

If j is a closed immersion j!F = j∗F .

Remark 2.2. Let F • and G• be two bounded complexes of sheaves on X such
that Hi(F •) = 0 for i > n and Hi(G•) = 0 for i ≤ n, then the following
natural map is an isomorphism ([GMacP 83] Proposition 1.15)

HomDb(X)(F
•, G•)

∼−→ HomSh(X)(H
n(F •), Hn(G•))

2.1.1 Poincaré -Verdier duality

Sheafified version of the duality. Let F and G be two sheaves on a topological
space X. We define the presheaf HomA(F,G) (which is already a sheaf) by
the correspondance : U 7→ HomA(F|U , G|U ).

The bifunctor HomSh(X,A)(∗, ∗) is defined by

(F,G)→ HomA(F,G) ∈ Sh(X,A).

Let C+(X,A) denote the category of sheaves bounded below complexes,
F • and G• be in C+(X,A), we deduce from (Equation 2.1) the definition of
the complex of sheaves Hom•(F •, G•) ∈ C+(X,A).

The derived bifunctor of HomSh(X,A)(∗, ∗) is defined by taking injective
resolutions of G on the right side or projective resolutions on the left side.
We deduce

(D+(X,A))◦ ×D+(X,A) 3(F,G)→ RHom•(F,G) ∈ D+(X,A)

RHom•(F,G) 'RΓ (X,RHom•(F,G)

HomD+(X,A)(F,G[n]) = Hn(X,RHom•(F,G))

(2.3)

For F the constant sheaf defined by A, HomD+(X,A)(AX , G[n]) = Hn(X,G).

Theorem 2.1 ( Duality [Ve 65]). Let f : X → V be a continuous map of
locally compact spaces. Assume f! has finite cohomological dimension. There
exists a functor f ! : D+(V,A) → D+(X,A) right adjoint to the functor
Rf! : D+(X,A) → D+(V,A) satisfying for F ∈ Ob(D+(X,A)) and G ∈
Ob(D+(V,A)):

RHom•(Rf!F,G) ' Rf∗Hom•(F, f !G) inD+(V,A) (2.4)

Hom•V (Rf!F,G) ' Hom•X(F, f !G) (2.5)

HomD+(V,A)(Rf!F,G) ' HomD+(X,A)(F, f
!G) (2.6)

To summarize the statement f ! is called right adjoint to Rf!.
In particular, we recover Equations 2.5 and 2.4 by taking RΓ (V, ∗) (resp.
R0Γ (V, ∗)) in Equation 2.4. We refer to [Ve 65] and [KaS 90] for the con-
struction of f ! and the proof of the duality isomorphism.
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The equation 2.6 helps to define f ! directly on the level of complexes. For
any open subset U ⊂ X, j : U ⊂ X, set F = j!ZU ; we have:

RΓ (U, f !G) := RHom•X(j!ZU , f !G) ' RHom•V (Rf!j!ZU , G).

Definition 2.2 (dualizing complex). i) Let f : X → {e} be the map to a
point. The complex f !A ∈ D+(X,A) is denoted by DX,A or simply DX and
called the dualizing complex on X.

ii) The (Verdier) dual of a complex of sheaves F ∈ ObD+(X,A) is:

DXF := RHom•(F,DX) = RHom•(F, f !A)

DX : D+(X,A)→ D+(X,A) : F 7→ DXF is called the dualizing functor.

Properties of the dualizing functor. Let f : X → V , it follows from duality
and the adjoint properties: for all F ∈ Ob+(X,A), G ∈ Ob+(V,A)

DXf∗G ' f !(DVG), DV (f∗F ) ' f!(DXF ) (2.7)

Example 2.1. i) In the case of an oriented manifold X of (real-)dimension n,
A = Q and V is reduced to a point

DX := f !Q = QX [n], DXF := RHom•(F,QX [n])

and for any open subset U ⊂ X, by duality:

Hom•Q(RΓc(U,F ),Q)) ' RΓ (U,DXF ), H−q(U,DXF ) ' HomQ(Hqc(U,F ),Q).

ii) Let A = Q and F := L a local system, then RHom•(L,QX) is re-
duced to a unique sheaf Ľ := Hom(L,QX). Taking the (−i)−th group of
cohomology, we have Poincaré duality:

HomQ(Hi
c(X,L),Q) ' Hn−i(X, Ľ)

Proposition 2.1. ([Ve 76b] §1.2) Let φ be a paracompact family of support
and U an open subset of a complex algebraic variety, there exist isomor-
phisms:

Hφ
p (U,Z)

∼−→ HBMp,φ (U,Z)
∼−→ H−pφ (U,DX,Z)

of the homology groups (resp. Borel Moore homology) with support in φ and
the cohomology of DX,Z with support in φ.

2.1.2 Grothendieck - Serre duality of coherent sheaves

The development of duality in the frame of derived category started earlier
with Grothendieck’s extension of Serre duality [Gro 57]. Let V be a projective
complex variety and D+(V,O) the category of sheaves of O−modules.

Theorem 2.2 (Grothendieck). ([Gro 57]Proposition 5) Let Y ⊂ V be an
algebraic subset of dimension n−p in a non singular complex algebraic variety
V of dimension n and F a coherent module on Y , then:
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i) The sheaves Extp+iOV (F,ΩnV ) vanish for i < 0, and are independent of the
choice of V and the embedding of Y for i ≥ 0.

ii) ExtpOV (F,ΩnV ) ' HomOY (F, ExtpOV (OY , ΩnV ).

iii) If Y is non singular of dimension n− p in V of dimension n:

Extp+iOV (OY , ΩnV ) = 0 if i 6= 0 and ExtpOV (OY , ΩnV ) ' Ωn−pY .

Moreover: Hn(V,ΩnV ), of rank 1, is generated by the cohomology class of V .

iv) Duality for coherent sheaves: Let F be coherent on V , then:

Extn−pOV (F,ΩnV ) ' (HomC(Hp(V,ΩnV ),C)

With the notation of the theorem above, Grothendieck introduced the con-
cept of dual with value in a ”dualizing complex KY := RHom•X(OY , ΩnV [n])
which is a basic improvement of the statements i) - iii) involving extension
groups Ext∗(OY ,KX) ([Gro 58], [Gro 66]), [Ha 66] chapters III, VI).

For this purpose, it was necessary to construct the derived category
([Ve 77]), in order to state duality theorems in general.

In the case of a proper morphism f : X → Y of locally Noetherian
preschemes and a complex of modules F • on X with quasi-coherent cohomol-
ogy, the duality theorem in the category Dqc(X) is stated as follows [Ha 66]
chapter VII, §3):

DXF • := RHom•X(F •,KX) ' (RHom•Y (Rf∗F
•,KY ) := DYRf∗F •

2.1.3 Constructible sheaves

2.1.3.1 Thom-Whitney stratification S of f

Let V be a complex algebraic variety, and S = (Sα) an algebraic Whitney
stratification by a family of locally closed algebraic non singular sub-varieties
called strata Sα of V ([LeT 83], [GMacP 88], [Ve 76]). The subspaces Vl =
∪dimSα≤lSα form an increasing family of closed algebraic subsets of V of
dimension ≤ l, with index l ≤ n, where n is the dimension of V ,

V−1 = ∅ ⊂ V0 ⊂ V1 ⊂ · · · ⊂ Vn−1 ⊂ Vn = V (2.8)

(Vi \ Vi−1 is a union of strata of S of dimension i but V may be singular
along Sα). In addition, whenever Sα ⊆ S̄β Whitney conditions are satisfied
in order to guarantee that the variety V is topologically equisingular along
each stratum.

Let f : X → V be an algebraic map. If Z ⊂ V is a sub-space of V , let
XZ := f−1(Z), in particular for each strata S of S let XS = f−1(S).

Definition 2.3. A Thom-Whitney stratification of the algebraic map f :
X → V consists of two Whitney stratifications one for V and one for X such
that the inverse XS of each stratum S of V is a union of connected strata of
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X, the restriction f| : XS → S of f to each stratum of XS has maximal rank
equal to dimS and f| : XS is a locally trivial topological fibration over S.

Using Thom-Mather first isotopy theorem, one can prove the following
property (equisingularity along any stratum):

• (W) The link at any point of a stratum is a locally constant topological
invariant of the stratum [Mat 12], [LeT 83].

We may also consider locally finite stratifications. There exist analytic
Whitney stratifications of an analytic (resp. algebraic) variety and any strat-
ification can be refined into a Whitney stratification. There exist algebraic
Thom-Whitney stratifications for any algebraic map f [Ve 76] while such
stratifications exist only for proper analytic morphisms.

2.1.3.2 Constructible sheaves

Let V be a complex algebraic variety and G an abelian group. Recall that
the sheaf G associated to the presheaf U 7→ G is called a constant sheaf.

Definition 2.4 (Locally constant sheaves). A sheaf F is locally constant
on V with respect to the transcendental topology (equivalently a local sys-
tem), if there exists an open covering V = ∪iUi such that the restriction F|Ui
is constant on Ui.

For simply connected open subsets U2 ⊂ U1, the restriction Γ (U1, F ) →
Γ (U2, F ) is an isomorphism (the locally constant sheaf is constant on simply
connected open subsets).

For example, on C∗ with real coordinates x, y, we consider the covering
reduced to C∗ \ R+ and C∗ \ R−. On the intersection defined by the two
subsets y > 0 and y < 0, a locally constant sheaf is defined by a Z−module
V and an invertible linear transformation T called monodromy.

We refer also to the relation with the fundamental group π1(V ) ([De 70]
I, Proposition 1.7).

Definition 2.5 (Constructible complex of sheaves). Let A be a com-
mutative Noetherian ring

i) A sheaf F of A−modules is constructible on V if there exists a stratifi-
cation Vi (Equation 2.8) such that F|Vi\Vi−1

is a sheaf of A−modules of finite
type locally constant.

ii) A complex of sheaves is constructible if it is cohomologically bounded
and constructible (finite non zero constructible cohomology sheaves).

By definition, a constructible sheaf restricts to a locally constant sheaf on
a Zariski open dense subset of V . The properties of a constructible complex
of sheaves F are listed in ([Ve 65], CC1-CC9).

Let ∈ V , a ball Bε(x) ⊂ V is the trace on V of a general small ball with
center x defined by a local embedding of V at x in CN with interior B̊ε(x).
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Lemma 2.1 (Properties of a constructible complex). Let F ∈ Db
c(V,Q)

and Bε(x) a small ball with center x

Hq(Bε(x) \ x, F ) ' Hq(∂Bε(x), F )

Hq(F )x ' Hq(i∗xF ) ' Hq(B̊ε(x), F ) ' Hq(Bε(x), F )

Hq(i!xF ) = Hqx(X,F ) = Hq
c (B̊ε(x),F ) ' HomQ(H−q(i∗xDXF )

(2.9)

The boundary ∂Bε(x) of a general ball intersect transversally the strata.
The first isomorphism follows from the local topological invariance due to
constructibility and a deformation of Bε(x) \ x onto ∂Bε(x) ([Max 19] §7.2).

Dévissage. Let ji : Vi \ Vi−1 → V , then the sheaf ji,!F|Vi\Vi−1
(extension

by zero) is constructible and there exists on F a filtration by constructible
sub-sheaves with successive quotients of the type ji!F|Vi\Vi−1

.
We refer to [Ve 76b] for more properties of constructible sheaves defined

on analytic varieties.

Proposition 2.2. i) The extension ExtiAX (F,G) := RiHom•AX (F,G) of two
constructible sheaves is constructible.

ii) The dualizing complex DX is constructible.
iii) Let f : X → V be a submersive morphism of analytic varieties, then:

for G ∈ ObD+(V,A), f !G ' f∗G⊗L f !AV .
iv) Let f : X → V be an algebraic map, and K a constructible complex

of sheaves on X, then f∗K is constructible on V (Rqf∗K are constructible
sheaves). In particular Rf∗QX is constructible on V .

In general proofs on algebraic varieties are easier. The proof of i) is by
dévissage. Since locally X can be embedded in a non singular variety Z,
we deduce ii) from i) and the lemma

Lemma 2.2. If X ⊂ Z is closed in Z, then DX ' RHom•(ZX ,DZ).

iii) If f = prV : Z × V → V , prZ is the projection on Z and g : Z → {e}
is the projection to a point f !AV ' pr∗Zg!AV ([Ve 65] §5).

We deduce iv) from the existence of Thom-Whitney stratifications.

2.1.3.3 Intermediate extensions

To motivate the definition of perverse sheaves later, we state here a defini-
tion of the intermediate extension of a local system given on a Zariski open
subset. The topological equisingularity along a stratum is the basic property
used in Intersection cohomology [GMacP 83]. By the local normal triviality
property of the stratification in (Equation 2.8) at x ∈ Vi \Vi−1, there exists a
neighbourhood Ux ⊂ V and a compact 2n− 2i− 1 dimensional topologically
stratified space

L = L2n−2i−1 ⊃ . . . ⊃ L3 ⊃ L1 ⊃ L−1 = ∅ (2.10)
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with open cone c̊L := L× [0, 1)/L× {0} and a homeomorphism

ϕ : Ux
∼−→ R2i × c̊L (2.11)

since Vi \ Vi−1 is a topological manifold of dimension 2i.
Deligne’s construction of the intermediate extension. Let i ≥ 1 and

Un = V \ Vn−1, U0 = V, Ui = V \ Vi−1, ji : Ui ↪→ Ui−1,

Definition 2.6 (intermediate extension). Let L be a local system on
Un and set pL := L[n]. We define the intermediate extension j!∗

pL on V
inductively (here ji∗ := Rji∗)

j!∗
pL := τ≤−1j1∗ ◦ · · · ◦ τ≤−iji∗ · · · ◦ τ≤−njn∗ pL (2.12)

Let S ⊂ Vi \ Vi−1 be a non singular stratum and x ∈ S ⊂ Ui \ Ui+1. There
exists a local embedding Ux ⊂ CN and a complex linear subspace Hx ⊂ CN
normal to S at x, intersecting the strata of Vj near x transversally. We can
suppose Ux as in equation 2.11 and c̊L = Ux ∩Hx. We have a diagram

Bx ∩ S
σi
↪→Bx ∩ Ui

ji+1←↩ (Bx ∩ Ui+1) \ S where ji+1 : Ui+1 ∩ Ux → Ui ∩ Ux

Lemma 2.3. i) (Hk(j!∗
pL))|Vi = 0 if k ≥ −i,∀i ≥ 0.

Precisely, if x ∈ S ⊂ Vi \ Vi−1:

(Hk(j!∗
pL))x = Hk(L2n−2i−1, ji+1!∗

pL) if k ≤ −i− 1, 0 if k ≥ −i.
ii) Duality: Dj!∗pL ' j!∗D pL. If pL is auto-dual, the intermediate exten-

sion is auto-dual, which is the case of a polarized local system. In particular:
Hki!Vi(j!∗

pL)) = 0 if k ≤ −i,∀i ≥ 0.

i) We have Ui+1 ∩Ux = Ux \ S. Let j′i+2 : Ux \ (Vn−1 ∩Ux)→ Ui+1 ∩Ux and
j′i+1 : Ux \ (Vn−1 ∩ Ux)→ Ux. We have by induction:

(j!∗
pL)|Ux = j′i+1!∗

pL = τ≤−i−1ji+1∗(j
′
i+2!∗(

pL|(Ux \ (Vn−1 ∩ Ux)))) =

τ≤−i−1ji+1∗ ◦ · · · ◦ τ≤−njn∗( pL|(Ux \ (Vn−1 ∩ Ux)).

By definition (ji+1∗j
′
i+2!∗(

pL|Ux))x ' RΓ (Ux \ S ∩Hx, j
′
i+2!∗(

pL|Ux))

which, by constructibility and retraction of Ux \ S onto c̊L2n−2i−1 \ x and
finally onto L2n−2i−1, reduces to the hypercohomology of the link:

RΓ (̊cL2n−2i−1 \ x, ji+1!∗(
pL|Ux) ' RΓ (L2n−2i−1, j!∗

pL).

The lemma i) follows after truncation.
ii) The properties here give a characterization of the intermediate extension

and apply to the dual complex ([GMacP 83] §6, [Max 19] 6.2.7 and 6.4.1).

Example 2.2. Let L be defined on (C∗)n
j
↪→Cn by a vector space L and n

nilpotent endomorphisms, then the fiber i∗xj!∗L at x = 0 is defined by the
complex

L→ · · · → NkiL · · · ⊕k1<...<ki Nk1 · · ·NkiL→ · · · ⊕k1<...<kn Nk1 · · ·NknL
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with differenttials defined by Nr for r /∈ {k1, . . . , ki} (see Definition 3.4).
The dual complex is defined by various embedding N∗rN

∗
k1
· · ·N∗kiL

∗ ↪→
N∗k1 · · ·N

∗
ki
L∗. Recall that by duality HomQ(H−i(i∗xj!∗

pL),Q) = Hi(i!xj!∗
p̌L).

The above constructions including the direct image ji∗ and the truncation
τ≤−i along the strata and the properties stated in the lemma give a motivation
to the next definition of perverse sheaves.

2.2 Perverse sheaves

From now on, we write F instead of RF to denote the derived functors. We
present a guideline to the abelian category of perverse sheaves for the middle
perversity, including truncation functors and perverse cohomology. We are
interested in the definition in terms of stratifications, but we start with an
abstract definition of t−structures on abelian categories ([BBD 83], chapter
1.3, théorème 1.4.10) (see also [KaS 90] chapter X).

Definition 2.7 (t−structure). Two full subcategories D≤0 and D≥0 of a
triangulated category D, define a t−structure on D if the following conditions
are satisfied. Set D≤n = D≤0[−n] and D≥n = D≥0[−n]:

• D≤−1 ⊂ D≤0 and D≥1 ⊂ D≥0

• HomD(X,Y ) = 0 for X ∈ D≤0 and Y ∈ D≥1

• For any X ∈ Ob D there exists a distinguished triangle X0 → X → X1
+1−→

with X0 ∈ D≤0 and X1 ∈ D≥1

We have long exact sequences for all Y ∈ ObD:
HomD(Y,X1[−1])→ HomD(Y,X0)→ Hom(Y,X)→ HomD(Y,X1) and
HomD(X0[1], Y )→ HomD(X1, Y )→ HomD(X,Y )→ HomD(X0, Y ).

Example 2.3. The pair of the two strict full subcategories pD≥0(V ) and
pD≤0(V ) of the category of constructible sheaves Db

c(V,Q) defined in 2.2.1.1
satisfy the above definition as proved in ([BBD 83], Proposition 2.1.3 and
Corollary 2.1.4 applied to the middle perversity).

2.2.0.1 Truncation functor τ≤n and τ≥n

We deduce the existence of truncation functors ([KaS 90] Proposition 10.1.4):
τ≤n : D → D≤n right adjoint to the inclusion D≤n → D and τ≥n : D → D≥n

left adjoint to the inclusion D≥n → D satisfying:
∀X ∈ ObD≤n, Y ∈ ObD : HomD≤n(X, τ≤nY ) = HomD(X,Y ) and
∀Y ∈ D≥n, X ∈ ObD : HomD≥n(τ≥nX,Y ) = HomD(X,Y )

For any X ∈ ObD there exists an exact triangle
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τ≤0X → X → τ>0X
+1−→

where τ≤0X ∈ D≤0 and τ>0X ∈ D≥1 depend functorially on X. Set

τ≤nX = (τ≤0(X[n]))[−n], τ>nX = (τ>0(X[n]))[−n].

The two full sub-categories with the three properties above, and the trun-
cation functors τ≤n, τ≥n form the t-structure. We have for all n,m ∈ Z:

τ≤n(X[m]) = (τ≤n+m(X))[m], τ≥n(X[m]) = (τ≥n+m(X[n]))[m].

2.2.0.2 The (perverse) t−cohomology

The full subcategory P of D defined by Ob P := Ob D≤0 ∩Ob D≥0 is called
the heart of D or the category of perverse objects of D.

Proposition 2.3. i) The heart P := D≤0 ∩D≥0 is an abelian category.

ii) If X → Y → Z
+1−→ is a distinguished triangle with X and Z in P ,

then Y is in P .
iii) If 0 → X → Y → Z → 0 is an exact sequence in P , then there exists

a unique morphism ∂ : Z → X[1] such that X → Y → Z
∂−→ X[1] is a

distinguished triangle in D.

The definition of perverse cohomology H∗ (or tH∗) is by truncation

H0(X) := τ≥0τ≤0(X) ∈ P , Hn(X) := H0(X[n]) = τ≥0(τ≤0X[n])

The functor H0 : D → P defined on D to the abelian category of perverse
sheaves on V is cohomological ([BBD 83] Th’eorème 1.3.6):

A distinguished triangle → A → B → C
[1]−→ in D gives rise to the long

exact sequence of perverse cohomology sheaves, where Hi := H0 ◦ [i]:

· · · → Hi(A)→ Hi(B)→ Hi(C)→ Hi+1(A)→ · · ·

In particular this is a sequence of complexes with morphisms in the abelian
category P . The kernel and cokernel are computed as objects in the abelian
category P ([BBD 83], Proposition 1.2.2).

2.2.0.3 Left and right t-exact functors

Let Di be two triangulated categories for i = 1 and i = 2, with t− structures
(D≤0

i , D≥0
i ) and perverse heart Pi := D≤0

i ∩D
≥0
i , ϕ : Pi → Di.

Definition 2.8. i) A functor F : D1 → D2 is left (resp. right) t−exact if

F (D≥0
1 ) ⊂ D≥0

2 (resp. F (D≤0
1 ) ⊂ D≤0

2 ) is exact if it is left and right t−exact.
ii) Set ϕ1 : P1 → D1 and define pF := pH0 ◦ F ◦ ϕ1 : P1 → P2.

Lemma 2.4. If F is left (resp. right) t−exact, then pF : P1 → P2 is left
(resp. right) exact on the perverse heart abelian sub-categories.
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2.2.1 Perverse sheaves defined by the middle
perversity

The concept of perversity introduced in [GMacP 83] is topological. However,
on a complex algebraic variety V , the special case called middle perversity is
adapted to Hodge theory.

A complex of sheaves of Q−vector spaces K• ∈ Db(V,Q) is constructible
with respect to a given stratification S of V , if the restriction of its co-
homology sheaves i∗SH

iK to the strata S of a stratification S are locally
constant sheaves of finite dimension. Let Db

c(V,Q) denote the derived cate-
gory of bounded complexes with constructible cohomology on V . We give the
definition of middle perversity in terms of a stratification.

Definition 2.9 (Perverse sheaves with respect to a stratification S).
Let S be a complex stratification of a complex variety V . A complex K•,
constructible with respect to S, is called perverse (with respect to the middle
perversity) if the following conditions are satisfied:

∀S ∈ S, Hii∗SK
• = 0 for i > − dim S, and Hii!SK

• = 0 for i < − dim S

where i∗S is the restriction to S and Ri!S (denoted i!S) is the derived functor
of the functor of sections with support in S. Verdier duality transforms i!S
into i∗S in Db

c(V,Q).
Due to Thom-Mather first isotopy theorem (§2.1.3.1) and the fact that

the complex is constructible, the groups Hk(i∗SK
•) and Hk(i!SK

•) are locally
constant. Let NS,x be a normal section of S at x. The fibers at x ∈ S are:

Hk(i∗SK
•)x = Hk(i∗x(i∗NS,xK

•)) and Hk(i!SK
•)x = Hk(i!x(i∗NS,xK

•)).

Let x ∈ S, since for any locally constant sheaf L on S : Hi
x(S,L) = 0 for

i < 2 dimS , we deduce: Hi
x(X,K•) := Hi(i!xK

•) = 0 for i < dimS.
This definition is useful in the text where most of the proofs are by induc-

tion on the dimension of the strata. Perverse sheaves on a singular variety
are independent of the stratification.

2.2.1.1 The t−structure defined by the middle perversity

Let A := C+(V,Q) denote the abelian category of complexes of sheaves
bounded at−∞). LetKA denote the category with the same objects but with
group of morphisms defined by homotopy classes of morphisms of complexes.
The derived category D+(V,Q) i defined with the same objects but with the
group of morphisms constructed by inverting the multiplicative system of
quasi-isomorphisms (§2.1).

The derived category of bounded complexes with constructible cohomology
sheaves Db

c(V,Q) ⊂ D+(V,Q) is the full sub-category defined by complexes
with bounded constructible cohomology sheaves (vanishing cohomology in
degrees i >∞ and i <∞).
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The definition of perverse sheaves is based on the introduction of the t-
structure with two full sub-categories ( pD≤0

V , pD≥0
V ) of Db

c(V,Q) defined by
the following conditions:

Ob( pD≤0
V ) := {K• ∈ Db

c(V,Q) : ∀j, dimC suppHj(K•) ≤ −j}

where Hj is the local cohomology sheaf of degree j. Respectively, let D de-
notes the Verdier dual, then

Ob( pD≥0
V ) := {K• ∈ Db

c(V,Q) : ∀j, dimC suppHj(DK•) ≤ −j}.

Remark 2.3. i) The duality functor D interchanges pD≥0
V and pD≤0

V , since
for all x ∈ V : DV ◦ i∗x ' Ri!x ◦ DV or i∗x(DV F ) ' Hom•(Ri!xF,Q) and
Ri!x(DV F ) ' Hom•(i∗xF,Q).

ii) The proof of the equivalence with the definition 2.9 is based on Thom-
Mather first isotopy theorem §2.1.3.1 and the fact that the complex is con-
structible. In particular, the support of Hj(K•) is a closed analytic subset
(resp. algebraic), hence this definition is equivalent to the definition 2.1.2 in
[BBD 83].

Definition 2.10. i) The category PV := pD≤0
V ∩ pD≥0

V of perverse sheaves is

the full sub-category of Db
c(V,Q) whose objects are in Ob pD≤0

V ∩Ob pD
≥0
V .

ii) the perverse cohomology of a complex K ∈ ObDV is denoted by
pH0(K) := pτ≥0

pτ≤0(K) ∈ PV , pHn(K) := pH0(K[n]) = pτ≥0(τ≤0K[n])

Remark 2.4. i) The perverse cohomology is a cohomological functor pH0 :
Db
c(V,Q) → PV with value in the abelian category of perverse sheaves on

V , where p refers to the specific perversity (the auto-dual perversity in this
case).

ii) The family of functors pHi is conservative: a morphism f : A → B ∈
Db
c(V,Q) is an isomorphism if and only if pHi(f) : pHi(A) ' pHi(B) for all

i ∈ Z ([BBD 83] Proposition 1.3.7).

Moreover K ∈ Ob( pD≤0
V ) (resp. Ob( pD≥0

V )) if and only if pHi(K) = 0 for
i > 0 (resp. i < 0).

iii) On a singular variety V the usual cohomology sheafHi(K) of a complex
K ∈ ObDb

c(V,Q) is a constructible sheaf different than the perverse cohomol-
ogy sheaf pHi(K) which is a complex of sheaves. The objects in PV are called
perverse sheaves, despite the fact that they are complexes of sheaves.

Example 2.4. Let L be a local system on the big stratum U ⊂ V of equal
dimension n and j : U → V , then pL := L[n] is perverse on U . If V \ U is
a local principal divisor, j!

pL and j∗
pL are perverse on X. The intermediate

extension j!∗
pL is perverse .
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2.2.1.2 Gluing t-structures along a stratification

In a typical proof by induction over a strata, we have a set of inclusions

U
j
↪→ X

i←↩ F of an open subset U and its complement a closed subset F .
Whenever F is a principal divisor, j is affine.
Usual functors are defined between the triangulated categories Db

c(U), Db
c(X)

and Db
c(F ) : the direct image j∗, i∗, the inverse image j∗, i∗, the extension j!

by 0, and i! the support in F ([BBD 83], 1.4.1).

Theorem 2.3 ([BBD 83] Theorem 1.4.10). Let U
j
↪→ X

i←↩ F be defined
by an open subset U and its closed complement F in an algebraic variety X.
If a t-structure ( pD≤0

U , pD≥0
U ) (resp. ( pD≤0

F , pD≥0
F ) ) is defined on U (resp.

on F ), there exists a unique t-structure on X defined by
pD≤0

X := {K• ∈ Db
c(X) : j∗K• ∈ pD≤0

U and i∗K• ∈ pD≤0
F }

pD≥0
X := {K• ∈ Db

c(X) : j∗K• ∈ pD≥0
U and i!K• ∈ pD≥0

F }

Middle perversity t−structure. Let V be a complex algebraic variety
and let S be a Whitney-stratification on V and Vi the union of strata of
complex dimension ≤ i. We have a family of locally closed sub-varieties:
V := Vn ⊃ · · ·Vm ⊃ Vm−1 ⊃ · · · ⊃ V0 ⊃ V−1 = ∅.

The t-structure on Db
c(Vm,Q) is defined by increasing induction on m.

If m = 0 we consider the standard t-structure, where a perverse sheaf is
just a locally constant sheaf in degree −dimV0 on the non singular variety
V0. For m > 0, we consider the diagram

U = (Vm \ Vm−1) ↪→ Vm ←↩ Vm−1 = F

By induction, we suppose the perverse t-structure defined on Db
c(F,Q). On

Db
c(U,Q) we put the standard t-structure shifted by m :

pD≤0
U := D≤−mU , pD≥0

U := D≥−mU .

The perverse t-structure on Db
c(Vm,Q) is defined by gluing the two t-

structures on Db
c(F,Q) and Db

c(U,Q).

Remark 2.5. We mention the following properties:

1. Let F ∈ Ob pD≤0 and G ∈ Ob pD≥0 on V , then
Hi(RHom(F ,G)) = 0 for i < 0. In particular U 7→ HomD(U)(F|U ,G|U )
is a sheaf ([KaS 90] Proposition 10.2.7).

2. If f : X → V is smooth of relative dimension d, f∗ ◦ [d] is exact, moreover
if the fibers are non empty, then f∗ ◦ [d] : PV → PX is fully faithful
([BBD 83] Proposition 4.2.5).

3. Gluing perverse sheaves. Given an open covering V = ∪i∈IUi a family
of perverse sheaves Fi on Ui and isomorphisms fij : Fj|Uij ' Fi|Uij on
the double intersections of Ui satisfying the cocycle condition (fij|Uijk) ◦
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(fjk|Uijk) = (fik|Uijk) on the triple intersections of Ui, there exists a
perverse sheaf F on V and fi : F|Ui ' Fi such that fij ◦ fj|Uij = fi|Uij .
Moreover the family (F , fi) is unique up to isomorphisms ([KaS 90]
Proposition 10.2.9).
If I is finite, the proof is by induction on |I|. In case I = {1, 2}, we define

F by the distinguished triangle iU12!
F1|U12

(a,b)−−−→ iU1!
F1 ⊕ iU2!

F2 → F
1−→

where a is natural, b is deduced from f21. If I = N, we can suppose
Un ⊂ Un+1 and take the inductive limit of the family Fn constructed by
induction.

4. Lefschetz-Artin’s vanishing theorem: The behavior of perverse sheaves
and affine morphisms is basic in the text, we use freely the results
([BBD 83] §4.1). In particular, if X is an affine variety (resp. Stein)
([KaS 90], Theorem 10.3.8, [Max 19], Corollary 8.6.6):

Hj(X,F) = 0 for j > 0 if F ∈ Ob pD≤0

Hjc(X,F) = 0 for j < 0 if F ∈ Ob pD≥0

Moreover, let f : X → Y be an affine morphism, then f∗ is right t−exact
and f! is left t−exact ([BBD 83] §4.1).

5. Let j : U → X be a Zariski open subset and F ∈ PX , we have distin-
guished triangles in Db

c(X):

j!j
∗F → F → i∗i

∗F +1→ and i∗i
!F → F → j∗j

∗F +1→

In the case where U ⊂ X is the complement of a principal divisor D,
j : U → X is an affine embedding, hence j!F , j∗F are perverse. Let
i : D → X, we deduce the following exact sequences in the category of
perverse sheaves PX ([BBD 83] Corollaries 4.1.10, 4.1.12)

0→ i∗
pH−1(i∗F)→ j!j

∗F → F → i∗
pH0(i∗F)→ 0

0→ i∗
pH0(i!F)→ F → j∗j

∗F → i∗
pH1(i!F)→ 0

i∗j!∗F [−1] = pH−1(i∗j∗F) = pH0(i!j!F)

i!j!∗F [1] = pH0(i∗j∗F) = pH1(i!j!F)

2.2.1.3 Intermediate extensions

Let U
j
↪→ X be an algebraic open subset with complement F

i
↪→ X. A perverse

sheaf F ∈ PX extends a perverse sheaf G ∈ PU if j∗F ' G. There may be
many extensions. For example both pH0(j!G) and pH0(j∗G) extend G.

Definition 2.11. There exists a unique perverse sheaf F on X extending a
perverse sheaf G on U satisfying the following equivalent properties:

1. i∗F ∈ pD≤−1
F and i!F ∈ pD≥1

F .
2. F is the image in PX of the morphism pH0(j!G)→ pH0(j∗G).



34 2 Preliminaries

F is denoted by j!∗G and called the Intermediate extension of G.

Remark 2.6. i) The following exact sequences associated to F in PX and
F ⊂ X

0→ i∗
pH0(i!F)→ F , F → i∗

pH0(i∗F)→ 0,

define the biggest sub-object (resp. the biggest quotient of F ) with support
in F . Hence:

j!∗G = pH0(j!G)/i∗
pH0(i!j!G) = Ker ( pH0(j∗G)→ i∗

pH0(i∗j∗G))

where i∗
pH0(i!j!G) is the biggest sub-object of pH0(j!G) in PF and i∗

pH0(i∗j∗G)
is the biggest quotient of pH0(j∗G) in PF .

1) pj∗G has no non trivial sub-object with support in F .
2) pj!G has no non trivial quotient-object with support in F .
3) j!∗G has no non trivial sub-object or quotient-object with support in F .

ii) Let F be a locally principal divisor in X and G ∈ PU . The derived
extension j!G of G by 0 and the derived direct image j∗G are perverse
on X ([BBD 83] Corollaire 4.1.10) and j!∗G := Im (j!G → j∗G) ([BBD 83]
Définition 1.4.22).

iii) Let U
j
↪→ Z

i
↪→ X denote a a closed subvariety Z and U a smooth open

Zariski subset of Z. Let G ∈ PU and k = i ◦ j : U → X, then we write k!∗
pG

for i∗j!∗
pG on X.

If G be a simple object in PU , then k!∗
pG is a simple object of PX .

iv) Let G := L be a local system, we have: DX(j!∗
pL) ' j!∗p̌L where Ľ is

the linear dual of L.

Theorem 2.4. i) On a complex algebraic variety X, the category of perverse
sheaves PX ⊂ Db

c(X,Q) is abelian (although Db
c(V,Q) is not abelian), stable

under Verdier duality, Noetherian and Artinian ([BBD 83] Théorème 1.3.6).
ii) The simple perverse sheaves are intermediate extensions of irreducible

local systems defined on non singular open subsets of irreducible closed alge-
braic sub-varieties of X and any perverse complex sheaf has finite length.

2.2.2 ψfj!∗L and extensions of perverse sheaves

Let X be a complex analytic variety, f : X → D a non constant analytic
morphism to a disc in C such that the analytic restriction f| : XD∗ → D∗ is
a topological fibration over the punctured disc D∗ with small radius. This is
the case if f is proper or f is is the restriction of an algebraic morphism of
complex algebraic varieties.

Let K be an object of the derived category D+
c (X∗,Q), i.e K is a complex

of sheaves of Q-vector spaces, bounded below, with locally constant cohomol-
ogy sheaves on the strata of a Thom - Whitney stratification of X.



2.2 Perverse sheaves 35

The nearby cycle complex ψfK on X0 := f−1(0) with monodromy action
T , is defined by Deligne’s construction ([DeK 73] II, Exposé XIV).

We introduce the universal covering p : D̃∗ → D∗ of the punctured disc
D∗ := D \ 0. It is convenient (but not necessary) to consider the topological

space D̃ := D̃∗ ∪ {0} where D̃∗ is open and a fundamental set of neighbor-
hoods of 0 is defined by p−1(U) where U is a fundamental set of a neighbor-

hoods of 0 in D, then p extends to p̄ : D̃ → D by p(0) = 0.

Set X∗ = X \X0, X̄ := X×D D̃∗, X̃∗ := X \X0 and consider the following
left diagram over the right diagram:

X0

=

��

ī // X̄

p̄

��

X̃∗
j̄

oo

p

��p̃��

{0}

=

��

ĩ // D̃

p̄

��

D̃∗
j̃

oo

p

��
X0

i // X X∗
j

oo {0} i // C C∗
j

oo

(2.13)

The space X̃∗ is homotopy equivalent to any fiber Xt, as a topological space
of a fiber bundle over D̃∗ which is contractible.

This construction provides a complex analytic space X̃∗ homotopic to the
general fiber. The nearby cycle complex of sheaves ψfK of K is defined in
D+
c (X0,Q) by:

ψfK := ī∗Rj̄∗(p
∗K) = i∗Rj∗Rp∗(p

∗K) = i∗Rj∗RHom•(p!QX̃∗ ,K) (2.14)

The first equality is defined by the natural morphism:

i∗Rj∗Rp∗p
∗K ' i∗Rp̄∗Rj̄∗p∗K → ī∗Rj̄∗p

∗K := ψfK

which is an isomorphism by base change: p̄∗Rj∗K
∼−→ Rj̄∗p

∗K. Remark that
p∗ and p! are exact functors and p! = p∗. The second equality follows by
Verdier duality: RHom•(p!QX̃∗ ,K) ' p∗RHom•(QX̃∗ , p

∗K) = p∗K.
Under the above conditions the complex ψfK is constructible on X0.

The functor ψf reflects the cohomological properties of the general fiber near
the special fiber X0. The cohomology of ψf at a point x ∈ X0 is isomorphic
to the hypercohomology of the Milnor fiber Xf,x in a neighborhood of x small
enough:

Hi((ψfK)x) ' Hi(Xf,x,K).

Vanishing cycle complex ϕfK. We suppose now K ∈ D+
c (X,Q) defined on

X and we still denote by ψfK the complex ψf j
∗K. The monodromy action

on D̃∗ over D∗ associated to a generator of π1(D∗) defines a monodromy
automorphism T acting on ψfK.

There exists a natural morphism sp : i∗K → ψfK. The vanishing cycle
complex of sheaves ϕfK is defined as the cone of sp; hence we have a triangle
with a canonical morphism can fitting in a distinguished triangle:
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i∗K
sp−→ ψfK

can−−→ ϕfK → i∗K[1] (2.15)

Since the natural morphism sp : i∗K → ψfK is T−equivariant. The action
of T extends to the cone and defines an action on ϕfK denoted also by T .

Then, the action Id − T : ψfK → ψfK is well defined on the cone ϕfK
and induces a (topological) variation denoted var : ϕfK → ψfK such that
var ◦ can = Id− T .

Proposition 2.4 (Invariance under monodromy). There exists a natu-
ral distinguished triangle:

i∗Rj∗K
sp−→ ψfK

Id−T−−−−→ ψfK
[1]−→ i∗Rj∗K[1] (2.16)

The monodromy T acts on Rp∗p
∗K. The derived functor of the invari-

ant sub-complex under the action of T is by definition the derived func-
tor RHom•Z[T ](Z, Rp∗p

∗K) where Z[T ] acts trivially on Z ( it is denoted

also by RΓ (Z, Rp∗p∗K)). Such derived functor is computed after a result
of Hochschild-Serre, which yields the following triangle in D+

c (X∗,Q) (see
[Br 86] Théorème 1.2)

K → Rp∗p
∗K

Id−T−−−−→ Rp∗p
∗K

1−→ (2.17)

We apply i∗Rj∗ to the triangle 2.17 and deduce the proposition from ψfK =
i∗Rj∗Rp∗p

∗K (Equation 2.14):

Corollary 2.1. There is an exact sequence of perverse sheaves on X0

0→ pH−1(i∗Rj∗j
∗K)→ ψufK[−1]

Id−T−−−−→ ψufK[−1]→ pH0(i∗Rj∗j
∗K)→ 0

The shift by [−1] is explained by the fact that ψufK[−1] is perverse. The
corollary follows from the long exact sequence associated to the triangle in
equation 2.16.

Proposition 2.5 (Duality). There is a non canonical isomorphism in the
derived category on X0: DX0

(ψfK[−1]) ' ψf (DX(K))[−1] .

Proof. See ([Br 86] Lemme 1.4). The proof by after Beilinson and Bernstein is
based on a concept similar to the sections of finite determination introduced
by Deligne. For a general complex F of objects of an abelian category A on
which an automorphism T acts, and for each non zero element P ∈ Q[T, T−1].

Let F (P ) denotes the simple complex associated to the double complex
P : F → F .

If P divides Q, there exists a morphism of double complexes F (P ) → F (Q)

defined by the morphism of double complexes: (F
P−→ F )

(Id,Q/P )−−−−−−→ (F
Q−→ F ).

We suppose that the inductive limit exists in A and define:

Ffin det : lim−→F (P ) directed by divisibility of polynomials.
There is a natural morphism Ffin det → F . We have
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Lemma 2.5. Let F be a bounded complex with constructible cohomology in
the category of sheaves of Q−vector spaces on X0. Then:
Ffin det

∼−→ F is an isomorphism

Proof. The functor: F → Ffin det being exact, the proof may be reduced by
“dévissage” to the case where F is a constructible sheaf in degree 0. Then, we
check the lemma on the fibres of F at any point x: (Ffin det)x ' (Fx)fin det
as Q[T, T−1]− modules of finite length (by constructibility over Q).

Let B := Q[T, T−1], and M a B− module of finite length with attached
complex Mfin det, then

H0(Mfin det) ' lim−→P
HomB(B/(P ),M) = M ,

H1(Mfin det) ' lim−→P
Ext1B(B/(P ),M) = 0

since every element of M is annihilated by some polynomial in B.

Lemma 2.6. i) ψfK := i∗Rj∗p∗(p
∗K) ' i∗Rj∗p∗(p∗K)fin det

ii) (p∗p
∗K)fin det ' (p!p

∗j∗K)fin det[1]

In the diagram (Equation 2.13), p!QX̃∗ is a locally constant sheaf of free
Q[T, T−1]−modules of rank 1. In this case the previous lemma does not apply
since the module M is a free Q[T, T−1]−module and not of finite length.

The complex MP is quasi-isomorphic to (M/P.M)[−1] (non zero cohomol-
ogy in degree 1). We have:

(p!QX̃∗)fin det[1] ' lim−→P
Q[T, T−1]/(P ).

ii) While p∗QX̃∗ ' Q[[T, T−1]]⊗Q[T,T−1] p!QX̃∗ is a locally constant sheaf of
Q[T, T−1]−modules locally isomorphic to Q[[T, T−1]]

The complex Q[[T, T−1]](P ) is non-canonically isomorphic to Q[T, T−1]/(P )
(the elements annihilated by P form a non zero sub-module just the oppo-
site of the previous case of a free Q[T, T−1]−module and since any non zero
polynomial P is invertible, the cohomology in degree 1 vanish). Moreover, we
can define a commutative diagram of quasi-isomorphisms

Q[T, T−1]/(P )

q.iso.

��

Q/P // Q[T, T−1]/(Q)

q.iso.

��
Q[[T, T−1]](P )

// Q[[T, T−1]](Q)

hence (p∗QX̃∗)fin det ' lim−→P
Q[T, T−1]/(P ) ' (p!QX̃∗)fin det[1].

We deduce lemma ii) since p∗p
∗K ' K ⊗ (p∗p

∗QX∗).
Proof of of the proposition. Representing K by a complex of injective sheaves
over Q[T, T−1] we deduce from the lemma

ψfK ' i∗Rj∗(p∗p∗K)fin det ' i∗Rj∗(p!p
∗K)fin det[1] = i∗Rj∗(p!p

∗K)[1]

hence: (ψf (DK))[−1] = (i∗Rj∗p∗p
∗(DK))[−1] = i∗Rj∗p!p

∗(DK)fin det =
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D(i!Rj!p∗p
∗K)fin det = D(i∗Rj∗p∗p

∗K[−1])fin det = D(ψfK[−1])

since i∗j∗p∗p
∗K[−1] ' i!j!p∗p∗K.

The perversity follows from Artin’s theorem and duality ([Br 86] Théorème
1.2, see also [Max 19] Theorem 10.3.13) and the references there:

Proposition 2.6 (Perversity). i) Let K be a perverse sheaf on X, then
ψfK[−1] is perverse on X0.
ii) ϕfK[−1] is perverse on X0.
iii) ψfK[−1], ϕfK[−1] : PX → PX0

are exact functors of perverse sheaves.

i) The proof is local on X0. Let Ux be a small ball with center x ∈ X0.
Since the Milnor fiber Xf,x is a principal hypersurface in Ux, K[−1] re-
stricts to a perverse sheaf on the Stein subvariety Xf,x. We deduce by Artin’s
theorem (Remark 2.5) that the ordinary cohomology Hi(Xf,x, ψfK[−1]) '
(ψfK[−1])x vanish for i > 0.

Since the cohomology Hk(P ) sheaves of any perverse sheaf P on a variety
Y vanish for k > 0, we deduce that the perverse cohomology pHi(ψfK[−1])
vanish for i > 0. Since this inequality apply to the dual sheaf DXK, we
deduce by duality that pHi(ψfK[−1]) vanish for i < 0; hence ψfK[−1] is
perverse.

ii) ϕfK[−1] is perverse. We deduce from the perverse exact sequence de-
fined by the triangle in (Equation 2.15), the exact sequence

0→ pH−2(ϕfK)→ pH−1(i∗K)
can−1−−−−→ pH−1(ψfK)→ pH−1(ϕfK)→

pH0(i∗K)→ 0

where pH−1(ψfK) = ψfK[−1] and pHi(ψfK) = 0 if i 6= −1.

We prove can−1 is injective. By the corollary 2.1, it is enough to prove that
pH−1(i∗K)

h−1−−→ pH−1(i∗Rj∗j
∗K) is injective. Since pHi(i∗K) = 0 for i ≤ −2

([BBD 83], Corollary 4.1.10), the functor K → pH−1(i∗K) from perverse
sheaves on X to perverse sheaves on X0 is left exact.

Let N denotes the perverse kernel of K → Rj∗j
∗K. Since the sequence of

perverse sheaves 0→ N → K → Rj∗j
∗K is exact we deduce:

0→ pH−1(i∗N)→ pH−1(i∗K)→ pH−1(i∗Rj∗j
∗K) is exact.

Since N is supported by X0, i∗i
∗N = N is perverse and pH−1(i∗N) = 0,

hence h−1 is injective.
iii) The assertion is admitted.

2.2.3 Verdier’s classification of the extensions

Extensions of perverse sheaves along a locally principal divisor D ⊂ X occur
in the work of Deligne, Mac Pherson and Verdier in various ways. The de-
scription provided by Verdier [V 85-1] is useful to construct perverse sheaves;
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in particular the case of singularities along a NCD. It is conveniently applied
to prove the decomposition properties in Hodge theory.

We recall the result only in the case of an extension along an effective
principal divisor defined by an equation f . Let ψufK[−1] (resp. ϕufK[−1])
denotes the sub-sheaf on which the action of T is unipotent.

The result of Verdier covers the case of locally principal divisor Y ⊂ X
(and even a closed subvariety Y in general), useful in the construction of the
weight filtration in the open case X \Y out of the monodromy filtration along
the cone CYX of Y in X ([V 85-1], [Sa 90], [ELM 10]).

The extension is expressed in terms of the nearby cycle functor ψuf [−1]
and the vanishing cycle ϕuf [−1] (Equation 2.15).

Let Perv(X) denote the abelian category of perverse sheaves on an alge-
braic variety X and let Z ⊂ X be a principal divisor defined by an equation
f = 0, U := X \ Z, i : Z → and j : U → X.

We associate to Z the category V (Z) consisting of:

1. A perverse sheaf G ∈ Perv(U) on U
2. A diagram in the category Perv(Z)

ψuf (G)[−1]
a→ Φ

b→ ψuf (G)[−1] : b ◦ a = Id− T (2.18)

where T is the monodromy of ψuf (G)[−1].
3. Morphisms are couple of morphisms of diagrams and over U .

The triple (a, Φ, b) is the variable in V (Z) which determines the extension.

Lemma 2.7. The functor V : Perv(X)→ V (Z)

V : F 7→ (j∗F, {ψufF [−1]
can→ ϕufF [−1]

var→ ψufF [−1]})
is an equivalence of categories.

Proof. We adapt the proof ([V 85-1], §2 Proposition , §4 Corollary 1) to
our case. By definition ψufF = ψuf j

∗F . Since F is perverse, the complexes
ψufF [−1] and ϕufF [−1] are perverse sheaves on Z. We recall the triangles
where var is defined by Id− T :

→ i!F → ϕufF [−1]
var→ ψufF [−1]

[1]→, → i!F → F → j∗j
∗F

[1]→ (2.19)

where the first triangle is dual to (Equation 2.15).

V is faithful: If m : F → G satisfies V (m) = 0, then by definition j∗j
∗m = 0

and ψuf (m) = 0, ϕuf (m) = 0. Hence by the above first triangle i!m = 0 and
by the second m = 0.

V is fully faithful: Let F,G be perverse on X and let m′ : V (F )→ V (G) be a
morphism in V (Z), hence m′ = (u, α, β, α) where u : j∗F → j∗G, α = ψuf (u)
and β = ϕuf (u). We construct m : F → G with image V (m) = m′ as follows.
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We deduce from β : ϕufF [−1] → ϕufG[−1] and α : ψufF [−1] → ψufG[−1]

a morphism γ : i!F → i!G compatible with the first triangle and then a
morphism m : F → G compatible with γ and j∗j

∗u in the second triangle.

V is essentially surjective: Given a diagram ψuf (G)[−1]
a→ Φ

b→ ψuf (G)[−1]
and G ∈ Per(U), we construct F ∈ Per(X) such that ϕufF [−1] ' P .

First we construct a triangle → F1 → Φ
b→ ψufF [−1]

[1]→ with support in Y

(where the complex F1 is expected to be i!F ) with associated perverse exact

sequence 0 → pH0(F1) → Φ
b→ ψufG[−1] → pH1(F1) → 0. Hence, we have

Ker b ' pH0(F1), pH1(F1) ' Coker b.

Then we deduce F2 satisfying the second triangle F1 → F2 → j∗G
[1]→ such

that we have a long exact sequence of perverse sheaves:

0→ pH0(F1)→ pH0(F2)→ pH0(j∗G)→ pH1(F1)→ pH1(F2)→ 0

where pH−1(j∗G) = 0 = pH1(j∗G) and pH0(j∗G) = j∗G since j is affine.
We deduce the exact sequence

0→ Ker b→ pH0(F2)
v→ j∗G→ Coker b→ pH1(F2)→ 0

In particular, the restriction of v to U is an isomorphism and pH0(F2) is a
perverse extension of j∗G since . Moreover, F1 ' i! pH0(F2) since Ker b '
i! pH0(F2), Coker b ' i! pH1(F2) and Φ ' ϕufF [−1].

Remark 2.7. In the text, we will use a variation morphism var instead of
the topological variation var defined by N ′ := ±(Tuj − I) acting on ψuf and
var : ϕuf → ψuf satisfying: var ◦ can = N ′.

In chapters 4 and 5 we introduce the action ν on Ψ∗IL ' ψufL (§4.21)
with Hodge filtration. By (Equation 3.1), −2iπν induces N = LogT on ψufL.

The action of N on ψufK induces a morphism of mixed Hodge structure
up to a shift . Since sp is equivariant for N , the action of N extends to ϕufK
(instead of T in topology) and we introduce a geometrical var : (ϕuf ,W, F )→
(ψuf ,W, F )(−1) such that: var ◦ can = N , instead of the var defined by N ′.

However, there exists a polynomial A such that N = A(N ′) (see Equation
3.2) and N ′ is nilpotent. Since A is invertible as a series and since N is
nilpotent, we find a polynomial B such that N ′ = B(N).

We deduce that ker N = ker N ′, and N ′ is also compatible with MHS.
Moreover, the monodromy filtrations W (N),W (N ′) and W (ν) defined by the
nilpotent endomorphisms N , N ′ or ν (§2.3.0.1) coincide and are all defined
over Q.

For each k > 1, Nk : Gr
W (N)
−k Lu

∼−→ Gr
W (N)
k Lu is equal to N ′

k
or νk up

to constants, which explains that there is no danger to cite references with
one of these conventions.
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2.2.3.1 Applications

Since the applications in view are in Hodge theory, we use henceforth the var
defined by N instead of N ′.

Due to the equivalence of the categories Perv(X) and V (Z), the following
correspondence will be useful in various proofs in the text (var denotes two
morphisms, one on ψf and one on ϕf ).

1) j!G: The case where a : ψf (G)[−1]
∼→ Φ is an isomorphism and b =

var ◦ a−1: ψf (G)[−1]
a→ Φ

b−→ ψf (G)[−1] corresponds to the extension j!G
of G by zero across Z (ker a = ker N = i∗ZG[−1] = 0) such that we have the
diagram where can is an isomorphism

(ψfG[−1]
a=can'−→ ϕfG[−1]

b=var−→ ψfG[−1]) (2.20)

2) j!∗G: The case where a is an epimorphism and b a monomorphism such

that Φ = Im(ψf (G)[−1]
N→ ψf (G)[−1]). Then, the diagram

(ψfG[−1]
a=can−→ ϕfG[−1]

b=var
↪→ ψfG[−1]) (2.21)

corresponds to the intermediate extension j!∗G.

3) The case where G|U = 0 corresponds to the perverse sheaf Φ concen-
trated on Z.

4) A decomposition of the diagram in (Equation 2.18) corresponds to a
decomposition of the extension. In particular, we the following Verdier’s de-
composition criteria:

Φ ' Im can⊕Ker var ⇐⇒ j!∗G|U ⊕Ker var (2.22)

is used in the text with Ker var concentrated on Z.

5) The extension j∗G|U corresponds to the case where b is an isomorphism
and and a = b−1 ◦ var (b ◦ a = N) (Equation 9.43) and the diagram where
var is an isomorphism

(ψfG[−1]
a=can−→ ϕfG[−1]

b=var'−→ ψfG[−1]) (2.23)

6) In the case with an increasing filtration W 0 on G such that the relative
monodromy M := M(N,W 0) exists on ψfG[−1], the filtration of weight

(N ∗W 0)k := NW 0
k+1 + (Mk ∩W 0

k+1)ψufG[−1]

lifts to ϕufG[−1] and corresponds to a filtration W on j∗G|U such that (Wk

extends W 0
k (§9.7.1.1).
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2.3 Degeneration of VMHS

The theory of nilpotent orbit (resp. admissible variation of MHS) is needed in
the next chapters to define the limit Hodge filtration and the weight filtration.
The theory, inspired by Deligne, appears in [Sc 73, GrSc 73, Gr 74, CaKSc 86,
CaKSc 87, CEGL 14] (resp. [De 80], I.8.15, [E 83], [StZ 85]) but we adopt the
notations and terminology of [Ka 86] summarized below.

The admissibility of a VMHS on X∗ := X \ Y refers to asymptotic prop-
erties of (L,W, F ) along the NCD. Such asymptotic properties are expressed
on Deligne’s extension LX of L⊗QOX∗ defined along Y in terms of the ‘mul-
tivalued’ horizontal sections of ∇ on X∗. The extension LX is a locally free
analytic sheaf of modules, hence algebraic if X is projective [De 70].

By construction, the connection ∇ on LX∗ extends to LX with logarith-
mic singularities along Y . The residues of the logarithmic singularities are
endomorphisms on the restrictions LYi along the components Yi of Y . The
connection is uniquely characterized by the choice of the logarithm of the
eigenvalues of the monodromy (see §3.1).

The fibre L := L(x) := LX,x ⊗OX,x C of the vector bundle LX is viewed
as the space of the ‘multivalued’ horizontal sections of L at x (sections of a
universal covering of the complementary of Y in a ball Bx at x).

The extension over Y of the Hodge filtration of a polarizable variation of
HS in the case of a punctured disc constructed by Schmid [Sc 73, GrSc 73],
([Gr 74] Chapter IV) is a fundamental asymptotic property, that is required
by assumption in the case of a graded polarizable variation of MHS, as a
condition of admissibility. The results on the degeneration of a VHS on the
complement of a NCD are based on [Sc 73], [CaKSc 86] and [CaKSc 87], see
also ([Gr 74] Chapter V, [CEGL 14] Chapters 7, 8).

A filtration W of L over a punctured disc extends to a filtration by sub-
bundles W ⊂ LX . The local monodromy Ti around a component Yi of Y ,
defines a nilpotent endomorphism Ni := Log Tui , logarithm of the unipotent
part of T which acts on the restrictions to Yi of the sub-bundles W. The
definition of admissibility is based on the introduction by Deligne of the
relative monodromy filtration M(

∑
iNi,W )) on the limit vector space L in

([De 80], I.8.15).
The required properties are proved in the case of geometric variation of

MHS over a punctured disc in [E 83] and studied axiomatically as conditions
of admissibility in [StZ 85]. In [Ka 86], the definition of admissibility along a
NCD is reduced to the case over a punctured disc.

To state the degeneration of a variation of MHS locally, Kashiwara in-
troduced the abelian category of infinitesimal MHS (IMHS) called also in-
finitesimal mixed Hodge modules in reference to DX−modules. A proof of
the decomposition theorem is given in terms of distinguished pairs of IMHS.
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2.3.0.1 The monodromy filtration

On the cohomology group of a complex projective non singular variety X
of dimension n: L := ⊕k∈ZHk(X,Q[n]) centered at 0, an increasing fil-
tration W on L is defined by Wi = ⊕j≥−iHj(X,Q[n]) (Wn = L and
W−n = Hn(X,Q[n])). The Lefschetz structure, defined by the cup product
with the class of an hyperplane section is a linear morphism η : W i →W i−2

satisfying for each i an isomorphism ηi : GrWi L
∼−→ GrW−iL.

To state conjecturally the properties of the degeneration of a VHS, Deligne
defines in general on an object L of an abelian category and a nilpotent endo-
morphism N on L, a unique increasing filtration W satisfying the following
conditions ([De 80] 1.6)

(i) ∀j ∈ N : NWj ⊂Wj−2.

(ii) The induced morphism N i : Gr
W (N)
−i L

∼→ Gr
W (N)
i L is an isomorphism

for all i ∈ N.

Such filtration W is denoted by W (N) and called the monodromy filtration.
In fact Wi−1 = (N i)−1W−i−1 and W−i = N iWi for i ≥ 1.
If Nk+1 = 0 and Nk 6= 0 set Wi = L for i ≥ k and Wi = 0 for i < −k, then
defines Wi inductively for i ∈ [−k, k− 1], to start with W−k = NkL,Wk−1 =
KerNk. It is surprising that the defining properties of W , will set various
decomposition properties through the whole chapter.

For i ≥ 0, let PiL := KerN i+1 : GrWi L → GrW−i−2L denote the subspace

called the primitive subspace, then GrWi L = PiL⊕NGrWi+2L = ⊕j≥0Pi+2jL.

2.3.0.2 The relative monodromy filtration

Let N : (L,W ) → (L,W ) be a nilpotent endomorphism compatible with W
(NWi ⊂Wi) in an abelian category A where W is an increasing filtration of
an object L of A.

There exists at most a unique filtration M satisfying ([De 80], I.8.15)

NMj ⊂Mj−2, and GrMi+kGrWi L
Nk−−→ GrMi−kGrWi L

If M exists, it is called the relative monodromy filtration. In particular, if
Ni is the endomorphism induced by N on GrWi L, then M induces on GrWi L
the monodromy filtration W (Ni)[i] shifted by i ((W (Ni)[i])i+j := W (Ni)j).
Properties of the filtration are given in [StZ 85] and [E 83].
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2.3.1 Nilpotent orbit

Let (L,F, S,N1, . . . , Nn, w
′) be defined by a finite dimensional complex vector

space L with a Q-structure, a decreasing filtration F by complex vector sub-
spaces, an integer w′, a non-degenerate rational bilinear form S satisfying

S(x, y) = (−1)w
′
S(y, x) for x, y ∈ L and S(F p, F q) = 0 for p+ q > w′,

and pairwise commuting nilpotent endomorphisms N1, . . . , Nn defined over
Q, such that S(Nix, y) + S(x,Niy) = 0 and NiF

p ⊂ F p−1.

Definition 2.12 (Nilpotent orbit). ([Sc 73], [CaKSc 86], [Gr 74], [Ka 86],
4.1) The above data is called a (polarized) nilpotent orbit of weight w′ if :

(i) The monodromy filtrationW (N) of the endomorphismN =
∑
j∈[1,n] tjNj

is independent of tj if tj > 0 for all j.
(ii) Let M := W (N)[w′] denote the filtration shifted to right (Mw′+k :=

W (N)k). The data (L,M,F ) is a MHS on L.
(iii) The bilinear form Sk such that Sk(x, y) = S(x,Nky) polarizes the prim-

itive subspace Pk = Ker (Nk+1 : GrMw′+k → GrMw′−k−2) with its induced
HS of weight w′ + k.

The various definitions in this chapter are based on the following result
applied throughout this volume to Deligne’s extension LX (Equation 3.9):

Theorem (Cattani, Kaplan and Schmid [CaKSc 86]) Let L be polarized
VHS on the complement of a NCD Y ⊂ X. At each point x ∈ Y , the
extension of the Hodge filtration F on LX\Y defines a nilpotent orbit with
local monodromy actions (Ni, i ∈ I := [1, n]) on the limit fiber L := LX(x).

Let NK := W (
∑
i∈K⊂I Ni), for each partition K∪J = I, W (NI) coincides

with the relative monodromy filtration M(NK ,W (NJ)).

Remark 2.8. i) The results mentioned above, along a period starting around
1966, are difficult to prove but well covered by the references.

i) The proof of the theorem is based on on a generalization of the nilpo-
tent and SL2 orbit approximations of the period matrix to higher dimension
[Sc 73, GrSc 73, CaKSc 86].

In general, for each J ⊂ [1, n] and fixed tj > 0, NJ :=
∑
j∈J tjNj , is a

nilpotent endomorphism of L such that the increasing monodromy filtration
W (NJ) is independent of the positive real integers tj and we have a variation
of limit MHS at points of Y ∗J depending on J .

ii) The concept of splitting of a MHS is necessary to the proof: there exists
a real number c such that (L, exp(i

∑
j tjNj)F ) is a HS of weight w′, polarized

by S whenever tj > c.
iii) The filtration W (N) in the definition above is also said to define a

MHS on L of weight w′.
iv) In the text, we refer to the summary of the results in ([KaK 87] §1.2).
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2.3.2 Infinitesimal mixed Hodge structure (IMHS)

We consider a data (L,W,F,N1, . . . , Nn), where L is a finite dimensional
complex vector space with a Q-structure, W is an increasing Q-filtration, F
is a decreasing C-filtration and N1, . . . , Nn are commuting nilpotent endo-
morphisms defined over Q such that: NjF

p ⊂ F p−1 and NjWk ⊂Wk.

Definition 2.13 (Mixed nilpotent orbit). The above data is called a
(graded polarizable) mixed nilpotent orbit if for each integer i the data with
restricted structures

(GrWi L,F|, (N1)|, . . . , (Nn)|)
is a nilpotent orbit of weight i for some polarization Si.

We consider only graded polarized mixed nilpotent orbits (called pre-infinitesimal
mixed Hodge module in [Ka 86], 4.2).

Definition 2.14 (IMHS). ([Ka 86], 4.3)
A mixed nilpotent orbit (L,W,F,N1, . . . , Nn) is called an infinitesimal

mixed Hodge structure (IMHS) if the following conditions are satisfied:

(i) For each J ⊂ I = {1, . . . , n}, the monodromy filtration M(J) of∑
j∈J Nj relative to W exists and satisfies NjM(J)i ⊂ M(J)i−2 for

all j ∈ J and i ∈ Z.
(ii) The filtrations M(I) and F define a graded polarizable MHS on L such

that the filtrations W and M(J) are compatible with this MHS (filtra-
tions by sub-MHS and the Ni are morphisms of type (−1,−1).

We refer to the filtration M(
∑
i∈I Ni,W ) as the limit MHS.

Remark 2.9. (i) The filtration M(J) is the weight filtration relative to W
of any N ∈ C(J) := {

∑
j∈J tjNj ; tj > 0}.

(ii) In the case of an admissible VMHS (L,W, F ) on the polydisc (D∗)n =
Dn \ Y where Y ⊂ Dn is the natural NCD, an IMHS is attached to L,
at each x ∈ Y ∗J , J ⊂ [1, n], on the fiber of Deligne’s extension L(x).
Since YJ is defined by zi for i ∈ J = {i1, · · · , ij}, we introduce the local
system on ψJL as the restriction to Y ∗J of ψij ◦ · · · ◦ ψi1L (independent
of the order in J up to isomorphism; we write ψj for ψzj ) to define the
VMHS (ψJL,LY ∗J ,M(J), F (J)) on Y ∗J where M(J) and F (J) form the
limit IMHS at varying x ∈ Y ∗J . Moreover, a combination of ψzi and ϕzj
is necessary to characterize locally a perverse sheaf.

(iii) At y ∈ YJ \ Y ∗J there exist two IMHS on L(y), one defined directly by
(L,W, F ) and one defined by (ψJL,LY ∗J ,M(J), F (J)). They coincide
since M(N1 + · · ·+Ni) is the relative weight filtration of Ni with respect
to M(N1 + · · ·+Ni−1) ([Ka 86, Prop. 5.2.5]). The IMHS (M(J), F (J))
can be viewed as successive IMHS along the various Y ∗J .
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Example 2.5. In the case of two variables, a remarkable result states that the
limit (W (N1 +N2), F )0 is relative to the limit at 0 of the limit (W (Ni), F )x
at xj , j 6= i

x2 (L, F )
(W (N1),F )x2

oo

ww

(W (N2),F )x1

��

(W (N1 +N2), F )0

0

OO

// x1

A morphism of two IMHS f : (L,W,F,N1, . . . , Nn)→ (L′,W, F,N ′1, . . . , N
′
n)

is a linear morphism L → L′ respecting W,F , commuting with Ni and N ′i
inducing a morphism of a graded nilpotent orbits with respect to GrW∗ .

A graded polarized MHS is an IMHS when identified with the object with
Ni = 0 for i ∈ [1, n]. If (L,N, F ) is a nilpotent orbit, then (L,W (N), F ) is
an IMHS with Ni = 0 and N : (L,W (N), F ) → (L,W (N)[2], F (−1)) is a
morphism of IMHS with Ni = 0 on both sides.

Proposition 2.7. ([Ka 86] Prop. 5.2.6) The category of IMHS is abelian.
The filtrations W,F, and the limit MHS M(J) for any set J of indices, define
exact functors on this category.

A morphism f : L → L′ of two IMHS is necessarily strict for W , since by
the nilpotent orbit theorem W is the weight filtration and exp(i

∑
j tjNjF )

the Hodge filtration of a MHS on L (resp. L′) for ti large enough. Similarly
M(N1,W ) is the weight of a MHS on L (resp. L′).

To prove that the restriction of M(N1,W ) to L′′ := Ker f is the mon-
odromy filtration relative to W ∩ L′′, let W ′′ and M ′′ denote the restric-

tions to L′′, then we deduce from the exact sequence 0 → GrM
′′

k+iGrW
′′

k →
GrMk+iGrWk → GrM

′

k+GrW
′

k and the corresponding exact sequence for Grk−i

that N i
1 : GrM

′′

k+iGrW
′′

k → GrM
′′

k−iGrW
′′

k is an induced isomorphism.

Definition 2.15 (Preadmissible VMHS). A variation of mixed Hodge
structure (L,W, F ) graded polarized over the punctured unit disc D∗ with
local monodromy T and associated filtration W by subbundles of Deligne’s
extension LOD , is called preadmissible if the following conditions are satisfied:

i) The Hodge filtration F ⊂ LOD∗ extends to a filtration F on LOD by sub-
bundles inducing for each k on the graded sheaf with respect to the filtration
W defined by W GrWk LOD , Schmid’s extension of the Hodge filtration.

ii) Let W 0 := W(0), F0 := F(0) denote the filtrations on the fiber L :=
LOD (0) at 0 ∈ D and T the local monodromy at 0, N = log Tu; then the
following two conditions must be satisfied:

1) NF p0 ⊂ F
p−1
0 for all p ∈ Z.

2) The weight filtration M(N,W 0) relative to W 0 exists.
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Notice that the extension of the filtration F to LOD cannot be deduced in
general from the various Schmid extensions to GrWk LOD . We remark that the
filtrations M := M(N,W 0) and F0 at the origin define a MHS.

Definition 2.16 (Admissible VMHS). ([Ka 86], §1.8) Let X be a complex
analytic space and U a nonsingular open subset, complement of a closed
analytic subset of X. A graded polarized variation of mixed Hodge structure
(L,W, F ) on U is called admissible if, for every analytic morphism f : D →
X on a unit disc which maps D∗ to U , the inverse (f|D∗)

∗(L,W, F ) is a
preadmissible variation on D∗.

In the case of locally unipotent VMHS, Kashiwara remarked that preadmis-
sible VMHS on the unit disc are necessarily admissible [Ka 86].

Remark 2.10 ( IMHS defined by an admissible VMHS). i) Let Y ⊂ X be a
NCD and x ∈ Y ∗M for M ⊂ Y . In the text we introduce Deligne’s extension
LX associated to a local system L on X \Y and the vector space L := LX(x)
(Definition 3.1). An admissible VMHS (L,W 0, F ) on X \ Y defines at x an

(L,W0,F)⇒ IMHS: (L,W 0, F, P,Ni, i ∈M) where L := LX(x)

where the filtration W 0 of L, preserved by Ni, is the limit of the filtration
W0 of L. In this case, the relative monodromy filtration M(

∑
i∈M Ni,W

0)
defines the limit MHS on L.

ii) Let Z := X \ U and let π : X ′ → X be a desingularization of X
such that Z ′ := π−1Z is a NCD, then (π∗L,W, F ) is admissible along Z ′. In
particular (π∗L,W, F )|D∗ defines an IMHS at any point in Z ′.

In the text, we define an induced Hodge filtration F on the intermediate
extension of a local system on X\Y (see §2.2.1.3) which reflects the behaviour
of the limit filtration F on L at ‘infinity’ along the NCD Y .

2.4 Induced filtrations on the perverse cohomology

The category of bifiltered complexes is defined in ([De 72] and [De 75]).
Let (K ′,W, F ) ∈ DbF2(X,C) be a bifiltered complex of abelian sheaves on
the variety X. A morphism φ : (K1,W, F ) → (K2,W, F ) in the category
DbF2(X,C) is an isomorphism if the morphism GrW∗ Gr

∗
FK1 → GrW∗ Gr

∗
FK2

is a quasi-isomorphism. IfW is the weight filtration defined with Q−coefficients,
a precise diagram of compatibility with the Q−structure is satisfied.

Let f : X → V . The derived direct image (K ′′,W, F ) := (f∗K
′, f∗W, f∗F )

is defined in DbF2(V,C) by taking f∗-acyclic bi-filtered resolutions of the
complex (K ′,W, F ) ([De 72] 1.4).

The perverse filtration pτi on a complex K on a variety V is defined by a
family of morphisms ϕi : pτi → K. Given a filtration F of K, the problem is
to define the induced filtration F on the perverse cohomology.
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It is possible to define the resticrion of F to pτi by ϕ−1
i (F ), however by a

remark of Deligne, it is possible to suppose pτ a filtration by sub-complexes
of K which has the advantage to apply directly the results of ([De 72]).

2.4.0.1 Embedding of the perverse filtration

For any morphism of complexes f : L → K, let L′ denote the acyclic cone
L′ := cone(id : L → L). We consider after ([BBD 83] 1.1.2) the following
embedding σf defined by:

σf : L→ K ′ := K ⊕ L′ : σif : Li → Ki ⊕ Li+1 ⊕ Li : v 7→ (f i(v) + 0 + v)

The injection u : K → K ⊕ L′ is a quasi-isomorphism such that u ◦ f
is homotopic to σf , while the projection p : K ⊕ L′ → K defines a quasi-

isomorphism K ′
∼−→ K such that p ◦ σf = f .

Given a filtration F by sub-complexes of K, we define the filtration F ′ :=
F ⊕ L′ ⊂ K ′ such that the restriction of F ′ to σf (L) is isomorphic to the
inverse image f−1F on L. We deduce:

Lemma 2.8. Let K be a bounded constructible complex on a variety V , F1

and F2 two filtrations of K by sub-complexes (not necessarily constructibles)
and let pτ denote the perverse filtration of K.

There exists a bifiltered complex (K ′, F ′1, F
′
2) where K ′ is bounded and

constructible with filtrations by sub-complexes of K ′ and a bifiltered quasi-
isomorphism π : (K,F1, F2) → (K ′, F ′1, F

′
2) such that the perverse filtration

of K ′ is defined by sub-complexes of K ′.

In the case of a finite sequence of complexes gi : pτi → K we repeat the above
process by a descending induction on the indices i.

Corollary 2.2. i) A well defined filtration F on the perverse cohomology
pHi(K) is obtained by inducing the filtration F on pτiK followed by the pro-
jection on pHi(K)[−i] := pτiK/

pτi−1K.

In the text, we suppose the filtrations such as pτ,W, F defined by sub-
complexes of a complex K on a variety V .

Remark 2.11. i) There is no perverse filtration defined by a sub-complex F i ⊂
K if F is not constructible.

The bifiltered complex (K, pτ, F ) ∈ DbF2(V,C) is defined in the bifiltered
category of sheaves of complex vector spaces (forgetting constructibility).

ii) Given a functor T , we consider acyclic T−resolutions of Gr
pτ
p GrqFK.

In the case of the global section functor Γ , we have the canonical acyclic
bi-filtered Godement resolution C∗(K, pτ, F ) of (K, pτ, F ) to define R(Γ, ∗).
Since the resolution C∗ is canonical, the complex GriFGr

pτ
j C∗ is also an acyclic

resolution of GriFGr
pτ
j K. In particular, we deduce in this way the correct

Hodge filtration on Hk(V, pHi(K)).



2.4 Induced filtrations on the perverse cohomology 49

iii) In presence of Hodge filtration F or weight filtration W we deduce
induced filtrations on the perverse cohomology. The construction is similar
to Deligne’s definition of induced filtrations filtration such that we can apply
[De 72]. Since the filtration W is perverse, we consider the perverse weight
spectral sequence and the induced filtration F on pHp+q(GrW−pK).

The image filtration Im : pHp+q(W−pK)→ pHp+q(K) in the abelian cat-
egory of perverse sheaves defines a filtration W on pHp+q(K) with induced
filtration F on the limit of the spectral. By abuse of language, we say the fil-
tered perverse spectral sequence or perverse filtration to refer to such induced
filtrations.

2.4.0.2 Abbreviations and conventions

1. Polarized VHS (resp. VMHS) stands for polarized variation of Hodge
structure (resp. mixed Hodge structure). A polarized VHS (L, F ) of
weight w′ is given by a local system L on a smooth algebraic open sub-
set U ⊂ V and a decreasing filtration F of L = L ⊗ OU . The complex
pL := L[dimV ] shifted by the dimension of V , is a perverse sheaf and
(pL, F ) is a complex of weight pw = w′+dimV . We say that the perverse
sheaf pL is a shifted polarized VHS.

2. Given a functor T : A → B of abelian categories, its derived functor
is also denoted by T : D+A → D+B after chapter 3 instead of RT in
chapter 2 [Ve 77] (with exceptions if confusion may arise such RΓ for
example). However, we still denote the i−th cohomology of the derived
image by T by RiT (K) := Hi(T (K).

3. On a complex variety V , the topological middle perversity truncations
pτ≤i on K ([BBD 83] section 2 and Proposition 2.1.17) define an increas-
ing filtration denoted pτ on the hypercohomology:

pτiHk(V,K) := Im
{
Hk(V, pτiK)→ Hk(V,K)

}
.

4. An intermediate extension is denoted by j!∗
pL, while pHi(K) denotes the

i−th perverse cohomology of a complex K.





Chapter 3

Perverse sub-sheaves of the
logarithmic complex Ω∗pL

In [De 72] Deligne introduced the concept of Hodge complex (HC) of sheaves
on a compact complex variety X as a filtered complex (K,F ) such that its
hypercohomlogy (RΓ (X,K), F ) is a Hodge structure (HS). The de Rham
complex of a non singular complex variety with its Hodge filtration is a HC.
Originally Deligne distinguished between the cohomological HC of sheaves
and the HC of its hypercohomology. By abuse of language, only the termi-
nology of HC survived.

If X is not compact, a bifiltered mixed Hodge complex (MHC) (K,W,F ) is
constructed on a compactification X̄ such that (RΓ (X̄,K),W, F ) is a mixed
Hodge structure (MHS).

The introduction of the intersection complex by Goresky and MacPherson
[GMacP 88] lead to a new type of HC.

Let L be a local system on the complement of a NCD Y ⊂ X in a complex
non singular variety X and let j := (X \ Y ) → X. We describe in this
chapter the well known logarithmic complex Ω∗L := Ω∗X(LogY ) ⊗ LX '
j∗L witlh coefficients in Deligne’s extension LX [De 70] in order to define
the Intersection complex IC∗L ⊂ Ω∗L embedded as a sub-complex with its
Hodge filtration (see §3.1).

Let pL := L[dimX],the complex Ω∗ pL := Ω∗L[dimX] is the associated
perverse sheaf with the conventional shifted degree. It is common to say
perverse logarithmic complex with or without shift.

Let iZ : Z → Xbe the embedding of a NCD sub-divisor of Y ⊂ X and
jZ := (X \Z)→ X. We construct an embedded logarithmic complex isomor-
phic to jZ∗j

∗
Z(j!∗L) denoted by IC∗ pL(LogZ) ⊂ Ω∗ pL (cf §3.2).

To motivate t The constructions are motivated by the application of Kashi-
wara’s criteria for a decomposition of a perverse sheaf into a direct sum of
intermediate extensions (cf §3.2.6).

We recall the behavior of perverse sheaves along locally principal divisor
(see §3.2.4), to construct later more bifiltered logarithmic complexes, such as

jZ!j
∗
Z(j!∗

pL), i∗ZjZ∗j
∗
Z(j!∗

pL), i!Zj!∗
pL and i∗Zj!∗

pL

We refer to such complexes as bifiltered logarithmic complexes.

51
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3.1 Perverse logarithmic sub-complexes of Ω∗pL ' j∗pL

Let L be a locally constant sheaf (finite dimensional local system of vector
spaces) on the complement U of a NCD Y in a smooth complex algebraic
variety X and LU := L⊗OU the analytic locally free sheaf of modules defined
by L on U .

There is a correspondence between local systems L and connections
(LU ,∇) with vanishing curvature and horizontal sheaf of sections of ∇.

Locally at each point x ∈ Y , a ball Bx with center x and B∗x := Bx ∩ U
are Stein. The restriction of L to B∗x is free. Each trivialization gives rise to
a free extension of L|B∗x .

Moreover, since the local system L is defined on U (LU is flat), there
exists a locally free global extension of LU with a regular singular connection
(or with logarithmic singularities), that is a fibre bundle LX extending LU
and a connection ∇ : LX → Ω1

X(LogY ) ⊗ LX ([De 70], [Ma 87] definition
3.1). The residue of ∇ is defined along a component Yi of the NCD Y as an
endomorphism of the restriction ResYi∇ : LYi → LYi , of LX to Yi.

The eigenvalues of the residue are constant along a connected component
of Yj and related to the local monodromy Tj of L at a general point of Yj by
the formula ([De 70], theorem 1.17, proposition 3.11):

Log Tj = −2iπResYj∇ (3.1)

Deligne’s idea is to fix the choice of the residues of the connection by the
condition that the eigenvalues of the residue belong to the image of a sec-
tion of the projection C → C/Z, determined by fixing the real part of
z : m ≤ R(z) < m + 1, hence fixing the determination of the logarithm
Log : C∗ → C, which forces the uniqueness of the local extensions. Hence the
local constructions glue into a global bundle on X. The extension in the case
m = 0 is called Deligne’s extension.

The connection ∇ extends naturally into a complex, called the logarithmic
complex Ω∗X(LogY )⊗ LX and denoted by Ω∗L.

3.1.1 Local definitions along a NCD Y ⊂ X

Let Y = ∪i∈IYi denote the decomposition of Y into smooth irreducible com-
ponents with finite index I.
For M ⊂ I, set YM := ∩i∈MYi, Y ∗M := YM \ ∪i/∈M (Yi ∩ YM ) (Y ∗∅ := X \ Y ).
We denote uniformly the various embeddings by j : Y ∗M → X.

To describe LX in local coordinates, let n := |M |, x ∈ Y ∗M and Bx a small
polydisc in X with center x, isomorphic to Dn+` with coordinates yi. It is
not restrictive to suppose ` = 0, such that Y ∩Bx is defined by y1 · · · yn = 0
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and B∗x := Bx \ (Y ∩ Bx) is isomorphic to (D∗)n. We identify the ball Bx
with Dn ⊂ Cn the product of complex discs.

The restriction of the VHS L|Bx\(Bx∩Y ) corresponds to a VHS L on B∗ =
(D∗)n defined by a set (L, Ti, i ∈ [1, n]) including a rational vector space L
isomorphic to the multivalued horizontal sections of L and n−commuting
linear automorphisms called the monodromy transformations of L.

Let π : B̃ → B∗ denote a universal covering and z = (z1, · · · , zn) a set of

coordinates on B̃ ⊂ Cn such that π(z) = y has components yj := exp 2πizj ∈
(D∗)n. For each j, the monodromy automorphism Tj on L along a closed path
around a component Yj of Y , is defined over Q and decomposes into a semi-
simple T sj and a unipotent Tuj automorphisms: Tj = T sj T

u
j . On the complex

vector space L, all automorphisms T si are simultaneously diagonalizable and
conjugate to the diagonal matrix of their eigenvalues.

We define the logarithm of Tuj by:

Nj := log Tuj :=
∑
k≥1

(−1)k+1(Tuj − I)k/k for j = 1, . . . n. (3.2)

Along any closed path in B∗ the logarithm of the monodromy is an integral
linear combination of the nilpotent endomorphisms Nj .

Let (a.) = (a1, · · · , an), where aj is an eigenvalue of Tj , then L = ⊕(a.)L
a.

where La. = ∩i∈[1,n] ker(T si − aiI). Let αj ∈ C with real part in [0, 1[ such
that e(αj) := exp(−2iπαj) = aj . For v ∈ La.:

T sj (v) = aiv, Tuj (v) = (expNj)v and Tj(v) = exp(−2πiαj +Nj)v.

Set L∞ := Γ (B̃, π−1L) ' L, Tj acts on L∞ by translation zj 7→ zj + 1:

∀v ∈ L∞ := Γ (B̃, π−1L), v(z1, . . . , zj + 1, . . . , zn) = Tjv(z1, . . . , zj , . . . , zn).

Let LB∗ := L⊗QOB∗ denote the locally free analytic bundle on B∗. It is free

since B∗ is Stein. For each v ∈ La., the analytic section ṽ ∈ (B̃, π∗LB∗)

ṽ = exp(
∑
j∈[1,n]

zj(2iπαj −Nj))v, (aj := exp−2iπαj , Nj := log Tj) (3.3)

([De 70], 5.2.1-3) is the inverse image of a (single valued) analytic section of
LB∗ on B∗, since ṽ is invariant by each Tj :

ṽ(z1, . . . , zj + 1, . . . , zn) = ṽ((T sj )−1(Tuj )−1Tjv) = ṽ(z1, . . . , zj , . . . , zn).

Since L = ⊕(a.)L
a., the above tilde correspondence extends to L:

Definition 3.1 (Tilde correspondence). There exists a canonical tilde
embedding

∼: Γ (B̃, π−1L)
∼−→ L̃ ⊂ LB,0 ⊂ Γ (B∗,L), ∼: v 7→ ṽ.

The fibre LB,0 is the OB,0-module generated by the image L̃ of the tilde
embedding. It is the fiber of a free analytic sheaf LB on B.
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The vector space LB(0) ' L∞ will be denoted also by L. A basis va of L
lifts into a basis ṽa of LB,0.

The connection ∇ extends to a differential of the logarithmic de Rham com-
plex Ω∗X log Y ) ⊗OX LX ([De 70] Définition I.2.11, (3.12, b), [Ma 87] §4).
The endomorphisms αiI and Ni correspond to endomorphisms on the image
sections ṽ in LX,x denoted by the same symbols αiI and Ni.

They define the connection ([De 70], Théorème 1.17)

∇ṽ = Σj∈J

(
α̃jv −

1

2iπ
Ñjv

)
⊗ dyj

yj
.

Since 2πizj := log yj , the tilde correspondence is often expressed in terms
of the local coordinates yj as follows

ṽ((y1, . . . , yn) = Πj∈Jyj
αj exp(Σj∈J − 1/2iπ(log yj)Nj).v (3.4)

Recall, that there exists a correspondence between representation of π1(M),
local systems and integrable connections ([De 70], [Vo 2007]).

3.1.2 The complex Ω∗L and the tilde embedding

The proofs are carried for the transcendental topology although we omit the
analytic notation Xan.

In view of the local description of perverse sheaves on a product of discs
(see 3.2.6.1 and 3.2.6), many constructions on the logarithmic complex, such
as the weight filtration, are described first locally on a complex of vector
spaces Ω∗L, defined at a point x ∈ Y , then carried to the logarithmic complex
by an extension of the tilde correspondence L ↪→ Lx to a tilde embedding
into the de Rham complex: Ω∗L→ (Ω∗X(log Y )⊗OXL)x (see Lemma 3.1).

First, we give a general definition of the complex s(LJ , fi) determined by:

1. a vector space L, a nonnegative integer n and a linear subspace LJ of L
for each J ⊂ [1, n];

2. a collection of commuting endomorphisms fi, i = 1, . . . , n of L.

This data should satisfy the condition that fiLJ\{i} ⊂ LJ for each i ∈ J .
The subsets J of length k := |J | correspond to strictly increasing sequences

i1 < . . . < ik ⊂ [1, n]). Let Sk denote the set of such strictly increasing
sequences. For J ∈ Sk and j ∈ J , let εj = (−1)r when j is the r-th element
of J in the increasing order.

Definition 3.2 (s(LJ , fi)). The complex s(LJ , fi) is defined by

s(LJ , fi)
k =

⊕
J∈Sk LJ for k = 0, . . . , n

with differentials dk−1 : s(LJ , fi)k−1 → s(LJ , fi)k for k = 1, . . . , 1 given by

(dk−1v)J =
∑
j∈J εjfjvJ\{j}.
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Returning to the case where L is a complex vector space with commuting
endomorphisms αjId − (1/2iπ)Nj for j ∈ [1, n] where αj ∈ C and Nj is
nilpotent, let Lu ⊂ L be the subspace on which the action of each monodromy
Ti is unipotent. We define Ω∗Lu and Ω∗L as follows:

Definition 3.3 (Ω∗Lu ⊂ Ω∗L). i) The complexΩ∗L is defined by the special
case where LJ = L for each J and fj = αjId− (1/2iπ)Nj for j ∈ [1, n].

ii) The sub-complex Ω∗Lu ⊂ Ω∗L is defined by the special case where
LJ = Lu for each J and fj = Nj for j ∈ [1, n].

Ω∗Lu := 0→ Lu → · · · → ⊕{i1<...<ik−1}L
u → ⊕{i1<...<ik}L

u · · · → 0

With the same notations, for each J ∈ Sk let fJ := Πj∈J(αjId − 1
2iπNj)

denote the composition morphism for j ∈ J .

Definition 3.4 (IC∗L). The complex IC∗L is the subcomplex of Ω∗L de-
fined by LJ = fJL := Im (fJ : L → L) for each J ⊂ [1, n] and fj =
αjId− 1

2iπNj for j ∈ [1, n].

Remark 3.1. For each sequence α. = (α1, · · · , αn), set e(αj) := exp−2iπαj ,
such that e(α.) = e(α1, · · · , αn) is a sequence of eigenvalues of T. =
(T1, · · · , Tn). Set IC∗Le(α.) the subcomplex of Ω∗L where LJ = fJL

e(α.) :=
Im (fJ : Le(α.) → Le(α.)) for each J ⊂ [1, n] and fj = αjId − 1

2iπNj for

j ∈ [1, n]. We have IC∗L := ⊕α.IC∗Le(α.).
We introduce for each sequence α. the subset M(α.) ⊂ [1, n] such that

j ∈ M(α.) if and only if αj = 0. Let NJ∩M(α.) = Πj∈J∩M(α.)Nj ( it is
the identity if J ∩ M(α.) = ∅). For each J ⊂ [1, n], we have the equality
of the image subspaces: fJL

e(α.) = NJ∩M(α.)L
e(α.) since the endomorphism

(αjId− 1
2iπNj) is an isomorphism on Le(α.) whenever αj 6= 0, hence

IC∗L ' ⊕α.s(NJ∩M(α.)L
e(α.))J⊂M (3.5)

Lemma 3.1 (The tilde embedding). Let x ∈ Y ∗M be a general smooth
point on ∩i∈MYi. The above correspondence v 7→ ṽ from L to LX,x (Equation
and Definition ), extends to an tilde embedding:

∼: Ω∗L→ (Ω∗X(log Y )⊗ LX)x ' (j∗L)x

vJ 7→ ṽ
dyi1
yi1
∧ · · · ∧

dyij
yik

for each J = (i1 < · · · < ik) ∈ Sk, vJ = v ∈ LJ

inducing the quasi-isomorphism

Ω∗L ∼= (Ω∗X(log Y )⊗ LX)(x). (3.6)

The complex Ω∗L and its sub-complex IC∗L ⊂ Ω∗L are acyclic if there
exists an index j such that αj 6= 0:
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Definition 3.5 (L unipotent along Y ). The local system L on the com-
plement of a NCD Y = ∪i∈IYi is unipotent along Y if the local monodromies
Ti at x ∈ Yi are unipotent for i ∈ I.

Example 3.1. Let M = {1, 2}. Then IC∗L is isomorphic to the complex

L
N1⊕N2−−−−−→ N1L⊕N2L

N2⊕−N1−−−−−−→ N1N2L.

3.1.3 The complex Ω∗L ' j∗L ∈ Db
c(X,C)

The following de Rham complex with coefficient represent the complex j∗L
in the derived category of constructible sheaves of vector spaces Db

c(X,C).

Proposition 3.1 (Ω∗L). Let j : X \ Y → X. The derived direct image
j∗L ∈ Db

c(X,C) of L is quasi-isomorphic to the complex of analytic modules
([De 70, Corollaire 3.14]):

j∗L
∼−→ Ω∗L := Ω∗X(log Y )⊗OX LX . (3.7)

In particular, the hyper-cohomology of the complex is isomorphic to the co-
homology groups: Hi(RΓ (X,Ω∗L)) ' Hi(X \ Y,L).

The quasi-isomorphism j∗L
∼−→ Ω∗L follows from Deligne’s generalization

to local systems ([De 70], definition 3.1) of Grothendieck’s comparison theo-
rem between the topological cohomology and algebraic de Rham cohomology
on a compact complex algebraic variety [Gro 58], [Gro 66]. We recall also
that if X is projective the complex Ω∗L is necessarily algebraic by Serre’s
comparison theorem.

Lemma 3.2. Let M ⊂ I, x ∈ Y ∗M a general non singular point on ∩i∈MYi,
L := LX(x) with monodromy action Ti, i ∈M and Ω∗Lu ⊂ Ω∗L (Definition
3.3). The tilde correspondence induces a quasi-isomorphism Ω∗Lu ' (Ω∗L)x.

We prove that for each power of the maximal ideal mr ⊂ OXx at x, the
subcomplex mr(Ω∗L)x is acyclic for r > 0, and for r = 0 : Ω∗Lu ' Ω∗L are
quasi-isomorphic with their image by the tilde correspondence.

For each monomial s := ym1 · · · ymn , ∇(sṽ) =
∑
i(s(mi+αi)ṽ− 1

2iπ s̃(Niv))⊗
dyi
yi

, hence the image by the tilde correspondence L̃ :=∼ L multiplied by s

generates in mr(Ω∗L)x, the sub-complex of C−vector spaces

Ω∗sL := (0→ sL→ · · · → ⊕{i1<...<ik}sL
dyi1
yi1
∧ · · · ∧ dyik

yik
· · · → 0) (3.8)

which is quasi-isomorphic to the complex

Ω∗L :=

(
0→ L→ ⊕i∈[1,n]L→ · · · → ⊕{i1<...<ik}L · · · → 0

)
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with differential in degree k − 1:

∀v•, dk−1(v•){i1<...<ik} =
∑
j(−1)j((mij + αij )Id− 1

2iπNij )v{i1<...̂ij ...<ik}.

It is acyclic if at least one mj +αj 6= 0 in which case (mj +αj)Id− 1
2iπNj is

an isomorphism of L as Nj is nilpotent; indeed, the complex may be written
as a cone over such morphism. We deduce the proposition as αj 6∈ Z unless
αj = 0, then mj + αj = 0 iff mj = 0 and αj = 0.

Remark 3.2. i) Let IY denote the product of the ideals of the components Yi.
The product IYΩ∗L is an acyclic sub-complex by the lemma 3.2.

ii) The above description of (j∗L)x is the model for the description of
various perverse sheaves in the rest of the chapter.

For example, to describe the global sub-complex of analytic sheaves
IC∗L ⊂ Ω∗X(log Y ) ⊗ LX in the next definition 3.6, we lift locally the sub-

spaces NJL for various J into subspaces ÑJL ⊂ LX,x by the tilde embedding
(Lemma 3.1).

iii) The complex Ω∗L is defined over Q.

3.1.4 The intermediate extension j!∗
pL ' IC∗pL ⊂ Ω∗pL

For convenience, we still say intermediate extension for j!∗L or shifted j!∗
pL.

The intermediate extension j!∗
pL on X of pL on U is defined in the category

of constructible sheaves Db
c(X,Q ([GMacP 83], [BBD 83], see 2.2.1.3). We

describe below a sub-complex IC∗L ⊂ Ω∗L representing j!∗L in Db
c(X,C).

Let IY denote the ideal product of the ideals of the components Yi. The
product IYΩ∗L is an acyclic sub-complex (Remark 3.2 i). The complex
IC∗L ⊃ IYΩ∗L is characterized by the quotient complex supported by Y .

Definition 3.6 (IC∗L ⊂ Ω∗L). The complex of sheaves IC∗L is the sub-
complex of Ω∗L whose stalk at a point x ∈ Y ∗M is defined as the OX,x
sub-module generated by the sections ṽJ ∧ Ω∗X,x ∈ Ω∗L for all vJ ∈ fJL
(Lemma 3.1) and J ⊂M and by IYΩ∗L.

To check that the complex of sheaves is well defined at a point x ∈ YM of
the intersection of Yi for i ∈ M . Let zj = fyj be a change of coordinate
equations for Yj at x for one j ∈ M at a time with f invertible at x. Since
dzj
zj

=
dyj
yj

+ df
f , where df

f is regular at x, the germ of IC∗L at x is independent

of the choice of coordinates.
Moreover, if x ∈ YM ∩ YK for K ∩M = ∅, let ω = ∧j∈Mdzj/zj and ω′ =

∧j∈Kdzj/zj , then ω∧ω′ restricts to a section of IC∗L on YM \YM ∩(∪j∈KYj)
since the restriction of ω′ becomes regular. We say for short that the complex
IC∗L is generated locally by the tilde embedding of IC∗L.

Lemma 3.3. The complex j!∗L ∈ Db
c(X,C) is quasi-isomorphic to the sub-

complex of analytic modules of IC∗L ⊂ Ω∗L:
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j!∗L
∼−→ IC∗L. (3.9)

Let S denote the stratification defined by the NCD Y ⊂ X with strata Y ∗J
for J ⊂ I. Let n := dimX (the complex dimension of X), Vk := ∪J,|J|≤kY ∗J
(V1 = Y, Vn+1 = ∅) for k ≤ n, Uk := X \ Vk (U1 = U,Un+1 = X) and
jk : Uk → Uk+1 for k ≤ n, then j!∗L is defined by induction on k: j!∗L = L
on U1 and j!∗L|Uk+1

:= τn−kjk∗j!∗L|Uk .
The construction of IC∗L ⊂ Ω∗L is local. If IC∗L|Uk is defined by coherent

analytic sub-complex, the simple direct image jk∗IC
∗L|Uk coincides with the

derived direct image since jk is Stein. At a point x ∈ Y ∗J ⊂ (Vk\Vk+1) the local
definition of (IC∗L|Uk)x corresponds to the construction of IC∗L ⊂ Ω∗L.

Remark 3.3. Let Lu denote the subspace of L such that all local mon-
odromies are unipotent, then we have quasi-isomorphisms IC∗Lu ' IC∗L '
(IC∗L)(x).

3.2 The logarithmic complex jZ∗j
∗
Zj!∗L ' IC∗L(log Z)

With the notations of Proposition 3.1, let Z ⊂ Y be a NCD which is a
sub-divisor of Y and jZ : X \ Z → X the open embedding.

We define a subcomplex IC∗L(logZ) ⊂ Ω∗L quasi-isomorphic to the de-
rived direct image jZ∗j

∗
Z(j!∗L) ∈ Db

c(X,C).
Recall that Y = ∪i∈IYi is a NCD containing the singularities of L. For

any NCD Z such that Z ∪ Y is still a NCD, we may always suppose that L
is defined on X − (Y ∪ Z) (by enlarging Y ) and consider Z equal to a union
of components of Y ∪ Z.

Let Z = ∪i∈IZYi ⊂ Y with indices in a subset IZ of I. Fix a set of
coordinates yi at x ∈ Y ∗M such that YM = V (yi, i ∈ M) near x. The local
definition of IC∗L(logZ) at x in terms of these coordinates is as follows.
For each subset J of M let:

JZ := J ∩ IZ , J ′Z = J \ JZ so J = JZ ∪ J ′Z , M ′Z := M \MZ . (3.10)

Let M = [1, n]. With the notations of Definition 3.4, for each index J ⊂ M ,
the subspaces fJ′ZL ⊂ L form a sub-family of L with induced morphisms
fj for j ∈ [1, n]. Recall that Ω∗L = s(LJ , fj) with LJ = L for all J ⊂ M .
Replacing LJ by fJ′ZL in this complex we obtain

Definition 3.7. Let fJ′ZL denote the image of the composition morphism
fJ′Z in L. We define IC∗L(logZ) := s(fJ′ZL, fj) ⊂ Ω

∗L.

Example 3.2. On the 3-dimensional disc D3 ⊂ C3, let Y = Y1 ∪ Y2 ∪ Y3

be the NCD defined by the coordinate equations y1y2y3 = 0 and L the
unipotent local system defined by a vector space L with the action of 3
nilpotent endomorphisms Ni.
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Let Z = Y1∪Y2 be defined by y1y2 = 0, MZ = {1, 2} and M ′Z = {3}, then
IC∗(Log Z) is defined by the diagram with differentials defined by ±Ni:

L
N1,N2−−−−→ L⊕ L N2,−N1−−−−−→ L

↓ N3 N3 ↓ ⊕N3 ↓ −N3

N3L
−N2,−N1−−−−−−→ N3L⊕N3L

N2,−N1−−−−−→ N3L

(3.11)

We have a quasi-isomorphism RΓ (D3 \ (D3 ∩ Z), j!∗L) ' IC∗L(logZ).

Remark 3.4. We extend (Definition 3.2) in the locally unipotent case, to fam-
ilies of complexes instead of vector spaces, in order to write the complex
IC∗L(logZ) as the simple complex associated to a double complex in two
ways as in the diagram above:

(i) For each fixed subset J ′ ⊂M ′Z , we define the complex
Ω∗(NJ′L,Ni)i∈MZ

:= s(NJ′L,Ni, i ∈MZ)J′⊂J⊂MZ

by summing over J ⊂MZ (the complex on each line in Example ).
Let Nj : Ω∗(NJ′−jL,Ni)i∈MZ

→ Ω∗(NJ′L,Ni)i∈MZ
for j ∈ J ′ ⊂ M ′Z .

We sum over J ′ ⊂M ′Z the family of complexes endowed with morphisms
Nj for j ∈M ′Z :

IC∗(Ω∗(NJ′L,Ni)i∈MZ
, Ni)i∈M ′Z := s(Ω∗(NJ′L,Ni)i∈MZ

, Ni, i ∈M ′Z)J′⊂M ′Z

IC∗L(logZ) = IC∗(Ω∗(NJ′L,Ni)i∈MZ
, Ni)i∈M ′Z (3.12)

(ii) Let IC∗(L,Ni)i∈M ′Z := s(NJ′L,Ni, i ∈M ′Z)J′⊂M ′Z be the sum over J ′ ⊂
M ′Z (the complex on each column in Example 3.2).
As each Ni for i ∈MZ acts on the complex IC∗(L,Ni)i∈M ′Z , we define:

Ω∗(IC∗(L,Ni)i∈M ′Z , Ni)i∈MZ
:= s(IC∗(L,Ni)i∈M ′Z , Ni, i ∈MZ)J⊂MZ

as the sum over J ⊂MZ of the complex independant of J , then:

IC∗L(logZ) = Ω∗(IC∗(L,Ni)i∈M ′Z , Ni)i∈MZ
(3.13)

If Z 6= Y , the cohomology Hi(IC∗L(log Z)) vanishes in degree i ≥ |M | − 1.

Definition 3.8. [IC∗L(log Z) ⊂ Ω∗L] Let IZ ⊂ I denote the set of indices
of the components of Z and for J ⊂ M , let JZ = J ∩ IZ , J ′Z = J \ JZ .
The subcomplex IC∗L(log Z) ⊂ Ω∗L is generated at x ⊂ Y ∗M as an OX,x-

submodule, by the sections ṽ ∧j∈J dyj
yj
∧ Ω∗X,x ∈ Ω∗L for J ⊂ M for all

v ∈ NJ′ZL, where J ′Z = J \ JZ and by IYΩ∗L(log Y ).

Proposition 3.2. Let L := LX(x). There exist quasi-isomorphisms

jZ∗j
∗
Zj!∗L

∼−→ IC∗L(log Z), (jZ∗j
∗
Zj!∗L)x

∼−→ IC∗L(log Z). (3.14)
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Proof. Let j′ : X \ Y → X \ Z be the inclusion map such that j = jZ ◦ j′ :
X \ Y → X. There exists a convergent spectral sequence with respect to the
truncation filtration on j′!∗L:
Ep,q2 (L) = (RpjZ∗H

q(j′!∗L))→ (Rp+qjZ∗j
′
!∗L) := Hp+q(jZ∗j

∗
Zj!∗L).

We write the complex IC∗L(Log Z) as a double complex, depending on the
logarithmic terms, locally as in (Remark 3.4) and then we deduce globally
by the tilde correspondence a similar spectral sequence.

Let I ′Z = I \ IZ . We introduce the sub-NCD Z ′ = ∪i∈I′ZYi complement
to Z, such that Y = Z ∪ Z ′. Then Z ′ is transversal to Z in the sense that
intersections of components of Z ′, intersects transversally Z.

Let Z ′k = ∪J⊂I′Z ,|J|≥kYJ (Z ′0 = X), Z ′k(∗) = (Z ′k \ Z ′k+1), jk : Z ′k(∗) → Z ′k
and ik : Z ′k → X. Remark that Z ′k is decreasing and Z ∩ Z ′k(∗) is a NCD in
Z ′k(∗).

At a point x ∈ Z ∩ Z ′s(∗), let L := LX(x). By (Definition 3.8) the tilde
correspondence induces a quasi-isomorphism IC∗L(Log Z) ' i∗xIC∗L(log Z).

To prove the quasi-isomorphism i∗xjZ∗j
∗
Zj!∗L ' IC∗L(Log Z), we use the

structure of double complex on IC∗L(Log Z) = Ω∗(IC∗(L,Ni)i∈M ′Z , Ni)i∈MZ

(Equation 3.13). The corresponding spectral sequence with respect to the
truncation filtration on IC∗(L,Ni)i∈M ′Z , is:

Ep,q2 (L) = Hq(Ω∗(Hp(IC∗(L,Ni)i∈M ′Z ), Ni)i∈MZ
))→ Hp+q(IC∗L(Log Z))

We check the isomorphism i∗xE
p,q
2 (L) ' Ep,q2 (L).

Let U := Dr × Ds be a product of discs isomorphic to a neighborhood
with center x in X with local coordinates (z., t.) := (z1, · · · , zr, t1, · · · , ts),
such that L induces a locally unipotent local system on U∗ := (D∗)r×(D∗)s.

Let p : Dr ×Ds → Ds denote the first projection and W the NCD in Dr

defined by the product z1 · · · zr = 0 such that Z = p−1(W ).
Let U ′ := U \ Z, j′ : U∗ → U ′, jZ : U ′ → U such that j = jZ ◦ j′.

U∗
j′−→ U ′ = (Dr \W )×Ds jZ−→ Dr ×Ds p−→ Dr

∪ ∪
Z = p−1(W ) = W ×Ds

p|−→ W

The cohomology sheaves Li := Ri(p|U ′)∗j
′
!∗L are locally constant on (D∗)r

with fiber at a point z = (z.) ∈ (D∗)r isomorphic to the cohomology
Hi((j′!∗L)z), which is in turn isomorphic to the Intersection cohomology of a
local system on the sphere in (D∗)r at the center 0.

Let jW : (Dr \W )→ Dr, since the restriction of p to the family of spheres
in the fibers of p is proper, the functor Rp∗ commute with RjW∗ and RjZ∗:

(RjW∗L)0 ' Ω∗(Hp{IC∗(L,Ni)i∈M ′Z}, Ni)i∈MZ
,

Ep,q2 (L) ' (RqjW∗L)0 ' (RpjZ∗H
q(j′!∗L))x ' Ep,q2 (L)x.
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Lemma 3.4 (Transversality). Let j′Z : X \ Y → X \Z ′, jZ′ : X \Z ′ → X.
We have a commutation property: jZ∗j

′
!∗L ' jZ′!∗j′Z∗L.

The proof is local at each point of the intersection Z ∩ Z ′ and it is reduced,
by induction on the dimension, to the case of a point in the intersection of n
components of Y and Z 6= Y .

The computation is carried with respect to the stratification defined by Y .
In terms of (Remark 3.4) where |M | = n and a point 0 ∈ Dn ⊂ Cn, we check
that (jZ′!∗j

′
Z∗L)0 is obtained by truncation in degree ≤ n− 1 of (jZ∗j

′
!∗L)0.

By the remark the complex (jZ∗j
′
!∗L)0 has no cohomology in degrees ≥ n.

3.2.1 Thom isomorphism and Gysin morphism

It is well-known that Thom isomorphism extends to stratified varieties under
a normally nonsingular embedding [GMacP 88], ([Max 19] Definition 3.4.5).
The following result is cited in ([CaMi 5], Lemma 3.5.4)

Lemma 3.5. Let i : H → V be a normally nonsingular inclusion of com-
plex codimension d of complex varieties transversal to every stratum of a
stratification S of V and K a constructible complex with respect to S, then
i!K ' i∗K[−2d].

With the previous notations Z ⊂ Y ⊂ X and pL defined on X \ Y , let
iW : W → X be a closed embedding of a non singular variety of codimension
d transverse to Z, Y and to the strata of an adequate stratification S of X,
then we have Thom isomorphism

i!W j!∗
pL[2d] ' i∗W j!∗pL

Let W ∗ := W \ (Z ∩W ), then:

Hi(W ∗, j!∗pL) ' Hi+2d
W∗ (X \ Z, j!∗pL).

Let W = H of codimension 1, the Thom isomorphism:

Hi(H \ (Z ∩H), j!∗L)
∼−→ Hi+2

H\(Z∩H)(X \ Z, j!∗L)(1) (3.15)

is defined on logarithmic complexes as follows. We have isomorphisms

i!HIC
∗L(logZ)[1]

∼c←− IC∗L(logZ∪H)/IC∗L(logZ))
∼r−→ iH∗IC

∗i∗HL(logZ∩H)[−1]

where on the right r is induced by the residue map

RH : IC∗L(logZ ∪H)→ iH∗IC
∗i∗HL(logZ ∩H)[−1]
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vanishing on IC∗L(logZ) and on the left c is the connecting isomorphism
with the cohomology with support. Later, we deduce from this description
that the Gysin morphism is compatible with MHS.

3.2.2 Polarized Variation of HS (VHS)

The complex Ω∗L is specifically interesting in the case of a variation of HS
(VHS) defined by a Hodge filtration F by sub-bundles of L⊗OU .

Let x ∈ Y ∗M and a punctured disc ∆∗ ⊂ B∗ ⊂ Dn with center 0. The
monodromy T acting on the restriction L|∆∗ generates a group Γ acting on
the classifying space D of polarized VHS ([Gr 74] chapter I). The period map

φ : ∆∗ → D/Γ lifts to the covering space φ̃ : ∆̃∗ → D. Let N = log Tu (in
general we suppose the VHS unipotent along Y by reduction to a finite local
covering [Sc 73]). The map Ψ : ∆∗ → Ď : z → exp(−zNφ̃(z) where Ď is the
dual space of D, extends at 0 and define a filtration F0 on LB(0) ([Gr 74]
chapter IV, Theorem 2 and Proposition 10).

Globally, since the Hodge filtration F extends to Hodge sub-bundles F of
LX satisfying Griffith’s transversality ∇ : Fp ⊂ Fp−1 ⊗ Ω1, we deduce the
Hodge filtration by sub-complexes of Ω∗L

F p =
[
0→ FpLX · · · → ΩiX(log Y )⊗Fp−iLX → · · ·

]
(3.16)

It should be noted that the existence of a Hodge filtration on L induces strong
properties used in the definition of the weight filtration on Ω∗L.

3.2.3 Duality and Polarization

The topological properties of duality of the intersection cohomology (see
[GMacP 83], [Max 19]) must be reinforced by the assumption of polariza-
tion of the VHS L inducing the auto-duality property, in order to prove the
decomposition theorem. The polarization of the intermediate extension of a
polarized VHS with singularities along a NCD is defined in [KaK 87].

As we reduce the proof to the case of IMHS (Definition 2.14), we use
essentially the local definitions of graded polarized limit MHS at infinity
in chapter 2.3. As the intermediate extension is canonically defined by the
local system on a Zariski open non singular subset, the polarization of the
intermediate extension is also canonically defined by the polarization of the
VHS on the open subset. Hence, to refer to the polarization of the intermediate
extension, it is sufficient to check only the polarization of the VHS on the open
subset U and in turn to check the polarization at each point x ∈ U ( §2.3).
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Poincaré -Verdier duality. Let f : X → V a proper morphism of com-
plex algebraic varieties, K ∈ Db(X,Q) a complex of sheaves, DX the dualiz-
ing complex and DX the dualizing functor DXK := Hom•(K,DX) (derived
Hom•), then by (Equation 2.4):

H−i(X, DXK) ' D(Hi(X,K)) := Hom(Hi(X,K),Q)

If L is a VHS, to apply this statement of duality with weights, we recall
some conventions on duality of filtrations and polarization in Hodge theory.

i) Translation of filtered complexes with weights. The couple of fields (Q,C)
form a HS of weight 0. If H is a HS of weight w′, we write H(r) for the HS
of weight w′ − 2r.

A Hodge complex of vector spaces (K,K⊗QC, F ) defined over Q, is of
weight w if its cohomology Hi(K) is a HS of weight w + i.
We set Q[r] for the complex with Q in degree −r and zero otherwise. It is a
HC of weight r since H−r(Q[r]) = Q is a HS of weight 0.

Let (L, F ) be a VHS of weight w′. The filtration F of the shifted VHS
pL := L[n] is defined by: Fi(

pL) := Fi(L)[n]. Then the weight of (pL, F ) as a
complex of sheaves, is n+ w′ since the weight of its cohomology satisfy:

w(H−n(pL, F )) = w(H0(L, F )) = w′ + n− n = w′.
Let (L,W, F ) be a VMHS. The filtration W and F of the shifted VHMS

pL := L[n] are defined by: W i(pL) := W i−n(L)[n] and Fi(
pL) := Fi(L)[n],

then (pL,W, F )) is called a perverse VMHS.

ii) Dual filtrations. The dual of a bifiltered complex (K,W,F ) in the bifil-
tered derived category of an abelian category with a dualizing functor D, is
denoted by (DK,W,F ) with dual filtrations defined by:

W−iDK := D(K/Wi−1), F−iDK := D(K/F i+1)

such that: DGrWi K
∼−→ GrW−iDK and DGriFK

∼−→ Gr−iF DK.
Below, we are interested in various dualities with value in Q or with value

in a dualizing complex DX with weights or without.

iii) Dual filtrations with weights. The dual of a variation of MHS (L,W, F )
with value in Q on a non singular complex algebraic variety X is a variation
of MHS (L∗,W, F ) (L∗ := HomQ(L,Q)) with filtrations dual to W and F
on L, such that GrW−i(L

∗) ' (GrWi L)∗ and Gr−iF (L∗) ' (GriFL)∗.

iv) Verdier dual filtrations with weights (the notations extend to the sin-
gular case). In the category of VHS (L, F ) of weight w′ on a non singular
complex algebraic variety X of dimension n, we introduce a non trivial Hodge
filtration on the dualizing complex: Dw′X = DX(n−w′) (that is DX ' QX [2n]
tensor a HS of weight 2w′ − 2n).
Then, Verdier-Poincaré duality states the following (derived Hom•):

Dw′

X (L, F ) : Hom•((L, F ),QX [2n](n− w′)) = Hom•((L, F ),QX)[2n](n− w′)

H−i(X, Dw′

X (L, F )) ' Dw′(Hi(X, (L, F )) := Hom(Hi(X, (L, F )), Q(−w′))
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Hence the weight of the left term of the second line, is w′ − i since w′ =
−w′+ 2n− 2n+ 2w′; while the weight of Dw′Hi(X, (L, F )) is also −w′− i+
2w′ = w′ − i (the same weight as: w(H2n−i(X,L∗) = w′ − i). Moreover:

Dw′

X (L, F ) is a VHS of weight w′, Dw′

X GriF (L, F ) ' Grw
′−i

F Dw′

X (L, F )
(3.17)

v)Polarization of HS.

Definition 3.9. i) A polarization of a HS of weight w′ is defined by a non
degenerate w′− symmetric morphism S : L ⊗ L → Q such that its complex
extension S : L⊗ L⊗ C→ C(−w′) satisfy :

1. ∀x ∈ Lp,q, x 6= 0, S(ip−qx, x̄) > 0
2. ∀x ∈ Lp,q,∀y ∈ Lp′ 6=q,q′ 6=p : S(x, y) = 0
3. ∀p, q : p+ q > w′, S(F p, F q) = 0.

Since S(x, y) = S(x̄, ȳ), the last condition is equivalent to S(F p, F q) = 0 for
p+ q < w′, hence the conditions (2) and (3) are equivalent.

Corollary 3.1. A polarized HS is auto-dual.

Proof. By definition the isomorphism S∗ : (L,F )
∼−→ Hom((L,F ),C(−w′)) :

a 7→ (b 7→ S(a, b) defined by S, in the filtered category of HS of weight w′,
sends F p 7→ F p as S(F p, Fw

′−p+1) = 0. We deduce from (Equation 3.17)
that the dual filtration coincides with the filtration F by transport by S. We
say that the polarized HS is self dual.

Polarization of a VHS. A polarization S of a VHS (L, F ) of weight w′ on
a non singular complex algebraic variety X induces an isomorphism of HS of
equal weight w′:

(L, F )
∼−→ (L, F )∗(−w′).

The dual of (L, F ) with value in Q(−w′) of weight 2w′ is a VHS (L, F )∗ of
weight w((L, F )∗) = −w′. Then S induces a quasi-isomorphism in the filtered
category of VHS

(L, F )
∼−→ Hom((L, F ),C(−w′)).

3.2.3.1 Polarization of an intermediate extension and purity

We introduce the concept of non degenerate bilinear pairing in the category
of intermediate extensions of VHS of weight w′.

Let (L, F ) denote a polarized VHS on an open non singular Zariski open
subset U of an algebraic variety X of dimension n. In the case where U is
the complement of a NCD, the complex IC∗L ⊂ Ω∗L (Definition 3.6) with
its Hodge filtration induced by F on Ω∗L (Equation 3.16), defines a Hodge
filtration on the intermediate extension: (j!∗L, F ) := (IC∗L, F ).

The complex Ω∗L2 of square summable C∞− differential forms with its
Hodge filtration F is defined respectively in ([Zu 79], [KaK 87], [CaKSc 87])
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and the embedding (IC∗L, F ) ' (Ω∗L2, F ) defines a filtered acyclic resolu-
tion of (j!∗L, F ). Moreover, the natural pairing by wedge product and the
(−1)w

′−symmetric product S on L extends to the complex

S : (Ω∗L2, F )⊗ (Ω∗L2, F )
S◦∧−→ (Ω2n

X , F ) (3.18)

and it is compatible with F ([KaK 87], Theorem 6.4.2).
Let σ denotes the symmetry on the tensor product σ(ωp ⊗ ωq) :=

(−1)pqωq ⊗ ωp, then S ◦ σ = (−1)w
′
S (compatible with the convention of

signs in [Sa 88] §5.2). We deduce the definitions below.

Definition 3.10. i) A bilinear ± symmetric pairing in the category Db
c(X,Q)

is defined by a morphism S : F ⊗ F → DX satisfying S ◦ σ = ±S.
S is non degenerate if it induces a quasi-isomorphism: F ∼−→ Hom•((F ,DX).

ii) A polarization of the intermediate extension of a polarized VHS
(j!∗

pL, F ) := (IC∗L, F ) of weight pw on a complex algebraic variety X of
dimension n, is defined by a pw− symmetric morphism

S : (j!∗
pL, F )⊗ (j!∗

pL, F )→ DX(n− pw). (3.19)

Equivalently S∗ : (j!∗
pL, F )

∼−→ Hom•((j!∗pL, F ),DX(n− pw)) induced by S
is a filtered quasi-isomorphism.

iii) A graded polarized variation of MHS is defined with a family of polar-
izations Si on (GrWi

pL, F ) inducing isomorphisms:

(GrWi j!∗
pL, F )

∼−→ Di
X(GrWi j!∗

pL, F ).
iv) If the weight is fixed, we still use the symbol of duality DX instead of

D
pw
X . We write DX(j!∗

pL) ' j!∗(DX
pL) as a consequence of the polarization.

Now we can state the following purity result after ([KaK 87], Theorem 6.4.2):

Theorem 3.1 (Purity). i) Hard Lefschetz: Let X be a complex non singular
projective variety. The cup product with the class of an hyperplane section
induces isomorphisms of Hodge structures

ηi : H−i(X, (j!∗pL, F ))
∼−→ Hi(X, (j!∗pL, F ))(i).

ii) The following pairing induced by pS (Equations 3.18, 3.19) on hyper-
cohomology is denoted by (, ) (D

pw
X denoted DX):

H−i(X, j!∗pL)⊗Hi(X, j!∗pL)→ H0(X, j!∗
pL⊗j!∗pL)

H0( pS)−−−−→ H0(X,DX)
trace−−−→ C

Set P−i := ker ηi+1 : H−i(X, j!∗pL) → Hi+2(X, j!∗
pL), then the pairing

defined by (−1)i(i+1)/2(a, ηib) induces a polarization of the HS of weight pw−i
on P−i. Hence, the filtration F induces on Hi(X, j!∗pL) a polarized HS of
weight pw + i.

The purity theorem is also stated as follows:
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Let (pL, F ) be a shifted polarized variation of HS of weight pw on a dense
open subset of a compact variety X. We have a duality isomorphism with
equal weights

Hi(X, j!∗pL)∗
∼−→ H−i(X, j!∗pL)( pw) (3.20)

where w(Hi(X, j!∗pL)∗) = −( pw+i) and w(H−i(X, j!∗L)( pw)) = pw−i−2 pw.
The statement is deduced from the purity theorem, the polarization and

Verdier duality with weights j!∗
pL

∼−→ D(j!∗
pL).

Definition 3.11. i) If the weight is fixed, we still use the symbol of duality
DX instead of D

pw
X . We write DX(j!∗

pL) ' j!∗(DX
pL) as a consequence of

the polarization.
ii) A graded polarized variation of MHS (pL,W, F ) on a Zariski open subset

is defined by a family of polarizations Si on (GrWi
pL, F ). It induces isomor-

phisms:

(GrWi j!∗
pL, F )

∼−→ Di(GrWi j!∗
pL, F ).

Example 3.3. Duality of a shifted VHS. As a complex of sheaves, (pL, F ) :=
(L[n], F ) has weight pw = w′ + n. Its dual in the filtered derived category

D
pw(pL) := Hom•(pL,Q[2n](n− pw))

∼−→ L∗(n− pw)[n]

has weight −w′ + n− 2n = pw.

Polarization of a shifted VHS. A pairing S : L ⊗ L → C translates
into a pairing pS : pL ⊗ pL → C[2n] : a ⊗ b 7→ S(a, b) ∈ C[2n]. If S is
(−1)w

′−symmetric, the pairing pS is (−1)
pw−symmetric:

σ : pL⊗ pL→ pL⊗ pL : a⊗ b 7→ (−1)n
2

b⊗a, then pS ◦σ = (−1)
pw pS since:

pS ◦ σ(a, b) = (−1)n
2

S(b, a) = (−1)(n+w′)S(a, b) = (−1)
pw pS(a, b).

If S is a polarization of a VHS of weight w′ then pS is a polarization of pL
in the sense that H−n(pL) ' L is polarized and equivalently pS induces an
isomorphism: pL

∼−→ D
pw(pL) (pL is auto-dual).

Graded polarized VMHS. As a complex of sheaves, a shifted VMHS (pL :=
L[n],W, F ) has its weight increased by n, such that W i(pL) := W i−n(L)[n],
and Fi(

pL) := Fi(L)[n]. The filtration on its cohomology H−n(pL) satisfy:
(H−n(pL),W ) = (L,W ).

Remark 3.5. i) The pairing and the polarization are transported to the direct
image and its decomposition by duality applied to the proper morphism f :
X → V (Equation 2.5)

Dw′

X (L, F ) := Hom•((L, F ), Dw′

X ) ' Hom•(f∗(L, F ), Dw′

V ) := Dw′

V f∗(L, F ).
(3.21)

ii) Mixed cone. The mixed cone over a morphism f : (K,W,F )→ (K ′,W ′, F ′)
is the cone (C(f),W, F ) with the filtrations on C(f) := K[1]⊕K ′ defined by
the convention Wj+1(K[1]) := (WjK)[1] and Fj(K[1]) := (FjK)[1].

The weight filtration on the mixed cone is not always naturally defined
(see the second homotopy problem in §2.1), however we will frequently use
this concept whenever it is naturally defined.
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For example, the diagonal filtration defined by a simplicial covering in
[De 75] is a repeated use of mixed cone. Simplicial coverings define natural
weights on cohomology of algebraic varieties (see also [E 83]).

3.2.4 Perverse sheaves along a NCD

Let Y
i
↪→ X

j
←↩ U denote the embeddings of a normal crossing divisor (NCD)

Y and of U := X \ Y . Let L be a local system on U , then pL := L[dimX] is
perverse on U .
Let Z ⊂ Y ⊂ X be a NCD sub-divisor of Y , iZ : Z → X and jZ : X \Z → X.
The previous constructions on the perverse sheaves j∗

pL and j!∗
pL extend to

the following complexes:

i!Zj!∗
pL, i∗Zj!∗

pL, i!ZjZ∗j
∗
Zj!∗

pL, i∗ZjZ∗j
∗
Zj!∗

pL, jZ∗j
∗
Zj!∗

pL, jZ!j
∗
Zj!∗

pL.

Let L be VHS of weight w′, then pL := L[dimX] is perverse of weight
pw = w′ + dimX.

Let D denote Verdier duality. By definition of auto-duality of pL, we have
an isomorphism DpL ' pL(pw) where (pw) is a twist of the weight.
Let Z ⊂ Y be a NCD sub-divisor, we deduce the weight filtration on i!Zj!∗

pL
from (IC∗L(Log Z),W, F ) and the weight filtration on i∗Zj!∗

pL by duality
with i!Zj!∗

pL:

D(j!∗
pL ' j!∗pL(pw), Di!Zj!∗

pL ' i∗ZD(j!∗
pL), DjZ∗j

∗
Zj!∗

pL ' jZ!j
∗
ZD(j!∗

pL)

3.2.5 iZ∗i
∗
ZjZ∗j

∗
Zj!∗

pL

The complex iZ∗i
∗
ZjZ∗j

∗
Zj!∗

pL occurs in the following triangle:

jZ!j
∗
Zj!∗

pL
can−−→ jZ∗j

∗
Zj!∗

pL −→ iZ∗i
∗
ZjZ∗j

∗
Zj!∗

pL
[1]−→ (3.22)

The complexes jZ!j
∗
Zj!∗

pL and jZ∗j
∗
Zj!∗

pL are perverse since jZ is affine (Stein
in the analytic case). Let K := jZ∗j!∗

pL.
The associated perverse long exact sequence is reduced to

0→ iZ∗
pH−1i∗ZjZ∗K −→ jZ!K

can−−→ jZ∗K → iZ∗
pH0i∗ZjZ∗K → 0 (3.23)

as i∗ZjZ∗K has only two non trivial perverse cohomology sheaves ([BBD 83]

Corollaire 4.1.10 ii). Since j!∗
pL = jZ!∗K := Im : jZ!K

can−−→ jZ∗K, we deduce
(([BBD 83], Corollaire 4.1.12) and [Br 82], Proposition 2.3.8):
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i∗Zj!∗
pL[−1] ' pH−1(i∗ZjZ∗j

∗
Zj!∗

pL) ' Ker can,

i!Zj!∗
pL[1] ' pH0(i∗ZjZ∗j

∗
Zj!∗

pL) ' Coker can.
(3.24)

where Coker can ' jZ∗j∗Zj!∗pL/j!∗pL.
In the text we describe the filtration W on IC∗ pL(LogZ) ' jZ∗j

∗
Zj!∗

pL.
Then, we deduce the filtrations W and F on

i∗Zi
!
Zj!∗

pL[1] ' (jZ∗j
∗
Zj!∗

pL)/j!∗
pL = IC∗ pL(LogZ)/IC∗ pL (3.25)

and by duality the filtration W on i∗Zj!∗
pL[−1].

3.2.6 Combinatorial description

To deal with perverse sheaves including perverse sub-sheaves of the complex
Ω∗L, for L locally constant on U := X \ Y , we recall the description of
perverse sheaves locally constant on the non singular strata Y ∗J defined the
NCD Y := V (z1 · · · zn) := {z• : z1 · · · zn = 0}.

In [V 83], J. L. Verdier describes the extensions of a general perverse sheaf
P along a divisor by reduction to a local divisor defined by an equation f in
terms of the nearby cycles Ψf and the vanishing cycles ϕf . Since ΨfP and
ϕfP, are shifted perverse, Verdier’s description can be repeated inductively
in the case of NCD to obtain the combinatorial description below.

3.2.6.1 Combinatorial description of perverse sheaves along a
NCD Y ⊂ Cn as a de Rham family

The NCD Y has a natural stratification. For each M ⊂ [1, n],let YM :=
{z ∈ Cn : zj = 0 for j ∈ M} and Y ∗M := {z ∈ YM : zj 6= 0 for j /∈ M}
(the non singular locus of YM ). The perverse sheaves P such that for each
M ⊂ [1, n], the cohomology of P|Y ∗M is locally constant, are described by
the following combinatorial construction ([Ka 86] §2.1, see also [GGM 85]
following a description by Deligne).

The category P of perverse sheaves P on Cn, with respect to the NCD strat-
ification Y ∗M of Y is equivalent to the abelian category defined by :

(i) A family of vector spaces LA for A ⊂ [1, n],
(ii) A family of morphisms

fAB : LB → LA and hBA : LA → LB for B ⊂ A ⊂ [1, n] such that :

fAB ◦ fBC = fAC , hCB ◦ hBA = hCA for C ⊂ B ⊂ A
fAA = hAA = id , hA,A∪B ◦ fA∪B,B = fA,A∩B ◦ hA∩B,B for all A,B
and if A ⊃ B, | A |=| B | +1, then 1− hBAfAB is invertible.
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Intermediate extensions. For each for A ⊂ [1, n], the description of the
category IEA of intermediate extensions of a locally constant sheaf L on Y ?A
in terms of the family of vector spaces LB for B ⊂ [1, n] is as follows:

(i) LB = 0 for A ⊂ B,A 6= B
(ii) fBA is surjective and gAB is injective for A ⊂ B.

We denote by IE the objects isomorphic to a direct sum of objects in ∪AIEA.

3.2.6.2 Distinguished pair and Kashiwara’s criteria of
decomposition into direct sum of intermediate extensions

Let P ∈ P and for all B ⊂ A ⊂ [1, n], LB
fAB−−−→ LA

hBA−−−→ LB , then by
([Ka 86] Proposition 2.3.1): The perverse sheaf P ∈ P is a direct sum of

intermediate extensions if and only if the following distinguished pair criteria
is satisfied

∀B ⊂ A ⊂ [1, n], A,B 6= [1, n], LA ' Im fAB ⊕KerhBA (3.26)

Moreover, it is enough to consider |A| = |B|+ 1.
Let PB(P ) = ∩C⊂B,C 6=BKerhCB. The above condition is equivalent to the
isomorphism:

⊕B⊂AfAB(PB(P ))
∼−→ LA (3.27)

The induced morphism hBA : fAB(PB(P )→ PB(P ) is injective for B ⊂ A.

Remark 3.6. Originally, the local description of IC∗L started with Deligne’s
local purity conjecture (see [CaKSc 87]). It took sometime to set the notations
and reach the above statement. The reader would need as much time to
meditate on the various ways to apply this combinatorial description.

i) The first version of the description in [GGM 85] is based on the coho-
mology with supports in the strata of the stratification defined by the NCD.
Since then, the description by Verdier’s extension prevail.

ii) In the text, we extract from this data the concept of de Rham family
which determines the fiber i∗0Ω

∗L := Ω∗L (resp. LA := NAL in the case of
the complex IC∗L = i∗0IC

∗L (Definition 3.2)).
By the tilde embedding (Lemma 3.1) LA above for A = {i1, . . . , ia},

corresponds to Ldzi1 ∧ · · · ∧ dzia (see Definition3.7 for the general case
IC∗L(LogZ)).

iii) In the case of ψfL where f = z1 · · · zn, set LA := ΨAL. In this case
L∅ = 0 since ψfL is supported by Y . The de Rham family is applied to
describe the fiber of the nearby cycle complex Ψ∗L (see ch. 4 and 5).

On the (Example 5.1) in the case of Ψ∗L, we could as well represents the
local system by (L,N1, N2) on the generic stratum. At a point z2 ∈ Y ∗1 ,
(L∅ = L,N1, L{1} = L) represents the complex (j1∗L)z2 , if we add the action
of N2 it represents i∗Y ∗1 j1∗L as a complex of two local system on Y ∗1 .
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iv) In the proof of the decomposition theorem of the direct image by a
morphism f : X → V , it is an advantage to introduce a map g locally on V
to C since ψg is exact perverse and satisfy ψgf∗j!∗

pL ' ψg◦f j!∗
pL (similarly

for and ϕg), then if we add the canonical morphism can, we can deduce
i∗g−1(0)f∗j!∗

pL.

v) For a general perverse sheaf, Saito in ([Sa 90], §3) express the terms of a
combinatorial description by repeated application of the functors ψzi and ϕzj
with the canonical and variation morphisms which determine all the terms
of a perverse sheaf on a small ball including the local monodromy. We can
recover the perverse sheaf completely by such data (see [Sa 90], 3.1).

Example 3.4. To describe j!∗
pL on Cn with singularities along Y , we find

L = pψzn ◦ · · · pψz1j!∗pL where pψzi = ψzi [−1].

If n = 1, i∗0j!∗
pL = (L

N−→ NL)[1], ψz1j!∗
pL = L[1], pψz1j!∗

pL = L.
By definition ϕz1j!∗

pL is the cone of the morphism: i∗0j!∗
pL → ψz1j!∗

pL,
hence ϕz1j!∗

pL = NL[1] and pϕz1j!∗
pL = NL.

vi) In the case where L is a VHS the Hodge filtration F is induced on the
elements of the de Rham family (recall that F is not a filtration by perverse
sub-sheaves). Then on Y ∗1 we add the limit structures on Y ∗1 and Y ∗2 which
are different than the limit structure at 0.

vii) We will consider a decomposition on the graded level of the graded
polarized nilpotent orbit defined by the VHS. Although the decomposition
above (Equation 3.27) is topological, the decomposition will be compatible
with Hodge filtration which leads to a direct decomposition of the Hodge
filtration by the following fact:

Let H be a MHS, A and B two sub-MHS, if H is a direct sum of the
sub-spaces A and B, then it is a direct sum of MHS by a simple count of
dimensions of the filtrations:

Let GrWi H = ⊕p,q∈Z:p+q=iH
p,q, and hp,q := dimHp,q, then hp,q ≥ 0 and∑

i h
p,q = dimH.

By application to A and B, since Hp,q(A) ⊕ Hp,q(B) ⊂ Hp,q, we find
hp,q(A) + hp,q(B) = hp,q(H) and Hp,q(A)⊕Hp,q(B) = Hp,q.



Chapter 4

The Nearby cycles complex Ψ ∗IL

Fouad El Zein, Joseph Steenbrink

In this new section consisting of the next chapters 4−8, we develop the proof
of the local purity and the decomposition theorems announced in §1.2.1.2.

A natural structure of bifiltered mixed Hodge complex on the nearby and
vanishing cycles complex with coefficients in an intermediate extension j!∗

pL
of a (shifted) polarized variation of Hodge structure (L, F ) is defined in the
first two chapters 4 and 5.

The structure of mixed Hodge complex is proved inductively with the
decomposition theorem in chapter 6. The main feature is the reduction of
the proof to the case of a vanishing cycles complex supported by the isolated
strata on V . Hence the decomposition occurs in the category of IMHS.

By using a general hyperplane section, a remarkable fact in this case is the
splitting of the weight spectral sequence which is the main simplification of
the proof compared with [Sa 88].

4.1 Introduction to chapters 4− 8 (section 2)

In view of Verdier’s decomposition criteria (Equation 2.22), the decomposi-
tion theorem (see ch. 1, Theorem 1.2) can be reduced to a decomposition of
the vanishing cycle complex.

First in the case where X is a non singular complex variety, let f : X → D
be a projective morphism to a complex disc with a NCD as central fiber and
j!∗L on X. We construct in this chapter a (unipotent) limit nearby cycles
complex Ψ∗IL ' ψuf j!∗L with coefficients in an intermediate extension j!∗L
of a polarized variation of Hodge structure (VHS) L (resp. shifted pL) with
a limit Hodge filtration F (see ch. 2, §2.2.2) and (§4.2.1).

IMJ-PRG, Université de Paris, Sophie Germain, F-75013, Paris, France ·
IMAPP, Radboud Unversity Nijmegen, The Netherlands.
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Since the definition of the complex ψf j!∗L is topological (§2.2.2) and the
polarized VHS L is on X \ Y , the definition of the Hodge filtration on the
limit complex is subtle (the filtration ψfF

pj!∗L is not interesting and F pL is
not constructible).

The extension of F appears as Schmid’s limit Hodge filtration [Sc 73] in
the one variable case. On Steenbrink’s limit complex [St 76] the filtration F
is deduced from the limit filtration on the logarithmic complex with constant
coefficients.

The structure of mixed Hodge complex on Ψ∗IL is defined by induction
in chapter 5 in order to carry the proof mentioned in §1.2.1.2.

The decomposition theorem is proved by reduction to isolated strata and
general hyperplane sections in chapter 6.

When the vanishing cycles complex is supported by the isolated strata on
V , the decomposition occurs in the category of IMHS. Since the hyperplane
section is general, the weight special sequence splits into a direct sum of a
spectral sequence concentrated on the isolated strata which degenerates at
rank 2 in the category of mixed Hodge structures (MHS), and a spectral
sequence which degenerates at rank 1 (see ch.6, Corollary 6.3).

The structure of mixed Hodge complex on ψuf j!∗L in the case of a sin-
gular variety is defined by application of the decomposition theorem to the
desingularization π : Ṽ → V in chapter 6 as follows. Let j : U → V denote
the open embedding of a non singular Zariski open subset U of a complex
projective variety V on which L is defined, and j′ : U → Ṽ the embedding
into the desingularization π : Ṽ → V .

By the derived push forward functor, we have a Hodge filtration on
π∗(j

′
!∗
pL, F ) and by the decomposition theorem j!∗

pL is a component of
pH0(π∗j

′
!∗
pL) with natural induced Hodge filtration F . This construction is

independent of the desingularization up to isomorphism (see ch. 7, §7.1).
The category of intermediate extension of a polarized VHS on algebraic

varieties is abelian (see ch. 7, §7.1).
In chapter 8, we fulfill our aim to adapt faithfully to complex varieties the

original local purity theorem in positive characteristic, although the proof
may be simplified by combination with the decomposition (see ch. 10).

For convenience, we do not use the letter R in general for a derived functor
(see ch.1, §2.4.0.2 for conventions and terminology) and we still say (shifted)
intermediate extension for j!∗L.

4.1.0.1 Weigt and Hodge filtrations on ψfj!∗
pL

Let f : X → D be the restriction over a disc D of an algebraic morphism
on a non singular complex variety to C and L a polarized VHS on an open
subset U complement of a NCD Y of X containing the central fiber Z ⊂ Y .

The Hodge filtration F on L extends to Deligne’s canonical extension LX
of L ⊗Z OU and to the logarithmic complex Ω∗L := Ω∗X(log Y ) ⊗OX LX
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(see ch.3, §3). We suppose the fiber of f at 0 ∈ D a NCD Z := f−1(0)
contained as a sub-divisor of Y . Let j : U → X and jZ : (X \ Z) → X,
then j∗L ' Ω∗L and there exists a sub-complex IC∗L(logZ) of Ω∗L, with
induced Hodge filtration F , such that jZ∗j

∗
Z(j!∗

pL) ' IC∗pL(logZ) (see ch.3,
Definition 3.8).

To define the Hodge filtration F on the unipotent sub-sheaf of nearby
cycles complex ψuf j!∗

pL (see ch. 2, §2.2.2), first in the case of a VHS L locally
unipotent along a NCD Y , we extend the construction of Steenbrink’s limit
complex defined in the case of constant sheaf [St 76].

We define in §4.2.1 the limit complex (Ψ∗IL, F ) using the logarithmic
complex (IC∗L(LogZ), F ). The Hodge filtration F on ψuf j!∗

pL is defined by
the isomorphism with the complex Ψ∗I pL (see Proposition 4.1).

The weight filtration W is deduced in chapter 5, from the monodromy
weight filtration W (N) shifted by the weight pw of pL.

The filtrations W and F on Ψ∗IL are used to define the structure of a
mixed Hodge complex on the nearby and vanishing cycles complexes ψuf and
φuf with coefficients in a polarized VHS on a Zariski open subset complement
of a NCD in a complex variety (see chapter 5).

The decomposition of the graded monodromy weight filtration into direct
sums of intermediate extensions (see ch.5, Theorem 5.3) is based on com-
binatorial constructions of perverse sheaves along a NCD [Ka 86] (see ch.3,
§3.2.6 and §3.2.6.1).

The definition of the filtrations W and F on ψf j!∗
pL for L not necessarily

locally unipotent along Y is deduced directly from the locally unipotent case
see (ch.5, §5.2).

4.1.0.2 Splitting of the perverse weight spectral sequence

Let f : X → V be a projective morphism of complex algebraic varieties. A
proof of the decomposition theorem (ch.1, Theorem 1.2) is given in chap-
ter 6 by reduction to the case of an isolated stratum v ∈ V and a general
hyperplane section H through v.

Since the proof may be reduced to a desingularization of X with a NCD
as inverse image of v, we suppose already X non singular and v an isolated
stratum in V . By considering a general pencil of hyperplane sections of V
containing H and blowing up the axis of the pencil, the proof is reduced to
the case where there exists a morphism g : V → P to the projective complex
line such that g−1(g(v)) = H is general and XH := f−1(H) is a NCD in X.

Let h := g ◦ f . The perverse weight spectral sequence of the nearby cy-
cles (f∗ψhj!∗

pL,W ) splits in this case as H is general, into a direct sum of
a spectral sequence concentrated on v which degenerates at rank 2 in the
category of mixed Hodge structures (MHS), and a spectral sequence which
degenerates at rank 1 (see ch.6, Corollary 6.3).
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Moreover, the complex of vanishing cycles φhf∗j!∗
pL is concentrated on

v which means that we are reduced to the case of a decomposition in the
category of IMHS (see ch. 2, §2.3.2). Recall that the induced Hodge filtration
on perverse cohomology is defined by restriction (see ch.2, §2.4).

4.1.0.3 Decomposition theorem on singular varieties

After the proof of the decomposition theorem we extend Hodge theory to
singular varieties in (§6.2.2.2) and chapter 7. The definition of the abelian
category of intermediate extensions of VHS (ch.7, Definition 7.1) on a singular
variety V and the definition of perverse variation of MHS (ch.7, Definition
7.2) are deduced from the definition on a desingularization of V by application
of the decomposition theorem which is already proved.

This is a significant simplification with respect to the proof in the theory
of Hodge D−modules [Sa 88, Sa 90].

4.1.1 Invariant local and global cycles theorems

Mixed Hodge structure defined along divisors. As a consequence of the de-
composition theorem, we construct a MHS on the hypercohomology of open
or closed algebraic subsets of a nonsingular variety X with coefficients in an
intermediate extension in chapter 7.

To state the local purity theorem, we construct a MHS on the hyperco-
homology of a small analytic tubular neighborhood B∗Xv of a fiber Xv of
f : X → V with the central fiber Xv deleted.

Invariant theorems. Let V be a complex algebraic variety, (L, F ) a po-
larized VHS on a nonsingular Zariski open subset U ⊂ V , j : U → V and
j!∗

pL its intermediate extension. Let g : U ′ → D be a projective morphism
defined on an open subset U ′ ⊂ V onto a disc with center 0 and central fiber
H = g−1(0). The unipotent nearby cycles complex ψug j!∗

pL[−1] is perverse
(Proposition 2.6) and we have:

Theorem 4.1 (Local invariant cycle theorem). There exists an exact
sequence

Hq(H, j!∗pL)
sp−→ Hq(H,ψug j!∗pL)

N−→ Hq(H,ψug j!∗pL)(−1) (4.1)

where N is the logarithm of the unipotent monodromy.
The proof is based on the existence of mixed Hodge structures on the

various hypercohomology groups of the sequence (ch.7, Proposition 7.5).
Let B0 ⊂ D be a small disc, the specialization morphism sp is precisely the
composition map (where ρ is surjective):

Hq(H, j!∗pL)
∼−→ Hq(g−1B0, j!∗

pL)
ρ−→ H0(B0, R

qg∗j!∗
pL)

∼−→ Hq(H,ψug j!∗pL)T .
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Theorem 4.2 (Global invariant cycle theorem). Let g : V → T be a
morphism of projective varieties where V is pure dimensional, L a polarized
VHS on a nonsingular Zariski open subset U ⊂ V and j!∗

pL the intermediate
extension of pL.

There exists a Zariski open dense subset T ′ ⊂ T of parameters t over which
Rqg∗j!∗

pL is a polarized VHS, and for each fiber Vt := g−1(t) at t ∈ T ′, the
image of the restriction map

Hq(V, j!∗pL) −→ Hq(Vt, j!∗pL) (4.2)

is the invariant subset Hq(Vt, j!∗pL)π1(T ′,t) of fixed elements under the mon-
odromy action π1(T ′, t)→ AutHq(Vt, j!∗

pL).

Precisely, we have the following factorization where u is surjective:
Hq(V, j!∗pL)

u−→ H0(T ′, Rqg∗j!∗
pL)

∼−→ Hq(Vt, j!∗pL)π1(T ′,t) .

4.1.2 Purity and local purity theorems

The global purity result (Theorem 3.1) after [CaKSc 87] and [KaK 87], is
deduced in [Sa 88] and [Sa 90] from the decomposition of the derived direct
image f∗j!∗L by a projective morphism onto a curve and Zucker’s purity result
in the curve case. The same method apply here to prove the purity first on a
non singular variety and then deduce the purity on singular complex varieties.
The HS obtained by various methods are forced to be isomorphic by their
own duality properties [KaK 86].

Theorem 4.3 (Purity Theorem). Let L be a polarized VHS of weight pw
defined on the complement X \Y of a NCD Y in a projective variety X. The
limit Hodge filtration F on the intermediate extension j!∗L defines a HS of
weight pw + i on Hi(X, j!∗pL).
See (Corollary 6.2 ii) if X is singular and not projective.

Local purity (ch. 1, Theorem 1.1). We give a faithful interpretation on
complex varieties of the proof in positive characteristic ([DeG 81] using the
local and global invariant cycle theorems for the perverse cohomology (ch.7,
Proposition 7.5, Lemma 7.2).

A new simple proof of the local purity theorem related to the decomposi-
tion theorem is given in the last section (chapter 10).

4.2 The limit Hodge filtration on Ψ∗IL ' ψu
f j!∗L

Let X be a complex algebraic variety, Y ⊂ X a NCD, L a local system on
X \ Y (for the analytic topology) and j : (X \ Y )→ X.
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Let f : X → C be an algebraic map. The analytic restriction of f over the
punctured disc D∗ with small radius is a topological fibration. We suppose
the central fiber Z = f−1(0) ⊂ Y ⊂ X a NCD sub-divisor of Y .

A filtered logarithmic limit complex (Ψ∗IL, F ) is defined in §4.2.1
with the following isomorphism (see Proposition 4.1):

Ψ∗IL ∼−→ ψuf j!∗L.

The Hodge filtration F on ψuf j!∗L is deduced by this isomorphism.
Since we go back to the original work by Deligne ([DeK 73], Exposé XIV)

various intermediary complexes are mentioned such as Ψ̃∗IL (Definition 4.1)
and Ψ̄∗IL (Equation 4.31). The construction extends Steenbrink’s limit com-
plex with constant coefficients [St 76] to the case of coefficients in an inter-
mediate extension of a polarized VHS j!∗L. We refer to [NaG 90] for a clear
exposition in the case of constant coefficients.

Since the definition of the complex ψf j!∗L is topological, the problem
is to define correctly the Hodge filtration on the limit complex. The main
contribution to the definition of F pψf j!∗L started with Schmid’s extension
of F to Deligne’s canonical LX of L⊗ZOU [De 70], [Ma 87] and the extension
of F to the logarithmic complex Ω∗L := Ω∗X(log Y ) ⊗OX LX . Already, j∗F
on j∗L is different from F on Ω∗L.

Let jZ : (X \ Z) → X, the sub-complex IC∗L(logZ) of Ω∗L with the
induced Hodge filtration F represents jZ∗(j!∗L)|X\Z (ch. 3, Definition 3.8).

4.2.0.1 Definition of ψfj!∗L

We resume the definition of the sheaf of nearby cycles (§2.2.2, [DeK 73]) and
the following diagram:

X̃∗
p̃−→ X∗

jZ−→ X
iZ←− Z (4.3)

where Z := f−1(0), X∗ = X \ Z, X̃∗ := X ×D D̃∗ the fiber product with a

universal covering p : D̃∗ → D∗ of the punctured disc D∗.
Let K ∈ D+

c (X∗,Q) be a complex of sheaves of Q-vector spaces, bounded
below, with cohomology sheaves locally constant on the strata of a Whitney
stratification of X, then

ψfK := i∗Z j̃Z∗p̃
∗K ∈ Db(Z,C) where j̃Z = jZ ◦ p̃ (4.4)

(we write j̃Z∗ for Rj̃Z∗). The universal covering D̃∗ of D may be represented
by {u ∈ C;Reu < 0} with the projection z = p(u) = eu (equivalently
p(u) = e2iπu for u in the Poincaré upper half plane). The action of the counter
clockwise generator of the fundamental group of D∗ on the hypercohomology
of the Milnor fiber is the mondromy automorphism T of ψfK.
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If the complex K is perverse with respect to the middle perversity structure
( §2.2.1 and [BBD 83], §4.0), the shifted complex ψfK[−1] as well φfK[−1] are
also perverse on Z (Equation 2.15, Proposition 2.6, [Br 82], [Br 86] Théorème
1.2, [GMacP 88] §6.13). We denote by ψufK the perverse sub-sheaf unipotent
under the action of T .

In general, if T = T sTu is the decomposition of T into its semisimple and
unipotent part, the nilpotent endomorphism N := log Tu determines the
monodromy weight increasing filtration W∗(N) of ψf (K) (§2.3.0.1). Explic-
itly, the filtration is given by Wj(N) =

∑
i ImN i ∩KerN i+j+1.

Let us suppose that the central fiber Z = f−1(0) of the morphism f is a
NCD in a nonsingular complex algebraic variety X. We suppose that Z is
contained as a sub-divisor in a NCD Y ⊂ X and that a local system L is given
on the open subset U := X \Y . In the next paragraph 4.2.1 we construct the
limit complex Ψ∗IL in terms of the logarithmic complex IC∗L(logZ) ⊂ Ω∗L
(chapter 3, Definition 3.8).

Since L underlies a polarized VHS, there exists a limit filtration F [Sc 73],
[Gr 74] and (§2.3.1) (Equation 3.16) on the restriction i∗Y LX of Deligne’s
extension LX [De 70].

4.2.1 The limit complex Ψ∗IL

Let T denote the monodromy action defined by a generator of π1(D∗) on the
sheaf ψf (j!∗L). We denote by ψuf (j!∗L) the unipotent sub-sheaf and ψαf (j!∗L)
the unipotent sub-sheaf of the action T − αId (which makes sense in the
abelian category of perverse sheaves after an adequate shift of the complex).
We construct a complex Ψ∗IL on Z which is a representative of the perverse
sheaf ψuf (j!∗L) by a complex of analytic OX−modules with support on Z and
bounded cohomology Ψ∗IL ' ψuf (j!∗L) (Proposition 4.1), convenient for the
representation of the perverse sheaf ψuf (j!∗L)[−1] by the associated de Rham
family §4.2.2.2.

To define the limit complex, we introduce the logarithmic complex with
coefficients in Deligne’s extension, since the Hodge filtration F is not defined
by the filtration j̃Z∗j̃

∗
ZF , but it is the expression of a limiting process.

Technically, since the Hodge filtration F is not defined by the filtration
j̃Z∗j̃

∗
ZF , but it is the expression of a limiting process, we use (IC∗L(logZ), F )

to construct various intermediary complexes:

1. the complex Ψ̃∗IL ' Ψ∗IL (4.2.1.4)
2. the complex Ψ̄∗IL (4.2.2.2)
3. local constructions (4.2.2.2, 4.2.1.2, 4.2.1.3)

The main result is: ψuf (j!∗L) ' Ψ∗IL (§4.21, Proposition 4.1). Since ψuf (j!∗L)
is perverse, the proof and constructions are based on the local version Ψ∗IL
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(§4.2.1.3, Definition 4.2) of Ψ∗IL and its associated de Rham family (Equa-
tion 4.11).

4.2.1.1 Ψ∗IL and its associated de Rham family

Let L be a finite dimensional C-vector space endowed with a set of commut-
ing nilpotent endomorphisms Ni for i ∈ M ' [1, n], C[N ] the polynomial
ring in one variable N , and C[N,N−1] the algebra of Laurent polynomials.
We denote by N the endomorphism on L[N,N−1] := L⊗C[N,N−1] defined
by multiplication by N . It maps the subspaces L[N ] and NL[N ] to them-
selves and acts on L[N−1] = L ⊗ C[N−1] when we consider this module as
L[N,N−1]/NL[N ] (so N = 0 on LN0).
The action of the commuting nilpotent endomorphisms Ni extends as Ni⊗Id,
still denoted by Ni, on L⊗ C[N,N−1] (resp. on L[N ] and L[N−1]). Given a
subset MZ ⊂M and a sequence of positive integers mi for i ∈MZ , set

Ai = miN −Ni if i ∈MZ , and Ai = −Ni if i /∈MZ . (4.5)

It is a family of commuting endomorphisms acting on L[N,N−1], L[N ] and
on L[N−1].

Remark 4.1. The sign −Ni in Ai is due to the definition Ni := log Ti such that
ResYi∇ = − 1

2iπNi. In general there is a problem of signs in the equations
which goes back to the fact that monodromy is taken in opposite directions
in the two schools in the field by Deligne and Griffith.

We associate to L[N−1] endowed with Ai the de Rham family of modules
with index J ⊂M :

(L[N−1]J = L[N−1] for J ⊂M, Ai : L[N−1]J → L[N−1]J∪i for J∪i ⊂M, i /∈ J).

4.2.1.2 Local differential complex Ψ̃∗IL defined by de Rham
family

We give first a local description, of a global complex Ψ̃∗IL, at a point x ∈ Y ∗M
where M ⊂ [1, n] is a set of indices of equations of Y ∗M at x.

Let L := LX(x),MZ ⊂M ⊂ [1, n]. For each J ⊂M set:

JZ := J ∩MZ and J ′Z = J \ JZ such that J = JZ ∪ J ′Z (4.6)

With the notations of (ch. 3, §3.1.2), we consider two de Rham families:

L[N ]J :=L[N ], Ai : L[N ]J−i → L[N ]J , J ⊂M, i ∈M
L[N ]J :=NJ′ZL[N ] ⊂ L[N ], (Ai)|, J ⊂M, i ∈M

(4.7)
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where N∅ = Id and with induced filtration by F since L is a VHS.

Definition 4.1 (Ψ̃∗L and Ψ̃∗IL). The filtered complexes

Ψ̃∗L := s(L[N ]J = L[N ], Ai)J⊂M,i∈M , F
pΨ̃∗L := s((F p−|J|L)[N ], Ai)J⊂M,i∈M

Ψ̃∗IL := s(NJ′ZL[N ], Ai)J⊂M,i∈M ⊂ Ψ̃∗L

are associated to the de Rham families in equation 4.7, with filtration F on
Ψ̃∗IL induced by F on Ψ̃∗L.

Example 4.1. On the 3-dimensional disc D3 ⊂ C3, let W = W1 ∪W2 ∪W3 be
the NCD defined by the coordinates z1z2z3 = 0. A unipotent local system L
is defined by a vector space L with the action of 3 nilpotent endomorphisms
(L,Ni, i ∈ [1, 3]).

Let MZ = {1, 2} and Z = Z1∪Z2 be defined by z1z2 = 0, then Ψ̃∗IL is the
simple complex associated to the double complex with differentials defined
by Ai and Ni up to sign (A3 = −N3).

L[N ]
A1+A2−−−−−→ L[N ]⊕ L[N ]

A2−A1−−−−−→ L[N ]
↓ N3 ↓ (N3 ⊕N3) ↓ N3

N3L[N ]
A1+A2−−−−−→ N3L[N ]⊕N3L[N ]

A2−A1−−−−−→ N3L[N ]

(4.8)

4.2.1.3 The complex Ψ∗IL

The construction of a global bounded logarithmic limit complex Ψ∗IL where
L is locally unipotent, is easily reduced to the construction of the finite com-
plex Ψ∗IL in the local case below, fit for the computation of the monodromy
filtration.

For each subset J ⊂ M , let AJ = Ai1 ◦ · · · ◦ Aij for J = {i1, . . . , ij} and
let ImAJ ⊂ L[N ] denote the image of the morphism

AJ : L[N ]→ L[N ], ImAJ ⊂ NJ′ZL[N ] ⊂ L[N ]. (4.9)

To check that ImAJ ⊂ NJ′ZL[N ], note that AJ = AJZ ◦AJ′Z = ±AJZ ◦NJ′Z .
We remark that the family ImAJ defines a sub-complex

Im∗A := s(ImAJ , Ai)J⊂M,i∈M ⊂ Ψ̃∗IL

Definition 4.2 (Ψ∗IL). With the notations of (Equation 4.6), we define the
finite dimensional quotient complex

Ψ∗IL := Ψ̃∗IL/Im∗A. (4.10)

The de Rham family associated to Ψ∗IL is defined by the finite quotient
vector spaces



80 El Zein, Steenbrink

ΨJ(IL) := (NJ′ZL)[N ]/ImAJ , Ai : ΨJ(IL)→ ΨJ∪i(IL) for i 6∈ J (4.11)

We write Ψ∗L when MZ = M .

To satisfy the conditions in (§3.2.6.1), set for J ⊂ K : fJK := AK\J :
ΨJ(IL)→ ΨK(IL) which is well defined since AK\J : NJ′ZL[N ]→ NK′ZL[N ]
and AK\J(ImAJ) ⊂ (ImAK). Set pKJ := ΨK(IL)→ ΨJ(IL) be the natural
projection since NK′ZL[N ] ⊂ NJ′ZL[N ] and ImAK ⊂ ImAJ .

Lemma 4.1. There exists a natural filtered quasi-isomorphism

(Ψ̃∗IL, F )
∼−→ (Ψ∗IL, F ). (4.12)

Proof. We prove that the complex Im∗A is acyclic. We write the complex
Im∗A as the cone over the morphism Ai. Let i ∈ MZ 6= ∅ such that mi > 0,
and Z ′ := Z \ {i}. We write the complex Im∗A as a cone complex over the
morphism

Ai : Im∗A(̂i)→ Im∗A(̂i)

where Im∗A(̂i) is defined by deleting the index i. We prove that Ai is an iso-
morphism of complexes. Since Ni is nilpotent, the inverse of Ai on L[N,N−1]
is defined and equal to the finite sum

A−1
i = Σj≥0m

−j−1
i N j

i N
−j−1. (4.13)

In particular, the endomorphism Ai is injective on L[N ]. Since Ai : ImAJ →
ImAJ∪{i} is clearly surjective for i 6∈ J , we deduce that the morphism Ai is
an isomorphism of complexes and its cone Im∗A is acyclic.

Example 4.2. In Diagram 4.8, the complex Im∗A

L[N ]
A1+A2−−−−−→ A1L[N ]⊕A2L[N ]

A2−A1−−−−−→ A2A1L[N ]
↓ N3 ↓ (N3 ⊕N3) ↓ N3

N3L[N ]
A1+A2−−−−−→ N3A1L[N ]⊕N3A2L[N ]

A2−A1−−−−−→ N3A2A1L[N ]

(4.14)

is the cone over the isomorphism defined in terms of A2:

L[N ]
A1+N3−−−−−→ A1L[N ]⊕N3L[N ]

N3−A1−−−−−→ A1N3L[N ]
'↓ A2 '↓ (A2 ⊕−A2) '↓ A2

A2L[N ]
−A1+N3−−−−−−→ A2A1L[N ]⊕A2N3L[N ]

−N3−A1−−−−−−→ A2A1N3L[N ]

Lemma 4.2. Let MZ ⊂ M , J ⊂ M , JZ = J ∩MZ , l = |J | and lz = |JZ |,
then

ΨJ(IL) := (NJ′ZL)[N ]/ImAJ ' ΨJZ (NJ′ZL) ' ⊕j≤lz−1NJ′ZL⊗N
j (4.15)

In particular, for MZ = M , we have AJL ' L[N ]/ImAJ ' ⊕j≤l−1L⊗N j.

Let AJZ := Alz · · ·A1, by definition:
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ΨJZ (NJ′ZL) := (NJ′ZL)[N ]/Im (AJZ : (NJ′ZL)[N ]→ (NJ′ZL)[N ])
Since Ai = −Ni for i ∈ J ′Z , AJZ (NJ′ZL) ⊂ ImAJ , the isomorphism follows.

Since AJZ acts as a polynomial in the variable N on ΨJZ (NJ′ZL) and
vanish, we develop AJZ in terms of the elementary symmetric functions σj ,
of 1

mi
Ni for i ∈ JZ to deduce the relation on ΨJZ (NJ′ZL) :

N lz = Σ1≤j≤lz (−1)j+1σj(
1

mi
Ni, i ∈ JZ)⊗N lz−j .

The action of the endomorphism N is the multiplication by N on NJ′ZL⊗N
j

for j < lz − 1 and acts on a ∈ NJ′ZL⊗N
lz−1 by the relation:

N(a⊗N lz−1) = Σ1≤j≤lz (−1)j+1σj(
1

mi
Ni, i ∈ JZ)(a)⊗N lz−j . (4.16)

Example 4.3. On the 2-dimensional disc D2 ⊂ C2, let W = W1 ∪ W2 be
the NCD defined by the equation z1z2 = 0. A unipotent local system L is
defined by a vector space L with the action of 2 nilpotent endomorphisms
(L,Ni, i ∈ [1, 2]).

Let MZ = {1, 2} and Z = W , then Ω∗L[N ](logZ) is defined by the dia-
gram

L[N ]
A1⊕A2−−−−−→ L[N ]⊕ L[N ]

A2−A1−−−−−→ L[N ]

with differentials defined by Ai and Ni up to sign. Taking the quotient in
ΨJL, we obtain the complex Ψ∗IL in degree 1 and 2

Ψ1IL := Ψ1 ⊕ Ψ2 = L ⊕ L
↓ d ↓ d ↓ d

Ψ2IL := Ψ12 = L ⊕ LN
(4.17)

where for (a, b) ∈ Ψ1 ⊕ Ψ2 : d(a, b) = −N1b−N2a⊕ (m2a+m1b)N ∈ Ψ12.
The action of N on Ψ is a matrix with entries defined by N1 and N2 as
follows:

1. N |Ψ1 ⊕ Ψ2 : Na = N1a, Nb = N2b,
2. N |Ψ12 : N(a+ bN) = − 1

m1m2
N1N2b+ ((N1

m1
+ N2

m2
)b+ a)N

Remark 4.2 (The complex Ψ̄∗L). We introduce the following complex:

(i) Ψ̄∗L is the exterior differential algebra (or Koszul complex) defined as
the simple complex associated to the de Rham family

(L[N−1]J = L[N−1], Ai, i ∈M)J⊂M ;

(ii) Ψ̄∗IL ⊂ Ψ̄∗L is the simple complex associated to the de Rham sub-
family (NJ′ZL[N−1] ⊂ L[N−1], Ai, i ∈M)J⊂M where N∅L = L

Ψ̄∗IL := s((NJ′ZL[N−1] ⊂ L[N−1], Ai)J⊂M, i∈M . (4.18)
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(iii) The exterior complex Ω∗(IL[N,N−1], Ai)i∈MZ
is acyclic since Ai is in-

vertible for i ∈ MZ (Equation 4.13). Equivalently, the simple complex
associated to the de Rham sub-family (NJ′ZL[N,N−1] is acyclic and we

have a quasi-isomorphism: Ψ̄∗IL ' Ψ̃∗IL.

4.2.1.4 The logarithmic limit complex Ψ∗ IL ' ψu
f (j!∗L)

We resume the global hypothesis with a morphism f : X → D and a NCD
Z :=

∑
i∈IZ miYi as central fiber and let L be a local system defined on a

NCD Y ⊃ Z.
The global limit logarithmic complex Ψ∗IL with indices in the right half

plane is constructed as follows. Consider the double complex with gradings
p ≥ 0 and q:

Ψ̃p,qIL := Cu−(p+1) ⊗C i
∗
ZICp+q+1L(logZ) (4.19)

with differentials

d′ : Ψ̃ILp,q →Ψ̃ILp+1,q, d′(u−(p+1) ⊗ ϕ) = −(p+ 1)u−(p+2) ⊗ df

f
∧ ϕ,

d′′ : Ψ̃ILp,q →Ψ̃ILp,q+1, d′′(u−(p+1) ⊗ ϕ) = u−(p+1) ⊗∇ϕ,

where d′′ is deduced from the differential ∇ on i∗ZIC
∗L(log Z), hence the

total differential is: d(u ⊗ ϕ) = u ⊗ df
f ∧ ϕ ± 1 ⊗∇ϕ. The associated simple

complex is denoted by Ψ̃∗IL.

Definition 4.3 (Ψ∗IL). There exists a unique complex Ψ∗IL := Ψ̃∗IL/Im∗A,
defined as a quotient complex by a sub-complex Im∗A ⊂ Ψ̃∗IL such that
at a point x ∈ Y ∗M , the tilde embedding (chapter 3, Lemma 3.1) is a quasi-
isomorphism:

Ψ∗IL[1]
∼−→ Ψ∗ILx, L := L(x) (4.20)

(We remark that the embedding of Ω∗LN j is equal to the embedding of Ω∗L
in (ch. 2, Lemma 2.8) with a coefficient (−2iπ)j times).

The complex Ψ∗IL coincides in the case Y = Z and L = C, with the
complex A∗ introduced in Steenbrink [St 76].

4.2.1.5 The morphism ν of bidegree (1,−1) on Ψ∗IL

The morphism ν of bidegree (1,−1) on Ψ∗IL is induced by

ν̃ : Ψ̃ILp,q → Ψ̃ILp+1,q−1 (4.21)

defined by ν̃(ϕ) := u−p ⊗ ϕ→ u−p+1 ⊗ ϕ for ϕ ∈ i∗ZΩp+q+1L(logZ)).
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Proposition 4.1. The unipotent perverse sheaf ψuf (j!∗L) is isomorphic to

the Ψ∗IL in the derived category Db(Z,C), precisely

ψuf (j!∗L) ' Ψ̃∗IL ' Ψ∗IL (4.22)

The proof may be reduced to the original Lemma in ([DeK 73], Exposé XIV,
Lemma 4.18.5). The main point is the comparison theorem between the topo-
logical definition of ψuf (j!∗L) and the analytic definition of Ψ∗IL which allows
the later use of Hodge filtration on logarithmic differential forms. By con-
struction, we need to construct an adequate representative of the complex
ψf j!∗L := i∗Z j̃Z∗p̃

∗j!∗L ∈ Db(Z,C) (see Equation 2.14) in order to define
later the correct filtration F on it. For this purpose we introduce another
complex.

4.2.2 Proof of proposition 4.1

4.2.2.1 The complex Ψ̄∗IL

We suppose the central fiber of the morphism f : X → D a NCD Z ⊂ Y
included but eventually distinct from the singular set Y of L. The wedge
product

^ η : i∗ZIC∗L(logZ)→ i∗ZIC∗L(logZ)[1] : ϕ 7→ ϕ ∧ 1

2πi

df

f

defines a morphism of degree 1. Recall that t = π(u) = exp 2πiu . Then
c := [ 1

2πi
dt
t ] ∈ H1(D∗,Q) and I ^ η corresponds to the cup product with

the inverse image η = f∗c ∈ H1(X∗,Q):

^ η : H1(X∗,Q)⊗Hi(X∗, j!∗L)→ Hi+1(X∗, j!∗L)

The associated simple complex with indices in the left half plane

Ψ̄∗IL := C[u]⊗C i
∗
ZIC∗L(logZ) = Σp≤0Cu−p ⊗C i

∗
ZIC∗L(logZ)[p] (4.23)

where du = df
f , is the simple complex associated to the double complex with

indices (p, q), p ≤ 0, p+ q ≥ −dimX

Ψ̄ILp,q = Cu−p ⊗C i
∗
ZIC

q+pL(logZ), p ≤ 0,

d′ : Ψ̄ILp,q →Ψ̄ILp+1,q : d′(u−p ⊗ ϕ) = −pu−p−1 ⊗ df

f
∧ ϕ,

d′′ : Ψ̄ILp,q →Ψ̄ILp,q+1 : d′′(u−p ⊗ ϕ) = u−p ⊗∇ϕ,

(4.24)
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Definition 4.4. The complex Ψ̄∗IL is the simple complex associated to this
double complex:

Ψ̄∗IL := s(Ψ̄ILp,q, d′, d′′)p≤0,q∈Z = s(i∗ZIC∗L(logZ)[p],∧ 1

2πi

f

df
)p≤0.

In the case Z = Y , the complex Ψ̄∗IL = Ψ̄∗L has been introduced in [St 76],

[NaG 90]. It embeds into i∗Z j̃Z∗p̃
∗j!∗L. This embedding extends easily to the

complex Ψ̄∗IL in the case Z 6= Y .

4.2.2.2 The quasi-isomorphism Ψ̄∗IL ' Ψ̃∗IL

The morphism µ : Ψ̄∗IL → Ψ̃∗IL defined by: µ(up ⊗ ωp) = 0 if p 6= 0 and

µ(u0 ⊗ ω0) = (−1)|ω0|u−1 ⊗ 1
2πi

df
f ∧ ω0 is a quasi-isomorphism (to compare

with [NaG 90] Lemma 2.5).
The morphisms ν ◦µ and µ ◦ ν are homotopic. The homotopy h : Ψ̄∗IL →

Ψ̃∗IL of bidegree (0, 1) is defined by
h(up ⊗ ωp) = 0 if p 6= 0 and h(up ⊗ ωp) = (−1)|ω0|u−1 ⊗ df

f ∧ ω0 if p = 0.

Proposition 4.2. Let L be a polarized VHS on X \ Y . Then there exists a
natural quasi-isomorphism Ψ̄∗IL ∼−→ Ψuf j!∗L.

The local proof below (Lemma 4.4) is based on an extension of the follow-
ing comparison result by Deligne [De 70] between analytic and topological
complexes:

Lemma 4.3. Let Y = Z. There exists a quasi-isomorphism Ψ̄∗L ∼−→ Ψuf L.

The proof is based on a comparison with the meromorphic complex Ψmf (Ω∗X∗(L))
on a complex manifold X∗ := X\Z. We remark that the embedding j is Stein,
hence j∗ is acyclic on coherent sheaves on X \Z. The following isomorphism
is proved in ([DeK 73], Exposé XIV, Proposition 4.15)

Ψmf (Ω∗X∗(L))
∼−→ Ψuf L. (4.25)

The complex Ψ̄∗L is embedded as a sub-algebra in j̃Z∗p̃
∗Ω∗L by the relation

I(up ⊗ ϕ) :=
1

p!
up ⊗ ϕ for p ≥ 0 where du =

df

2πif
since 2πiu = log f.

This embedding defines the quasi-isomorphism

Ψ̄∗L ∼−→ Ψmf (Ω∗X∗(L))
∼−→ Ψuf L (4.26)

as we check by the following local computation due to Deligne.
Let Y = Z = ∪i∈IZi be the decomposition into smooth irreducible com-

ponents Zi with indices i ∈ I and let L denote a local system on X \ Z, By
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a polydisc in X with center y ∈ Z, B∗y = By \ Z and B̃∗y := D̃∗ ×D∗ Bz.
The unipotent cohomology Hi(Ψuf L)y ' Hi(B̃∗y ,L)u is related to Hi(B∗y ,L)
as follows.

Let U be a product of discs De with center 0 embedded as a polydisc
By ⊂ X such that f : U → D is defined by

∏
i∈[0,d] z

mi
i on U , U∗ = U∩f−1D∗

and Ũ∗ := D̃∗ ×D U ' B̃∗y ⊂ X̃.
A generator c of H1(D∗,Q) defines an element η := f∗(c) ∈ H1(U∗,L)

and the cup-product map ^ η : Hi−1(U∗,L)→ Hi(U∗,L).
On the one hand, the cohomology of the fiber of Ψuf L at y is isomorphic

to
Hi(Ψuf L)y = Hi(Ũ∗,L)u ' Hi(U∗,L)/ηHi−1(U∗,L) (4.27)

(see [DeK 73], Exposé XIV, Lemma 4.18.5).
On the other hand, since Y = Z, the morphism ^ η is induced by ∧ df

2πif ,
and a spectral sequence argument proves the isomorphism

Hi(Ψ̄∗L) ' Hi(U∗,L)/ηHi−1(U∗,L).

4.2.2.3 The general case: Y 6= Z

Let Y ′ := ∪i∈I−IZYi denote the subdivisor of Y complement to Z such that
Y = Z ∪ Y ′. Let X ′ := X \ Y ′ and f ′ : X ′ → D the restriction of f to X ′.

The natural quasi- isomorphism in Proposition 4.2 is an extension of the
quasi- isomorphism Ψ̄∗L ∼−→ Ψuf ′L in Lemma 4.3. It remains to prove the
quasi-isomorphism locally, at a point x ∈ Y ∗M ⊂ Z∗MZ

.
With the notations of §4.2.1.2, and (Definition 4.1), we introduce the complex:

Ψ̄∗IL := s((NJ′ZL[N−1] ⊂ L[N−1], Ai)J⊂M, i∈M . (4.28)

such that there exists an isomorphism: Ψ̄∗IL ' (Ψ̄∗IL)x defined by the tilde
embedding (see chapter 1, Lemma 3.1). The proof of the proposition is re-
duced to the following

Lemma 4.4. Ψ̄∗IL
∼−→ (Ψuf j!∗L)x

The lemma follows from the isomorphism: (jZ∗j
∗
Zj!∗L)x ' IC∗L(logZ) (chap-

ter 3, Proposition 3.2). The proof is similar.
Let U := Dp ×Dq with local coordinates (z., t.) := (z1, · · · , zp, t1, · · · , tq)

centered at x, such that L induces on U∗ := (D∗)p × (D∗)q a local system
unipotent along Y ∩ U .

Let g : Dp → D denote the morphism g(z.) = zm1
1 · · · zmpp and p1 : Dp ×

Dq → Dp the first projection such that f = g ◦p1. The central fiber W ⊂ Dp

of g is defined by g(z.) = 0 and its pre-image Z ∩U = p−1
1 (W ) is the central

fiber of f in U .
We reduce the proof of the lemma to the case ψug p1∗(j!∗L|U ), where the

derived functor p1∗(j!∗L|U ) has locally constant cohomology on Dp−W . We
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consider the diagram

U ′ := U \ Z = (Dp \W )×Dq jZ−→ Dp ×Dq p1−→ Dp g−→ D
∪ ∪ ∪

U ∩ Z = p−1
1 (W ) = U ∩ f−1(0) = W ×Dq

p1|−−→ W = g−1(0)
g|−→ 0

The cohomology sheaves Li := Ri(p1|U ′)∗(j!∗L|U ′) are locally constant on
(D∗)p. Their fiber at a point z. ∈ (D∗)p is isomorphic to the intersection
cohomology of a local system on (D∗)q at the center 0 ∈ Dq .

Let jW : (Dp \W ) → Dp be the inclusion. Since the restriction of p1 to
the family of spheres in the fibers of p1 is proper, the derived functor p1∗
commutes with jW∗ and jZ∗ and similarly, the functors ψf on U and ψg on
Dp commute with p1∗ ([DeK 73] §2.1.7):

p1|∗ψ
u
f j!∗L

∼−→ ψug (p1|U ′)∗(j!∗L|U ′).

By constructibility, we deduce for U small enough, the following isomorphisms

(ψuf j!∗L)0 ' RΓ (U,ψuf j!∗L) = RΓ (Dp, R(p1|∗ψ
u
f j!∗L)

∼−→(Rp1|∗ψ
u
f (j!∗L|U ′))0

∼−→ (ψugR(p1|U ′)∗(j!∗L|U ′))0

By a spectral sequence argument, Deligne’s comparison applies to the com-
plex R(p1|U ′)∗j

′
!∗L since it has locally constant cohomology.

We check now that the induced morphism Ψ̄∗IL→ (ψugR(p1|U ′)∗(j!∗L|U ′))0

is an isomorphism. We write Ψ̄∗IL as the associated single complex of a dou-
ble complex as in (ch. 1, Remark 3.4). Let M ′Z := M \MZ , J

′
Z := J \JZ . For

each fixed subset JZ ⊂MZ we define the following Koszul complex :

IC∗(L[N−1], Ni)i∈M ′Z := s(NJ′ZL[N−1], Ni)J′Z⊂M ′Z , i∈M ′Z

by summing over J ′Z ⊂M ′Z , on which Aj acts for j ∈MZ . We define

Ω∗(IC∗(L[N−1], Ni)i∈M ′Z , Aj)j∈MZ

as the sum over JZ ⊂MZ of these constant complexes

Ψ̄∗IL := s
(
s(NJ′ZL[N−1], Ni)J′Z⊂M ′Z ,i∈M ′Z , Aj

)
JZ⊂MZ ,j∈MZ

(4.29)

We use this structure of double complex to define filtrations on both terms
of the lemma with isomorphic spectral sequences.

Let Hj denote the fiber of the local system Hj := Rj(p|U ′)∗(j!∗L|U ′), with
an action of Ai for i ∈ MZ and let Ψ̄∗Hj be defined by Hj as in (Remark
4.2, i).

Sub-lemma.
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(i) We have Hj [N−1][−j] := Grτj s(NJ′ZL[N−1], Ni)J′Z⊂M ′Z ,i∈M ′Z , where τ
denotes the truncation filtration of the complex.

(ii) The filtration τ extends to a filtration W ′ on Ψ̄∗IL satisfying

GrW
′

j Ψ̄∗IL := s(Hj [N−1][−j], Ai)JZ⊂MZ ,i∈MZ
' Ψ̄∗Hj . (4.30)

Proof of the lemma. Let τ ′jΨ
u
g (R(p|U ′)∗(j!∗L|U ′)) := Ψug τjR(p1|U ′)∗(j!∗L|U ′)),

then
(Grτ

′

j Ψ
u
g (R(p|U ′)∗(j!∗L|U ′))0 = (ΨugHj [−j])0.

Since Hj is a local system we apply Proposition 4.3 to deduce

Ψ̄∗Grτj (s(NJ′ZL,Ni)J′Z⊂M ′Z ,i∈M ′Z ) = Ψ̄∗Hj ' (ΨugHj)0

from which we deduce an isomorphism of spectral sequences defined by the
filtrations (Ψ̄∗IL,W ′) and (Ψug (R(p|U ′)∗(j!∗L|U ′), τ

′)0, hence an isomorphism
of complexes. This proves Proposition 4.2 and completes the proof of Propo-
sition 4.1 as we established the following isomorphisms

ψuf j!∗L
∼←− Ψ̄∗IL ∼−→ Ψ̃∗IL ∼−→ Ψ∗IL (4.31)





Chapter 5

Limit mixed Hodge structure on Ψ ∗IL

Hypothesis.Let f : X → D be a projective morphism on a non singular
complex variety X to a complex disc and L a local system defined on an
open subset U := X \ Y complement of a NCD Y =

⋃
i∈I Yi ⊂ X. We

suppose the central fiber equal to a NCD Z = f−1(0) contained in Y as a
sub-divisor. The divisor Z is a union of components of Y indexed by a subset
IZ ⊂ I. For i ∈ IZ let mi > 0 denote the multiplicity of Yi in the divisor of
f , so (f) =

∑
i∈IZ miYi.

Results.Let L be a polarized VHS on U , the filtration F is transported onto
the nearby cycle complex by the isomorphism ψuf j!∗L ' Ψ∗IL (see chapter
4, Proposition 4.1). The monodromy filtration W (N) shifted by the weight
w′ of L define the weight filtration W := W (N)[w′] on ψuf j!∗L such that F
and W form a structure of mixed Hodge complex (MHC) on ψuf j!∗L.

The finite increasing filtration W (ν) defined by the nilpotent endomor-
phism ν on Ψ∗IL corresponds to the monodromy filtration W (N) on ψuf j!∗L.

We define also the vanishing cycles complex ϕf (j!∗L) as a mixed cone over
the specialization sp : i∗Zj!∗L → ψf (j!∗L) (§5.1.3.2) with filtrations W and
F , on which the action of the nilpotent endomorphism N extends.

The main result of this chapter is the decomposition of Gr
W (N)
∗ Ψuf j!∗L and

Gr
W (N)
∗ ϕuf j!∗L into a direct sum of intermediate extensions on the smooth

and projective components of the NCD Z.

Remark 5.1 (Conventions and terminology). With the notations of (§2.4.0.2),
we denote by (pL, F ) := (L[dimX], F ) the perverse shifted polarized VHS.
If L := LX(x) is the fiber of Deligne’s extension, then pL := pLX(x). If ν acts
on a perverse sheaf P as a nilpotent endomorphism, the filtration W (ν) is
well defined in the abelian category of perverse sheaves.
A shifted perverse sheaf P on an algebraic variety X is a complex such that
P[k] is perverse when shifted by an integer k.
Consequently, the notation Ψ∗IpL = Ψ∗IL[dimX] means a corresponding
shift in the degrees. It is not a perverse sheaf on Z but Ψ∗IpL[−1] is perverse,
hence we introduce the notations:

89
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pψuf j!∗
pL := ψuf j!∗

pL[−1], pϕuf j!∗
pL := ϕuf j!∗

pL[−1]. (5.1)

ii) Conventions on the weight filtration W . In the text, we define a weight
filtration on ψuf j!∗L correspondind to a weight W on pψuf j!∗

pL. We apply the
following conventions:

1) Let W be an increasing filtration on an object of an abelian category,
the filtration W [k] is defined in [De 72] and [De 75] by: W (k)n := Wn−k. For
example, this convention apply to ψuf j!∗L where the weight W is related to
the monodromy filtration by W = W (N)[w′].

2) In the case of a HS (H,F ), the weight of the twisted HS (H,F )(k) drops
by −2k.

3) The weightW on a complexK is shifted with the complex:Wi+1(K[1]) =
(WiK)[1] but not F (F i(K[1]) = (F iK)[1]).

4) A bifiltered complex of sheaves (K,W,F ) on a topological space X was
called for a while: cohomological MHC if its hypercohomology on X is a
mixed Hodge complex. This terminology did not survive, so by extension we
call this bifiltered complex a MHC.

After the introduction of perverse sheaves, we define in the text the more
rich concept of perverse variation of MHS, which yields also a MHC, so for a
while we use both terminology.

Definition 5.1. The morphism N := Log T acts on ψfK, and extends to
the cone C(sp) to define a morphism N on ϕufK. The morphism N induces
a morphism var : ϕufK → ψufK such that can ◦ var = N and var ◦ can = N .

With the above conventions, we have:

GrWa+ pw−1
pψuf j!∗

pL = (GrW (N)
a ψuf j!∗L)[n− 1] = GrWa+ pwψ

u
f j!∗

pL[−1]

GrWa+ pwψ
u
f j!∗

pL = (GrWa+w′ψ
u
f j!∗L)[n]

(5.2)

In the case of the vanishing cycle, the lemma 5.1 apply and adds 1 to the
weight of the structure of nilpotent orbit

GrWa+ pwϕ
u
f j!∗

pL = (GrWa+ pw+1ϕ
u
f j!∗

pL)[−1] = (GrWa+w′+1ϕ
u
f j!∗L)[n− 1]

GrWa+w′+1ϕ
u
f j!∗L = GrW (N)

a ϕuf j!∗L
(5.3)

Theorem 5.1 (Decomposition of pψuf j!∗
pL and pϕuf j!∗

pL). The weight
filtration W and the Hodge filtration F on pψuf j!∗

pL (resp. pϕuf j!∗
pL) satisfy

the following decompositions:

GrWi
pψuf j!∗

pL ' ⊕ZJ⊂Z( pPJi , F )

GrWi
pϕuf j!∗

pL ' ⊕ZJ⊂Z( pQJi , F )
(5.4)

into intermediate extensions of shifted polarized VHS on Y ∗Z : ( pPJi , F ) (resp.
( pQJi , F )) (see Equation 5.31). Moreover:
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GrWa+ pw−1
pψuf j!∗

pL ' GrW (N)
a

pψuf j!∗
pL, GrWa+ pw

pϕuf j!∗
pL ' GrW (N)

a
pϕuf j!∗

pL

and there exists a diagram of morphisms :

( pψuf j!∗
pL,W, F )

can→ ( pϕuf j!∗
pL,W, F )

var→ ( pψuf j!∗
pL,W, F )(−1)

such that: var ◦ can = N and can ◦ var = N .

The statement here is a decomposition in terms of intermediate extensions
in opposition with classical statements on a decomposition of cohomology in
terms of HS (before the introduction of perverse sheaves).
As a consequence of this decomposition and the existence of a pure HS on the
hypercohomology of intermediate extensions of polarized VHS on the smooth
projective components of Z (proved by induction on dimZ), we deduce the
existence of a MHS on H∗(Z,ψuf j!∗L,W, F ) and H∗(Z,ϕuf j!∗L,W, F ).

Organization of the chapter. After a local study (§5.1), the theorem fol-
lows from (Proposition 5.3). The proof of the local version of the theorem
(see Equation 5.23) relies on the local description of perverse sheaves by de
Rham families (§3.2.6.1, Remark 3.6) and a criterion by Kashiwara on the
decomposition into a direct sum of intermediate extensions, based on the
property of distinguished pairs (§3.2.6.2).

For the global version (see §5.1.3.1) and for the results on vanishing cycles
(ϕf j!∗L, F ) (see §5.1.3.2).

5.1 Local proof of theorem 5.1

The proof is local at a point x ∈ Z (see §5.1.2 and Corollary 5.2). It is
necessary to use the local description of a perverse sheaf by the associated
canonical de Rham families (Remark 3.6, Equation 4.11), on which natural
structures of IMHS are defined below (§5.1.1).

Since the decomposition occurs locally in the abelian category of MHS, it
is necessarily accompanied by the decomposition of the filtration F .

The fiber of Deligne’s extension L := LX(x) at a point x ∈ Z is endowed
with a structure of nilpotent orbit and there exists a local decomposition of

the complex Gr
W (N)
i Ψ∗IL into a direct sum of shifted complexes IC∗P Ja L

defined by nilpotent orbits (P Ja L,W,F,Ni, i ∈M \J) of weight a+w′+1−|J |
with induced filtrations W and F defined by the equation (5.5) below.

We refer to the nilpotent orbit structure on ΨJ(L) (see Equation 5.7)
proved by Kashiwara ([Sa 90], Appendix), and to the decomposition for dis-
tinguished pairs following the proof by Saito ([Sa 88], Lemma 5.2.15) (see
Equation 5.17 below).

When x varies on Z∗J , the P Ja L form a polarized VHS PJa (§5.1.2). We
deduce from the purity theorem on the components of Z that the complex
GrW (ν)

a Ψ∗IL is a Hodge complex (see §5.1.3.1).

The purity theorem on the hypercohomology of the complex Gr
W (N)
i Ψ∗IL

may be deduced from (Theorem 3.1) or by induction on dimX, since dimZ <
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dimX. The purity theorem is proved in the same time with the decomposition
theorem. The main difference with the proof in [Sa 88] and [Sa 90], is the
reduction to the use of the category of IMHS at isolated strata on V .

The main property of the limit MHS is the functoriality of the monodromy
filtration with respect to the derived direct image f∗ (§7.1.1.1). This is proved
by induction on dimX.

The theory of nilpotent orbit (resp. admissible variation of MHS) appears
in [Sc 73, GrSc 73, CaKSc 86] (resp. [StZ 85]) but we adopt the notations
and terminology of [Ka 86] as summarized in §2.3 of chapter 2.

5.1.1 Infinitesimal mixed Hodge structure on ΨJ(L)

We consider again a polarized VHS L of weight w′, x ∈ Z∗M ⊂ Y and
the nilpotent orbit (L,F, P,Ni, i ∈ M) of weight w′ on L := LX(x)
with monodromy Ni, i ∈ M and polarization P . The filtrations F and
W = W (

∑
i∈M Ni)[w

′] form a limit MHS on L. These filtrations are used
to construct a MHS on ΨJ(L) (see ch. 4, Definition 4.2).

First, two filtrations W and F are defined on L[N ] as follows:

Wk(L[N ]) =
∑
i

Wk+2iL⊗N i , F p(L[N ]) =
∑
i

F p+iL⊗N i (5.5)

such that
(GrWk L[N ], F ) = ⊕i(GrWk+2iL,F [i])⊗N i.

where F [i]p := F p+i defines a HS of weight k for each index i, since
(GrWk+2iL,F ) is of weight k+2i. The morphisms N and Ni induce morphisms:

Wk(L[N ])→Wk−2(L[N ]) and F p(L[N ])→ F p−1(L[N ])

(see §4.2.1.3, Equation 5.5).
Since for each j ∈ M , the endomorphisms Aj = mjN − Nj shift W by

−2 and FJ by −1, ImAJ is compatible with F and W on L[N ], hence the
filtrations W and F induce a MHS on the quotient (see Definition 4.2)

ΨJL = (L[N ]/ImAJ ,W
J , FJ). (5.6)

The filtration W J in Equation (5.6) is in fact related to the monodromy
filtration W (N +

∑
i∈M Ni) ([Sa 90], Appendix):

Theorem (Kashiwara) Let (L,F, P,Ni, i ∈M) be a polarized nilpotent orbit
of weight w′ and mi > 0 for i ∈M a set of integers, then there exists on

ΨJ(L) = (L[N ]/ImAJ , N,N1, . . . , Nn;F, PJ) (5.7)

a structure of polarized nilpotent orbit of weight δ = w′ + 1 − |J | defined by
the nilpotent endomorphism NJ := (N+

∑
i∈M Ni)|ΨJ (L) and the polarization
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PJ (Equation 5.10). The monodromy filtration shifted by δ and the filtration
FJ define a MHS on ΨJ(L):

W J = W (NJ)[δ] : W J
k+δ = W (NJ)k (5.8)

Precisely: ∀k ≥ 0, Nk
J : GrW

J

δ+kΨJ(L)
∼−→ GrW

J

δ−kΨJ(L).

We recall that polarized means that Gr
W (NJ )
i ΨJ(L) is a direct sum of primi-

tive polarized structure of weight δ + i.

Let ` = |J | We recall the construction by Kashiwara of the polarization
on ΨJL. Since the endomorphisms Aj shift W by −2 and F by −1, the
isomorphism in Equation (5.51) is an isomorphism of MHS

(ΨJL,W
J , FJ) ' (⊕j≤`−1L⊗N j ,W, F ) (5.9)

The action of N on the left hand side is defined by Equation 4.16:

N(a⊗N l−1) =
∑̀
j=1

(−1)j+1σj((Ni/mi), i ∈ J)(a)⊗N `−j .

In order to define a polarization we introduce a product PJ on ΨJL as follows

PJ(a⊗N i, b⊗N j) = P (a, (−1)i Res(A−1
J (b⊗N i+j))) (5.10)

where A−1
J is defined on L[N,N−1] and the map Res : L[N,N−1] → L

is defined by Res(
∑
i uiN

i) := u−1. This relation shows directly that the
product is well defined on CokerAJ : note that PJ(a ⊗ N i, AJ(c ⊗ N j)) =
P (a, (−1)i Res(c⊗N i+j) = 0 as Res(c⊗N i+j) = 0.

Using the explicit expression of A−1
i (see ch. 4, Equation 4.13), we find

∀a, b ∈ L : PJ(a, b⊗N j) = P (a, b) if j = `−1, and 0 if 0 ≤ j < `−1. (5.11)

Example 5.1. Let L be a local system on C2 \Y where Y = Y1 ∪Y2 is defined
by z1z2 = 0. Then, ΨiL at x ∈ Y ∗i defines a VMHS for a varying x on Y ∗i
and W (N) = W (Ni), while Ψ12L is a nilpotent orbit for L = L(0) with limit
MHS defined by W {12} a shifted weight filtration W (N +N1 +N2).

(Ψ1L,W
{1}, F )x∈Y ∗1

��

(L, F )oo

ss ��
(Ψ12L,W

{12}, F )x=0∈Y ∗12 (Ψ2L,W
{2}, F )x∈Y ∗2

oo

where W J is defined by (Equation 5.8) for J = {1}, {2}, {12}.
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Remark that the decomposition (Equation 5.15) depends on the point x.
For example, (Ψ1L,W

{1}, F )x∈Y12∗ 6= (Ψ1L,W
{1}, F )x∈Y1∗ in the decomposi-

tion of (GrW (N)Ψ12L,W
{12}, F )0 into a direct sum:

(N2GrW (N)Ψ1,W
{1}L,F )0 ⊕ (N1GrW (N)Ψ2L,W

{2}, F )0 ⊕HS.

5.1.1.1 Distinguished pairs of GrW (N)
∗ Ψ∗IL

A diagram of modules A
ρ−→ B

G−→ C satisfy the decomposition property if
B = Im ρ⊕KerG. In this case, we say that the diagram forms a distinguished
pair and G induces an isomorphism Im ρ ' ImG ◦ ρ. If C = A, we say that
the diagram forms a distinguished pair ([Ka 86, §2.2]). Such decompositions
appear in Deligne’s proof of the Hard Lefschetz Theorem.

The decomposition of GrW (N)
a Ψ∗L is based on the concept of distinguished

pairs. The following proposition is proved by an argument similar to ([Sa 88]
Lemma 5.2.15):

Proposition 5.1. Let (L,F, P,Ni, i ∈ M) be a polarized nilpotent orbit of
weight w′, mi > 0 a family of integers for i ∈ M and J ⊂ M (Y = Z). Let
W (N) denote the filtration defined on ΨJL by the nilpotent endomorphism
N (§4.2.1.3, Lemma 4.2 in the case MZ = M). For each J ⊂M , a ∈ Z and
i ∈ J , the diagram

GrW (N)
a ΨJ\iL

Ai−→GrW (N)
a ΨJL(−1)

pi−→GrW (N)
a ΨJ\iL(−1) (5.12)

where Ai = miN − Ni and pi is the canonical projection, is a distinguished
pair:

GrW (N)
a ΨJL(−1) ' ImAi ⊕Ker pi. (5.13)

and pi induces an isomorphism of ImAi ⊂ GrW (N)
a ΨJL with

Im (Ni : Gr
W (N)
a ΨJ\iL→ Gr

W (N)
a ΨJ\iL).

Proof. Here L := LX(x) at x ∈ Y ∗M is endowed with the limit MHS W of an
IMHS defined in (§5.1.1) at x. Let i ∈M , the induced morphisms N,Ni and
Ai, shift the limit MHS W (Equation 5.5) by −2 and F by −1.

Let and N0 :=
∑
k∈M\{i}Nk, since W (N +N0 +Ni) is the relative weight

filtration with respect to W (N +N0) on ΨJ(L) (resp. W (N +N0) is relative
to W (N)) ([CaKSc 86], [Ka 86] Theorem 3.2.9, [StZ 85] Definition 2.5), we
have a HS of weight a+ j + r + δ where δ = w′ + 1− |J | on

Gr
W (N+N0+Ni)
j+r+a Gr

W (N0+N)
r+a GrW (N)

a ΨJL ' Gr
W (Ni)
j GrW (N0)

r GrW (N)
a ΨJL

For all j, r ∈ N, we have a commutative diagram



5.1 Local proof of theorem 5.1 95

Gr
W (Ni)
j GrW (N0)

r GrW (N)
a ΨJ\iL

−Ai //

Ni
��

Gr
W (Ni)
j−1 GrW (N0)

r GrW (N)
a ΨJL(−1)

Ni
��piss

Gr
W (Ni)
j−2 GrW (N0)

r GrW (N)
a ΨJ\iL(−1)

−Ai // Gr
W (Ni)
j−3 GrW (N0)

r GrW (N)
a ΨJL(−2)

(5.14)
Since N shifts W (N) by −2, we deduce that pi ◦N = 0, hence pi ◦Ai = −Ni.
The weight of the HS on the first line of (Equation 5.14) are the same,
a+ j+ r+ (δ+ 1) on the left and a+ (j−1) + r+ δ+ 2 (after the twist by -1)
on the right since it is defined by the limit MHS of the IMHS at J \ i resp. J .

Moreover the maps Ni satisfy Lefschetz isomorphisms:

(Ni)
j : Gr

W (Ni)
j ' Gr

W (Ni)
−j . We also have:

PJ(Aiu, v) = PJ−i(u, piv) for all u ∈ ΨJ−iL and v ∈ ΨJL.

In this situation, a result of M. Saito ([Sa 88] 5.2.15) shows the decomposition
in Equation 5.13 (see also Kashiwara [Ka 86] Proposition 3.3.1, Lemma 5.6.5,
Equation 5.5.16 with correct index k − 1 on the right term). When j and r

vary, we deduce the decomposition over all GrW (N)
a ΨJL.

-Remark that we could consider only W (N + Ni), since by (Remark 2.9)
or (Proposition 2.7), for i fixed, there exists a filtration Fi and a polarization
Pi such that (L,Fi, Pi, N,Ni) is a nilpotent orbit.
The proof proceeds without N0, to deduce the decomposition of the vector
space in (Equation 5.13), but it is necessarily in the category of IMHS.

5.1.1.2 The case of ΨJ(IL).

We extend the above result to the case where Z 6= Y . Let MZ ⊂M , J ⊂M
such that mi = 0 for i 6∈MZ , JZ = J∩MZ , J

′ = J \JZ , l = |J | and lz = |JZ |,
then the proposition above extends to (ΨJ(IL),W J , FJ).

Corollary 5.1. For each J ⊂ M the data (ΨJIL,W
J , FJ , {Aj , j ∈ M}) is

an IMHS on ΨJIL. For each J ⊂M , a ∈ Z and i ∈ J we have the following
distinguished pair:

GrW (N)
a ΨJ\iIL

Ai−→GrW (N)
a ΨJIL(−1)

pi−→GrW (N)
a ΨJ\iIL(−1)

where Ai = miN −Ni and pi is the natural projection. The decomposition:

GrW (N)
a ΨJIL ' ImAi ⊕Ker pi (5.15)

is compatible with the primitive decomposition of GrW (N)
a ΨJIL.

In particular, pi induces an isomorphism of ImAi in GrW (N)
a ΨJIL onto

Im (pi ◦Ai) in GrW (N)
a ΨJ\iIL. Moreover, Ker pi = 0 if i /∈MZ .
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Proof. By (§4.2.1.3, Lemma 4.2): ΨJ(IL) ' ΨJZ (NJ′ZL). Set ΨJZ (NJ′ZL) :=
ΨJZ ,J′ . First let i ∈ JZ and consider the sequence

GrW (N)
a ΨJZ\i,J′

Ai−→GrW (N)
a ΨJZ ,J′(−1)

pi−→GrW (N)
a ΨJZ\i,J′(−1)

where Ai = miN −Ni and pi is the natural projection.
By repeated application of the lemma (5.1) below, NJ′L is a nilpotent

orbit. Hence the above proposition applies to NJ′ZL and we have the decom-
position:

GrW (N)
a ΨJZ ,J′ ' ImAi ⊕Ker pi (5.16)

Second, for i ∈M ′Z , hence Ai = −Ni, we check that the following sequence

GrW (N)
a ΨJZ ,J′\iL(1)

Ni−→GrW (N)
a ΨJZ ,J′L

pi−→GrW (N)
a ΨJZ ,J′\iL(−1)

satisfies the decomposition property

GrW (N)
a ΨJZ ,J′L ' ImNi ⊕ (Ker pi = 0). (5.17)

which is clear via the isomorphism (§4.2.1.3, Lemma 4.2):

(ΨJZ ,J′L,W,F ) ' (⊕j≤lz−1NJ′L⊗N j ,W, F )

compatible with the filtrations. The surjectivity of Ni (resp. the injectivity of

pi) follows from the surjection NJ′\iL
Ni−−→ NJ′L (resp. the injection NJ′L ↪→

NJ′\iL). The proof is a consequence of:

Lemma 5.1 (Vanishing cycle). ([KaK 87] Theorem. 2.1.5, [CaKSc 87]
Descent Lemma 1.16). Let (L,F, P,N1, ..., Nn) be a nilpotent orbit of weight
w′ polarized by P . Set F k+1(N1L) := N1F

k+1L = N1L ∩ F kL, then

(N1L,N1F, P1, (Ni)|N1L), where P1(N1a,N1b) = P (a,N1b), ∀a, b ∈ L

is a polarized nilpotent orbit of weight w′ + 1.
i) Set N0 :=

∑
i∈[1,n]Ni. The monodromy filtrations centered at 0 satisfy:

Wk(N0|N1L) = N1Wk+1(N0) = N1L ∩Wk−1(N0)

and Wk+w′+1N1L = W (N0|N1L)k = N1Wk+w′+1L = N1Wk+1(N0).

ii) The morphism N1 is written as the composition of morphisms of MHS:

N1 : (L,W,F )
can−−→ (N1L,F,W )

N ′1
↪→ (L,W,F )(−1)

where can is surjective and called canonical such that F k+1(N1L) := N1F
k+1L =

N1L ∩ F kL and Wk+1(N1L) := N1Wk+1L = N1L ∩Wk−1L.

The difficulty in the lemma is to prove the structure of nilpotent orbit on
N1L as in the following diagram. Let Ñ0 := (N0)|N1L the restriction of N0,
then for all k ≥ 0, the induced morphism by Nk

0 on the first line, is an
isomorphism:
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N1Gr
W (N0)
k+1 L

Nk0∼ //

=
��

N1Gr
W (N0)
−k+1 L

=
��

Gr
W (Ñ0)
k N1L

Ñk0∼ // Gr
W (Ñ0)
−k N1L

Remark 5.2. i) Later, the lemma is used to deduce the weight filtration on
the perverse vanishing cycle sheaf pϕuf j!∗

pL from the weight on the perverse
nearby cycle ψuf which explains the name of the result.

ii) In [CaKSc 87], the convention in the Descent lemma is: F kN1L =
N1F

k+1L, which explains the weight w′ − 1 there, hence we have the factor-
ization: N1 : (L,W,F )→ (N1L,F,W )(−1)↪→(L,W,F )(−1).

Example 5.2. We illustrate the vanishing cycle lemma as follows. Given
(L,N), let L′ := NL, denote by N ′ : L′ → L′ the restriction of N and

by Ñ : L→ L′ the morphism induced by N . We have:

P2 = KerN3 ⊂ GrW2 L

N

��

Ñ∼ // ÑP2 = KerN ′
2 ⊂ GrW

′

1 L′

N ′∼
��

P0 = Ker Ñ // P0 ⊕NGrW2 L ⊂ GrW0 L

N

��

Ñ // GrW
′

−1L
′ ' N2GrW2 L

N ′

��
N2P2 = Ker Ñ // N2GrW2 L ' GrW−2L

Ñ // GrW
′

−3L
′ ' NGrW−2L

P1 ⊂ GrW1 L

N

��

Ñ∼ // ÑP1 = KerN ′ ⊂ GrW
′

0 L′

N ′

��
NP1 = Ker Ñ ⊂ GrW−1L

Ñ // GrW
′

−2L
′

5.1.2 Local decomposition of GrW (N)
∗ Ψ∗IL

The proof of Theorem 5.1 relies on the local description of perverse sheaves by
de Rham families and a criterion by Kashiwara on the decomposition into a
direct sum of intermediate extensions, based on the property of distinguished
pairs (§3.2.6.2).

The restriction of the shifted perverse sheaf Ψ∗IL to a small polydisc with
center x ∈ Y ∗M isomorphic to Dm+l in the product YM × NYM of YM with
the normal section to YM at x, is described by a de Rham family attached
to L := L(x) ([Ka 86], §2):
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DR(ΨIL) := {ΨJIL, pKJ : ΨJIL→ ΨKIL,AJ\K : ΨKIL→ ΨJIL}K⊂J⊂M
pKJ :=

∏
i∈J\K

pi : ΨJIL→ ΨKIL, AJ\K :=
∏

i∈J\K

Ai : ΨKIL→ ΨJIL

(5.18)

where the morphisms pKJ and AJ\K satisfy compatibility relations ([Ka 86],
(2.1.1) to (2.1.4)). The morphism N acts on the de Rham family DR(ΨIL)
and we consider the graded de Rham family

GrW (N)
a DR(ΨIL) := {GrW (N)

a ΨJIL, p
K
J , NJ\K}K⊂J⊂M (5.19)

where we write pKJ for GrW (N)
a pKJ . Moreover, GrW (N)

a AJ\K coincides with

NJ\K up to a sign, since N : GrW (N)
a ΨJ\iIL→ GrW (N)

a ΨJIL vanishes for all
i ∈ J . So the distinguished pairs property is satisfied by Corollary 5.1 for all
K ⊂ J ⊂M :

GrW (N)
a ΨJIL ' ImNJ\K ⊕Ker pKJ . (5.20)

Proposition 5.2. Let L be defined on X \ Y . For each J ⊂ M , x ∈ ZJ , let

L := LX(x). We define P Ja (IL) ⊂ GrW (N)
a ΨJIL by

P Ja (IL) := ∩K⊂J,K 6=JKer (pKJ : GrW (N)
a ΨJIL→ GrW (N)

a ΨKIL) (5.21)

then P Ja (IL) 6= 0 if and only J ⊂ JZ .
i) If x ∈ Y ∗M , then x ∈ YJ for all J ⊂ M,J 6= M and we have the

decomposition as a direct sum of MHS (hence including the decomposition of
the Hodge filtration F )

GrW (N)
a ΨMIL

∼−→ ⊕J⊂MZ
NM\JP

J
a (L) (5.22)

Let ImNM\J : P Ja (L)→ P Ja (L) denote the image of NM\J acting on P Ja (L).
Then pJM induces an isomorphism:

GrW
M

a ΨMIL ⊃ NM\JP Ja (L)
pJM' ImNM\J ⊂ P Ja (L).

ii) Let J = MZ and x ∈ Y ∗J , then P Ja (L) is a HS of weight a+w′+1−|J |.
For varying x ∈ Y ∗J , PJL defines a polarize VHS on Y ∗J . iii) Let x ∈ YJ \ Y ∗J
and x ∈ Y ∗M , then (P Ja (L), F,Ni, i ∈ M \ J) with induced filtration F and
nilpotent endomorphisms Ni, is a nilpotent orbit of weight a+ w′ + 1− |J |.

Corollary 5.2. When x ∈ Y ∗M the decomposition in Equation 5.22 is inter-
preted as the following decomposition

(GrW (N)
a Ψ∗IL, F )

∼−→ ⊕K⊂MZ
(IC∗PKa L,F )[−|K|]. (5.23)

The corollary follows by (Equation 5.22) since the filtered morphism

⊕J⊂MZ
(NM\JP

J
a L,W,F )

∼−→ (GrW (N)
a ΨMIL,W,F ) (5.24)
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is necessarily an isomorphism in the category of MHS by (Remark 3.6vii) .
The local decomposition by (Equation 5.23) leads later to the global de-

composition (Equation 5.31).

Example 5.3. The decomposition of Diagram 4.17 in chapter 4, where Z = Y ,
is as follows

GrW (N)
a Ψ1L := GrW (N)

a Ψ1 ⊕GrW (N)
a Ψ2 = GrW (N1)

a L⊕GrW (N2)
a L

↓ ↓ ↓ N2 ↓ N1

GrW (N)
a Ψ2L := GrW (N)

a Ψ12 = N2P
1
a (L)⊕N1P

2
a (L) ⊕P 12

a (L)

where the term P 1
a (L) = GrW (N1)

a Ψ1L, (resp. P 2
aL = GrW (N2)

a Ψ2L) is a direct
sum of polarized HS for L := LX(x), x ∈ Y ∗1 (resp. x ∈ Y ∗2 ). For x ∈ Y ∗12

the space N2P
1
aL⊕N1P

2
aL is endowed with the induced MHS W (N1 +N2)

on GrW (N)
a Ψ2L. Hence W (N2) on N2P

1
aL is induced by the nilpotent orbit

(P 1
aL,N2), resp. W (N1) on N1P

2
aL.

Thus, the two columns are fibres of intersection complexes on Yi.
The term P 12

a L is endowed with a sub-polarized HS defined by W (N1 +N2).
We have a decomposition as a direct sum of fibres of complexes at 0:

IC∗P 1
aL[−1]⊕ IC∗P 2

aL[−1]⊕ P 12
a L[−2]

including the decomposition of Hodge filtrations. In addition there exists
natural morphisms: p1

12 : GrW (N)
a Ψ12 → GrW (N)

a Ψ1 vanishing on N1P
1
aL ⊕

P 12
a L and injective on N2P

2
aL (resp. p2

12 : GrW (N)
a Ψ12 → GrW (N)

a Ψ2 vanishing
on N2P

2
aL⊕ P 12

a L and injective on N1P
2
aL).

Proof of Proposition 5.2. By (Equation 5.17), ker pi = 0 if i /∈MZ .
i) The decomposition follows functorially from the property of distin-

guished pairs in the graded family 5.19 and properties of the morphisms
pKJ and NJ\K ([Ka 86], Proposition 2.3.1, Equations (2.1.1) to 2.1.4)).

We suggest a direct proof by induction on the length of M : n = |M | of
the general formula

GrW (N)
a ΨMIL

∼−→ ⊕J⊂MNM\JP Ja (IL).
For n = 1 the decomposition is reduced to the property of graded distin-

guished pair. Let M ′ := {1, · · · , n− 1}. We consider two sub-families:

(GrW (N)
a ΨJIL, p

K
J , NJ\K)K⊂J⊂M ′ ;

(GrW (N)
a ΨJ∪nIL, p

K∪n
J∪n , NJ\K)K⊂J⊂M ′ .

By induction, we suppose the decomposition for the two families with indices
J ⊂M ′, valid on the two rows of the following diagram

GrW (N)
a ΨM ′IL

∼−→ ⊕J⊂M ′NM ′\JP Ja (IL)

pM
′

M ↑↓ Nn pJJ∪n ↑↓ Nn
GrW (N)

a ΨMIL
∼−→ ⊕J⊂M ′NM ′\JP J∪n,M

′

a (IL)

(5.25)
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where P J∪n,M
′

a (IL) is defined with respect to the family K ∪ n for K ⊂M ′,
while P J∪na (IL) (for the family with index in M) is defined with respect to
the extended family with index K ⊂ J∪n, i.e. K ⊂ J ⊂M ′ and K∪n ⊂ J∪n.
The columns are written in terms of the property of distinguished pairs, for
each J ⊂M ′:

P J∪n,M
′

a (IL) ' NnP
J
a (IL)⊕Ker pJJ∪n

P J∪na (IL) = Ker (pJJ∪n : P J∪n,M
′

a (IL)→ P Ja (IL))
(5.26)

We deduce from the second line of the diagram the sum over all subsets of
M , that is J ⊂M ′ and J ∪ n, n 6∈ J :

GrW (N)
a ΨJ(IL) ' ⊕J⊂M ′(NnNM ′\JP Ja (IL)⊕NM ′\JP J∪na (IL))

= ⊕J⊂MNM\JP Ja (IL)
(5.27)

ii) For i ∈ J ⊂MZ and K = J \i, Ni : GrW (N)
a ΨJL→ GrW (N)

a ΨJL is equal to

the composition morphism GrW (N)
a ΨJL

pKJ−−→ GrW (N)
a ΨKL

Ni−−→ GrW (N)
a ΨJL.

Hence for all i ∈ J , Ni vanishes on P Ja L ⊂ Ker pKJ .
iii) For x ∈ Y ∗J , since N0 :=

∑
i∈J Ni vanishes on P Ja L and P Ja L is a

direct summand of GrW (N)
a ΨJL, we deduce that P Ja L = Gr

W (N0)
0 P Ja L is a

pure direct summand of weight a+w′ + 1− |J | of Gr
W (N0)
0 GrW (N)

a ΨJL with

respect to the MHS induced on GrW (N)
a ΨJL by W J .

iii) When x varies on Z∗J , P Ja (L) defines a global polarized VHS, hence for
x ∈ ZJ , P Ja (L) is a nilpotent orbit of weight a+ w′ + 1− |J |.

Remark 5.3. Let L be a shifted local system on the open subset U union of the
big strata of a stratification S of X, j : U → X and f : X → D a morphism
to the disc D ∈ C with central fiber Z a NCD in X intersecting transversally
the strata of S and let j′ : Z∩U → Z, then GrW (N

∗ ψuf j!∗L ' j′!∗GrW (N
∗ ψuf|UL.

Remark 5.4. [Relation with the open embedding] Let Z ⊂ X be the NCD
defined by f and j : X \ Z → X. The filtration W (N) on ψuf defines the
weight filtration on j∗ in the general case of VMHS (see §9.7.1.1).

5.1.3 Perverse VMHS structure on ψu
f j!∗

pL and ϕu
fj!∗

pL

With the notations of §4.2.1.4 in chapter 4, we give below the global definition
of the weight and Hodge filtrations on Ψ∗IL when L is a polarized VHS on the
complement of Y . The action of the logarithm of the monodromy is defined
by ν on Ψ∗IL (Equation 4.21); the weight filtration is defined by W (ν).

By the preceding local results, the graded weight complex decomposes
into a direct sum of intermediate extensions. In particular, when the NCD Z
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is projective, the derived global sections functor is a mixed Hodge complex
(MHC) inducing MHS on its cohomology. The same results apply to the
vanishing cycle complex Φ∗IL (see §5.1.3.2 below).

5.1.3.1 Weight and Hodge filtrations on Ψ∗IL

The Hodge filtration F on the quotient complex Ψ∗IL is deduced from the
Hodge filtration F on Ψ̃∗IL:

F pΨ̃∗IL :=
∑
q≥0

Cu−(q+1) ⊗C (i∗ZIC
∗L(logZ)[q + 1], F q+p+1) (5.28)

The weight and the monodromy filtration W (ν) on Ψ∗IL.
The action of the nilpotent endomorphism ν defines a unique monodromy
filtration W (ν) on Ψ∗IL. This filtration W (ν) on Ψ∗IL corresponds locally
at a point x ∈ Y ∗M ⊂ Z, to the filtration W (N) on Ψ∗IL[1] ' (Ψ∗IL)x
(Equation 4.20).

In terms of a set of coordinate equations yi for i ∈ M at x of YM , the
subspace W (ν)k is generated as an Ω∗X,x sub-module by the sections ṽ ∧j∈J
dyj
yj
∈ Ψ∗ILx for all v ∈ W (N)kΨJIL[1] and J ⊂ M such that the quasi-

isomorphism
(Ψ∗ILx,W (ν), F ) ' (Ψ∗IL[1],W (N), F ) (5.29)

(see Equation 4.20) is compatible with both filtrations. The theorem (5.1)
follows in the unipotent case from the following remark that the components
PKa L in Equations 5.22 and 5.23 are local version of a global VHS: .

Definition 5.2 (IC∗PKa L ⊂ GrW (ν)
a Ψ∗IL). There exists a unique complex

IC∗PKa L, defined as a sub-complex of GrW (ν)
a Ψ∗IL[|K| − 1]) such that at

a point x ∈ Y ∗M , the tilde embedding by (Equation 4.20) induces a quasi-
isomorphism:

IC∗(PKa L)
∼−→ (IC∗PKa L)x ⊂ (GrW (ν)

a Ψ∗IL[|K| − 1])x, L := L(x) (5.30)

The corollary below follows from the local decomposition in (Equation 5.23).

Corollary 5.3. There exists a polarized VHS: P Ja L of weight a+w′+1−|J |
on Z∗J , such that (IC∗PJaL, F ) is a resolution of the intermediate extension
of P Ja L by jZ : Z∗J → X:(IC∗PJaL, F ) ' (jZ!∗P

J
a L, F ).

Proposition 5.3 (Decomposition of GrW (N)
∗ ψuf j!∗L). Let L be of weight

w′ on X \Y locally unipotent along Y and let W (ν) be the monodromy filtra-
tion on Ψ∗IL. For each a ∈ Z, there exists a decomposition into a direct sum
over all J ⊂ IZ of intermediate extensions by jZ : Z∗J → X of weight a+w′:

(GrW (ν)
a Ψ∗IL, F ) ' ⊕J⊂IZ ,J 6=∅(IC

∗PJaL, F )[1− |J |](1− |J |) (5.31)
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Proof. By definition of IC∗PJaL, the decomposition in (Equation 5.31) cor-
responds to the local version (Equation 5.23) and (Equation 4.20):

(GrW (ν)
a Ψ∗ILx, F )

∼−→ ⊕K⊂MZ
(IC∗PKa L,F )[1− |K|](1− |K|) (5.32)

Remark the twist of the weight by −2(1−|J |) and the shift by [1−|J |], since
P Ja L is a nilpotent orbit of weight a+ w′ + 1− |J |, hence:
IC∗(P Ja L)[1−|J |](1−|J |) is of weight a+w′+2(1−|J |)−2(1−|J |) = a+w′.

Remark 5.5. i) The decomposition is stated in the category of filtered derived
complex and follows from the local quasi-isomorphism with the mixed Hodge
complex (Equation 5.23) and the isomorphism of (Equation 5.24).

ii) The notations are compatible with [St 76] in the case of a constant
system L of weight w′ on the complement of a NCD as central fiber, where
the hypercohomology Hi(Z,ψfL) is of weight w′ + i.

5.1.3.2 Unipotent vanishing cycles: ϕu
f (j!∗L)

The complex of sheaves of vanishing cycles ϕf (j!∗L) (resp. ϕuf (j!∗L)) is de-
fined as the cone over the specialization morphism sp : i∗Zj!∗L → ψf (j!∗L)
(resp. sp : i∗Zj!∗L→ ψuf (j!∗L)) such that we have a triangle:

i∗Zj!∗L
sp−→ ψf (j!∗L)

can−−→ ϕf (j!∗L)
+1−−→

i∗Zj!∗L
sp−→ ψuf (j!∗L)

can−−→ ϕuf (j!∗L)
+1−−→

(5.33)

The monodromy T extends to ϕf (j!∗L) since T on ψf (j!∗L) satisfy T ◦sp = sp.
There exists a variation morphism var : ϕuf j!∗L → ψuf j!∗L(−1) such that
var ◦ can = N : ψuf j!∗L→ ψuf j!∗L(−1) (§2.2.3, Remark 2.7).

5.1.3.3 Weight and Hodge filtrations on pψu
f j!∗

pL and pϕu
f j!∗

pL

The following relations in terms of Ker and Im are well defined in the abelian
category of perverse sheaves (see Equation 5.49 and 5.50):

i∗Zj!∗
pL[−1] ' Ker(N : pψuf j!∗

pL→ pψuf j!∗
pL(−1)), pϕuf j!∗

pL ' ImN (5.34)

We also write by abuse of notations: i∗Zj!∗L ' Ker(N : ψuf j!∗L → ψuf j!∗L)
and ϕuf j!∗L ' ImN .

Definitions of F and W . The filtration Wk on i∗Zj!∗
pL[−1] (resp. pϕuf j!∗

pL)
is defined as ker N |Wk

pψuf j!∗
pL (resp. ImN).

We may suppose ker N
σ−→ pψuf j!∗

pL embedded as a sub complex of
pψuf j!∗

pL, then the filtration F is induced on ker N (resp. ImN as quotient
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complex). The filtrations W and F on pϕuf j!∗
pL may be defined also on the

mixed cone CM (σ).

This is easily checked on the de Rham family associated to ψuf j!∗L. We
suppose L locally unipotent. At each point x ∈ Z, set L := L(x) and with
the notations of the de Rham family of nilpotent orbits:

KJIL := ker(N : ΨJIL→ ΨJIL(−1), φJIL := Im(N : ΨJIL→ ΨJIL(−1)

The morphisms of MHS Ai on ΨJ−iIL → ΨJIL for each i ∈ J , induce
corresponding morphisms on KJ−iIL (resp. φJ−iIL) The total complex:

s(KJIL,Ai)J⊂MZ ,i∈MZ
, ( resp. s(φJIL,Ai))

is isomorphic to the complex K∗IL := ker(N : Ψ∗IL → Ψ∗IL) ' ker N
(resp. Φ∗IL := Im (N : Ψ∗IL → Ψ∗IL) ' ImN in the category of perverse
sheaves. Moreover the induced filtrations define a structure of MHC (if Z is
projective) and more precisely a structure of perverse VMHS to be made
precise later (§, 9.7.1.3).

Remark 5.6. We write the endomorphism ν as the composition of a canonical
morphism can and a variation morphism var:

ν : Ψ∗IpL[−1]
can−−→ Φ∗IpL[−1]

var−−→ Ψ∗IpL[−1](−1).

with short exact sequences of perverse sheaves of MHC

0→ i∗Zj!∗
pL[−1]

sp−→ Ψ∗IpL[−1]
can−−→ Φ∗IpL[−1]→ 0

and we have an isomorphism with the mixed cone: CM (sp) ' (Φ∗IpL[−1],W, F )).

Let N ′ be the nilpotent endomorphism on Φ∗IL induced by N . The vanishing
cycle lemma 5.1 relate the weight filtration on pϕuf j!∗

pL to the monodromy
filtration defined by the nilpotent endomorphism N ′.

By construction, we have morphisms

( pψuf j!∗
pL,W, F )

can−→ ( pϕuf j!∗
pL,W, F )

var−→ ( pψuf j!∗
pL,W, F )(−1).

where in this case can is an epimorphism and var is a monomorphism.

The graded complex GrW (N ′)
∗ Φ∗IL. As in the case Ψ∗IL (5.1.2), the graded

complex GrW (N ′)
∗ Φ∗IL decomposes. We deduce a decomposition similar to

(Equation 5.22)

GrW (N)
a ΦMIL

∼−→ ⊕J⊂MNM\JQJa (IL) (5.35)

Definition 5.3. The sub-complex Φ∗IL of Ψ∗IL is generated locally at x ∈
Z by the image of the tilde embedding of the complex Φ∗IL for L := LX(x).

We denote by ν′ the nilpotent endomorphism on Φ∗IL induced by ν.
The endomorphism ν′ corresponds locally to the nilpotent endomorphism

N ′ (up to a constant) on Φ∗IL induced by N .

The shifted perverse filtration W (ν′) is defined locally by Gr
W (N ′)
i Φ∗IL.
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Proposition 5.4. i) The complex Φ∗IL coincides with the image of ν:

Φ∗IL ∼−→ Im (ν : Ψ∗IL → Ψ∗IL).

It is endowed with filtrations W and F .
ii) Let W (ν′) denote the monodromy weight filtration on Φ∗IL and W :=

W (ν′)[w′ + 1], then (GrWa+w′+1Φ
∗IL, F ) := (Gr

W (ν′)
a Φ∗IL, F ) decomposes

into the direct sum of shifted and twisted intermediate extensions of polarized
VHS of weight a+ w′ + 1 on the various components of the NCD.

The shift of w′ + 1 on W (ν′) is compatible with the vanishing cycle Lemma.
The proof is similar to (Proposition 5.3) or may be deduced by the same
lemma.

Corollary 5.4. There exists a weight filtration W and a Hodge filtration F
on pψuf j!∗

pL (resp. pϕuf j!∗
pL) such that:

GrWa
pψuf j!∗

pL ' ⊕ZJ⊂Z( pPJa , F )

GrWa
pϕuf j!∗

pL ' ⊕ZJ⊂Z( pQJa , F )
(5.36)

where ( pPJa , F ) (resp. ( pQJa , F )) is an intermediate extension of weight a of
a shifted polarized VHS on Y ∗Z (see Equation 5.31) such that:

GrWa+ pw−1
pψuf j!∗

pL ' GrW (N)
a

pψuf j!∗
pL, GrWa+ pw

pϕuf j!∗
pL ' GrW (N)

a
pϕuf j!∗

pL).

This result is used later to put a structure of mixed Hodge complex on
ψuf (j!∗L) and ϕuf (j!∗L) by induction on dim X as long as the purity of the
hypercohomolgy of intermediate extension of VHS is proved.

5.2 Perverse VMHS on pψfj!∗
pL and pϕfj!∗

pL

We extend Hodge theory to the perverse sheaves ψf (j!∗
pL) and ϕf (j!∗

pL) by
reduction to the case where L is not necessarily locally unipotent along Y .

5.2.0.1 Reduction to VHS unipotent along Y

In the case of a VHS pL quasi-unipotent along Y , we introduce a ramified
covering locally at a point x ∈ Y , to reduce the proof to the locally-unipotent
case. Let U ' Dn be a neighborhood of x such that Y is defined by a
product of q ≤ n local coordinates t1 · · · tq. We can suppose q = n such that
U \ Y ∩ U ' (D∗)n.

Since the local monodromy Ti on the limit vector space L := L(x) is
quasi-unipotent, there exists νi such that T νii − Id is nilpotent.
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Let Z ⊂ X be the central fiber of f : X → D. We suppose Z ⊂ Y be a
sub-NCD with irreducible components indexed by IZ ⊂ I. Let g denote the
local ramified covering of a product of complex balls

(Z ⊂ Y ⊂ Dn, t.) (Z ′ ⊂ Y ′ ⊂ Dn
1 , u.)g

oo (5.37)

defined by g : Dn
1 → Dn : (u1, . . . , un)→ (t1 = uν11 , . . . , tn = uνnn ).

The inverse image pL′ := g∗(pL|Dn) is a polarized VHS on Dn
1 \ Y ′ with

locally unipotent monodromy T ′i := T νii around the component Y ′i ⊂ Y ′.
Let j′ : Dn

1 \ Y ′ → Dn
1 . The finite group of covering transformations Gi

generated by ξi := exp(2iπ/νi), i ∈ [1, n] acts on Dn
1 and on pL′ by T ′i as well

on its intermediate extension j′!∗
pL′.

Lemma 5.2. The perverse sheaf j∗
pL (resp. j!∗

pL) is the invariant subspace
of g∗j

′
∗
pL′ (resp. g∗j

′
!∗
pL′) by the action of the group G = G1 × · · · ×Gn.

Proof. Since the subgroups Gi act independently and commutatively, the
proof may be reduced to the case n = 1.

The case n = 1. Let νi := ν be fixed. Since the monodromy T is quasi-
unipotent, let Lb ⊂ L denote the subspace on which T s acts with eigenvalue
ab = exp(−2iπαb) where αb = b/ν for b ∈ [0, ν − 1[ and let Nb := Log Tu on

Lb. Let z = (1/2iπ)log t denote the coordinate on D̃.
Recall the holomorphic section on D

ṽ(t) = exp(log t(b/ν − (1/2iπ)Nb))v(z) = tb/ν exp (−(1/2iπ)(log t)Nb) v(z)

satisfying ṽ(te2iπ) = ṽ(t)T−1.T v(z) = ṽ(t), where v(z) ∈ Lb is a multiform
section.

If g : (D1, u) → (D, t) is of order ν, T ′ = T ν acts as exp(νNb) on Lb.
The action of the transformation group G over D, generated by ξ = e2iπ/ν ,
extends to the logarithmic complex Ω∗L′D1

as follows.
Let z = (1/2iπ)log u and v(z) ∈ L′b, then we have a section of pL′D1

:

ṽ1 := exp (−(1/2iπ)(log u)νNb) v(z)

satisfying ṽ1(ue2iπ) = ṽ1(u)(T ′)−1T ′v(z) = ṽ1(z).
The generator ξ = e2iπ/ν acts on the inverse image g∗f of a holomorphic

section f(t) ∈ Γ (D,OD). We have: g∗f(ξu) = g∗f(u) since f(ξνuν) = f(uν).
Reciprocally, let h ∈ Γ (D1,OD1

) be a section on D1. Set (ξ.h)(u) := h(ξu).
If ξ.h = h, then h(ξu) = h(u) and h is the inverse image of a holomorphic
section f(t) on D. This action extends to sections of g∗

pL′D1
and g∗Ω

∗ pL′D1
.

Sub-lemma. Let G acts on the linear combination of sections: h(u)ṽ1(u)
of Deligne’s extension pL′D1

as follows:

ξ.(h(u)ṽ1(u)) := h(ξu).ṽ1(ξu) (5.38)
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The invariant sections ω of g∗
pL′D1

satisfying ξ.ω = ω correspond to sections
of pLD on D. This action extends to g∗Ω

∗ pL′D1
since g∗dt/t = νdu/u. We

have:
Ω∗ pLD ' (g∗Ω

∗ pL′D1
)ξ

The inverse image of a section f.ṽ of Deligne’s extension pLD is a section
of the extension pL′D1

, since ṽ(uν) = ubṽ1(u), hence:

g∗(f.ṽ(t)) = f(uν)ṽ(uν) = f(uν)ubṽ1(u)

Let h(u)ṽ1(u) = g∗(f.ṽ(t)), we deduce:
h(u) = f(uν)ub and h(ξu) = f(uν)ξbub = h(u)ξb.

If we develop h(u) =
∑
i aiu

i: h(ξu) =
∑
n anu

n =
∑
n anu

nξb =⇒ anξ
n =

anξ
b; hence an = 0 or ξn−b = 1, n− b = kν and finally n = kν + b.

Reciprocally, sections h(u)ṽ1(u) where h(u) =
∑
k akν+bu

kν+b are written
as inverse image of sections on D.

Corollary 5.5. The filtration F on (Ω∗ pL)D is defined by the invariant sec-
tions

F q(Ω∗ pL)D ' (F qΩ∗ pL′)GD1

and extends to a global filtration F on (Ω∗ pL)X . Hence (Theorem 5.1 and
Equation 5.36) apply to polarized VHS non necessarily unipotent along Y .

The case of j!∗
pL. The restriction to D of the perverse direct image: (j∗

pL)|D
is the invariant perverse subspace of g∗((j

′
∗
pL′)|D1

). Hence, the cohomol-
ogy H∗(D∗, pL) is isomorphic to the invariant subspace of H∗(D∗1 , pL′). Since
H∗(D, j!∗pL) is defined by truncation, we deduce j!∗

pL by the invariance con-
struction as well.

Let Z ⊂ Y be a sub-divisor (resp. Z ′ ⊂ Y ′ above Z), jZ : Dn \(Z∩Dn)→
Dn and j′Z′ : Dn

1 \ (Z ′ ∩ Dn
1 ) → Dn

1 , then H∗(Dn, jZ∗j
∗
Zj!∗L) is isomorphic

to the invariant subspace of H∗(Dn
1 , j
′
Z′∗
j′Z′
∗
j′!∗

pL′).

The case of ψuf j!∗
pL. The properties of ψuf j!∗

pL may be recovered again
from the definition of the filtration F on (Ω∗ pL)X . Hence, the case of ψuf j!∗

pL
may be deduced from the corollary 5.5.

The reduction to the locally unipotent case apply. The ramified covering
g fits in the following diagram

(D̃∗)n

π

��

π1

))

Dn ×D D̃∗

p1
rr

��

D1
n ×D D̃∗

g×id
oo

p′1ss

��

(Z ⊂ Y ⊂ Dn, t.)

f

��

(Z ′ ⊂ Y ′ ⊂ Dn
1 , u.)g

oo

f1
uu

D D∗oo
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where f : Dn → D is defined by f = tm1
1 · · · tmpp and Z = f−1(0) ⊂ Y are

NCD, f1 = f ◦ g, Y ′ = f−1(Y ), Z ′ = f−1(Z) and Y ∩ f−1(D∗), Y ′ ∩ f−1
1 (D∗)

are relative NCD over D∗.
We deduce ψuf j!∗

pL as the invariant subspace by the action of G on
g∗ψf1j

′
!∗
pL′. Let Ni := Log Tui , N ′i := Log T ′i , N

′ := N ′1 + · · · + N ′n and
N := N1 + · · · + Nn. The filtration W (N) defined by N on ψuf j!∗

pL corre-
sponds to the invariant subspace of the filtration W (N ′) defined by N ′ on

ψuf1j
′
!∗
pL′. The decomposition of Gr

W (N)
∗ ψuf j!∗

pL is deduced from the decom-

position of g∗Gr
W (N ′)
∗ ψuf1j

′
!∗
pL′ by the action of G.

5.2.0.2 Weight and Hodge filtrations on pψfj!∗
pL and pϕfj!∗

pL

Let pL be a quasi-unipotent shifted VHS. Let α ∈ [0, 1[ such that exp(−2iπα)

is an eigenvalue of pψf j!∗
pL := ψf j!∗

pL[−1]. Set β = exp(−2iπα) and pψβf j!∗
pL

the sub-perverse sheaf invariant by T s − βId where T s is the semi simple
action of T . There exists a natural decomposition into a direct sum of perverse
sub-sheaves:

pψf j!∗
pL ' ⊕α∈[0,1[

pψβf j!∗
pL, pϕf j!∗

pL ' ⊕α∈[0,1[
pϕβf j!∗

pL

Proposition 5.5 (perverse VMHS on pψf j!∗
pL and pϕf j!∗

pL). With the
notations of (Equation 5.36 and Theorem 5.1), let pL be a shifted VHS quasi-
unipotent along Y .

There exists a natural structure of perverse VMHS on pψf j!∗
pL (resp.

pϕf j!∗
pL) with support on the NCD Z satisfying the following decomposition

according to the action of the monodromy. Let β = exp(−2iπα), then:

(GrWa
pψf j!∗

pL, F ) ' ⊕α∈[0,1[(GrWa
pψβf j!∗

pL, F ) ' ⊕α∈[0,1[ ⊕ZJ⊂Z ( pPβ,Ja , F )

(GrWa
pϕf j!∗

pL, F ) ' ⊕α∈[0,1[(GrWa
pϕβf j!∗

pL, F ) ' ⊕α∈[0,1[ ⊕ZJ⊂Z ( pQβ,Ja , F )

(5.39)

where pψβf j!∗
pL (resp. pϕβf j!∗

pL) is the perverse sub-sheaf on which the semi-

simple monodromy action Ts has eigenvalue β and pPβ,Ja (resp. pQβ,Ja ) is an
intermediate extension of a polarized VHS of weight a on ZJ .

Proof. In the case of quasi-unipotent pL, the decomposition into a direct sum
over α is proved in ([DeK 73]: Proposition 4.17, Lemma 4.18.5 and Remark
4.18.6). By the same reference, we introduce on D∗ the local system Uα of
rank 1 with monodromy e2iπα and trivial Hodge structure of type (0, 0). We
have:

pψuf (j!∗
pL ⊗ f∗Uα) ' pψβf j!∗

pL

where for each Milnor fiber at z ∈ Z: pψuf j!∗(
pL ⊗ f∗Uα)z ' pψβf j!∗(

pL)z. Then



108 5 Limit mixed Hodge structure on Ψ∗IL

pψf j!∗
pL ' ⊕α∈[0,1]

pψuf (j!∗
pL ⊗ f∗Uα) (5.40)

Hence the proof is reduced to the unipotent case pψuf . However, since
L ⊗ f∗Uα, is a VHS, quasi-unipotent along Z, we apply (§5.2.0.1) to re-
duce the decomposition of pψuf (j!∗

pL ⊗ f∗Uα) over ZJ ⊂ Z to the case of a
locally unipotent L, where we apply the equations (5.36) and (5.31) to write:
( pPJa , F ) = (j!∗PJa− pw+1[dimX − |J |], F )(1− |J |).

By (§5.1.3.3, Corollary 5.1) the proof apply to give a similar decomposi-
tion for (GrWa

pϕf j!∗
pL, F ). For α 6= 0, the canonical morphism induces an

isomorphism pψβf j!∗
pL ' pϕβf j!∗

pL.

5.2.0.3 Perverse VMHS with support

The following structure of perverse VMHS with support on Z is satisfied by
pψf j!∗

pL and pϕf j!∗
pL.

Definition 5.4 (Perverse VMHS on X with support on a NCD). A
perverse VMHS is a bifiltered complex (K ′,W, F ) with support on a NCD
Z ⊂ X satisfying the following conditions:

1. W is an increasing perverse filtration on K ′ defined over Q,
2. F is a decreasing filtration defined over C such that for all r ∈ Z,

(GrWr K
′, F ) ' ⊕ZJ⊂Z(j!∗

pLJr , F ) (5.41)

is a direct sum of intermediate extension of polarized VHS pLJr of weight
r on non empty smooth open subsets Z∗J , with embedding j : Z∗J → ZJ .

This concept is a generalization of MHC in [De 72] and by extension it is
sometimes denoted MHC or PVMHS.

5.2.1 Functoriality of the monodromy filtration

We illustrate the proof of the decomposition theorem in §6 and its relation
to the purity theorem, in the case of dimV = 1.

We deduce the structure of PVMHS on ψuf j!∗
pL by the isomorphism

ψuf j!∗
pL ' Ψ∗I pL and similarly the structure of PVMHS on the vanishing

cycles ϕuf (j!∗
pL) by the isomorphism ϕuf (j!∗

pL) ' ϕ∗I pL.
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5.2.1.1 Bigraded polarized HS

We assume the purity theorem 3.1. In the text, this purity theorem is proved
by induction on dimX. The induction starts in dimension 0 or 1 with the
result on a projective smooth curve [Zu 79].

As a consequence, if we assume the purity theorem in the case dimX =
n− 1, we define for X of dimension n:

Definition 5.5. The limit MHS on H∗(Z, Ψ∗I pL) is defined by (Ψ∗I pL,W, F )
and transported onto the hypercohomology H∗(Z,ψuf j!∗pL) (Equation 4.22)
with monodromy endomorphism N induced by the endomorphism −2iπν on
Ψ∗I pL.

We deduce from the definition, the next statement on the functoriality of
the monodromy filtration with the derived direct image f∗ (this functoriality
is used later to extend the induction on the purity theorem to dimension n):

Theorem 5.2 (Monodromy filtration). The iterated morphism

Nr : GrWpw+q+rHq(Z,ψuf j!∗pL) ' GrWpw+q−rHq(Z,ψuf j!∗pL)(−r)

is an isomorphism of Hodge structures induced by −2iπν. Hence, the filtration
induced by (Equation 5.5) is the monodromy filtration of N .

Proof. We recall the statement of (Equation 5.31) in terms of the monodromy
filtration W (ν) on the perverse sheaf Ψ∗IpL[−1], where the shift by [−1]
induces a shift on the weight filtration, hence W := W (ν)[ pw − 1]:

(GrWa
pψuf j!∗

pL, F ) := (Gr
W (ν)
a− pw+1Ψ

∗IpL[−1], F ) ' ⊕ZJ⊂Z( pPJa , F ) (5.42)

where: ( pPJa , F ) = (jZ!∗PJa− pw+1[dimX − |J |], F )(1− |J |) (Equation 5.31).
The shift in the degree of the perverse sheaf allows symmetry in the equa-

tions and the use of the next result.
Bigraded polarized HS: The weight spectral sequence with respect to the

weight filtration

Ep,q1 = Hp+q(Z,GrW−pΨ∗IpL[−1]) =⇒ GrWq Hp+q(Z, Ψ∗IpL[−1]) (5.43)

degenerates at rank 2. The proof is based on Hodge theory. Let n := dimX.
Since dimZ = n− 1, the E1 terms carry a bigraded polarized HS by the In-
duction hypothesis . For symmetry reasons we introduce the following family
of spaces Lqp ([Sa 88] Proposition 4.2.2, [St 76], [Shi 93] Lemma 4.2.2 ):

Lqp := E
−(p+ pw−1),p+ pw−1+q
1 = Hq(Z,GrW (ν)

p Ψ∗IpL[−1])

satisfying the following properties:

1. Lqp is a HS of weight p+ q + pw − 1, since we have the decomposition
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Lqp ' ⊕J⊂IZHq(Z, jZ!∗PJp−|J|[n− |J |])(1− |J |).

2. The cup product with the class of an hyperplane section of X induces a
morphism l : Lqp → Lq+2

p (1) such that lq : L−qp
∼−→ Lqp(q) is an isomor-

phism for q ≥ 0 by Hard Lefschetz on the components of Z.
3. The endomorphism ν induces the monodromy morphism ν : Lqp →
Lqp−2(−1) which commutes with l: ν ◦ l = l ◦ ν, such that νp : Lqp

∼−→
Lq−p(−p) is an isomorphism for p ≥ 0 by the property of the monodromy
filtration W (ν).

4. We deduce from the self-duality of L and of the monodromy filtration a
scalar product polarizing the HS

S : L−q−p × Lqp =→ Q(− pw + 1)

5. Let 0L
−q
p = KerNp+1∩Ker lq+1, then: S(x,Nplqy) induces a polarization

of the HS on 0L
−q
p × 0L

−q
p up to sign.

6. The differential d1 on the terms E1 of the spectral sequence induces a
morphism d : Lqp → Lq+1

p−1 satisfying d2 = 0, d ◦ l = l ◦ d, d ◦ ν = ν ◦ d and
S(dx, y) = ±S(x, dy).

The above properties form a HL module ([Sa 88] Section 4.2, see also [St 76]
§5) such that the following theorem apply:

Theorem ([Sa 88] Proposition 4.2.2) Let L := ⊕p,q∈ZLp,q denote a bigraded
Hodge Lefschetz polarized differential module, then the cohomology

H = Ker d/Im d = ⊕p,q∈ZHp,q

is also a bigraded Hodge Lefschetz polarized differential module with the
induced polarization.

The proof by Saito is a correction to the proof in ([St 76] §5). The state-
ment is also valid in the abelian category of Hodge modules.

The proof of the theorem follows .

5.2.1.2 Special case of the Decomposition and Purity theorems

Let f : X → P := P1
C be a morphism such that X0 := f−1(0) is a NCD in X.

Let Σ ⊂ P denote the set of critical values of f , so 0 ∈ Σ and the restriction
f| : X \ f−1(Σ)→ P∗ = P \Σ is smooth. We consider the diagram

X0
i
↪→ X

k←↩ X \ f−1(Σ)
↓ ↓ f ↓
0

i′

↪→ P k′←↩ P∗
(5.44)

Let L denote a polarized VHS on the complement of a NCD Y containing
X0. We write Y = X0 ∪ X ′ where X ′ is the closure of Y \ X0 in X. We
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suppose X ′ horizontal on P∗ in the sense that X ′t ⊂ Xt is a NCD in the
smooth fiber Xt for t 6∈ Σ and X ′|P∗ is topologically locally trivial over P∗
such that Rif∗L|P∗ is locally constant over P∗ with fiber Hi(Xt, j!∗L).

Let K := f∗j!∗
pL. The restriction to P∗ of pHi(K) is a shifted polarized

VHS and we have pHi(K)|P∗ ' LiP∗ [1].

Proposition 5.6 (Decomposition). Let K := f∗j!∗
pL be the derived image.

There exists a canonical splitting

( pHi(K), F )0 = (Li0, F )⊕ (IC∗LiP∗ [1], F )0

into the polarized HS (Li0, F ) and IC∗LiP∗ [1] = k′!∗L
i
P∗ [1] with its limit filtra-

tion F .

We recall that by the uniqueness of the decomposition of pHi(K) we have
the isomorphism Li0 ' Im(HiX0

(X, j!∗
pL)→ Hi(X0, j!∗

pL).
The proof is local at 0, hence we consider the preimageXD := f−1(D) ⊂ X

of a disc D with center 0 and coordinate z. Since

pψuz = ψuz [−1], pψuz◦f = ψuz◦f [−1] and pϕuz := ϕuz [−1], pϕuz◦f = ϕuz◦f [−1]

transform perverse sheaves into perverse sheaves, we have:

(pψuz
pHi(K)) = pHi(f|X0∗

pψuz◦f j!∗
pL) = Hi−1(X0, ψz◦f j!∗

pL) =: Hψ

(pϕuz
pHi(K)) = pHi(f|X0∗

pϕuz◦f j!∗
pL) = Hi−1(X0, ϕz◦f j!∗

pL) =: Hϕ.

Moreover, since dimX0 = n−1, the conditions of Theorem 5.2 are satisfied
by induction. Hence, the monodromy filtration on Hψ is deduced from the
monodromy filtration on ψz◦f j!∗

pL. Let pw be the weight of pL. Then Hψ

(resp. Hϕ) is a nilpotent orbit of weight pw + i − 1 (resp. pw + i). Hence

Hm
ψ := GrW (N)

m Hψ is a polarized HS of weight pw + i− 1 +m and Hm−1
ϕ :=

Gr
W (N)
m−1 Hϕ is a PHS of weight pw + i+m− 1.

For all m ∈ Z the diagrams Hm
ψ

C−→ Hm−1
ϕ

V−→ Hm−2
ψ (−1) of polarized HS,

induced by the canonical and the variation morphisms (§5.1.3.2), satisfy the
conditions of ([Sa 88], Lemma 5.2.15) and (Remark 2.7), hence for all m we
have a decomposition

Hm−1
ϕ = ImC ⊕ KerV (5.45)

Since the morphisms C and V are morphisms of MHS, they are strict. Hence
we deduce the following decomposition

pϕuz
pHi ' Im (C : pψuz

pHi → pϕuz
pHi)⊕Ker (V : pϕuz

pHi → pψuz
pHi(−1))

(5.46)
where pHi := pHi(K). Let Li := pψuz

pHi(K) = pψuz
pLiP∗ = ψuzLiP∗ , then

ImC ' Im (N : Li → Li). Set: Li0 := Ker (V : Hi(X0,
pϕuz◦f j!∗

pL)→ Li(−1)).
We deduce:
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pϕuz
pHi(K) = Hi(X0,

pϕuz◦f j!∗
pL) ' Li0 ⊕ (ImN : Li → Li) (5.47)

The term Li with the monodromy filtration is a nilpotent orbit (Theorem
5.2), hence the term ImN : Li → Li is endowed with the induced MHS as in
the definition of the intermediate extension of k′!∗(LiP∗ [1] on P.

Remark 5.7. The induced filtration F on Hj(P, k′!∗(LiP∗ [1]) defines a HS
([Zu 79]), hence Hj(P,K) is a direct sum of two HS.

Corollary 5.6. Let K := f∗j!∗
pL. We have the following splitting

K ' ⊕i∈Z( pHi(K)[−i] ∈ Db
c(P,Q)

The iterated cup-product with the class c1 of an hyperplane section of X
induces Lefschetz isomorphisms

ηi : pH−i(K) ' pHi(K)(i)

on the components of the decomposition of pH−i(K) including Li0 by the
bigraded polarized setting on pψuz and pϕuz (§5.2.1.1).

Then, the existence of a splitting of the complex K follows from Deligne’s
general argument.

5.2.1.3 Perverse cohomology along a locally principal divisor

Let j!∗
pL be an intermediate extension on the complex algebraic variety X.

Let Z be a locally principal divisor, i : Z → X, U = X \ Z and jZ : U → X.
The complex i∗i

∗jZ∗j
∗
Zj!∗

pL occurs in two triangles:

jZ!j
∗
Zj!∗

pL
can−−→ jZ∗j

∗
Zj!∗

pL −→ i∗i
∗jZ∗j

∗
Zj!∗

pL
[1]−→

i!j!∗
pL

I−→ i∗j!∗
pL −→ i∗jZ∗j

∗
Zj!∗

pL
[1]−→

(5.48)

The complexes jZ!j
∗
Zj!∗

pL and jZ∗j
∗
Zj!∗

pL are perverse since jZ is affine (resp.
Stein).

Let Z be a principal divisor and set K := (j!∗
pL)|U . The perverse long

exact sequences defined by the corresponding triangles, including (Equation
2.16) are reduced to

0→ pH−1i∗jZ∗K → ψufK[−1]
N−→ ψufK[−1]→ pH0i∗jZ∗K → 0

0→ pH−1i∗jZ∗K → ψufK[−1]
can−−→ ϕufK[−1]→ pH0i∗jZ∗K → 0

0→ i∗
pH−1i∗jZ∗K −→ jZ!K

can′−−−→ jZ∗K → i∗
pH0i∗jZ∗K → 0

(5.49)

as i∗jZ∗K has only two non trivial perverse cohomology sheaves ([BBD 83]
Corollaire 4.1.10 ii). Recall that j!∗

pL = jZ!∗K := Im(can : jZ!K → jZ∗K).
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If Z is defined by an equation f and N := Log Tu, we have (([BBD 83],
Corollaire 4.1.12) and [Br 82] Proposition 2.3.8, [Br 86]):

i∗j!∗
pL[−1] ' pH−1i∗jZ∗j

∗
Zj!∗

pL ' Ker can ' KerN,

i!j!∗
pL[1] ' pH0i∗jZ∗j

∗
Zj!∗

pL ' Coker can ' CokerN

jZ∗j
∗
Zj!∗

pL/j!∗
pL ' i∗Coker(N : pψuf j!∗

pL→ pψuf j!∗
pL(−1))

(5.50)

where j!∗
pL is viewed as a sub-complex.

5.2.1.4 Hodge theory along a NCD

Let Y be a NCD and L a local system on X \Y with intermediate extension
j!∗

pL on the complex algebraic variety X. Let Z be a NCD sub-divisor of Y ,
i : Z → X, U = X \ Z, j : X \ Y ↪→ X and jZ : U → X.

We construct below various logarithmic complexes along a NCD, based
on the properties of perverse cohomology sheaves (ch. 3, §3.2.4). We extend
the definition of the weight and Hodge filtrations W and F to the loga-
rithmic complexes i!Zj!∗

pL, i∗Zj!∗
pL and i∗ZjZ∗j

∗
Zj!∗

pL using the relations with
pψuf (j!∗

pL).
Let Z be a principal divisor defined by an equation f , the filtration

W (N) (resp. KerN,CokerN) corresponds to the filtration W (ν) (resp.
Ker ν,Coker ν) by the isomorphism ψuf (j!∗

pL) ' Ψ∗(IpL).
The weight filtration W is deduced from W (N) as follows:

GrWl+ pw−1
pψuf j!∗

pL = (GrWl+ pwψ
u
f j!∗

pL)[−1] =

(GrWl+w′ψ
u
f j!∗L)[n− 1] = (Gr

W (N)
l ψuf j!∗L)[n− 1]

(5.51)

from which we deduce the weight filtration on CokerN | pψuf (j!∗
pL) (resp.

KerN | pψuf (j!∗
pL)) as follows:

Wl+ pw−1(CokerN) := W (N)l(CokerN) = Im(KerN l+1 → CokerN) if l ≥ 0

Wl+ pw−1(KerN) := W (N)l(KerN) = KerN ∩ ImN−l if l ≤ 0,

W (N)l(CokerN) = 0 if l < 0, W (N)l(KerN) = KerN if l > 0

N l : GrWl+ pw−1(CokerN) ' GrW−l+ pw−1(ker N)(−l) if l ≥ 0,

(5.52)

Weight filtration on jZ∗j
∗
Zj!∗

pL.
If Z is a locally principal divisor, we can suppose Z defined locally by
an equation f . The monodromy weight filtration W (N) on pψuf (j!∗

pL) in-

duces a filtration on CokerN | pψuf (j!∗
pL) transported on i!j!∗

pL[1] (resp. on
KerN | pψuf (j!∗

pL) transported on i∗j!∗
pL[−1]) is independent of the local

equation f ([Sa 88], [Sa 90], [ELM 10]). If Z is principal and we consider
the filtrations W and F in (Equation 5.49), we have:
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0→ pH−1i∗jZ∗K → pψufK
N−→ pψufK(−1)→ pH0i∗jZ∗K → 0 (5.53)

since N drops the weight by 2, hence we write

(Coker(N | pψuf j!∗pL,W, F )(−1) ' (jZ∗j
∗
Zj!∗

pL)/j!∗
pL,W, F ).

As a consequence, the weight W on jZ∗j
∗
Zj!∗

pL is defined as follows.
Let q : jZ∗j

∗
Zj!∗

pL→ jZ∗j
∗
Zj!∗

pL/j!∗
pL ' CokerN . We deduce from (Equa-

tion 5.52), that there exists unique filtrations W and F on jZ∗j
∗
Zj!∗

pL, in-
dependent of the local equation f of Z, satisfying (Equations 5.53, 5.52 and
5.2):

Wl(jZ∗j
∗
Zj!∗

pL) =0 if l < pw, WljZ∗j
∗
Zj!∗

pL = j!∗
pL if l = pw;

Wl+ pw+1jZ∗j
∗
Zj!∗

pL = q−1(W (N)lCokerN | pψuf j!∗pL) for l ≥ 0;

GrWl jZ∗j
∗
Z(j!∗

pL) = GrWl−2Coker(N | pψuf j!∗pL)(−1) if l > pw.

(5.54)

Example: GrWpw+1jZ∗j
∗
Z(j!∗

pL) ' (Gr
W (N)
0 ψuf j!∗L)[n−1](−1)(check for n = 1)

Proposition 5.7 (W and F ). Let Z be a NCD sub-divisor of Y in X, and
pL a polarized VHS of weight pw on X \ Y .

1. There exist unique global filtrations W and F on i∗j!∗
pL[−1] (resp.

i!j!∗
pL[1]), locally compatible with the filtrations deduced from W and F

in Equation 5.52 by the isomorphisms :

(i!j!∗
pL[1],W, F )) ' (CokerN | pψuf j!∗pL,W, F )(−1)

i∗j!∗
pL[−1],W, F ) ' (KerN | pψuf j!∗pL,W, F )

(5.55)

2. There exist unique global filtrations W and F on jZ∗j
∗
Zj!∗

pL such that
WpwjZ∗j

∗
Zj!∗

pL = j!∗
pL and locally for l ≥ 0:

i∗GrWl+ pw+1jZ∗j
∗
Z(j!∗

pL) ' GrW (N)
l CokerN | pψuf j!∗pL

3. Dually, i∗j!∗
pL[−1] ' KerN | pψuf j!∗pL embeds into jZ!j

∗
Zj!∗

pL and the
weight filtration W on jZ!j

∗
Zj!∗

pL is deduced from W (N) on KerN :

GrWpwjZ!j
∗
Zj!∗

pL = j!∗
pL and locally for l ≤ 0:

i∗GrWl+ pw−1jZ!j
∗
Zj!∗

pL ' Gr
W (N)
l Ker N | pψuf j!∗pL

4. If X is projective, the filtrations W and F induced on the hypercohomology
of X by the filtrations on

i∗j!∗
pL[−1], i!j!∗

pL[1], jZ∗j
∗
Zj!∗

pL, jZ!j
∗
Zj!∗

pL

define respectively a structure of mixed Hodge complex.
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Proof of the proposition 5.7. The definition of the filtrations W and F
follows from (Equation 5.53).

The proof relies on the gluing of perverse sheaves as they behave like
sheaves (Remark 2.5): morphisms of perverse sheaves on a covering U of X
which coincide on the intersection of two open subsets in U glue into a global
morphism on X ([BBD 83], Corollaires 2.1.21, 2.1.22 and 2.1.23).

Hence, the local definitions of the perverse weight filtration W define a
global filtration on X. The Hodge filtrations have been defined globally on
Ω∗L and on Ψ∗IL (Equation 5.28).

An elegant alternative proof is based on the deformation to the normal
cone and the specialization functor introduced by Verdier [V 83], which re-
duces the local construction of the ψ functor in the case of a divisor to the
case of a principal divisor and gives a global filtration of W [ELM 10].

Example 5.4. 1) The polarization on the primitive spaces is defined by the
bilinear product, composition of the duality with the isomorphisms for l ≥ 0:

GrWl+ pw+1i
!j!∗

pL[1]
=// Gr

W (N)
l Coker(N | pψuf j!∗pL)

N l'
��

Gr
W (N)
−l Ker(N | pψuf j!∗pL)

= // GrW−l+ pw−1i
∗j!∗

pL[−1]

2) Let L be a unipotent VHS of weight w′ on a punctured disc with center 0
in C, then (ψzL)0 ' L is a nilpotent orbit of weight w′.

Moreover, j∗L/j!∗L ' L/NL[−1] ' L/NL[−1] is of weight ≥ w′ − 1 and
GrWw′+1j∗L ' PrimGrWw′−1(L)[−1].

3) Let P∗ := P1
C − Σ with Σ finite and 0 ∈ Σ, pL be defined on P∗ and

j : P∗ → P1
C. The weight filtration W on j∗

pL is defined by Wpw := j!∗
pL. The

quotient j∗
pL/j!∗

pL is isomorphic to L/NL := CokerN : L→ L in degree 0,
where L := ψz(L) is endowed with the limit MHS.

Hence for i > 0: Wpw+ij∗
pL corresponds to the filtration induced on L/NL

by Ww′+i−1(L/NL)(−1) (Equation 5.2).

4) Let i0 : 0 → P1
C. The weight filtration W on i∗0j∗

pL ' (L
N−→ L)[1] is

defined by Wi+ pw−1 = GrWi (N)(KerN : L→ L)[1] (in degree −1) if i ≤ 0.

Remark 5.8. The following graded perverse sheaves decompose into direct
sum of intermediate extensions of polarized perverse sheaves on smooth com-
ponents of Z.

GrWl i
∗j!∗

pL[−1] ' PrimGr
W (ν)
l− pw+1Ψ

∗IpL[−1] if l < pw

GrWl jZ!j
∗
Zj!∗

pL ' i∗PrimGr
W (ν)
l− pw+1Ψ

∗IpL[−1] if l < pw

GrWl i
!j!∗

pL[+1] ' PrimGr
W (ν)
l− pw−1Ψ

∗IpL[−1](−1) if l > pw

GrWl jZ∗j
∗
Zj!∗

pL ' i∗PrimGr
W (ν)
l− pw−1Ψ

∗IpL[−1](−1) if l > pw



116 5 Limit mixed Hodge structure on Ψ∗IL

where by convention: W (ν)i−1(Ψ∗IpL[−1]) := (W (ν)iΨ
∗IpL)[−1],

Gr
W (ν)
l− pw+1Ker ν|Ψ∗IpL[−1] ' PrimGr

W (ν)
l− pw+1Ψ

∗IpL[−1] if l < pw and

Gr
W (ν)
l− pw+1Coker ν|Ψ∗IpL[−1] ' PrimGr

W (ν)
l− pw+1Ψ

∗IpL[−1] if l > pw.

Corollary 5.7. Let Z ⊂ be NCD in a projective variety X and pL a shifted
polarized VHS of weight pw on X \ Y :

1. The induced MHS on Hq(X \Z, j!∗pL) has weights w ≥ pw+q. Moreover,
the natural map Hi(X, j!∗pL)→Wpw+iHi(X \ Z, j!∗pL) is surjective.

2. The induced MHS on Hq(Z, j!∗pL) has weights w ≤ pw + q.
3. Dually: w ≤ pw+q on Hqc(X \Z, j!∗pL) and w ≥ pw+q on HqW (X, j!∗

pL).

The corollary follows from the purity theorem 4.3. There exists a complex
endowed with filtrations (jZ∗j

∗
Zj!∗

pL,W, F ), isomorphic to (IC∗pL(LogZ), F )
in the derived filtered categoryD+F (X,C), such that:WpwjZ∗j

∗
Zj!∗

pL = j!∗
pL

and locally, if l > pw

GrWl jZ∗j
∗
Z(j!∗

pL) = i∗GrWl (i!j!∗
pL[1]) = i∗Gr

W (ν)
l− pw−1Coker ν|Ψ∗IpL[−1](−1).

The complex (RΓ (X, jZ∗j
∗
Zj!∗

pL,W, F ) is a MHC and the weight spectral
sequence

Ep,q1 := Hp+q(X,GrW−pjZ∗j∗Zj!∗pL)⇒ GrWq Hp+q(X \ Z, j!∗pL)

degenerates at rank 2. Since W−pjZ∗j
∗
Zj!∗

pL = 0 if −p < pw:

• Ep,q1 = Hp+q(X,GrW−pjZ∗j
∗
Zj!∗

pL) = 0 if −p < pw;

• E−
pw,q

1 = Hq−pw(X,GrWpwjZ∗j
∗
Zj!∗

pL);
• Ep,q2 = GrW−pHp+q(X \ Z, j!∗pL) = 0 if q < p+ q + pw.

The term Ep,q2 is a HS of weight q.

Since E1− pw,q
1 = Hq+1−pw(X,GrWpw−1jZ∗j

∗
Zj!∗

pL) = 0, the projection

E−
pw,q

1 = Hq−
pw(X,GrWpwjZ∗j

∗
Zj!∗

pL)→ E−
pw,q

2 = GrWpwHq−
pw(X \ Z, j!∗pL)

is surjective, and E−
pw,q

2 := GrWpwHq−
pw(X \Z, j!∗pL) is a HS of weight q (the

weight on the hypercohomology in degree q − pw is obtained after a shift on
the index of W by the degree q − pw).

The statements in ii) and iii) follow by duality or standard exact sequences.

Remark 5.9 (Relation between the weight filtration on Ψ∗L (Proposition 5.1)
and the weight filtration on Ω∗L). i) The isomorphism:

i∗i
!j!∗

pL[1] ' Coker can/j∗
pL ' CokerN/Ψ∗pL[−1] (Equation 5.50)

is equivalent to a de Rham family of canonical isomorphisms for each J ⊂M :

Coker (N : ΨJL→ ΨJL) ' Q′J := Coker (can : NJL→ L).

The induced filtration W ′ on Q′J by W (N) satisfy:

Gr
W (N)
k (ΨJL/NL) ' Primk(Gr

W (N)
k ΨJL) ' GrW ′k Q′J
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with induced MHS by M defined by M(N0) on LJ := L shifted by 1 − |J |
(§5.1.1, Equation 5.5).

ii) The filtration W (N) on Ψ∗L corresponds to a filtration W ′ on Ω∗L
(see §9.2, Equation 9.10). Then, the local decomposition in terms of P Jk L
(Equations 5.22 and 9.21) corresponds to a local decomposition of Ω∗L in
terms of the spaces CJk L := Coker(N/P Jk L) (Equation 9.23).

The direct definition of W ′ in chapter 9, is based on a new filtration
N ∗W on L (Remark 2.21) whose construction from (L,W ) by Kashiwara
is motivated by the results in (Lemma ??). The filtration on Ω∗L is studied
directly in (ch. 9, Equation 9.6, 9.23, see also (Remark 5.4)).
When L = L(x) for x ∈ Z∗J , since N0 :=

∑
i∈J Ni vanishes on CJk L, we

deduce, that CJk L = Gr
W (N0)
0 CJk L is a pure polarized direct summand of

weight k+ δ of Gr
W (N0)
0 GrW

′

k Q′J with respect to the MHS defined by W (N0)

on the primitive part of Gr
W (N)
k ΨJL shifted by k + δ.

5.2.2 Hodge theory on i∗jZ∗j
∗
Zj!∗

pL

LetW ′ denote the weight filtration on i∗j!∗
pL[−1] (resp. i!j!∗

pL[1]). We deduce
t the weight W defined by

(i∗j!∗
pL,W ) := ((i∗j!∗

pL[−1])[1],W ′[1])
(i!j!∗

pL,W ) := ((i!j!∗
pL[1])[−1],W ′[−1])

such that (i∗j!∗
pL,W ) and (i!j!∗

pL,W ) keep the structure of MHC.
Moreover: W pw−ki

!j!∗
pL = 0 if k ≥ 1 and W pw+ki

∗j!∗
pL = i∗j!∗

pL if k ≥ 0
and we have filtered morphism:

can : jZ!j
∗
Zj!∗

pL −→ jZ∗j
∗
Zj!∗

pL, I : i!j!∗
pL −→ i∗j!∗

pL. (5.56)

where I : (i!j!∗
pL,W ) → (j!∗

pL,W ) → (i∗j!∗
pL,W ) is the composition mor-

phism and j!∗
pL is pure of weight pw.

We deduce from the triangles in (Equation 5.48) that i∗jZ∗j
∗
Zj!∗

pL is quasi-
isomorphic to the cone over each of the morphisms can and I.

Definition 5.6. i) The structure of MHC on K ′ := i∗jZ∗j
∗
Zj!∗

pL is defined
as a mixed cone CM over I. K ′ is not perverse and:

GrWr CM (I) = (GrWr−1i
!j!∗

pL)[1]⊕GrWr i∗j!∗pL.

Remark 5.10. If Z is defined by an equation f , we may define i∗jZ∗j
∗
Z
pL as

a mixed cone CM over N : pψuf j!∗
pL→ pψuf j!∗

pL.

Lemma 5.3. i) We have a graded long exact sequence:

GrWk Hj+1(X, i!j!∗
pL)→ GrWk Hj(X, i∗j!∗pL)→ GrWk Hj(X, i∗jZ∗j∗Zj!∗pL)

+1−−→
GrWk Hj+1(X, i!j!∗

pL).

ii) We suppose i∗j!∗
pL ⊂ K ′, then K ′/i∗j!∗

pL
'−→ i!j!∗

pL[1].
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Let q : K ′ → i!j!∗
pL[1]. The weight filtration on K ′ is defined as follows:

WlK
′ := q−1(Wli

!j!∗
pL[1]) if l > pw and GrWl K

′ = GrWl i
!j!∗

pL[1]

WlK
′ = Wli

∗j!∗
pL = (Wl−1i

∗j!∗
pL[−1])[1] if l ≤ pw (W pw = i∗j!∗

pL).

GrWl K
′ = GrWl i

∗j!∗
pL = (GrWl i

∗j!∗
pL[−1])[1].

The weight spectral sequence degenerates at rank 2 as follows:

Ep,q1 = Hp+q(X,GrW−pi
!j!∗

pL[1]) if −p > pw

Ep,q1 = Hp+q(X,GrW−p−1i
∗j!∗

pL[−1])[1] if −p ≤ pw.

For p = − pw − 1 and q = pw:

E−
pw−1, pw

1 = H−1(X,GrWpw+1i
!j!∗

pL[1]) =⇒ GrWpwH−1(X, i∗jZ∗j
∗
Zj!∗

pL)

E−
pw, pw

1 = H0(X,GrWpwi
∗j!∗

pL) =⇒ GrWpwH1(X, i∗jZ∗j
∗
Zj!∗

pL[−1])
The terms are dual, since in both cases the cohomology is with value in

Gr
W (N)
0 CokerN = Gr

W (N)
0 KerN (see Equation 5.55).

Remark 5.11. The spectral sequence of the mixed cone K ′ := CM (can) with
a structure of MHC defined by
WlK

′ = Wli
∗j!∗

pL = (Wl−1i
∗j!∗

pL[−1])[1]⊕WljZ∗j
∗
Zj!∗

pL
coincide at rank 2 with the above spectral sequence (see §9.5.1 and the octa-
hedron diagrams (§7.2.0.2 and Equation 10.42)).

5.2.2.1 Thom isomorphism and Gysin morphism

With the previous notations (Z ⊂ Y ⊂ X and pL defined on X \ Y ), let
iW : W → X be a closed embedding of codimension d transverse to Y and
the strata of S on X, then we have Thom isomorphism

i!W j!∗
pL[2d] ' i∗W j!∗pL

(see [GMacP 88] on stratified varieties and [CaMi 5], Lemma 3.5.4).
Let W ∗ := W \ (Z ∩W ), then:

Hi(W ∗, j!∗pL) ' Hi+2d
W∗ (X \ Z, j!∗pL).

In particular Gysin morphism is compatible with MHS.
Let W = H of codimension 1, the Thom isomorphism:

Hi(H \ (Z ∩H), j!∗L)
∼−→ Hi+2

H\(Z∩H)(X \ Z, j!∗L)(1) (5.57)

is given by the residue map:

IC∗i∗HL(logZ ∩H)
∼−→ i!HIC

∗L(logZ)[2](1).

On the one hand we have an isomorphism of the quotient complex with the
cohomology with support:
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IC∗L(logZ ∪H)/IC∗L(logZ))
∼−→ i!HIC

∗L(logZ)[1]

defined as a connecting isomorphism. On the other hand, the residue map

RH : IC∗L(logZ ∪H)[1]→ iH∗IC
∗i∗HL(logZ ∩H)

vanishes on IC∗L(logZ) and induces an isomorphism on the quotient.





Chapter 6

Proof of the Decomposition Theorem

The proof of the decomposition theorem (ch.1, Theorem 1.2) and the purity
theorem (ch.4, 4.3) is by induction on the dimension of X. We can suppose
f surjective, so dimV ≤ dimX. We introduce the following assertion:

D(n): The decomposition theorem applies to projective morphisms
f : X → V on irreducible varieties X of dimension ≤ n.
In particular, in the case dimV = 0, the purity theorem holds for projective

varieties X of dimension ≤ n by the same induction.

The assertion D(0) is obvious. Let X be non singular of dimension n. The
proof is by reduction to a general hyperplane section of V through an isolated
stratum v with a NCD as inverse image f−1(v) := Xv ⊂ X. In particular
D(n− 1) apply by induction on the components of Xv of dimension n− 1.

Using a Lefschetz pencil of hyperplanes on V , the proof is reduced to the
case where there exists a morphism g on V to the projective line such that
g(v) = 0. Let j!∗

pL be on X, the decomposition of f∗j!∗
pL is reduced by

Verdier’s criteria, to the decomposition of ϕg
pHi(f∗j!∗pL) locally at v.

In the case where g−1g(v) is a general hyperplane through v, the weight
spectral sequence of ψg

pHi(f∗j!∗pL) (Equation 6.12 below) splits into a direct
sum of a spectral sequence of MHS concentrated on v degenerating at rank
2 and a spectral sequence degenerating at rank one (Corollary 6.3).

As a consequence of the splitting of the spectral sequence, we only need
the category of IMHS (Definition 2.14) to prove the decomposition.

The decomposition theorem follows from the decomposition of pϕg
pHi(K)

(§6.2.0.4) and Verdier’s criteria of extension of a perverse sheaf defined on V \
V (g) (§2.2.3, Equation 2.18 and §2.2.3.1). Verdier’s extension apply in general
along a locally principal divisor [V 85-1] but we need only the principal divisor
case.

If we consider all possible local projections g, the spectral sequence degen-
erates at rank 2. Hence, the existence of the category of Hodge D−modules
is needed to prove the degeneration at rank 2 (see [Sa 88, Sa 90]), while for
a general projection the proof is reduced to the category of IMHS.

121
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The construction of the category of Hodge perverse sheaves is carried, after
the proof of the decomposition theorem in the next chapter, which simplify
considerably the proof and the exposition.

In chapters 10 and 11, we give another proof of the decomposition, com-
bined with a direct proof of local purity, based on the weight on the logarith-
mic complex.

6.1 Proof of D(n− 1)⇒ D(n) for non-singular X

The proof is divided in two cases according to the dimension of V .

6.1.0.1 The case 0 < dimV ≤ n

Let f : X → V be defined on a non singular complex variety X of dimension
n, S a Thom-Whitney stratification of f adapted to j!∗

pL, V0 the union of
zero-dimensional strata of S on V , iV0

: V0 → V, V ∗ := V \ V0.
Assuming D(n−1, V ) and dimV > 1, we introduce an intermediate state-

ment D(n, V ∗), to deduce the decomposition theorem over V ∗ by considering
hyperplane sections of V transversal to the strata S ∈ S (avoiding V0).

Lemma 6.1 (D(n, V ∗)). i) Let K := f∗j!∗
pL. The restriction of the i−perverse

cohomology of K to V ∗ decomposes into a direct sum of intermediate ex-
tensions of shifted polarized VHS pLiS of weight pw + i over all strata S of
dimension > 0.
Let k : V ∗ → V , with the notations of (ch. 1, Equations 1.7 and 1.8):

pHi(k∗K)
∼−→

⊕
S∈S, S⊂V ∗

k∗iS !∗
pLiS (6.1)

ii) The iterated cup-product η with the class of an hyperplane section of X,
induces an isomorphism on the restrictions to V ∗

ηi : pH−i(f∗j!∗pL)|V ∗
∼−→ pHi(f∗j!∗pL)|V ∗ (6.2)

Proof. We remark that on a stratum S of dimension s > 0, LiS is uniquely
defined in the decomposition as LiS = i∗SH

−s( pHi(K)).
The decomposition (6.1) is checked by induction on a general normal section
N through a point s ∈ S, of dimension < dimV transversal to all strata,
since perverse cohomology commutes with shifted restrictions to transversal
sections.

Remark that Ri−sfS∗(i
!
XS
j!∗

pL) (resp. Ri−sfS∗(i
∗
XS
j!∗

pL)) is a variation of

MHS of weights w ≥ pw+i−s (resp. w ≤ pw+i−s) and LiS is a local system
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on S, hence the image of IS is a polarized VHS of weight w = pw+ i− s (see
also ch. 9, Lemma 9.7).

The isomorphisms in (6.2) follow by induction since the inverse image XN

of N , is non singular of dimXN < dimX as N is general.

Example 6.1. Over the big stratum U in V , the restriction of f to XU :=
f−1(U) is smooth and the restrictions of the cohomology sheaves Hi(K) are
locally constant on U , hence pHi(K)|U = Hi−dimV (K)|U [dimV ] is a shifted
polarized VHS on U .

By the induction hypothesisD(n−1), the fiber (Rif∗j!∗L)v ' Hi(Xv, j!∗L),
at a point v ∈ U , is isomorphic to the intersection cohomology of the restric-
tion of L to the fiber Xv and Hard Lefschetz applies on Xv.

6.1.1 The crucial case at isolated strata

The main problem is to extend the decomposition over isolated strata in V0.

Proposition 6.1. Assume D(n, V ∗) and the fiber Xv at v ∈ V0 is a NCD.

(i) The decomposition (6.1) of pHi(k∗K) over V ∗ extends to a decomposi-
tion over V , including the terms Liv (ch. 1, Equation 1.7)

pHi(K) ' ⊕v∈V0L
i
v ⊕ k!∗k

∗ pHi(K) (6.3)

(ii) The Lefschetz morphisms ηi are isomorphisms:

ηi : pH−i(K)
∼→ pHi(K) (6.4)

The statement ii) implies the existence of a splitting of K in the derived cate-
goryDb

c(V,Q) by Deligne’s general argument ([De 68] Théorème 1.5, [De 93]).
We recall that the splitting of K means essentially the degeneration of

the spectral sequence with respect to the perverse filtration at the E1-term.
Since the proof is local at v, we suppose V0 reduced to a single stratum v.
Moreover, we suppose first the fiber Xv a NCD in X.

The proof will occupy the rest of the chapter.

6.2 Nearby and vanishing cycles at an isolated stratum

The decomposition at isolated stratum v ∈ V0 ⊂ V , is based on the properties
of perverse nearby and vanishing cycles along a general hyperplane section
H through v.

We suppose first, there exists a morphism g : V → P to the complex
projective line P := P1

C such that g(v) = 0 and g−1(0) := H is transverse to
all strata S ⊂ V ∗ = V \ v as in the diagram
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Xv ↪→ Z
i′

↪→ X ←↩ X \ Z
↓ ↓ ↓ f ↓
v ↪→ H

i
↪→ V

k′←↩ V \H
↓ ↓ ↓ g ↓
0 → 0

i′′

↪→ P ←↩ P \ 0

(6.5)

where Z := (g ◦ f)−1(0) = f−1(H) = Xv ∪Zs is a NCD in X, Xv := f−1(v),
and Zs is the strict transform of H defined as the closure of f−1(H \ v).
For a general section H, Zs is smooth and Xv ∩ Zs is a NCD in Zs.

Let IZ (resp. Iv ⊂ IZ) denote the set of indices of the components Zj ⊂ Z
(resp. Zj ⊂ Xv) and let s ∈ IZ corresponds to the component Zs, hence
IZ = Iv ∪ s. For each J ⊂ IZ , let ZJ = ∩j∈JZj , Z∗J the regular locus of ZJ
and set uniformly j : Z∗J ↪→ ZJ .
We suppose the stratification S compatible with f , H, Z and the singularities
Y of j!∗

pL. Let iS : S → S̄ denote the embedding of any stratum S in its
closure S̄.

6.2.0.1 Decomposition hypothesis

Let (K ′,W, F ) be a perverse VMHS with support on Z (ch. 5, Definition
5.4). By definition

(GrWr K
′, F ) ' ⊕J∈IZ (j!∗

pLJr , F ) (6.6)

is a direct sum of intermediate extension of VHS pLJr of weight r on Z∗J .
The weight spectral sequence: Ep,qW,r ⇒ Hp+q(X,K ′, F ) defined by W on

RΓ (X,K ′) degenerates at rank 2, since the terms Ep,qW,1 := Hp+q(X, GrW−pK ′, F )
with their filtrations induced by F are HS of weight q by the assumption
D(n− 1) applied to intersections of components of Z,

We still denote (f|Z)∗ by f∗. The derived direct image (f∗K
′,W, F ), where

W and F are derived direct image of W and F on K ′, has support in H.
By definition, (K ′,W, F ) satisfy the decomposition hypothesis if:
for each component j!∗

pLJr of (GrWr K
′, F ) in equation 6.6, the following non

canonical decomposition property is satisfied:

f∗j!∗
pLJr ' ⊕i∈Z,S∈S,S⊂H iS!∗(

pLJr )iS [−i] (6.7)

where ( pLJr )iS is the component of the decomposition of f∗j!∗
pLJr according

to the notations of (ch 1, Equation 1.7).
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6.2.0.2 The cases pψg◦fj!∗
pL and pϕg◦fj!∗

pL

The complex K ′ := pψg◦f j!∗
pL (resp. K ′ := pϕg◦f j!∗

pL) is a perverse VMHS
by (ch. 5, §5.1.3.3, Proposition 5.5, and Equation 5.42) and we have

(GrWa K
′, F ) ' ⊕ZJ⊂Xv (( pPJa , F )⊕ZJ∩Zs ( pPJ∪sa , F ))⊕Zs ( pPsa, F ) (6.8)

where pPJa (resp. pPJ∪sa and pPsa) are intermediate extensions of VHS on
ZJ for J ⊂ Iv (resp. ZJ∪s, Zs) of weight a. Respectively, we have similar
decomposition for K ′ := pϕg◦f j!∗

pL (Theorem 5.1).
Since Zs is transverse to Xv and to the NCD Y singular set of pL, the

component pPsa vanishes for a 6= pw − 1 :

( pPsa, F ) = ((j!∗
pL)|Zs [−1], F ) if a = pw − 1 and pPsa = 0 if a 6= pw − 1 (6.9)

Moreover, since dimH < dimV , K ′ satisfy the decomposition hypothesis
with respect to the restriction of f to ZJ for all non empty J ⊂ IZ .

Since f∗
pψg◦f j!∗

pL ' ψgf∗j!∗
pL and f∗

pϕg◦f j!∗
pL ' ϕgf∗j!∗

pL and since
pψg (resp. pϕg) are exact functors, we define the filtrations on pψgK (resp.
pϕgK), where K = f∗j!∗

pL, as follows:

Definition 6.1. The filtrations W and F on pψgK (resp. pϕgK) are induced
by W and F on f∗K

′:

K ′ := pψg◦f j!∗
pL, pψgK = f∗K

′,Wr
pψgK := f∗WrK

′, F rpψgK := f∗F
rK ′

K ′ := pϕg◦f j!∗
pL, pϕgK = f∗K

′,Wr
pϕgK := f∗WrK

′, F rpϕgK := f∗F
rK ′

The filtrations W and F on pψg
pHi(K) (resp. pϕg

pHi(K)) are induced by
W and F on f∗K

′:

pψg
pHi(K) ' pHi(f∗K ′), resp. pϕg

pHi(K) ' pHi(f∗K ′)

In the case of the vanishing cycles K ′ := pϕg◦f j!∗
pL, all the terms of the

decomposition are supported by Xv since H is general through v, hence K ′

is a perverse VMHS supported by Xv and pϕgK = f∗K
′ is supported by v.

Proposition 6.2. Let K := f∗j!∗
pL. The isomorphism

pHi( pψgK) ' pHi(f∗ pψg◦f j!∗pL) (resp. pHi(f∗K ′) ' pϕg
pHi(K))

transports the action of ν on K ′ to the action of the monodromy logarithm
N on the right hand term. Let η denote the cup-product by the class of the
hyperplane section of X, we have:

ηj : GrWa
pH−j( pψgK)

∼−→ GrWa
pHj( pψgK)(j) (resp. in the case of pϕgK)

N i : GrWpw−1+j+i
pHj( pψgK)

∼−→ GrWpw−1+j−i
pHj( pψgK)(−i)

resp. N i : GrWpw+j+i
pHj( pϕgK)

∼−→ GrWpw+j−i
pHj( pϕgK)(−i)

We prove first the lemma:
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Lemma 6.2. i) Let K ′ := pψg◦f j!∗
pL and w0 := pw − 1. If a 6= w0:

f∗GrWa K
′ = ⊕i∈Z pHi(f∗ GrWa K ′)[−i] = ⊕i∈ZAia[−i]

where Aia are PHS of weight a+ i supported by v.
Let a = w0, Zs the strict transform of H and u : (H \ v)→ V :

f∗GrWw0
K ′ = ⊕i∈Z pHi(f∗GrWw0

K ′)[−i] =

⊕i∈Z (Aiw0
[−i]⊕Biw0

[−i]⊕ u!∗u
∗ pHi((f |Zs)∗j!∗pL|Zs [−1])[−i])

(6.10)

where Biw0
is the polarized HS of weight w0+i, component of pHi(f∗j!∗pL|Zs [−1])

with support v, Aiw0
is also a polarized HS of weight w0 + i with support v

and u!∗u
∗ pHi(f∗(j!∗pL|Zs [−1]) ' u!∗u

∗ pHi(f∗j!∗pL)|H [−1] is a direct sum of
intermediate extensions of polarized VHS of weight w0 + i supported by H.

i′) Respectively, let K ′ := ϕg◦f j!∗
pL,

f∗GrWa K
′ = ⊕i∈Z pHi(f∗GrWa K

′)[−i] = ⊕i∈ZCia[−i]
where Cia are polarized HS of weight a+ i supported by v.

Remark 6.1. To follow the proof, we explain the indices in the lemma and
the degeneration at rank 1 on the restriction to V \ v. By transversality, the
restriction i∗ pHj(f∗j!∗pL)[−1] to H \v is perverse, direct sum of shifted VHS
of pure weight j + pw − 1 = j + w0 over the strata.

By induction, the derived direct image f∗i
∗
Zs
j!∗

pL[−1] is of weight w0 and

decomposes into a direct sum of shifted pHj(f∗i∗Zsj!∗
pL[−1]) of pure weight

j+w0 whose restriction to H\v coincide with u∗ pHj(f∗j!∗pL)[−1] by transver-
sality, which is consistent with the degeneration at rank 1.

By the decomposition by induction of Zs → H, we know more: the weight
spectral sequence on H degenerates to u!∗u

∗ pHj(f|Zs∗j!∗pL|Zs [−1]) ⊕ Bjw0
.

The spaces Bjw0
are pure HS of weight w0 + j with support on v.

Proof. The Hodge filtration F is induced on pHi(f∗GrWa K
′) as explained

in (ch.1, §2.4). The lemma follows from (Equations 6.8, 6.9) as the terms
Aia are the image of terms with support in Xv, except the derived image
f∗(j!∗

pL|Zs [−1]) which has support on H. In the case a = w0 we have, by
induction, the decomposition on H (see Equations 6.7 and 6.9) :

pHi(f∗j!∗pL|Zs [−1]) ' u!∗u
∗ pHi(f∗j!∗pL|Zs [−1])⊕ (pL|Zs [−1])iv.

Recall that u∗ pHi(f∗(j!∗pL|Zs [−1]) ' u∗ pHi(f∗j!∗pL)|H [−1] by transversality
of H except at v. With the notations of (Equations 6.7, 1.7), set:
Biw0

:= (pL|Zs [−1])iv.

Lemma 6.3 (Splitting of the spectral sequence). i) The perverse weight
spectral sequence of (f∗K

′,W, F )

Ep,q1 := pHp+q(GrW−pf∗K
′)⇒ GrWq

pHp+q(f∗K ′) (6.11)

splits into the direct sum of two spectral sequences:
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Ep,q1 = Ep,q1 (v)⊕ Ep,q1 (H) (6.12)

where E(v) is a spectral sequence of HS supported by v which degenerates at
the E2-term while E(H) is supported by H and degenerates at the E1-term.

i′) Respectively, if K ′ := pϕg◦f j!∗
pL, the perverse weight spectral sequence

Ep,q1 is supported by v and degenerates at rank 2.

ii) GrWq
pHq−w0(f∗K

′) ' E−w0,q
2 (v)⊕ u!∗u

∗ pHq−w0(f|Zs∗j!∗
pL|Zs [−1]) ,

GrWq
pHp+q(f∗K ′) ' Ep,q2 (v) if p 6= −w0.

Ep,q2 (v) is a HS supported by v and u!∗u
∗ pHq−w0(f∗j!∗

pL|Zs [−1]) is an inter-
mediate extension of a VHS.

ii′) Similarly, K ′ := pϕg◦f j!∗
pL is supported by v:

GrWq
pHp+q(f∗K ′) ' Ep,q2 for all p, q.

Proof. i) The weight filtration Wi on pHj(f∗K ′) is defined by the perverse
image of pHj(f∗Wi) → pHj(f∗K ′), while the Hodge filtration is defined by
restriction as explained in (ch. 1, §2.4).

Ep,q1 = pHp+q(GrW−pf∗K ′)
d1−→ Ep+1,q

1 = pHp+q+1(GrW−p−1f∗K
′)

Ep,q1 =⇒GrWq
pHp+q(f∗K ′)

The differentials on the terms Ep,q1 are written as follows:

E−w0−1,q
1

d1−→ E−w0,q
1

d1−→ E−w0+1,q
1

E−w0,q
1 = E−w0,q

1 (v)⊕ u!∗u
∗ pHq−w0(f∗j!∗

pL|Zs [−1])

E−w0−1,q
1 = E−w0−1,q

1 (v), E−w0+1,q
1 = E−w0+1,q

1 (v)

(6.13)

Set

Ep,q1 (v) := Ap+q−p if p 6= −w0, E
−w0,q
1 (v) := Aq−w0

w0
⊕Bq−w0

w0
(6.14)

then Ep,q1 (v) consists of HS in degree 0 supported by v, while

E−w0,q
1 (H) := u!∗u

∗ pHq−w0(f∗j!∗
pL|Zs [−1]), Ep,q1 (H) = 0 if p 6= −w0.

(6.15)
Since H0(i∗vu!∗u

∗ pHq−w0(f∗j!∗
pL|Zs [−1]) = 0, the induced differentials by d1

on Ep,q1 (H) vanish.
The spectral sequence of HS Ep,q1 (v) degenerates at rank 2 ([De 72]) while

the spectral sequence Ep,q1 (H) degenerates at rank 1 since its terms vanish if
p 6= −w0. The statement ii’) is clear.

Proof of the proposition 6.2. Concerning the terms Ep,q1 (H), the statement
is part of the decomposition theorem by induction over H and the degener-
ation at rank one of Ep,q1 (H):

1) N induces 0 on pHi(f∗(j!∗pL|Zs [−1])
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2) ηj : pH−j(f∗j!∗pL|Zs [−1]) ' pHj(f∗j!∗pL|Zs [−1])(j) are isomorphisms,
hence including the terms Biw0

:= (pL|Zs [−1])iv.
Concerning the statement of the terms Ep,q2 (v), the following properties of

the terms Ep,q1 (v) are satisfied also for a = w0:
1) Na : Aia ' Ai−a(−a)
2) ηj : A−ja ' Aja(j)
We refer to ([Sa 88] Proposition 4.2.2) to deduce the corollary as follows.

For symmetry reasons, set

Lqp := E−p,p+q1 (v) (6.16)

The following properties of bigraded polarized HS are satisfied (see §5.2.1.1):

1) Lqp is a HS of weight p+ q,

2) The cup product with the class of an hyperplane section of X induces a
morphism l : Lqp → Lq+2

p (1) such that lq : L−qp
∼−→ Lqp(q) is an isomorphism

for q ≥ 0 by Hard Lefschetz on the components of Z.

3) The endomorphism ν induces the monodromy morphism ν : Lqp →
Lqp−2(−1) which commutes with l: ν ◦ l = l ◦ν, such that νp : Lqp

∼−→ Lq−p(−p)
is an isomorphism for p ≥ 0 by the property of the monodromy filtration
W (ν).

4) We deduce from the autoduality of L and the auto-duality of the mon-
odromy filtration, a scalar product polarizing the HS

S : L−q−p × Lqp → Q(−w − n+ 1)

5) The differential d1 on the terms E1 of the spectral sequence induces a
morphism d : Lqp → Lq+1

p−1 satisfying d2 = 0, d ◦ l = l ◦ d, d ◦ ν = ν ◦ d and
S(dx, y) = ±S(x, dy).

6.2.0.3 Reduction to a fibration by g

The following reduction is a method introduced by Grothendiek’s school
([De 80] §4.2) based on Lefschetz pencils and will be used also later in chapter
8. Let (Ht, t ∈ P) be a general pencil of hyperplane sections of V with axis A
of codimension 2 away from v. The only section H0 through v is transverse
to the strata of a Whitney stratification S of V \ v.

We set H := H0. The sections Ht, for t 6= 0 varying in a small disc
D ⊂ P with center 0, intersect the strata of a Whitney stratification S of V
transversally (Ht is normally embedded in V \ v).

The blow-up Ṽ of V along A is the variety Ṽ of disjoint union of strict
transforms H̃t ' Ht of Ht with natural projections on V and P

Ṽ = {(x, t) : x ∈ X, t ∈ P, x ∈ Ht}, p1 : Ṽ → V, p2 : Ṽ → P, p1 : H̃t ' Ht.
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The projection p2 defines a fibration on Ṽ onto P1, while the projection
p1 induces an isomorphism Ṽ \ p−1

1 (A) ' V \ A. Hence there exists a point

ṽ ∈ Ṽ over v such that p1 projects a neighborhood Bṽ of ṽ isomorphically
onto a neighborhood Bv of v.
We consider the fiber product morphism f̃ : X̃ → Ṽ on X̃ := X ×V Ṽ . Since
the morphism remains unchanged over a neighborhood of v, the decomposi-
tion of f̃ at v is equivalent to the decomposition of f .

6.2.0.4 Decomposition of pϕg
pHi(K)

Let K := f∗j!∗
pL. The decomposition of pϕg

pHi(K) below (Equation 6.17)
follows from (Corollary 6.2) by a method due to M. Saito ([Sa 88], Lemma
5.2.15, see also [Ka 86] Proposition 3.3.1 for example).

Lemma 6.4. In the diagram of morphisms of perverse sheaves

pψg
pHi(K)

can→ pϕg
pHi(K)

var→ pψg
pHi(K)

pϕg
pHi(K), supported by v in degree 0, is a MHS direct sum of two sub-MHS:

pϕg
pHi(K) ' Im can⊕Ker var (6.17)

Since H is general, pϕug
pHi(K) is a MHS supported by v in degree 0 (Propo-

sition 6.2 and Corollary 6.3). The decomposition is in the category of IMHS
as it occurs on degree 0:

H0( pψg
pHi(K))

can→ H0( pϕg
pHi(K))

var→ H0( pψg
pHi(K))

The proof is carried on GrW∗
pϕug ( pHi(K). The morphism can vanishes on

the summand of GrW∗
pψug ( pHi(K) with support on H with cohomology 0 in

degree 0 as intermediate extensions.
For each m ∈ Z, let Hm

ψ (v) denote GrW (N)
m H0( pψug

pHi(K)) with support
on v. Then Hm

ψ (v) is a polarized HS of weight pw − 1 + i+m. Similarly, let

Hm−1
φ := Gr

W (N)
m−1

pϕug
pHi(K). Then Hm−1

φ is of weight pw + i+m− 1.

For all m ∈ Z we have diagrams Hm
ψ

C−→ Hm−1
φ

V−→ Hm−2
ψ (−1) induced by

the canonical and the variation morphisms. Such diagrams of polarized HS
satisfy the conditions of ([Sa 88], Lemma 5.2.15) by (Corollary 6.2). Hence
for all m we have a decomposition: Hm−1

φ = ImC ⊕ KerV from which
we deduce the decomposition of pφug , since Im can and ker var are sub-MHS.
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6.2.1 Decomposition of pHi(f∗j!∗
pL)

The decomposition is deduced by Verdier’s criteria on the extension of per-
verse sheaves in terms of the diagram defined by the canonical and variation
morphisms (Equation 2.22). We stress the splitting of the filtration F .

By the reduction to a general hyperplane section, the proof of the decom-
position theorem, following the decomposition of the spectral sequence, is
limited to the use of the abelian category of IMHS.

Lemma 6.5. Let K := f∗j!∗
pL, i : H → V, k : V \ v → V .

i) There exists a canonical splitting

( pHi(K), F ) = (Liv, F )⊕ (k!∗k
∗ pHi(K), F ) (6.18)

where: (Liv, F ) is a pure HS supported by v and k!∗k
∗ pHi(K) is an interme-

diate extension of a polarized VHS on V \ v of weight pw + i.
Moreover we have induced Hodge Lefschetz isomorphisms
ηi : i∗( pH−i(K), F )→ i∗( pHi(K), F ).

Proof. Let k′ : V \H → V . The proof is based on Verdier’s description of the
extensions of perverse sheaves by the equivalence of the categories Perv(X)
and V (H) (§2.2.3, Equation 2.18). The decomposition ϕ ' Im can⊕Ker var
(Equation 6.17) corresponds to the extension over H

k′!∗k
′∗ pHi(K)⊕Ker var.

Let k′′ : V \H → V \ v, hence k′ = k ◦ k′′. By construction:

k′!∗k
′∗ pHi(K) = k!∗(k

′′
!∗k
′∗ pHi(K))

(first we extend to V \ v, then to V according to the stratification defined
by H and v). Since by hypothesis H is transversal to the stratification away
from v: k′′!∗k

′∗ pHi(K) = k∗ pHi(K), hence:

k′!∗k
′∗ pHi(K) = k!∗k

′′
!∗k
′∗ pHi(K) = k!∗k

∗ pHi(K).

With the notations of (ch. 1, Equation 1.7) and by the uniqueness of the
decomposition Liv := Ker var is a pure HS and by induction k∗ pHi(K) is a
direct sum of intermediate extensions, which proves (Equation 6.18).

The morphisms ηi : i∗( pH−i(K), F ) → i∗( pHi(K), F ) are isomorphisms
since they are already isomorphisms on pψg

pH−i(K) and on pϕg
pH−i(K),

which ends the proof of the lemma.

Remark 6.2. In view of the decomposition 6.17 the proof is direct as follows:

Lemma 6.6. i) Ker var ' H0(i∗v
pHi(K))

ii) Hk(i∗v
pHi(K)) = Hk+1(i∗v

pψug
pHi(K)) if k < −1

iii) 0→ H−1(i∗v
pHi(K))→ H0(i∗v

pψug
pHi(K))→ Im can→ 0

where the MHS Im can is determined exactly by the terms Ep,q2 (v) supported
by v (Lemma 6.3, ii) while the split vector space Liv is Ker var.
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Since pϕug
pHi(K) is the cone of sp : i∗ pHi(K)[−1] → pψug

pHi(K), we have a
distinguished triangle:

pψug
pHi(K)

can→ pϕug
pHi(K))

[+1]→ i∗ pHi(K)→ (6.19)

and its long perverse exact sequence

0→ pH−1(i∗ pHi(K))→ pψug
pHi(K)

can→ pϕug
pHi(K)→ pH0(i∗ pHi(K))→ 0

Since pϕug
pHi(K) ' Im can⊕Ker var is a vector space supported by v, we

deduce the following isomorphism and short exact sequences:

Ker var ' pH0(i∗ pHi(K))

0→ pH−1(i∗ pHi(K))→ pψug
pHi(K)→ Im can→ 0

We remark also, since var is a monomorphism on Im can and var ◦ can = N :

Im can
var∼−−−→ Im(N : pψug

pHi(K)→ pψug
pHi(K))

pH−1(i∗ pHi(K)) 'Ker (N : pψug
pHi(K)→ pψug

pHi(K))

Then, by (Equation 5.49) and ([BBD 83] corollary 4.1.12):
pH−1(i∗ pHi(K)) ' i∗(k′!∗k′∗ pHi(K))[−1] = Ker (N |pψug pHi(K).

Since pH0(i∗ pHi(K)) ' Ker var = H0(i∗v
pHi(K)) is supported by v, we

deduce pτ≤−1i
∗ pHi(K) = τ≤−1i

∗ pHi(K) = Im can and

i∗v
pHi(K) ' τ≤−1i

∗ pHi(K)⊕H0(i∗v
pHi(K).

Moreover, we extract from the long cohomology exact sequence, associated
to the triangle (Equation 6.19) restricted to v, the exact sequence (iii) of the
lemma.

Lemma 6.7 (Splitting of the filtration F ). The decomposition of i∗ pHi(K)
splits the induced Hodge filtration.

At this point, we did prove the decomposition into the direct sum of the
perverse cohomologies. The splitting of the induced filtration F into the in-
duced filtrations on each term is a consequence of the existence of MHS on
i∗v
pHi(K).

By (Lemma 6.3) each term ψug and ϕug has an induced MHS. The MHS on

i∗v
pHi(K) = i∗vi

∗
H
pHi(K) is deduced from the mixed cone of the morphism

can : ψug → ϕug . The decomposition in (Equation 6.17) is compatible with

MHS. Since Liv = Ker var has a pure HS and its embedding is compatible
with the MHS, we deduce the splitting of the MHS and consequently the
splitting of the filtration F at v.

Remark 6.3. The MHS on i∗v
pHi(K) = i∗vi

∗
H
pHi(K) may be defined by desin-

gularization and compatibility of MHS with the perverse filtration.
Such compatibility of Hodge and perverse filtrations is a general property

on various cohomology groups on subspaces of V and will be repeatedly useful
in the text.
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6.2.2 Hodge structure on H∗(X, j!∗
pL) (dimV = 0)

We refer to ([Zu 79]) in the case where dimV = 0 and dimX = 1.
If dimX > 1, we use a Lefschetz fibration by a pencil of hyperplane section

to reduce the proof to the case where f admits a factorization by a morphism
to the projective complex line and the constant map:

X
p2−→ P cP−→ specC, f = cP ◦ p2

Let (Xt, t ∈ P) be a pencil of hyperplane sections of X with axis A of
codimension 2. The disjoint union of the hyperplane sections Xt forms an
algebraic variety known as the blow-up X̃ of X along A with projections p1

and p2

X̃ = {(x, t) : x ∈ Xt, t ∈ P}, p1 : X̃ → X, p2 : X̃ → P, p1 : X̃t ' Xt

([De 80], 4.3.1). Let j′ : U → X̃ denote the embedding of an open subset
of definition of the polarized VHS L. If the pencil is general with axis A
transverse to a stratification of (X, j!∗

pL), then j′!∗
pL ' p∗1j!∗pL and p1∗j

′
!∗
pL '

p1∗p
∗
1j!∗

pL since p1 is a fibration by simply connected projective lines P: The

decomposition follows a from §6.1.0.1 since dim X̃ = dimX = n, hence we
have in the derived category:

p1∗j
′
!∗
pL ' j!∗pL⊕ pH2(p1∗j

′
!∗
pL)[−2] ' j!∗pL⊕ i∗Aj!∗pL[−2] (6.20)

We have: Gr
pτ
2 Hk(X̃, j′!∗

pL, F ) ' Hk−2(A, j!∗
pL, F ) and pτ0Hk(X̃, j′!∗

pL, F ) '
Hk(X, j!∗

pL, F ).

First we deduce a HS on (Hk(X̃, j′!∗
pL), F ) since the decomposition theo-

rem apply to p2 and [Zu 79] applies to all intermediate extensions of polarized
VHS of the perverse cohomologies of (p2,∗j

′
!∗
pL, F ) on P. Hence

1. ( pτ2Hk(X̃, j′!∗
pL), F ) = (Hk(X̃, j′!∗

pL), F ) is a HS.

2. pτ1Hk(X̃, j′!∗
pL), F ) = (Hk(X, j!∗

pL), F )

Moreover, and Gr
pτ
2 Hk(X̃, j′!∗

pL), F ) ' (Hk−2(A, j!∗
pL), F ) is a HS by in-

duction since dimA < dimX. Hence (Hk(X, j!∗
pL), F ) is a HS as the kernel

of a morphism of HS. Recall, that the decomposition is natural for constant
coefficients (see [Vo 2007], Theorem 7.31).

Corollary 6.1. An hyperplane section defines a polarization on Hk(X, j!∗
pL).

Let η denote the cup-product with the class of a hyperplane section of X, then
ηi defines an isomorphism: H−i(X, j!∗pL)

∼−→ Hi(X, j!∗pL).

Remark 6.4. The HS on Hk(X, j!∗
pL) coincides with the HS defined in [KaK 87],

[CaKSc 87] and [De 71]. The proof follows from [KaK 86] where the HS are
shown to coincide due to the property of auto-duality.

This ends the induction process on dimX for non singular X
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6.2.2.1 Purity on a singular variety X

We complete the proof of the purity theorem in the case of a singular vari-
ety X (ch. 4, §4.1.2, Theorem 4.3) by reduction to a complete non-singular
algebraic variety X ′. We consider the finite covering of the variety X by the
disjoint union of its irreducible components to reduce the proof to the case
where X is irreducible and of dimension n and L a polarized VHS of weight w′

on a non singular Zariski-open subset U ⊂ X. The weight of pL := L[dimX]
is pw := w′ + n.

Let Y = X \ U , π : X ′ → X a non singular modification of X such that
Y ′ := π−1(Y ) is a NCD. Let j′ : U ↪→ X ′, then j′!∗

pL is endowed with a
Hodge filtration F induced by the isomorphism with IC∗pL on X ′.

There exists on pH0(π∗j
′
!∗
pL) a Hodge filtration F induced by the push-

forward filtration π∗F . The Hodge filtration F on j!∗
pL is induced by the

decomposition of pH0(π∗j
′
!∗
pL) compatible with F . This Hodge filtration in

the derived filtered category DbF (X,C) is independent of the choice of the
designgularization X ′ up to isomorphism.

Lemma 6.8. The perverse filtration pτ on Hk(X ′, j′!∗
pL) with respect to the

desingularization map π : X ′ → X is a filtration by sub-HS.

The definition of the filtration F is obtained by the decomposition theorem
applied to the morphism π : X ′ → X.
As in the previous case, pτ0Hk(X ′, j′!∗

pL) is a Hodge sub-structure since the
quotient Hk(X ′, j′!∗

pL)/ pτ0Hk(X ′, j′!∗
pL) is a HS by induction on dimension,

as the components of the decomposition over strata of dimension strictly
lower than dimX appears in the quotient.
By a similar argument pτ−1Hk(X ′, j′!∗

pL) is a sub-HS, henceGr
pτ
0 Hk(X ′, j′!∗

pL)
is a HS which contains Hk(X, j!∗

pL) as a natural sub-HS (see also a general
method to prove that pτ is a filtration by sub-HS (Equation 10.7)).

Corollary 6.2 (Purity Theorem on a singular variety X). Let L be
defined on a Zariski open subset of an algebraic complex and compact variety.
Then, the Hodge filtration F induces a HS pf weight pw+ k on Hk(X, j!∗

pL).

For any complex algebraic variety, there exists a birational morphism g :
X ′ → X where X ′ is projective and non-singular over C [De 68], 5.3.4). The
decomposition theorem extends to g since it is local on X. By the lemma,
the HS on Hk(X, j!∗

pL) is a direct summand of Gr
pτ
0 Hk(X ′, j′!∗

pL).
The independence of the choice of the designgularization X ′ up to isomor-

phism is proved by comparison of two non singular modifications X ′1 and X ′2
with a non singular modification X ′ of the fiber product X ′1×XX ′2 such that
X ′ → X ′1 (resp. X ′ → X ′2). Then the HS on Hi(X, j!∗pL) deduced from X ′1
or X ′2 coincides with the HS deduced from X ′.
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6.2.2.2 Decomposition theorem in the case of a singular variety X

The proof is by reduction to the non singular case. Let f : X → V and j!∗
pL

on the singular variety X. The induced Hodge filtration F on j!∗
pL on X is

deduced from a non singular modification X ′ of X (see Corollary 6.2). We
have a diagram

X ′
π−→ X

f−→ V, h := f ◦ π (6.21)

There exist Thom-Whitney stratifications S of f, π and h := f◦π, compatible
with Y := X \U and the NCD Y ′ := π−1(Y ), and Whitney stratifications of
X,X ′ and V underlying the Thom-Whitney stratifications S.

Let V0 (resp. X0) denote the set of zero dimensional strata in V (resp. X)
and Vm (resp. Xm) the maximal strata.We suppose the following conditions:

1) The inverse image X ′V0
(resp. X ′X0

) is a NCD

2) The inverse image Y ′Vm (resp. Y ′Xm) is empty or a relative NCD.

where relative means that the fiber Y ′v at each point v ∈ Vm (resp. v ∈ Xm)
is a NCD in the non singular fiber X ′v.
These conditions may be easily satisfied over isolated strata in V0. It is even
possible to ask that the inverse image of each stratum S of V is a NCD in
X ′ and a fibration by NCD (chapter 12 §11.2, [EL 14]).

The decomposition theorem for f is deduced from the case of π and h =
f ◦ π after ([De 68], Proposition 2.16) as follows.
Recall that j′ : U → X ′ denote the embedding and j′!∗

pL is endowed with a
Hodge filtration F . Let K ′ := π∗j

′
!∗
pL. By the decomposition theorem applied

to π:

a) K ′ ' ⊕i pHi(K ′)[−i] ∈ Db
c(X)

Let K := f∗K
′ = (f ◦ π)∗j

′
!∗
pL. By the decomposition theorem applied to

f ◦ π:

b) K ' ⊕i pHi(K)[−i] ∈ Db
c(V )

From a) we deduce f∗K
′ ' ⊕if∗ pHi(K ′)[−i]. Then by ([De 68], Corollary

1.12) for all k we have

f∗
pHk(K ′) ' ⊕i pHi(f∗ pHk(K ′))[−i] ∈ Db

c(V ) (6.22)

Corollary 6.3 (Decomposition). Let f : X → V and j!∗
pL on X (Equa-

tion 6.21). There exists a decomposition in the derived category

f∗j!∗
pL ' ⊕i pHi(f∗j!∗pL)[−i] (6.23)

We apply (Equation 6.22) for k = 0, since j!∗
pL is a summand of pH0(K ′)

where K ′ := π∗j
′
!∗
pL.



Chapter 7

Perverse VMHS

Let V be a complex projective variety possibly singular. We define the abelian
category IH of intermediate extension of polarized VHS with support on irre-
ducible sub-varieties of V (Lemma 7.1) and the category of perverse variation
of mixed Hodge structures PVMHS (Definition 7.2).

The weight spectral sequence of PVMHS degenerates in general at rank 2
(Corollary 7.2) with E1 terms in IH (§7.1).

For each closed subvariety S ⊂ V , there exists a MHS on Hi(S, j!∗pL) of
weights w ≤ pw+i, respectively a MHS on HiS(V, j!∗

pL) of weights w ≥ pw+i.
At a closed point v, with iv : v → V and k : V \ v → V , there exists a

MHS on Hi(i∗vk∗k
∗j!∗

pL) (§7.1.1).
Let g : U ′ → C be a projective morphism defined on an open subset

U ′ ⊂ V . We define a PVMHS on pψgj!∗
pL and pϕgj!∗

pL by desingularization.
Then, we can state the local and global Invariant cycle theorems (§7.2).

At the end of the chapter (§9.7) we recover results of M. Saito ([Sa 90])
on mixed Hodge modules in terms of PVMHS (see Corollary 7.2).

7.1 Perverse variation of mixed Hodge structures

We define the abelian category IH of intermediate extensions of polarized
VHS. Then, we deduce the definition of perverse variations of MHS as exten-
sions of objects of IH.

7.1.0.1 Hodge filtration by desingularization

Let U be a non singular open dense subset of an irreducible projective variety
V and pL a polarized VHS on U of weight pw. Let π : Ṽ → V be a desin-
gularization of V with exceptional divisor a NCD Y inverse image of V \ U .

Let j : U → V and j′ : U → Ṽ denote the open embeddings into V and V ′.

135
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A Hodge filtration F is defined on j′!∗
pL, from which we deduce by push-

forward a filtration π∗F on π∗j
′
!∗
pL.

We recall that the Hodge filtration F on pH0(π∗j
′
!∗
pL) is induced by the

filtration π∗F on V . Since j!∗
pL is a summand of ( pH0(π∗j

′
!∗
pL), F ) by the

decomposition theorem (ch.2, §2.4), we deduce again the Hodge filtration by
restriction of F .

The construction is performed in the bifiltered derived categoryDb
pτ,F (V,C).

The filtration F induced on j!∗
pL does not depend in Db

F (V,C) on the choice
of the desingularization of V . A functor T is derived using bigraded bifiltered
T−acyclic resolutions of (π∗j

′
!∗
pL, pτ, F ).

7.1.0.2 The category IH of Hodge intermediate extensions

Let j : U → V denote the embedding of a smooth open subset of V . A
morphism of polarized VHS (PVHS) g : (pL, F ) → ( pL′, F ) on U extends
uniquely to the intermediate extensions j!∗g : (j!∗

pL, F )→ (j!∗
pL′, F ) on V .

Lemma 7.1. The category IHV of filtered intermediate extensions of polar-
ized VHS on smooth open subsets of V of the form (j!∗

pL, F ) with support V
and morphisms of intermediate extensions is abelian.

Proof. We prove for example the existence of the kernel and image of a mor-
phism. Let g : (pL, F ) → (pL′, F ) be a morphism of polarized VHS on the

non singular open subset U ⊂ V and j : U → V . Let j′ : U → Ṽ denote
the embedding of U in the desingularization of V and Y = ∪i∈IYi the NCD
complement of U ⊂ Ṽ .
Let u : pK→ pL denote the kernel of g (resp. v : pL→ pI the image).

Sub-lemma. The morphism g (resp. u, v) extends into a morphism of of
intermediate extensions of polarized VHS with induced filtration F by push-
forward from j′!∗g : (j′!∗

pL, F ) → (j′!∗
pL′, F ) (resp. j′!∗u : j′!∗

pK → j′!∗
pL and

j′!∗v : j′!∗
pL→ j′!∗

pI) on Ṽ .
Moreover j′!∗u and j′!∗v are kernel and image of j′!∗g.

The proof is local. Let J ⊂ I, locally at a point of YJ , we have a sequence
of nilpotent orbits : 0 → K → L → I → 0 endowed with monodromy
weight filtration. With the notations of (ch.3, Definition 3.4), by induction
on the length of J and the vanishing cycle lemma (see ch. 5, Lemma 5.1), the
sequences:

0→ NJK → NJL→ NJI → 0, 0→ KerNJK → KerNJL→ KerNJI → 0
(7.1)

are exact. The graded exact sequence GrW (NJ )
∗ defined by the weight filtra-

tion, split into primitive exact sequences, from which we deduce the exactness
in (Equation 7.1). We deduce a distinguished triangle of the intermediate ex-
tensions

j′!∗
pK

j′!∗u−−→ j′!∗
pL

j′!∗v−−→ j′!∗
pI

[1]−→
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The associated long exact sequence of perverse cohomology on V splits, due
to the weights, into short exact sequences

0→ pH0(π∗j
′
!∗
pK)

u0−→ pH0(π∗j
′
!∗
pL)

v0−→ pH0(π∗j
′
!∗
pI)→ 0

In particular, we have induced sub-exact sequence of perverse sheaves on V :

0→ j!∗
pK

j!∗u−−→ j!∗
pL

j!∗v−−→ j!∗
pI→ 0

Hence (j!∗
pK, j!∗u) is a kernel, and j!∗

pI is the image of j!∗g : (j!∗
pL, F ) →

(j!∗L
′p, F ). The proof of the existence of co-image and co-kernel is similar.

Remark 7.1. The morphism j!∗g : j!∗(
pL, F ) → (j!∗

pL′, F ) is a canonical ex-
tension of g and all morphisms are obtained in this way in the category.

For each irreducible closed subset S ⊂ V , we have a natural functor IHS →
P(V ) to the category P(V ) of perverse sheaves on V .

Definition 7.1 (IH). The category of Hodge intermediate extensions IH
attached to V is the direct sum for all closed irreducible subsets S of V :
IH := ⊕S⊂V IHS .

Since a morphism on intermediate extensions of polarized VHS with sup-
port S is determined by its restriction to the big stratum S∗, a morphism
iS!∗

pL → iS′!∗
pL′ between two of intermediate extensions of polarized VHS

with support S and S′ is necessarily 0 unless S = S′.

Proposition 7.1. Let f : X → V be a projective morphism and j!∗
pL a

polarized VHS on X. For all integers i, the perverse cohomology sheaves
( pHi(f∗j!∗pL), F ) are in IH on V .

We prove that any component iS !∗
pLiS of pHi(f∗j!∗pL) with support on the

closure S̄ of a stratum S of V is in IH on V .
Let π : S′ → S̄ be a desingularization of S̄ and k : S ↪→ S′.

We have to prove that (iS !∗
pLiS , F ) is a component of ( pH0(π∗k!∗

pLiS), F ),

We construct a variety Ṽ in the diagram

X

f

��

X̃
π1

oo

f ′

��h
xx

S // V Ṽ
π

oo S̃oo

by blowings up above the singularities Ss of S̄ (including the singularities of
pLiS) such that there exists a desingularization S̃ ⊂ Ṽ of S, strict transform

of S in Ṽ and an embedding iS̃ : S ↪→ S̃ such that V \ Ss ' Ṽ \ π−1Ss
(without modification of V outside the singularities Ss ⊂ S).
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Set X̃ := X ×V Ṽ , Xs := f−1(Ss) such that X \ Xs ' X̃ \ π−1
1 Xs (X̃

is a modification of X). Let j′!∗
pL′ denote the intermediate extension of pL

on X̃ (X̃ may be singular, we recall that j!∗
pL on X and j′!∗

pL′ on X̃ are

constructed out of a desingularization of X̃).
The component iS!∗

pLi may be constructed out of the decomposition of h.
In the decomposition of pHi(f ′∗j′!∗ pL′) the component iS̃!∗

pLi is exactly the

extension of pLi on the desingularization S̃ of S and by the decomposition
theorem

(iS !∗
pLiS , F ) ⊂ ( pH0(π∗iS̃!∗

pLiS), F ) ⊂ ( pHi(h∗j′!∗ pL′), F ).

Corollary 7.1. Let V be an algebraic variety. The category of Hodge inter-
mediate extensions IH is well defined on V .

We can suppose V irreducible, since the category is the direct sum over irre-
ducible components. In the previous definitions, the fact that V is projective
was convenient for the proof but not essential.

By uniqueness of the extension we can remove the condition V is pro-
jective. Let pL be defined on an open subset U . For any affine open subset
A ⊂ V , the extension of the restriction pL|A∩U to a projective closure is well
defined, hence it is well defined on A. All extensions over an affine covering
of V glue into a unique extension on V .

Definition 7.2 (Perverse variation of MHS (PVMHS)). A bifiltered
complex (K,W,F ) is a perverse variation of mixed Hodge structures (PVMHS)
on a singular X if:

1. K is a Q−perverse sheaf on X,
2. W is an increasing filtration by Q−perverse sub-sheaves,
3. F is a decreasing filtration by C−sub-sheaves of K ⊗Q C such that:
∀r ∈ Z, (GrWr K,F ) ∈ IH is a direct sum of of intermediate extensions of
polarized VHS on V .

In the text all PVMHS are graded polarized. The following result may be
deduced as in ([Sa 90], 2.d):

Corollary 7.2 (M. Saito). Let f : X → V be a projective morphism and
(K,W,F ) a PVMHS on X. The perverse cohomology ( pHi(f∗K),W, F ) with
induced filtrations W and F is a PVMHS on V and we have:

pEp,q1 := pHp+q(f∗GrW−pK) =⇒ GrWq
pHp+q(f∗K) (7.2)

degenerating at rank 2: pEp,q2 (f∗K,W ) ' GrWq pHp+q(f∗K).

By the decomposition theorem, already proved (see ch.6, Corollary 6.3) the
terms of the perverse weight spectral sequence pEp,qr (f∗K

′,W ) are in the
abelian category IH on V and the spectral sequence degenerates at rank 2
by an argument similar to Deligne’s results on spectral sequences with HS (
[De 72] revisited in [De 75]).

The main interest in the abelian category IH is to construct the terms
pEp,q2 as cohomology of the complex of terms pEp,q1 .
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7.1.1 Hodge theory along locally principal divisors

Let j!∗
pL be an intermediate extension of a VHS pL of weight pw on a non-

singular dense algebraic open subset U of a variety V and j : U → V .
Let H ⊂ V be a principal divisor defined by an equation g. There exists

a perverse variation of mixed Hodge structure (PVMHS) on pψgj!∗
pL (resp.

pϕj!∗
pL) (see Proposition 7.3 below).

Let i : H → V . There exists a PVMHS on i∗j!∗
pL[−1] (resp. i!j!∗

pL[1])
Let v ∈ V be a closed point, Bv a small ball with center v and B∗v := Bv\v.

There exists a MHS on Hj(B∗v , j!∗pL) (Proposition 7.4 below).

7.1.1.1 Functoriality of the monodromy filtration

Let f : X → V be a projective morphism of algebraic complex varieties,
U ′ ⊂ V an open subset (algebraic or analytic) and g : U ′ → C a morphism.
Let H := g−1(0). We suppose X non singular and f−1H ⊂ X a NCD.

Let j!∗
pL be the intermediate extension of a shifted polarized VHS on X,

h := g ◦ f and (K,F ) := f∗(j!∗
pL, F ), then:

pψg
pHi(f∗K) = pHi(f∗ pψhj!∗pL), pϕg

pHi(f∗K) = pHi(f∗ pϕhj!∗pL) (7.3)

The weight filtration W is related to the monodromy filtration W (Nh) on
pψhj!∗

pL (resp. on ϕhj!∗
pL) (see Theorem 5.1). The image of the perverse coho-

mology pHi(f∗W ) defines a filtration on pψg
pHi(f∗K) (resp. pϕg

pHi(f∗K)).
We have a perverse spectral sequence

pEp,q1 := pHp+q(f∗GrW−p pψhj!∗pL) =⇒ GrWq
pψg

pHp+q(f∗j!∗pL)

pEp,q1 := pHp+q(f∗GrW−p pϕhj!∗pL) =⇒ GrWq
pϕg

pHp+q(f∗j!∗pL)
(7.4)

Proposition 7.2 (Saito [Sa 88] Proposition 5.3.5 ). i) The perverse
weight spectral sequences (7.4) degenerate at rank 2 in the abelian category
IH on H (Definition 7.1).

ii) The filtration induced by Im pHi(f∗W (Nh)) → pψg
pHi(f∗j!∗pL) (resp.

pϕg
pHp+q(f∗j!∗pL)) coincides with the monodromy filtration W (Ng).

iii) The terms pEp,q2 are in IH and we have a structure of PVMHS on
pψg

pHp+q(f∗K) (resp. pϕg
pHp+q(f∗K)).

The proof is based on the bigraded objects of intermediate extensions of
polarized VHS on H in the abelian category IH by comparison with the
bigraded polarized HS in chapter 5, §5.2.1.1.

We use the perverse Hard Lefshetz theorem (resp. the morphism N) on
the terms pEp,q1 .
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7.1.2 Nearby and vanishing cycles on a variety V

Let j!∗
pL be the intermediate extension of a polarized VHS on a non singular

Zariski open subset U dense in a projective variety V possibly singular and
g : U → C a projective analytic morphism.

Proposition 7.3. Let j!∗
pL on V and N := log Tu. There exists on the per-

verse nearby cycle complex ψgj!∗
pL[−1] (resp. ϕgj!∗

pL[−1]) a filtration F in-
ducing with the filtration W := W (N)[ pw − 1] (resp. W := W (N)[ pw]) a
structure of PVMHS where the weight W is a shifted monodromy weight fil-
tration W (N).

Let W be an increasing filtration, recall: W [n]i+n = Wi. The proof is by
reduction to the non singular case. Let H := g−1(0) and Y the singularities of
pL in V including the singularities of V . Let π : Ṽ → V be a desingularization
such that Y ′ := π−1(Y ) and H ′ := π−1(H) are NCD. We suppose that H ′

is a sub-divisor of Y ′ as we can enlarge Y if necessary. Let j′ : U → Ṽ
(U ' (Ṽ \ Y ′) ' V \ Y . We apply the proposition 7.2 to j′!∗

pL on Ṽ . The
proof follows, since j!∗

pL is a component of pH0(π∗j
′
!∗
pL).

The uniqueness follows by considering a diagram Ṽ1 ← Ṽ → Ṽ2 of modifi-
cations of V in the case of two choices Ṽ1 and Ṽ2.

Definition 7.3. We define ψgj!∗
pL as a component of ψg

pH0(π∗j!∗
pL) :=

pH0(π∗ψg◦π(j′!∗
pL)). A similar definition of ϕgj!∗

pL apply.

Corollary 7.3. Let V be projective and i : H ↪→ V the embedding of a locally
principal divisor.

i) There exists on i∗j!∗
pL[−1] (resp. on i!j!∗

pL[1]) a natural PVMH induc-
ing on Hj(H, j!∗pL) (resp. on HjH(V, j!∗

pL[1])) a filtration by MHS of weights
w ≤ pw + j (resp. w > pw + j).

ii) Let k : V \ H ↪→ V . There exists on k∗k
∗j!∗

pL a natural PVMH of
weights w ≥ pw and a MHS on Hj(V \H, j!∗pL) of weights w ≥ pw + j.

i) Let g be a local equation of H. The corollary follows since i∗j!∗
pL[−1]

may be constructed locally as kernel of the morphism N : ψugψgj!∗
pL[−1] →

ψugψgj!∗
pL[−1] (see ch.5, Equation 5.50) with induced weight filtration. The

local constructions glue globally on H (the case i!j!∗
pL[1] is dual).

It is equivalent to construct the filtrations W and F by push-forward from
a desingularization of V .

ii) The quotient k∗k
∗j!∗

pL/j!∗
pL is isomorphic to i!j!∗

pL[1].

Proposition 7.4 (MHS on Hj(B∗v , j!∗pL)). Let v ∈ V, kv : (V \ v) → V .
There exists a natural MHS on Hj(v, kv∗k

∗
vj!∗

pL) ' Hj(B∗v , j!∗pL).

Proof. Since the proof is local at v, we change V into a small ball Bv with
center v ∈ V . By blowing up v ∈ Bv, we have a diagram
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Z̃
ĩ
↪→ B̃v

k̃←↩ B̃∗v
πv ↓ ↓ π '↓ π′

v
iv
↪→ Bv

k←↩ B∗v

(7.5)

where B∗v := Bv \ {v} and π : B̃v → Bv is the blow up of v ∈ Bv.
Let P be a complex on B̃∗v such that π′∗P = (j!∗

pL)B∗v . Since π′ is an
isomorphism, we have:

i∗vk∗π
′
∗P ' πv∗ĩ∗k̃∗P

where ĩ∗k̃∗P has two non vanishing perverse cohomology on the locally prin-
cipal divisor Z̃:

pH−1(̃i∗k̃∗P ) = ĩ∗k̃!∗P [−1], pH0(̃i∗k̃∗P ) = ĩ!k̃!∗P [1] (7.6)

The complex ĩ∗k̃∗P is isomorphic to a mixed cone over the intersection com-
plex I : ĩ!k̃!∗P → ĩ∗k̃!∗P with filtrations W and F such that

(Hi(πv∗ĩ
∗k̃∗P ),W, F ) ' Hi(Z̃, ĩ∗k̃∗P,W,F ) (7.7)

Hi(v, kv∗k
∗
vj!∗

pL) ' Hi(πv∗ĩ
∗k̃∗P ) has a natural MHS.

Remark 7.2. 1) Let i : H ↪→ V is a closed subvariety of V , then the results of
Corollary 7.3) can be generalized to this case:

i) There exists on i∗j!∗
pL[−1] (resp. on i!j!∗

pL[1]) a natural PVMH inducing
on Hj(H, j!∗pL) (resp. on HjH(V, j!∗

pL[1])) a filtration by MHS of weights
w ≤ pw + j (resp. w > pw + j).

ii) Let k : V \ H ↪→ V . There exists on k∗k
∗j!∗

pL a natural PVMH of
weights w ≥ pw and a MHS on Hj(V \H, j!∗pL) of weights w ≥ pw + j.

Proof. We blow-up H to construct H ′ ⊂ V ′ and f : V ′ → V such that
f−1(H) = H ′, then apply (Corollary 7.3) to the locally locally principal
divisor H ′ to define a PVMHS, then apply (Proposition 7.2).

2) Then Proposition 7.4 follows since i∗vkv∗k
∗
vj!∗

pL) ' Hj(B∗v , j!∗pL) is a mixed
cone over the intersection morphism I : i!v → i∗v (Equation 2.1.3.1, §5.2.2,
Lemma 5.3).

Remark 7.3 (Compatibility with the perverse filtration). (See a general method
to prove the compatibility with the perverse filtration by (Equation 10.7)).

i) Let f : X → V be a projective morphism (X may be singular), H ⊂ V a
locally principal divisor on V and (j!∗

pL,W, F ) on X. Set H ′ := f−1(H) ⊂ X,
iH : H → V , iH′ : H ′ → X.

Let (K ′,W, F ) := (i∗H′j!∗
pL,W, F ) (resp. (K ′,W, F ) := (i!H′j!∗

pL,W, F ))
and denote again f|H∗W by W , f|H∗F by F on f∗K

′.
We deduce from the perverse filtration pτ on f∗j!∗

pL a filtration i∗H
pτ on

i∗Hf∗j!∗
pL (resp. i!H

pτ on i!Hf∗j
′
!∗
pL) and by transport of structure a filtration
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i∗H
pτ on f|H∗K

′ by the isomorphism f|H∗K
′ ' i∗Hf∗j!∗

pL (resp. i!H
pτ on

i!Hf∗j!∗
pL). Thus we have three filtrations

(f|H∗K
′,W, F, i∗H

pτ) (resp. (f|H∗K
′,W, F, i!H

pτ)).
We deduce from (Corollary 7.3 and Proposition 7.4) an isomorphism of MHS
of weights w ≤ pw + j (resp. of weights w ≥ pw + j).

(Hj(H, pHi(f∗j!∗pL)),W, F ) ' (Gr
i∗H
pτ

i Hi+j(XH , j!∗
pL),W, F )

(HjH(V, pHi(f∗j!∗pL)),W, F ) ' (Gr
i!H
pτ

i Hi+jXH
(X, j!∗

pL),W, F )
(7.8)

ii) We may even consider the induced filtration in the category of PVMHS
on the desingularization to deduce PVMHS on a singular variety.

iii) MHS on Hj(B∗v ,
pHi(f∗j!∗pL)): Let v ∈ V be a closed point such that

Z = Xv := f−1(v) is a locally principal divisor in X. Set k : V \{v} → V, iv :
v → V , i : Z → X and jZ : X \ Z → X and j!∗

pL on X.

We deduce from the bifiltered complex (K ′,W, F ) := (i∗jZ∗(j!∗
pL)|(X\Z),W, F )

a structure of MHC on the derived global sections complex Γ (Z,K ′,W, F ).
We denote again by W and F the filtrations (f|Z)∗W, (f|Z)∗F on (f|Z)∗K

′.
We use the isomorphism (f|Z)∗K

′ ' iv∗k∗((f∗j!∗
pL)|(V \v)) to deduce a

filtration pτ∗ on (f|Z)∗K
′ from the perverse filtration pτ on (f∗j!∗

pL)|(V \v)

pτ∗(f|Z)∗K
′ ' pτ∗(iv∗k∗(f∗j!∗

pL)|(V \v)) := iv∗k∗(
pτ(f∗j!∗

pL)|(V \v))

Thus we have three filtrations W,F, pτ∗ on the complex (f|Z)∗K
′ inducing

filtrations W,F and pτ∗ on the hypercohomology space Hj(Z, jZ∗j∗Zj!∗pL):
1) The induced filtration pτ∗ on Hj(Xv,K

′) is a filtration by MHS.
2) There exists a natural MHS on Hj(v, k∗k

∗ pHi(f∗j!∗pL) compatible with
the isomorphism of MHS:

Hj(v, k∗k
∗ pHi(f∗j!∗pL) ' Hj(v,Gr

pτ∗

i (f|Xv )∗K
′,W, F ) (7.9)

If Z is a NCD in a non singular X, the bifiltered complex K ′ := i∗jZ∗j
∗
Zj!∗

pL
with induced W and F is defined by (chapter 5, §5.2.2, Definition 5.6).

Corollary 7.4 (Perverse filtration by sub-HS). With the notations of
(Corollary 6.3), the filtration pτ on f∗j!∗

pL induces a filtration by Hodge
substructures of Hi+j(X, j!∗pL) such that

(Gr
pτ
i Hi+j(X, j!∗pL), F ) ' (Hj(V, pHi(f∗j!∗pL)), F ).

We have a decomposition into a direct sum of polarized HS of weight pw+i+j:

Hj(V, pHi(f∗j!∗pL))
∼−→ ⊕S∈§ Hj(X, iS !∗(j!∗

pL)iS)
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7.2 Local and global invariant cycle theorems

We prove the local and global invariant cycle theorems on eventually singular
varieties as announced in the introduction (ch. 4, Theorems 4.1 and 4.2). The
results on non singular varieties extend to singular varieties with coefficients
in intermediate extensions of VHS by the previous remark 7.3.
Also, Deligne’s proof on non singular varieties extends to singular varieties.

The octahedron diagram Diagram (7.13) and Equation (7.15) are applica-
tions of the decomposition of ϕg (see ch.6, Equation 6.17).

7.2.0.1 Local invariant cycle theorem on singular varieties

Let V be an algebraic variety, pL a shifted polarized VHS of weight pw on a
non singular Zariski open subset U ⊂ V and j!∗

pL the intermediate extension
of pL endowed with a Hodge filtration F (see ch.6, Definition 6.2).

Let g : VD → D be a projective morphism from a complex open subset VD
to the complex disc D ∈ C with central fiber H := V0.

Proposition 7.5 (Local invariant cycle). The sequence

Hq(H, j!∗pL[−1])
sp−→ Hq(H,ψug j!∗pL[−1])

N−→ Hq(H,ψug j!∗pL[−1])(−1)
(7.10)

is an exact sequence of MHS.

The proof is similar to Deligne’s proof for constant coefficients [De 80]. For
D small enough, VD is a retract by deformation of H as g is proper. Hence
the restriction map Hi(VD, j!∗

pL)→ Hi(H, j!∗
pL) is an isomorphism. Let pw

be the weight of pL. We consider the diagram

Hi+1
H (VD, j!∗

pL)

Hi(VD \H, j!∗pL)

OO

β // Hi(H,ψug j!∗pL)N // 0

Hi(VD, j!∗
pL)

α

OO
sp

55

Since the topological Wang exact sequence

Hr(VD \H, j!∗pL)→ Hr(H,ψug j!∗pL)
N−→ Hr(H,ψug j!∗pL)→ (7.11)

is compatible with MHS (see Remark 7.3 ii), the morphism β is surjective on
the invariant subspace by N and compatible with MHS.
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Let jH : V \H → V . The whole diagram can be constructed in the category
of MHS, since the following hypercohomology spaces carry MHS:

1) Hi(VD \ Z, j!∗pL) ' Hi(H, i∗HjH∗j∗Hj!∗pL) (VD retracts on H),

2) Hi(H,ψuf j!∗
pL), (Proposition 7.3)

3) Hi(VD, j!∗pL) ' Hi(H, j!∗pL) of weight ≤ pw + i (Corollary 7.3) and
4) Hi+1

Z (VD, j!∗
pL) of weight ≥ pw + i+ 1 (Corollary 7.3).

Since Hi+1
H (VD, j!∗

pL) has weights ≥ pw+ i+ 1, and the weight of Imα is
≤ pw + i, we have: W pw+iHi(VD \H, j!∗pL) ⊂ Imα.

Since β is surjective by Wang sequence, we deduce that sp := β ◦ α is
surjective as the weight of Hi(H,ψuf j!∗pL)N is ≤ pw + i.

7.2.0.2 The octahedron diagram

Let g : V → P be a morphism to the complex projective line P := P1
C,

H := g−1(0) and f : X → V such that Z := (g ◦f)−1(0) = f−1(H) is a NCD
in X

Z
i′

↪→ X ←↩ X \ Z
↓ ↓ f ↓
H

i
↪→ V

k′←↩ V \H
↓ ↓ g ↓
0

i′′

↪→ P ←↩ P \ 0

(7.12)

Let K := f∗j!∗
pL. We attach to the Diagram 7.12, the following upper and

lower ’caps’ of the octahedron diagram ([BBD 83], 1.1.6):

i!K

I c

��

""

pψugK(+1)
oo

pϕugK

||

d var
;;

i∗K
+1 // pψugK

d can

cc
c N

OO
i∗K

+1 c

��

c′

##

i!K
I

oo

C(N)

(+1){{

d (+1)

;;

pψugK
N // pψugK

d

cc
c +1

OO (7.13)

where the cones C(N) ' C(I) are isomorphic. The middle term of the se-
quence:

( pHi(pψugK)
can→ pHi(pϕugK))

var→ pHi(pψugK))

where pHi(pψgK) = pψg
pHi(K) and pHi(pϕgK) = pϕg

pHi(K), splits into a
direct sum by (Lemma 6.4)

pHi(pϕugK)
∼→ Im can⊕Ker var (7.14)
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Typically for an octahedron diagram, this decomposition is equivalent to the
long exact sequence with four terms defined by the common boundary of the
diagrams:

pHi−1(i∗K)→ pHi(pψugK)
N→ pHi(pψugK)(−1)→ pHi+1(i!K)

I→ pHi+1(i∗K)→

or the exact sequence

i∗ pHi(K)[−1]→pψug
pHi(K)

N→ pψug
pHi(K)(−1)→i! pHi(K)[1]→i∗ pHi+2(K)[−1]→

since pHi−1(i∗K) = i∗ pHi(K)[−1], pHi+1(i!K) = i! pHi(K)[1].
Since H is locally principal and pHi(K) decomposes into a sum of in-

termediate extensions, this exact sequence splits into various perverse exact
sequences

0→ i∗ pHi(K)[−1]→pψug
pHi(K)

N→ pψug
pHi(K)(−1)→i! pHi(K)[1]→ 0

(7.15)
This exact sequence appears in ([Sa 88] 5.2.2.2), see also [BBD 83]. The local
invariant theorem follows again:

Corollary 7.5. i) We have an exact sequence of MHS:

Hq(H, pH0(K)[−1])
sp−→ Hq(H,ψug pH0(K)[−1])

N−→ Hq(H,ψug pH0(K)[−1])(−1)

ii) Let pL be on V . We have an exact sequence of MHS:

Hq−1(H, j!∗
pL)

sp−→ Hq−1(H,ψug j!∗
pL)

N−→ Hq−1(H,ψug j!∗
pL)(−1)

i) The weights w(Hq(H, pH0(K)[−1]) ≤ pw+q−1 and w(KerN) ≤ pw+q−1.
The exact sequence (Equation 7.15) is reduced to two short exact sequences:

0→ i∗ pH0(K)[−1]→ pH0(pψugK)→ ImN → 0,

0→ ImN→ pH0(pψugK)(−1)→i! pH0(K)[1]→ 0

We deduce the associated long exact sequences

Hq(H, pH0(K)[−1])
sp−→ Hq(H,ψug pH0(K)[−1])

α−→ Hq(H, ImN)→

Hq−1(H, i! pH0(K)[1])
δ−→ Hq(H, ImN)

β−→ Hq(H,ψug pH0(K)[−1])(−1)→

whereN = β◦α. Since the weights w of Hq(H, pH0(i∗K)[−1]) are≤ pw+q−1,
we prove that any element of a ∈ KerN ⊂ Hq(H,ψug j!∗pL[−1]) of weight
w(a) ≤ pw+ q− 1 satisfy necessarily α(a) = 0, hence a is in the image of sp.

We have Na = β ◦ α(a) = 0 and w(α(a)) = w(a) ≤ pw + q − 1.
Since the weights w of Hq−1(H, i! pH0(K)[1]) satisfy w ≥ pw + q we have:
w(Im, δ) = w(Kerβ) ≥ pw + q and α(a) ⊂ Kerβ, hence α(a) = 0.
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ii) We apply i) to the diagram defined by a desingularization Ṽ of V and

to the intermediate extension of pL on Ṽ . Since j!∗
pL ⊂ pH0(K) in this case,

we deduce the statement ii) from i).

Remark 7.4. i) We deduce from the exact sequence of the boundary, the de-
composition in the lower cap of the octahedron on its turn:

pHi(pϕugK)
∼−→ (Im : pHi(i!K)→ pHi(pϕugK))⊕ (Ker : pHi(pϕugK)→ pHi(i∗K))

ii) The exact sequence in the corollary may be extended by the same
method, to a long exact sequence of four terms known after Clemens-Schmid
in the case of constant coefficients:

→ Hq−1(H, j!∗
pL)

sp−→ Hq−1(H,ψug j!∗
pL)

N−→ Hq−1(H,ψug j!∗
pL)(−1)

−→Hq+1
H (V, j!∗

pL)
I−→ Hq+1(H, j!∗

pL)

Remark 7.5. i) Let VD be a tubular analytic neighbourhood of H defined over
a small disc D ⊂ C. We have a long exact Wang sequence

Hr(VD \H, j!∗pL)→ Hr(H,ψug j!∗pL)
N−→ Hr(H,ψug j!∗pL)(−1)→

where the weight is deduced from the weight on Ψug j!∗
pL. From this we extract

the short exact sequence of MHS

0→ CokerN |Hr−1(H,ψug j!∗
pL)(−1)→ Hr(VD\H, j!∗pL)→ Hr(H,ψug j!∗pL)N → 0

ii) In Corollary 7.5 ii), we may change Hq(H, j!∗pL) into Hq(VD, j!∗pL) since
VD is a tubular neighborhood of Z.

iii) Let H be transverse to the strata of V except at a stratum v ∈ V
of dimension 0. A weaker version of the theorem where invariant cycles are
lifted on V \ {v} is used in [DeG 81].

7.2.1 Global invariant cycle theorem

Let h : X → T be a morphism of complex projective varieties, pL a shifted
polarized VHS of weight pw on a nonsingular Zariski open subset U ⊂ X and
j!∗

pL the intermediate extension of the perverse sheaf pL.

Lemma 7.2 (Global invariant cycle). Let T ′ ⊂ T denote the Zariski open
dense subset of parameters t ∈ T over which Rqh∗j!∗

pL is a polarized VHS
for all q. Let t0 ∈ T ′(note that T ′ 6= ∅). The image of the restriction map

Hq(X, j!∗pL) −→ Hq(Xt0 , j!∗
pL) (7.16)

is the invariant subset Hq(Xt0 , j!∗L)π of fixed elements under the monodromy
action π := π1(T ′, t0)→ AutHq(Xt0 , j!∗L).
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Proof. (Similar to the non singular case ([De 80] Corollary 6.2.12)). By the
invariant theory of local systems, the restriction morphism:

H0(T ′, Rqh∗j!∗
pL)

c
↪→ (Rqh∗j!∗

pL)t0 = Hq(Xt0 , j!∗
pL) is injective with image

the invariant subspace (Rqh∗j!∗
pL)πt0 . In the diagram

Hq(X, j!∗pL)
a−→ Hq(XT ′ , j!∗

pL)
b−→ H0(T ′, Rqh∗j!∗

pL)
c
↪→ Hq(Xt, j!∗

pL)

the morphism b is surjective by the Decomposition Theorem. The restriction
morphisms c ◦ b and c ◦ b ◦ a have the same image since Hq(X, j!∗pL) and
Hq(Xt0 , j!∗

pL) are pure of weight pw + q while Hq(XT ′ , j!∗
pL) is mixed of

weights w ≥ pw + q.
Moreover, the morphism a is surjective on Wpw+q Hq(XT ′ , j!∗

pL), since we
may apply an extension of (ch. 5, Corollary 5.7 i) to this case. The lemma
follows by strictness of morphisms of MHS (we may suppose W := X \XT ′

a NCD by blowing up subvarieties above W without modification of XT ′).





Chapter 8

Deligne Gabber local purity

We illustrate, on complex algebraic varieties, the proof of the local purity
theorem in positive characteristic which preceded the decomposition theorem
(see [DeG 81] and Theorem 1.1) .

In some sense, we have already expanded the proof in the previous chap-
ters, including the local and global invariant cycle theorems in chapter 7.
Hence, we adapt to complex algebraic varieties the original dense text in
[DeG 81] without further comments.

In chapter 6 the method has been applied to give a simple proof of the
decomposition once we have at our disposal the preliminaries on perverse
sheaves in chapter 2.

A simplified proof combined with the decomposition theorem is given in
chapter 10.

8.0.0.1 Induction

Let V be a complex algebraic variety. Since the statement of the local purity
theorem is local at a point v ∈ V , we can suppose V projective by considering
an affine neighborhood that can be embedded into a projective space. Let
j!∗

pL be the intermediate extension of a shifted polarized VHS on V of weight
pw and Bv ⊂ V a small ball with center v.

The inequalities on the the weights w on Hi(Bv \ {v}, j!∗pL), except the
crucial case i = 0, w = pw are easily deduced by induction from the inequali-
ties on the intersection with a general hyperplane section H of V through v by
results on the Stein inclusion Bv \ (H ∩Bv) ↪→ Bv similar to Artin-Lefschetz
theorems on affine morphisms ([BBD 83] 4.1). The proof will concentrate
essentially on the crucial case i = 0, w = pw in §8.1,

Lemma 8.1 (Induction). If we assume the local purity theorem (Theorem
1.1) in the case of dimension dimV = m− 1, the inequalities on the weights
w of the MHS on Hi(Bv \ {v}, j!∗pL) (Proposition 7.4) are satisfied in the

149
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case dimV = m:

w ≤ pw + i if i ≤ −1 and w > pw + i if i ≥ 0.

except: GrWpwH0(Bv \ {v}, j!∗pL) = 0 and GrWpwH−1(Bv \ {v}, j!∗pL) = 0.

The intersection cohomology H∗(∂Bv, j!∗pL) satisfy Poincaré’s selfduality.
The boundary ∂Bv intersects transversely a stratification of V when Bv is
small enough. Then B∗v retracts by deformation to its boundary and the
duality by transport of structure transforms one set of inequalities on w
into the other set. Hence, the proof is reduced to either one of the set of
inequalities.

If dimV = 0, the assertion is trivially satisfied. If dimV = 1 and V is
nonsingular at v, then Bv is isomorphic to a disc in C. Let L := ψz(

pL)(v)
be a nilpotent orbit of weight pw − 1; as in (Example 5.4, 2) in §5.2.1.4, the
weights w satisfy:

GrWw H−1(Bv \ {v}, j!∗pL) = GrWw (KerN : L→ L) for w ≤ pw − 1

GrWw H0(Bv \ {v}, j!∗pL) = GrWw−1(CokerN : L→ L) = GrWw−1PrimL for w > pw.

If V is singular at v, the proof is reduced to the previous case by a desingu-
larization π : Ṽ → V , since at each point ṽ ∈ π−1(v), the map π induces an
isomorphism from B∗ṽ to a connected component of B∗v .

If dimV > 1, let pL be defined on the complement of a divisor Y ⊂ V , S
a stratification of V compatible with v and Y and H a general hyperplane
section of V through v, transverse to all strata S ⊂ V \ v.

Proof (of the lemma by induction). Let K = j!∗
pL, V ∗ := V \ v,H∗ :=

H \ v, j : X \Y → Y and iH : H → V . Let i 6= 0, B∗v := Bv \ v,H∗v := H ∩B∗v
and KH = iH∗i

∗
HK[−1]. By transversality, Thom isomorphisms apply on V ∗

with a twist of MHS:

Hi−1(H∗v ,KH) = Hi−2(H∗v ,K) ' HiH∗v (X∗v ,K)(1)

Hence, the exact sequence HiH∗v (B∗v ,K)→ Hi(B∗v ,K)→ Hi(B∗v\H∗v ,K)
1−→

may be rewritten as

Hi−1(B∗v \H∗v ,K)→ Hi−1(H∗v ,KH)→ Hi(B∗v ,K)→
Since B∗v \H∗v is Stein, a version of the Artin-Lefschetz vanishing theorem

applies in this case to prove that Hi(B∗v \ H∗v ,K) = 0 for i > 0. Hence we
have: Hi−1(H∗v ,KH)(−1) ' Hi(B∗v ,K) if i > 1 and H0(H∗v ,KH)(−1) →
H1(B∗v ,K)→ 0 is surjective.

Let j′ : H \ (H ∩ Y )→ H. Since, by transversality, the shifted restriction
KH ' j′!∗

pL|H)|V ∗ [−1] is perverse of weight pw − 1, the inequalities w >
pw−1+i−1 = pw+i−2 apply to Hi−1(H∗v ,KH) by induction and necessarily
w > pw + i holds for Hi(B∗v ,K) for i ≥ 1.

We prove that H0(B∗v ,K) has weights w ≥ pw (weaker than w > pw):
Let H1 63 v be a general hyperplane section not containing v and let k :
V ∗ → V . From the distinguished triangle k!k

∗K → k∗k
∗K → iv∗i

∗
vk∗k

∗K,
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we deduce the exact sequence of hypercohomology on the affine open subset
U1 := V \H1

H0(U1, k∗k
∗K)

γ0−→ H0(i∗vk∗k
∗K)→ H1(U1, k!k

∗K) = 0

where the last term vanishes as k!k
∗K ∈ pD≤0

c ([BBD 83] Théorème 4.1.1) .
This proves the lemma since the weights w of H0(U1, k∗k

∗K) satisfy w ≥
pw on the open set U1 \ v, and γ0 is surjective.

8.0.1 The crucial case: i = 0,−1, w = pw

The proof by induction on dimV is based on a fibration of V defined by
a Lefschetz pencil of hyperplane sections. This will occupy the rest of this
section.

Proposition 8.1. Let j!∗
pL be the intermediate extension of a shifted polar-

ized VHS on a complex algebraic variety V and v ∈ V , then :

GrWpwH−1(B∗v , j!∗
pL) = 0 and dually GrWpwH0(B∗v , j!∗

pL) = 0.

8.0.1.1 Extension to hyperplane sections

Let H be a general hyperplane section of V through v. By induction, we
suppose that the local Purity theorem holds on H.

Recall the notations: V ∗ := V \ {v}, H∗ := H \ {v}, k : V ∗ → V, h : H∗ → H,
iv : {v} → H, iH : H → V,Hv := Bv∩H, H∗v := Hv \{v} and B∗v := Bv \{v}.

Two distinguished triangles are attached to any complex L ∈ Db
c(H):

h!h
∗L→ L→ iv∗i

∗
vL

+1−−→ and h!h
∗L→ h∗h

∗L→ iv∗ih∗h
∗L

+1−−→ (8.1)

from which two exact sequences are deduced:

H−1(H,L)→ H−1(Hv, L)
∂−→ H0

c(H
∗, L)

γ−→ H0(H,L)
↓ R ↓ Rv ↓' ↓

H−1(H∗, L)
ρ−→ H−1(H∗v , L)

∂−→ H0
c(H

∗, L)→ H0(H∗, L)

(8.2)

Let L := i∗Hj!∗
pL. Since Bv −Hv is Stein and the fact that the cohomology

of i∗vj!∗
pL is concentrated in degree < 0 we have the first isomorphism:

H−1(Hv, L) ' H−1(Bv, j!∗
pL) ' H−1(B∗v , j!∗

pL)

Sine Hr(i!vj!∗
pL) = 0 if r ≤ 0, we have the second isomorphism.
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An element α ∈ H−1(Bv, j!∗
pL) will be identified with its restrictions to

Hv and B∗v by the above isomorphisms. Let Rv(α) := α|H∗v be the restriction
to H∗v , then we identify ∂(α|H∗v ) = ∂(α) ∈ H0

c(H
∗, L).

The space H−1(B∗v , j!∗
pL) being endowed with a MHS (Proposition 7.4), all

these spaces are endowed with MHS. In particular the MHS on H∗(H,L) is
defined by (Corollary 7.3).

Lemma 8.2 (Extension). i) Given an element α ∈ GrWpwH∗(B∗v , j!∗pL), its
restriction α|H∗v to H∗v extends to an element

αH∗ ∈ GrWpwH−1(H∗, j!∗
pL) with ρ(αH∗) = α|H∗v .

ii) Equivalently, α ∈ GrWpwH−1(Hv, j!∗
pL) extends to a section

αH ∈ GrWpwH−1(H, j!∗
pL).

The obstruction to extend α|H∗v is the element ∂(α|H∗v ) = ∂(α) in H0
c(H

∗, L)
(Equation 8.2). We prove:
∂(α) = 0 ∈ H0

c(H
∗, L), which is equivalent to ∂(α|H∗v ) = 0.

We remark that the image of the obstruction γ(∂α) = 0 ∈ H0(H,L).
Let L′ = h!∗(j!∗

pL)|H∗ := τ≤−2h∗(j!∗
pL)|H∗ = [1] ◦ h!∗((j!∗

pL)|H∗ [−1]).
It differs from L only at v since L|H∗ ' L′|H∗ . As L′[−1] is perverse,

Hr(i!vL
′) = 0 if r ≤ −1 and Hr(i∗vL

′) = Hr+1(i∗vL
′[−1]) = 0 if r ≥ −1.

Hence

• If i ≤ 0: Hi(H,L′) ' Hi(H∗, L′) is pure of weight a+ i, and Hi(Hv, L
′) '

Hi(H∗v , L′) satisfy local purity inequalities by induction on H.
• If i ≥ 0: Hic(H∗, L′) ' Hi(H,L′) is pure of weight pw + i.

Let H ′ be a general hyperplane section of V . Since H \ H ′ is affine and
L|H∗ [−1] perverse, H0(H \H ′, h!(L|H∗)) = 0,

We apply the global section functor Γ (H \H ′, ∗) to the second triangle on
the left of (8.1), to deduce the exact sequence of hypercohomology:

H−1(H \H ′, L) −→ H−1(Hv, L))
∂−→ H0(H \H ′, h!(L|H∗)) = 0.

It follows that the obstruction to extend α to β ∈ GrWpwH−1(H \ H ′, L) is
zero. Let u : H \H ′ → H. We apply Γ (H, ∗) to the distinguished triangle:

iH∩H′∗i
!
H∩H′L→ L→ u∗u

∗L→

to deduce the exact sequence:

H−1(H,L)→ H−1(H \ (H ∩H ′), L)
∂−→ H0

H∩H′(H,L).

The obstruction to extend β to an element in GrWpwH−1(H,L) is the element

ξ = ∂β ∈ GrWpwH0
H∩H′(H,L) = H0

H∩H′(H,L
′) as v /∈ H ∩H ′.



8 Deligne Gabber local purity 153

Remark 8.1. The image ξ′ of ξ by the morphism H0
H∩H′(H,L

′)→ H0(H,L′)
coincides with the image (∂α)′ of ∂(α) by the isomorphism:
H0(H,h!h

∗L) ' H0(H,L′).

To apply the global invariant cycle theorem on H (Lemma 7.2), we fix H
and let H ′ vary in a Lefschetz pencil P of hyperplane sections of V . The
hypercohomology spaces H∗(H ∩ H ′, L′) form a local system on a Zariski
open subset U of P .

We choose an embedding of H ↪→ V ↪→ P into a projective space P and
construct the diagram

H
q←− H̃P̌

i←↩ H̃
g ↓ ↓ g
P̌ ←↩ P

where H̃P̌ is the disjoint union of all hyperplane sections of H, and P̌ the
paramater space of all hyperplane sections. Moreover P is a general line in
the the dual projective space P̌ and H̃ is the restriction of H̃P̌ over P . The
morphism q ◦ i is defined by the blow-up of the axis of the pencil.

By the transversality of a general hyperplane section, Rig∗q
∗L′ is a local

system over a dense Zariski open subset W of P̌.
Let U := W ∩ P and t ∈ U . The fundamental group π := π1(U, t) acts

as a subgroup of GL(H∗(H̃t, L
′)) (In this case the action of π1(W, t) as a

subgroup of GL(H∗(H̃t, L
′)) coincides with the action of π). We remark that

H̃t := H ∩H ′ where H ′ is the hyperplane section in V .
We apply the global invariant cycle theorem to the morphism g over the

Zariski-dense open subset U of P . For t ∈ U , the fundamental group π1(U, t)

acts linearly on H∗(H̃t, L
′).

For a general H ′ with v 6∈ H ′, we can view ξ ∈ H0
H∩H′(H,L

′) as an element
in H−2(H ∩H ′, L′) via the Thom isomorphism.

The image of H−2(H,L′) in H−2(H ∩H ′, L′) under the restriction to H ∩
H ′ coincides with the image of H0(P,R−2g∗(i

∗q∗L′)) and is equal to the
subspace of fixed elements H−2(H ∩H ′, L′)π under the monodromy action of
the fundamental group π; this subspace contains ξ ([De 80] 6.2.12, Corollary
4.1 ii).

By duality, the Gysin morphism

G : H−2(H,L′)π(−1) ↪→ H0(H,L′)

is injective. With the notation of Remark 8.1, if ∂(α) 6= 0, we have ξ 6= 0.
Moreover, by transversality at a general point t ∈ U , the restriction L′|H∩H′

is a shifted intermediate extension on H ∩H ′.

We introduce the following diagram of Gysin morphisms with coefficients
in the derived category of sheaves of vector spaces:
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GrWpw−4H−2(H ∩H ′, j!∗pL|V ∗)
G1→ GrWpw−2H0(H ′, j!∗

pL|V ∗)
↓ G2 ↓ G3

GrWpw−2H0(H, k!∗(j!∗
pL|V ∗))

G4→ GrWpwH2(V, k!∗(j!∗
pL|V ∗))

(8.3)

where j!∗
pL := k!∗(j!∗

pL|V ∗). Recall that for any subvariety S′ of codimen-
sion s in V which intersects transversely the strata of S (i.e. S′ is normally
embedded in the sense of [GMacP 88] [Max 19] Definition 3.4.5), one has the
definition of an extension element η2s

V ∈ Ext2s(QS′ ,QV ) called the funda-
mental class [Ve 76].

It is based on the Thom isomorphism i!S′Q ' i∗S′Q[−2s] and extends by
tensor product to coefficients in j!∗

pL since we have: i!S′j!∗
pL ' i∗S′j!∗pL[−2s].

This construction applies to G1 and G2 (resp. G3) in the case of H∩H ′ (resp.
H ′). Special attention is needed in the case of the embedding iH : H ↪→ V ,
since H contains the stratum v. In this case we have a morphism in the
derived category η2

V ∗ : QH∗ [−2]→ QV ∗ defined by the fundamental class.
To construct the morphismG4 after η2

V ∗ , let L′′ denote j!∗
pL = k!∗(j!∗

pL|V ∗)
and introduce the long exact sequences

H1(i∗vL
′′)

δ1−→ H2
c(V

∗, L′′)
γ'−−→ H2(V,L′′)→ H2(i∗vL

′′)
↑ η2

V ∗ ↑ η2
cV ∗

H−1(i∗vL
′′)

δ−1−−→ H0
c(H

∗, L′′)
γ′−→ H0(H,L′′)→ H0(i∗vL

′′)

defined by the distinguished triangle k!k
∗L′′ → L′′ → iv∗i

∗
vL
′′ [1]−→.

Here γ is an isomorphism and γ′ is surjective, since Hi(i∗vL
′′) = 0 for i = 0, 1.

We have δ1 ◦ η2
V ∗ = η2

cV ∗ ◦ δ−1, hence γ ◦ η2
cV ∗ ◦ δ−1 = 0.

Indeed, η2
V ∗ induces two morphisms η2

B∗v
: H−1(Bv ∩H∗, L′′) → H1(B∗v , L

′′)

(equivalentlyH−1(i∗vL
′′)→ H1(i∗vL

′′)) and η2
cV ∗ : H0

c(H
∗, L′′)→ H2

c(V
∗, L′′).

We deduce the morphism G4 : H0(H,L′′)→ H2(V,L′′).
Moreover, it is clear by this construction that G4 is compatible with MHS.

We have G2(ξ) = γ(∂α) = 0, hence G3 ◦G1(ξ) = 0. The morphism G3 is
injective since H1(X −H ′, k!∗(

pHi)) = 0, hence G1(ξ) = 0.
Finally, we fix H ′ and let H vary in a Lefschetz pencil of hyperplane

sections H through v and we apply the global invariant cycle theorem again
to prove that the Gysin morphism G1 is injective, hence ξ = 0.

Remark 8.2. The original proof is based on a diagram defined by cohomology
classes with support

QH∩H′(−1)[−2] → Q′H
↓ ↓

QH → QV (1)[2]

which generates by tensor product with coefficients in L′′ := j!∗
pL the commu-

tative diagram 8.3 of topological morphisms. However, the reference [Ve 76]
applies only for nonsingular V ; moreover H is not normally embedded since
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it contains the stratum v. We modified the proof to apply directly to the
Diagram 8.3.

8.0.1.2 Reduction to a fibration

To reduce the crucial case to the case where a fibration g : V → P1 exists, we
use a general Lefschetz pencil of hyperplanes as already mentioned in chapter
6, §6.2.0.3. Then, the local and global invariant cycle theorems for perverse
cohomology sheaves (Proposition 7.5, Corollary 7.5) and the extension prop-
erty (Lemma 8.2) apply.

Let g(v) = 0, D a complex disc with center 0 in P1 and VD := g−1(D).
We have the diagram

H \ {v} u→ VD \ {v}
φ
←↩ VD \H

↓ ↓ g ↓

0
u′→ D

φ′

←↩ D∗

(8.4)

Lemma 8.3. Let H be a general hyperplane section and P a perverse sheaf
on VD \{v}. With the notations of Diagram 8.4, there exists a decomposition
in the derived category of complexes of sheaves of vector spaces on H \ {v}:

u∗P ⊕ u∗P [−1] ' u∗φ∗φ∗P.

The splitting of complexes of Q-vector spaces at 0 ∈ D

(u′)∗φ′∗Q ' Q⊕Q[−1](−1)

corresponds to the isomorphism H∗(D∗,Q) ' H0(D∗,Q) ⊕ H1(D∗,Q). In
terms of the de Rham resolution E∗D∗ of C, the generators are 1 ∈ Q and dz

z
respectively.

In terms of a Whitney stratification S of V compatible with the perverse
sheaf P , the restriction of the cohomology sheaves of P to a stratum S near a
point a ∈ H \v is constant (there is no monodromy near a), hence we deduce
that the natural morphism P ⊗ g∗φ′∗E∗D∗ → φ∗φ

∗P induces an isomorphism
in the derived category of complexes of sheaves of vector spaces

u∗P ⊕ u∗P [−1]
γ−→ u∗φ∗φ

∗P.

In view of this description we denote the decomposition as:

∀i ∈ Z, Hi(H \ v, u∗φ∗φ∗P ) ' Hi(H \ v, P )⊕ ηHi−1(H \ v, P ) (8.5)
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8.0.1.3 Lifting of αH

Let P := j!∗
pL on V , Coker−2N := Coker (N : H−2(H,ψugP )→ H−2(H,ψugP ).

By (Remark 7.5), we have an exact sequence:

0→ Coker−2N(−1)→ H−1(VD \H,P )→ H−1(H,ψugP )N → 0

.
Since VD retracts by deformation ontoH, the element αH ∈ GrWpw H−1(H,P )

in the Extension Lemma 8.2 corresponds to an element αD ∈ GrWpwH−1(VD, P ),
with restriction

α∗D ∈ GrWpwH−1(VD \H,P ) on VD \H.

The specialization (Equation 7.10)
sp(αH) := α̃∗D ∈ GrWpwH−1(H,ψugP )N = 0

must vanish since the space H−1(H,ψugP )N is of weight ≤ pw − 1, while
w(αH) = pw.

Hence the section α∗D lifts to a section

β̃ ∈ GrWpw(H−2(H,ψugP )(−1)) = GrWpw−2(H−2(H,ψugP ) : (β̃ 7→ α∗D)

β̃ is unique in CokerN := Coker (N : GrWpwH−2(H,ψugP )→ GrWpw−2H−2(H,ψugP ).

Since KerN := Ker (N : GrWpw−2H−2(H,ψugP ) → GrWpw−4H−2(H,ψugP )
projects isomorphically onto CokerN as both are isomorphic to the space

PrimGrWpw−2H−2(H,ψugP ), we can choose the element β̃ ∈ GrWpw−2H−2(H,ψugP )N .

By the local invariant cycle theorem (Corollary 7.5), we lift this canonical
choice of β̃ to an element βD ∈ GrWpw−2H−2(VD, P ).

Let β∗D ∈ GrWpw−2H−2(VD \H,P ) denote the restriction of βD; we have

η ∧ β∗D = α∗D ∈ GrWpwH−1(VD \H,P ) (8.6)

8.0.1.4 First reduction to prove α = 0

Let B∗v = Bv\{v}, V ∗D = VD\{v}, H∗ = H\{v}, Hv = H∩Bv, H∗v = Hv\{v},
and consider the diagram

α∗∗ ∈ GrWpwH−1(Bv \Hv, j!∗
pL) ← α ∈ GrWpwH−1(B∗v , j!∗

pL)
↑ ↑

α∗D ∈ GrWpwH−1(VD \H, j!∗pL) ← αD ∈ GrWpwH−1(V ∗D, j!∗
pL)

σ ↓ ↓
A

σ1←− αH ∈ GrWpwH−1(H∗, j!∗
pL)

where A := GrWpw(H−1(H∗, P )⊕ ηGrWpw−2H−2(H∗, P ) (by Equation 8.5)

The morphism σ := (σ1, σ2) is defined by Equation 8.5. The element αD re-
stricts to α∗D ∈ GrWpwH−1(VD \H,P ) and to αH ∈ GrWa H−1(H∗, P ) satisfying
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the relation:
σ(α∗D) = σ1(αH) ∈ GrWpw(H−1(H∗, P ) (8.7)

The diagram above is commutative and by Lemma 8.2 the restriction of
αD coincides with α ∈ GrWpwH−1(B∗v , P ).

Lemma 8.4. An element α ∈ GrWpwH−1(B∗v , j!∗
pL) vanishes if and only if its

restriction α∗∗ to Bv \Hv is zero.

Proof. Since we have the exact sequence

GrWpw−2H−3(H∗v , j!∗
pL)

G→ GrWpwH−1(B∗v , j!∗
pL)→ GrWpwH−1(Bv \Hv, j!∗

pL)

it is enough to prove GrWpw−2H−3(H∗v , j!∗
pL) = 0.

This follows by the inductive hypothesis on the small neighborhood Hv

of v in H since H−3(H∗v , j!∗
pL) = H−2(H∗v , j!∗

pL[−1]) satisfy w ≤ pw − 3 by
induction.

8.0.1.5 Proof of α∗
∗ = 0 in GrWpwH−1(Bv \Hv, j!∗

pL)

We consider the diagram

β∗ ∈ GrWpw−2H−2(B∗v , P )
η◦ρ−−→ α∗∗ ∈ GrWpwH−1(Bv \Hv, P )

↑ ↑
βD ∈ GrWpw−2H−2(V ∗D, P )

η◦ρ−−→ α∗D ∈ GrWpwH−1(VD \H,P )
↓ ↓ σ

βH ∈ GrWpw−2H−2(H∗, P )
η∪−−→ A

(8.8)

where ρ denotes the restriction of β∗ to Bv \Hv, resp. βD to VD \H.

Lemma 8.5. The restriction βH ∈ GrWpw−2H−2(H∗, P ) of βD vanishes.

Proof. The element βD ∈ GrWpw−2H−2(V ∗D, j!∗
pL) restricts to an element

ρ(βD) on VD \ H such that η ∪ ρ(βD) = α∗D ∈ GrWpwH−1(VD \ H, j!∗pL)
by Equation (8.6). By restricting to H∗ we deduce:

η ∪ βH = σ(η ∪ ρ(βD)) = σ(α∗D) = σ2(α∗D) ∈ ηGrWpw−2(H−2(H∗, j!∗
pL)) ⊂ A

By (8.7) we have the equality σ(α∗D) = σ1(αH), σ2(α∗D) = σ(α∗D) = σ1(αH) =
0 by the decomposition property of A; then βH = 0 since the cup product
η∪ is injective on GrWa−2H−2(H∗, j!∗

pL).

We denote by β∗ the restriction of βD to B∗v in Diagram (8.8), and by β∗H∗v
the restriction of βH to H∗v .

Lemma 8.6. i) The restriction GrWpw−2H−2(B∗v , j!∗
pL)→ GrWpw−2H−2(H∗v , j!∗

pL) :
β∗ 7→ β∗H∗v is injective.

ii) We have: β∗ = β∗H∗v = 0 and α∗∗ = η ∪ ρ(β∗) = 0.
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Proof. i) Let jH : Bv \Hv → Bv denote the open embedding, since the open
subset Bv \Hv is Stein, we have
H−2(Bv \Hv, jH!j

∗
HP ) = 0 = H−1(Bv \Hv, jH!j

∗
HP ).

ii) We have β∗H∗v = 0 as the restriction of βH = 0, hence β∗ = 0 and

α∗∗ = η ∪ ρ(β∗) = 0 ∈ GrWpw−2H−2(Bv \Hv, j!∗
pL).

The local invariant cycle theorem is needed here as the lemma applies exactly
to βD and not to αD. The final conclusion α = 0 ∈ GrWpwH−1(B∗v , j!∗

pL) follows
by (Lemma 8.4).

Remark 8.3. Let f : X → V be a projective morphism of complex algebraic
varieties and v ∈ V , with fiber Xv := f−1(v) ⊂ X. The local purity theorem
may be interpreted as a relative local purity (ch. 9, Theorem 9.2) and in terms

of the intersection morphism I: Gr
pτ
j HiXv (X, j!∗

pL)
pτIji−−−→ Gr

pτ
j Hi(Xv, j!∗

pL)
(§10.4).



Chapter 9

Weight filtration, decomposition and
local purity

Fouad El Zein , Dũng Tráng Lê, Xuanming Ye

We start a new section of this volume consisting of chapters 9− 12, to give a
new combined direct geometric proof of the local purity (ch. 1, Theorem 1.1)
and the decomposition theorem (ch. 1, Theorem 1.2).

In this section, we do not use the nearby or vanishing cycles complex to
construct the weight filtration on the logarithmic complex Ω∗L ' j∗L.

The proof of local purity differs from the proof in [DeG 81]. An interpre-
tation in terms of Intersection morphisms is given at the end.

We refer to the necessary preliminaries in chapters 2 and 3, namely §2.3
on the degeneration of VMHS, §2.3.2 on infinitesimal mixed Hodge structure
(IMHS), Remark 2.10 on IMHS defined by an admissible VMHS, chapter
2.4.0.1 on the embedding of the perverse filtration, §3 on perverse sub-sheaves
of the logarithmic complex Ω∗pL ' j∗

pL and Remark 3.6 vii on the decom-
position of the Hodge filtration following the decomposition of spaces with
underlying MHS.

9.1 Introduction to chapters 9− 11 (section 3)

Given a graded polarized admissible variation of MHS (L,W 0, F ) on the
complement of a NCD Y ⊂ X, we develop in §9.1.0.2 a direct definition of the
weight filtration W on the logarithmic complex Ω∗L (§3.1) by perverse sub-
sheaves, extending naturally the weight filtration W 0 on L, as an application
of the local study by Kashiwara [Ka 86] (see ch. 2, 2.3 and ch. 3, §3.2.6).

The weight filtration W is defined in this chapter in terms of the local
monodromy defined by the coordinates (§3.1.1) at points of the NCD Y .
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School of Mathematics and Information Science, Guangzhou University, P.R.China.
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Since Y is defined locally by an equation f = zi1 · · · zin product of local co-
ordinates, the weight filtration is related to the monodromy weight filtration
on the nearby cycle complex ψfL by (Equation 5.54, §5.1.2 Remark 5.4).

Since GrW∗ Ω
∗L satisfy a decompositon property (§9.2.2) into a direct

sum of (shifted) intermediate extensions with Hodge filtration induced by
(Ω∗L, F ), we deduce from the purity theorem on intermediate extensions
with induced Hodge filtration (Theorem 3.1), the existence of a structure of
MHC on (Ω∗L, F,W ) as well on the sub-complex IC∗L(LogZ).

We introduce a relative version of the local purity theorem to reduce the
proof to the non singular case.

The decomposition theorem is proved by induction on the dimension of
X, first by a reduction to general hyperplane sections and then to isolated
strata. The proof in chapter 10 is combined with the proof of the relative
version of the local purity theorem.

Originally, the work on this section preceded the previous sections (see
[EL 14] and [EY 14]).

9.1.0.1 Weight filtration on Ω∗L

Let Y ⊂ X be a NCD and (L,W 0, F ) a graded admissible polarized variation
of MHS on X∗ := X \ Y . We define the weight W on Ω∗L, extending W 0

over X∗ := X \ Y , in terms of various local weight monodromy filtrations at
points x ∈ Y . We prove the following theorem:

Theorem 9.1. Let (L,W 0, F ) be a graded polarized admissible VMHS on
X \ Y . There exists a weight filtration W on the logarithmic complex with
coefficients in Deligne’s extension LX (§3.1) by complexes of analytic perverse
sub-sheaves and a Hodge filtration F by complexes of analytic sub-sheaves
such that the bi-filtered complex

Ω∗L := (Ω∗X(Log Y )⊗ LX ,W, F ) (9.1)

induces a MHS on the cohomology groups Hi(X \ Y,L).

The construction of W and the proof of the theorem will occupy the rest of
the chapter.

9.1.0.2 Logarithmic complexes along a NCD

Various complexes with weight and Hodge filtrations related to a NCD sub-
divisor Z of Y ⊂ X are defined by restriction to Z, with support in Z or
Verdier’s duality.

Let pL := L[dimX] denote the associated perverse sheaf on X \ Y with
the conventional shifted degree. It is called a shifted VMHS.
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Let iZ : Z → X, j := (X \Y )→ X and jZ := (X \Z)→ X. We construct
the weight and Hodge filtrations on the sub-complex IC∗L(Log Z) ⊂ Ω∗L
isomorphic to jZ∗(j!∗L)|X\Z , from which we deduce logarithmic complexes

isomorphic to jZ!(j!∗
pL)|X\Z , i

∗
ZjZ∗(j!∗

pL)|X\Z , i
!
Zj!∗

pL and i∗Zj!∗
pL (see ch.3,

§3.2.4). We refer to such complexes as bifiltered logarithmic complexes in the
derived category of bifiltered sheaves of abelian groups.

9.1.0.3 Relative local purity

We modify the statement of the local purity theorem (ch. 1, Theorem 1.1),
to explore its relation with the decomposition theorem.

Let K ∈ Db
c(V,Q) be a complex in the derived category of complexes with

constructible cohomology on an analytic space V . The topological middle
perversity truncations of K define an increasing perverse filtration pτ of K
on V ([BBD 83] section 2 and proposition 2.1.17).

We deduce for each subset S of V , an increasing filtration pτ on the hy-
percohomology of the restriction of K to S:

pτiHk(S,K) := Im
{
Hk(S, pτiK)→ Hk(S,K)

}
. (9.2)

Let f : X → V be a projective morphism and let j!∗
pL be the intermediate

extension on X of a (shifted) polarized variation of Hodge structures (VH)
of weight pw on a smooth Zariski open subset of X.

Let BXv := f−1(Bv) be the inverse image of a small ball Bv with center v ∈
V and Xv := f−1(v) ⊂ BXv . A perverse filtration pτ on Hk(BXv \Xv, j!∗

pL)
is defined by the natural equality Hk(BXv \Xv, j!∗

pL) = Hk(Bv \ v, f∗j!∗pL):

pτiHk(BXv \Xv, j!∗
pL) := pτiHk(Bv \ v, f∗j!∗pL) (9.3)

(f∗ is the derived functor, in general we do not use henceforth the letter R
for a derived functor (see chapter 1, §2.4 and 2.4.0.2 for more conventions).

The hypercohomology Hk(BXv \ Xv, j!∗
pL) is independent of the choice

of Bv with small radius and carry a natural MHS such that the perverse
filtration is a filtration by sub-MHS (ch.11.1 Proposition 10.2 and ch. 10
Proposition 10.1). We prove in chapter 10:

Theorem 9.2 (Relative local purity). Let f : X → V be a projective
morphism of complex algebraic varieties, v ∈ V , Xv := f−1(v) ⊂ X and
BXv := f−1(Bv) the inverse image of a small ball Bv ⊂ V .

Let j!∗
pL be a (shifted) polarized variation of HS on X of weight pw, the

weight w of the MHS on the graded-cohomology spaces with respect to the mid-
dle perversity filtration pτ satisfy the inequalities: wGr

pτ
i Hr(BXv \Xv, j!∗

pL):

w ≤ pw + r if r − i ≤ −1; w > pw + r if r − i ≥ 0. (9.4)
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Remark 9.1. i) We say that j!∗
pL is locally pure at v relative to f .

ii) Let K := f∗j!∗
pL. If the decomposition theorem apply to K on V \ v,

then j!∗
pL is locally pure at v relative to f if and only if pHi(K) is locally

pure at v for each i, since Gr
pτ
i Hr(BXv \Xv, j!∗

pL) ' Hr−i(Bv \ v, pHi(K)).
In this case, we say that K is locally pure at v.

iii) In the case of a finite morphism and a non singular variety X, dimX =
dimV = n, Xv is a finite number of points and BXv \Xv is a finite number
of punctured discs of dimension n. Since f∗j!∗

pL is perverse, the pτ -filtration
is reduced to one term pH0(f∗j!∗

pL) = f∗j!∗
pL.

The statement is reduced to a condition on the weight w of Hr(Dn \
0, j!∗

pL). In this special case, the theorem is proved in ([CaKSc 87], Corollary
1.13, [KaK 87], Theorem 4.0.1) since Hr(Dn \ 0, j!∗

pL) = Hr(Dn, j!∗
pL) for

r ≤ −1.

9.1.0.4 The decomposition theorem

The combined new proof of the decomposition theorem (ch.1, Theorem 1.2)
and the local purity (ch.1, Theorem 1.1), is by induction on the dimension of
X and reduction to isolated strata (ch.10 and ch.10.3), in terms of a Thom-
Whitney stratification.

9.1.0.5 Local purity and Intersection isomorphisms

The relative local purity theorem with coefficients in a polarized variation
of HS is related to the Intersection morphism in the case of a divisor on a
variety X contracting to v ∈ V (ch. 10.3, §10.4).

In the case of constant coefficients, the intersection morphism is studied in
([CaMi 5] section 6.3) where a generalized Grauert contractibility criterion is
proved. This statement is in fact equivalent to the purity theorem (see §10.4.1)
and it is related to the proof of the decomposition theorem in [CaMi 5].

Since MHS on cohomology can be assumed in the constant coefficients
case, the proofs in [CaMi 5] are different from the general case where the
construction of mixed Hodge theory is simultaneous and included in the proof.
The reader will find in [CaMi 5] numerous interesting examples.

9.1.0.6 Fibration by NCD over the strata

The proof of the decomposition theorem is always reduced to the case of a
fiber by NCD above an isolated stratum. This reduction is local. By induction,
this amounts to the case where the inverse of a stratum is locally a fibration
by NCD.
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We remark at the end of chapter 11 (§11.2) that it is possible to reduce all
proofs to the case of a family of projective morphisms fibered by NCD above
the strata of a global fibration of V .

9.1.0.7 Admissible perverse VMHS on X \ Z

We added in this chapter complements on admissible perverse VMHS on
X \ Z ([Sa 90] and §9.7) to answer a question by the referee. We discuss the
subject with hints to the proof as it is a motivation to the introduction of
the filtration N ∗W and shows its relation to Verdier’s classification.

9.2 The weight filtration W

Let L be a VHS. The relation between the weight filtration on Ψ∗L (Propo-
sition 5.1) and the weight filtration W on Ω∗L is defined by (Equation 5.54):

GrWl jZ∗j
∗
Z(j!∗

pL) = GrWl−1(CokerN) if l > pw

where N acts on the nearby cycle complex (Equation 9.43).
This chapter, is a definition, in the case of a VMHS L, of the weight

filtration W on Ω∗L described by repeated star transformation N ∗W of a
filtration W of L defined by Kashiwara ([Ka 86], 3.4, §9.2.1).

The main results of [Ka 86] is a test of admissibility in codimension one
and an important property of the relative monodromy useful to extend results
from the pure case to the mixed case:

Proposition 9.1 (Kashiwara ([Ka 86], Theorem 3.2.9)). Let L be an
object of an abelian category with an increasing filtration W and N :
(L,W )→ (L,W ) a nilpotent endomorphism compatible with W . The relative
monodromy filtration M satisfy the following natural decomposition

GrMl L ' ⊕kGrWk GrMl L (9.5)

In particular, there exist natural sections GrMr GrWk L→ GrMr L.
We give at the end of the paragraph (9.7.1.3 below) informations on the

proof and the consequences.
However, we find in [Ka 86] various local statements needed to define the

weight filtration W on Ω∗L which was probably the projected result but do
not figure there, neither the motivation of the definition N ∗W .

In this chapter the properties of weight filtration W on Ω∗L are discussed
and the decomposition of GrW∗ Ω

∗L is proved, which leads to a new proof of
the decomposition theorem (Theorem 10.1, see also Theorem 11.1).

We consider a graded polarized admissible variation of MHS on the un-
derlying local system L on X∗ := X \ Y , satisfying asymptotic properties at
points of Y , summarized in the condition of admissibility (ch. 2, §2.3).
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The Hodge filtration F denotes a filtration FX∗ by sub-bundles of LX∗ :=
L⊗OX∗ . By definition, it extends into a filtration of Deligne’s extension LX
by analytic sub-bundles FX .

The filtration by sub-local systems W 0 of L extends to a filtration by
perverse analytic sub- sheaves W0 ⊂ LX which restricts to a filtration by
sub-bundles on each stratum of Y .

By the admissibility of L, the monodromy filtration relative to the exten-
sion W0 along Y exists. Both filtrations W0 and FX are combined to define
the global weight filtration W on Ω∗L (Definition 9.2), although the con-
struction below of W is local. Such results are used in chapters 10 and 10.3
to prove the theorem 11.1.

Remark 9.2. The weight W is a filtration by Q-perverse sub-sheaves although
the definition is by analytic sub-sheaves of ΩiL := ΩiX(Log Y )⊗LX in each
degree. The reader should be aware that the filtration W on Ω∗L is called
weight since it induces the weight of the MHS on the hypercohomology.

In the case of intermediate extension the weight is trivial. However, we
will see that the local cohomology carry also weight filtrations as local orbits
or IMHS (Definition 2.14) and the local purity property is satisfied (it is the
original conjecture by Deligne to prove purity).

The weight of a nilpotent orbit of dimension n is defined by N1 + · · ·+Nn,
otherwise we write M(A,W ) for the relative weight filtration defined by an
endomorphism A compatible with W .

9.2.1 Local weight filtration on Ω∗L

In view of the local description of perverse sheaves on a product of discs
([Ka 86] §2 and ch.3, §3.2.6) many constructions on logarithmic complexes,
such as the weight filtrations, will appear first on the complex of vector spaces
Ω∗L (ch.3, §3.1.2) where L := LX(x) at a point x ∈ Y , and will be carried
later on the logarithmic complex by the tilde embedding (Lemma 3.1).

The properties of IMHS (Definition 2.14) are used in the description of
the decomposition of GrW∗ Ω

∗L.

9.2.1.1 The filtration N ∗W

Let (L,W,N) denote an increasing filtration W on a vector space L with
a nilpotent endomorphism compatible with W (NWi ⊂ Wi) such that the
relative monodromy filtration M(N,W ) exists.

A new filtration N ∗W of L is defined by Kashiwara ([Ka 86], 3.4):

(N ∗W )k := NWk+1 +Mk(N,W )∩Wk = NWk+1 +Mk(N,W )∩Wk+1 (9.6)
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where the last equality follows from ([Ka 86], Prop 3.4.1). The endomorphism
N : L→ L as well the identity I : L→ L shift the degrees:

N : Wk → (N ∗W )k−1, I : (N ∗W )k−1 →Wk (9.7)

9.2.1.2 Properties of N ∗W

1) The couple ((L,W )
N−→ (L,N ∗ W )) form a (graded) distinguished pair

(proved in ([Ka 86], Lemma 3.4.2 and admitted here): we have the decompo-
sition property of N ∗W

GrN∗Wk L ' Im (N : GrWk+1L→ GrN∗Wk L)⊕ ker (I : GrN∗Wk L→ GrWk+1L)

Im (N : GrWk+1L→ GrN∗Wk L)
∼−→ Im (N : GrWk+1L→ GrWk+1L)

ker (I : GrN∗Wk L→ GrWk+1L) ' Coker(N : WkGr
M
k+2 →WkGr

M
k )

(9.8)

where M := M(N,W ) (see also [Ka 86], Corollary 3.4.3)
2) We have the following properties of M and the induced filtration W on

GrN∗Wk L by ([Ka 86], Lemma 3.4.2):

M(N,W ) =M(N,N ∗W )

Wk+1Gr
N∗W
k L =GrN∗Wk L,

GrWk+1Gr
N∗W
k L 'Im(N : GrWk+1L→ GrWk+1L),

WkGr
N∗W
k L = ker (I : GrN∗Wk L→ GrWk+1L)

∀p ≤ k : GrWp (GrN∗Wk L) ' Coker (N : GrMk+2Gr
W
p L→ GrMk Gr

W
p L)

(9.9)

Since N is strict with respect to W (as an IMHS), we have ([Ka 86], Corollary
3.4.3):

GrN∗Wk L ' Im(N : GrWk+1L→ GrWk+1L)⊕ Coker (N : WkGr
M
k+2 →WkGr

M
k )

(9.10)

Lemma 9.1. ([Ka 86], Proposition 5.3.1, Corollary 5.5.4).
Let (L,W,F,N1, . . . , Nn) be an IMHS, then (L,N1 ∗ W,F,N1, . . . , Nn)

and (L,M(N1,W ), F,Ni, i 6= 1) are IMHS.

Hint to the proof. By (§2.3.2, Remark 2.9), there exists on (L,N1,W ) an
adequate filtration F such that (L,N1,W, F ) is an IMHS, hence N1 ∗W is
well defined.
Let M := M(N1,W ). By the nilpotent orbit structure on GrWk L, the HS
defined F (t) := exp(i

∑
j tjNJ) for tj � 0 is polarized, hence GrMl Gr

W
k L is

polarized and the polarization is independent of t. Then by (Equation 9.1),
GrMl L is polarized. From which we deduce that (L,M(N1,W ), F,Ni, i 6= 1)
is a mixed nilpotent orbit. By (Equation 9.10) applied to N1, CokerN1 is a
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nilpotent orbit, as well N1Gr
W
k+1L by the descent lemma (ch.5, lemma 5.1),

hence the direct sum GrN1∗W
k L is also a nilpotent orbit.

Corollary 9.1. The decomposition of GrNi∗Wk L (Equation 9.8) is in the
abelian category of IMHS.

The commutativity of the star transformation ([Ka 86], Proposition 5.5.5):

N1 ∗N2 ∗W = N2 ∗N1 ∗W (9.11)

is deduced by Kashiwara from to the relation ([Ka 86], Theorem 5.5.1)

N2 ∗M(N1,W ) = M(N1, N2 ∗W )

9.2.1.3 The filtration W J associated to an IMHS

Let (L,W 0, F,Ni, i ∈M) denote an IMHS and let J ⊂M .
By convention, we set for J = ∅ ∈M , W ∅ := W 0 on L.

Since by induction, (L,W J , F,Ni, i ∈M) is an IMHS and by the commu-
tativity of the star transformation, we define by induction

W J := Ni1 ∗ (. . . (Nij ∗W ) . . .) for J = {i1, . . . , ij} (9.12)

(W J is denoted by ΨJW in [Ka 86], 5.8.2).
The increasing filtration W J on L does not depend on the order of com-

position of the respective transformations Nik∗ since by (Equation 9.11) for
all ip, iq ∈ J : Nip ∗ (Niq ∗W ) = Niq ∗ (Nip ∗W ).
The relative weight filtration with respect to W is denoted by

M(J,W ) := M(N,W ) for N ∈ C(J) := {Σj∈J tjNj , tj > 0}, (9.13)

Let i ∈ J ⊂ M . We have: M(Ni,W
J\i) = M(Ni,W

J) by ([Ka 86], Lemma
3.4.2) and in general, the following equalities:

∀J,K ⊂M : M(J ∪K,W ) = M(J,M(K,W )) (9.14)

are proved in ([Ka 86], Proposition 5.2.5). The star transformation satisfy
the relations:

∀J ⊂ K ⊂M : M(K,W J) = M(K,W )

∀J1, J2 ⊂M : M(J1,W
J2) = M(J1,W )J2

(9.15)

([Ka 86], Equations 5.8.6 and 5.8.5). In particular, let NJ =
∑
i∈J Ni

∀i ∈ J, M(NJ ,W
J) = M(NJ ,W ) = M(Ni,M(NJ\i,W ) (9.16)
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9.2.1.4 The weigt W on Ω∗L

The filtrations W J fit together to define the weight filtration W on Ω∗L:

Definition 9.1 (Weigt W on Ω∗L). i) Let (L,W,F,Ni, i ∈ M) be an
IMHS. On the de Rham complex Ω∗L (ch.3, Definition 3.3), the filtrations
W and F are defined by the families W J

k−|J|L and F k−|J|L for J ⊂M :

WkΩ
∗L := s(W J

k−|J|L,Ni, i ∈M)J⊂M , F
pΩ∗L := s(F k−|J|L,Ni, i ∈M)J⊂M

ii) The weight and Hodge filtrations on IC∗L (ch.3, Definition 3.4) are in-
duced by the embedding IC∗L ↪→ Ω∗L

where W ∅ = W 0. For example, in dimension 2:

WkΩ
∗L := (W 0

kL
N1,N2−−−−→W 1

k−1L⊕W 2
k−1L

N1,−N2−−−−−→W 1,2
k−2L.

Remark 9.3. The induced morphism Ni : W J
k → (Ni ∗ W J)k−1 drops the

degree of the filtration W J . For further use, it is important to add to the
above data, the canonical inclusion I : (Ni ∗W J)k−1 →W J

k .
Beware that the weight filtration W 0 on L underlying the variation of

MHS, extends as a constant filtration W 0 on Ω∗L but it is different from the
weight W . Later we shall see that the local definition of W on Ω∗L extends
to a global weight filtration on the de Rham complex.

9.2.2 Decomposition of GrW∗ Ω
∗L

The following proposition is the basic local result in the construction of the
structure of MHC on the logarithmic de Rham complex

Proposition 9.2 (local decomposition). The graded complex with respect
to the filtration W on Ω∗L (Definition 9.1) satisfy the decomposition property

(GrWk Ω
∗L,F )

∼−→ ⊕K⊂M (IC∗PKk−|K|L,F )[−|K|](−|K|) (9.17)

into a direct sum of intersection complexes (ch.3, Definition 3.4) of nilpotent
orbit (PKk−|K|L,F,Ni, i ∈M \K) of weight k − |K| for all K ⊂M .

The component (IC∗GrW
0

k L,F ) figures in the direct sum for K = ∅.

Remark that PKk−|K|L,F )[−|K|](−|K|) is of weight k. The decomposition

follows from the combinatorial description ([Ka 86] §2 and ch.3, §3.2.6) of
perverse sheaves satisfying the relation of distinguished pairs (Equation 9.8).
Such decomposition is described by the following de Rham family attached
to the IMHS L

DR(L) := {LJ ,W J , FJ , I
K
J : LJ → LK , NJ\K : LK → LJ}K⊂J⊂M (9.18)
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where: LJ = L, FJ = F and W J is the filtration defined by (Equation 9.12).
The morphisms IKJ := Id : L → L, NJ\K :=

∏
i∈J\K Ni : L → L. satisfy

compatibility relations ([Ka 86], (5.6.1) to (5.6.7)) and induce the graded
morphisms:

GrNJ\K : GrW
K

a LK → GrW
J

a−|J\K|LJ , and GrIKJ : GrW
J

a−|J\K|LJ → GrW
K

a LK

For each J ⊂M : (LJ ,W
J , FJ , Nj , j ∈M) is an IMHS structure on L.

Hence we have a decomposition into a graded distinguished pair for each set
of subsets K ⊂ J ⊂M :

GrW
J

a−|J\K|LJ ' ImGrNJ\K ⊕KerGrIKJ . (9.19)

which follows from ([Ka 86], Corollary 5.5.4) and the decomposition in the
case |J \K| = 1 (Equation 9.8).

Hence, the distinguished pairs criteria apply to the graded de Rham family

GrWa DR(L) := {GrWa−|J|LJ , FJ , GrI
K
J , GrNJ\K}K⊂J⊂M (9.20)

Lemma 9.2 ([Ka 86], Lemma 5.6.2). Let L and LX be as in theorem
11.1. For each J ⊂M , x ∈ YJ , and L := LX(x), we define:

P Jk L := ∩K⊂J,K 6=JKer (GrIKJ : GrW
J

k L→ GrW
K

k+|J\K|L) ⊂ GrW
J

k L (9.21)

i) For x ∈ Y ∗J and NJ =
∑
j∈J Nj: P

J
k L is a polarized HS of weight k, direct

summand of Gr
M(NJ ,W

J )
k GrW

J

k L.

ii) For x ∈ Y ∗M and L := LX(x) (hence x ∈ YJ for all J ⊂M,J 6= M ):

GrW
M

k−|M |L
∼−→ ⊕J⊂MNM\JP Jk−|J|(L) (9.22)

where P ∅kL = GrW
0

k L and the direct sum contains the component NMGrW
0

k L.

iii) There exist a filtered isomorphism

(IC∗kL,F ) ' ⊕J⊂M (IC∗P Jk−|J|L,F )[−|J |] (9.23)

Proof. i) For i ∈ J and K = J \ i, the endomorphism Ni : GrW
J

k L→ GrW
J

k L

is equal to the composition morphism GrW
J

k L
IJ,K−−−→ GrW

K

k+1L
Ni−−→ GrW

J

k L

(Equation 9.7), hence Ni vanish on P Jk L ⊂ Ker IJ,K for all i ∈ J .
Since by the property of distinguished pair P Jk L is a direct summand

of GrW
J

k L ([Ka 86] Lemma 5.6.2 and Proposition 3.3.1), Gr
W (NJ )
0 P Jk L is a

direct summand of Gr
M(NJ ,W

J )
k GrW

J

k L = Gr
W (NJ )
0 GrW

J

k L.

Since NJ vanish on P Jk L, P Jk = Gr
W (NJ )
0 P Jk is a direct summand of

Gr
M(NJ )
k GrW

J

k L of weight k.
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ii) The statement is proved by induction on length |M | = n of M . For
n = 1 the decomposition is reduced to the property of graded distinguished
pair. Let M ′ := {1, · · · , n− 1} and M = M ′ ∪ {n}.

Let Wn = Nn ∗W , we decompose the data DR(L) into two data where
(Wn)J = W J∪n for all J ⊂M ′:
DR(L,W,M ′) = (LJ ,W

J , FJ , I
K
J : LJ → LK , NJ\K : LK → LJ) and

DR(L,Wn,M ′) = (LJ ,W
J∪n, F J∪n, IK∪nJ∪n , NJ\K) for K ⊂ J ⊂M ′.

By induction, the decomposition is valid for M ′ on the below

GrW
M′

k−|M ′|L
∼−→ ⊕J⊂M ′NM ′\JP Jk−|J|(L,W )

IM
′

M ↑↓ Nn IJJ∪n ↑↓ Nn
GrW

M

k−|M |L
∼−→ ⊕J⊂M ′NM ′\JP Jk−1−|J|(L,W

n)

(9.24)

Moreover GrW
M

k−|M |(L,W ) = Gr
(Wn)M

′

k−1−|M ′|(L,W
n).

The last column satisfy the property of distinguished pairs (Corollary 9.1)
for each J ⊂M ′:

P Jk−1−|J|(L,W
n) 'NnP Jk−|J|(L,W )⊕Ker IJJ∪n

P J∪nk−|J∪n|(L,W ) = Ker (IJJ∪n :P Jk−1−|J|(L,W
n)→ P Jk−|J|(L,W ))

(9.25)

We deduce from the second line of the diagram the sum over all subsets of
M , that is J ⊂M ′ and J ∪ n, n 6∈ J :

GrW
M

k−|M |L ' ⊕J⊂M ′(NnNM ′\JP
J
k−|J|(L,W )⊕NM ′\JP J∪nk−|J∪n|(L,W ))

= ⊕J⊂MNM\JP Jk−|J|(L,W )

(9.26)

The proposition 9.2 follows from (Lemma 9.2 ii) and the definition of IC∗L
by identification of the terms of the complexes in the equation 9.17.

iii) The isomorphism is an interpretation of (Equation 9.22). Moreover it
is compatible with F since we have an isomorphism in the category of MHS

⊕J⊂M (NM\JP
J
k−|J|L,W,F )

∼−→ (GrW
M

k−|M |L,W,F ) (9.27)

The decomposition of the filtrations W and F follows (Equation 9.22) by
(Remark 3.6vii).

Remark 9.4. i) The decomposition is related to the decomposition in (§5.1.2,

Remark 5.9) of GrW (N)
∗ Ψ∗IL.

ii) For each i ∈ J , let N0,i :=
∑
j∈J,j 6=iNj , then:

Mk(N0) = Mk(Ni,M(N0,i)) and Coker (Ni : WkGr
M
k+2L → WkGr

M
k L) in

(Equation 9.8) may be written asW
J\i
k Prim

M(Ni,M(N0,i))
k ⊂ Gr

M(N0)
k L, then:

P Jk := ∩
Gr

M(N0)

k L
W

J\i
k Prim

M(Ni,M(N0,i))
k ⊂ Gr

M(N0)
k L.
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See also (chapter 11, Equation 11.22) for a different computation of P Jk .
iii) The equation 9.25 leads to the inductive definition:

P J∪ni (L,W ) = Ker (IJJ∪n : P Ji (L,Wn)→ P Ji+1(L,W )).

9.2.3 Weight filtration on IC∗L

We denote by W and F the induced filtrations on IC∗L ⊂ Ω∗L.

Proposition 9.3. Let (L,W 0, F,Ni, i ∈M) be an IMHS, then:

GrWk (IC∗L,F )
∼−→ (IC∗(GrW

0

k L,F ). (9.28)

Proof. We prove the isomorphism: (GrW
J

k−|J|NJL,F ) ' (NJGr
W 0

k L,F ) for all

J ⊂M . Since (L,W J , F,Ni, i ∈M) is an IMHS, by induction on the length
of J , it is enough to consider the case J = {j} for j ∈M .

By the remark (??), up to shift in indices, we may suppose the morphism:
Nj : (L,W,F,Ni, i ∈ M) → (L,W j , Ni, i ∈ M) a morphism of IMHS, then
by (Proposition 2.7), the morphism Nj is strict with respect to W and W j .

9.3 Global definition and properties of the weight W

Let L be a graded - polarized admissible VMHS locally unipotent along Y .
The complex of sheaves Ω∗L is perverse with constructible cohomology

sheaves with respect to the stratification defined by the NCD Y .
Recall that Y := ∪i∈IYi is the union of smooth irreducible components

with index I, YJ := ∩i∈JYi for J ⊂ I and Y ∗J := YJ − ∪i/∈J(Yi ∩ YJ) (Y ∗∅ :=
X∗ = X \ Y ). We denote uniformly the embeddings of the subsets Y ∗J in X
by j : Y ∗J → X. On the big stratum U := X \ Y , the complex Ω∗L is a
resolution of its cohomology L.

The weight filtration W on Ω∗L by analytic sub-complexes of Ω∗L, is
defined locally in terms of the tilde embedding.

Let M ⊂ I, the filtration W is determined in a neighborhood of y in terms
of the IMHS (L = LX(y),W, F,Ni) at y ∈ Y ∗M , by a set of coordinates yi at
y including local equations yi for i ∈ M of Y at y and the filtrations W JL
of L for J ⊂M (Equation 9.12), as follows:

Definition 9.2 (Weight W on Ω∗L). The term Wr(Ω
∗
X(Log Y )⊗LX)y of

the filtration at y ∈ Y ∗M , is the OX,y− sub-module generated by the germs of

the sections ṽ⊗∧j∈J dyjyj ∧Ω
∗
X,y ∈ Ω∗L where ṽ ∈ LX,y is the tilde embedding

of v ∈W J
r−|J|L for varying J ⊂M (ch.3, Lemma 3.1).

In particular, for M = ∅, at a point y ∈ U , Wr is the Ω∗X,y− sub-module
generated by the germs of the sections v ∈WrLy.
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The definition of W is independent of the choice of coordinates on a neigh-
borhood U(y), since if we change the coordinate of index i into y′i = fyi

where f is holomorphic and invertible at y, the difference
dy′i
y′i
− dyi

yi
= df

f

is holomorphic at y. Let α̃ ∈ W J
r−|J|LX,y , the difference of the sections

α̃⊗∧j∈J
dy′j
y′j
− α̃⊗∧j∈J dyjyj is still a section of the Ω∗X,y−sub-module gener-

ated by the germs of the sections W J
r−|J|LX,y⊗∧j∈(J−i)

dyj
yj

. We remark that

the sections defined at y restrict to sections defined on (U(y) \ Y ∗M ∩ U(y)).

9.3.0.1 Purity of the intersection complex IC∗L

Recall the definition of IC∗L ⊂ Ω∗L (ch.3, Definition 3.6) and set:
(IC∗ pL,W, F ) := (IC∗L,W, F )[dimX], (Ω∗ pL,W, F ) := (Ω∗L,W, F )[dimX]
such that: IC∗ pL ' j!∗pL with induced filtration W and Ω∗ pL ' j∗pL.

In the case of a pure polarized VHS, we recall (Purity Theorem 3.1):

Proposition 9.4. Let (pL, F ) be a polarized VHS of weight pw, then the sub-
complex (IC∗ pL, F ) of the logarithmic complex with induced filtration F is a
Hodge complex which defines a pure HS of weight a+i on its hypercohomology
H∗(X, IC∗ pL), equal to the Intersection cohomology IH∗(X, pL).

9.3.0.2 Decomposition into intersections complexes of P J
k L

The local study (§9.2.2) ended with the local decomposition of the graded
weight filtration into a direct sum of Intersection complexes (Equation 9.17).
We develop now the corresponding global result.

By definition of the weight W on (Ω∗L, F ), there exists at each x ∈ Y , an
induced embedding of

(GrWk IC
∗L,F ) ↪→ (GrWk Ω

∗L, F )x, L := L(x). (9.29)

Definition 9.3. (IC∗YKP
K
k−|K|L ⊂ GrWk Ω

∗L[|K|]). There exists a unique

complex IC∗YKP
K
k−|K|L, defined as a sub-complex of GrWk Ω

∗L[|K|] such that

at x ∈ Y ∗M , L := L(x) and ∀K ⊂ M , the consecutive embeddings by (Equa-
tions 9.17 and 9.29):

(IC∗PKk−|K|L,F )[−|K|](−|K|) ⊂ (GrWk Ω
∗L,F ) ⊂ (GrWk Ω

∗L[|K|])x
induce a quasi-isomorphism:

IC∗PKk−|K|L)
∼−→ (IC∗YKP

K
k−|K|L)x ⊂ (GrWk Ω

∗L[|K|])x, L := L(x) (9.30)

The definition and the corollary below follow from the local decomposition
by (Equation 9.17).
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Corollary 9.2. i) There exists a polarized VHS: PKa L of weight a on Y ∗K
for K ⊂ M , such that (IC∗YKP

K
a L, F ) is a resolution of the intermediate

extension by jK : Y ∗K → X of PKa L:

(IC∗YKP
K
a L, F ) ' (jK!∗P

K
a L, F ).

ii) For x ∈ YK \ Y ∗K and x ∈ Y ∗M , (PKk L,F,Ni, i ∈ M \K) is a nilpotent
orbit of weight k.

Proposition 9.5. i) The graded perverse sheaves for the weight filtration,
satisfy the decomposition property into intermediate extensions for all k

(GrWk Ω
∗L, F )

∼−→ ⊕J⊂I(IC∗YJP
J
k−|J|L[−|J |], F )(−|J |). (9.31)

where IC∗YJP
J
k−|J|L ' jJ!∗P

J
k−|J|L.

The shifted intersection complex j!∗GrW
0

k L figures in the sum for J = ∅.
ii) The weight W is a filtration by sub-complexes of j∗

pL consisting of
perverse sheaves defined over Q.

i) The complex IC∗YJP
J
k−|J|(L) is a shifted intermediate extension on YJ . We

remark that P Jk−|J|(L)[−|J |] on Y ∗J is a VHS of weight k − 2|J |, its twist by

(−|J |) is a VHS of weight k and corresponds to ∧j∈J dyjyj in the definition of

the weight on Ω∗L := Ω∗X(Log Y )⊗ LX .
The decomposition in the category of derived filtered complexes (Equation

9.31) is based on the decomposition of filtered vector spaces (Equation 9.27).

ii) The various graded complexes GrWk (Ω∗X(Log Y )⊗ LX) are direct sum
of Intersections complexes defined over Q. The filtration Wk on the de Rham
complex is defined over Q and perverse with respect to the stratification
defined by Y ∗J , since the spaces WkΩ

∗L and P Jk (L) are defined over Q. When

x vary on Y ∗J , P Jk L defines a VHS and P Jk L is a nilpotent orbit at x ∈ YJ \Y ∗J .

9.3.0.3 Restriction to IC∗ pL

The Intersection complex (IC∗ pL,W, F ) of an admissible VMHS is a mixed
Hodge complex, embedded as a sub-complex of (Ω∗ pL,W, F ) with induced
filtrations.

Proposition 9.6. Let L,W, F ) be an admissible VMHS. The induced filtra-
tions on the complex (IC∗ pL,W, F ) ⊂ (Ω∗ pL,W, F ) define a structure of a
mixed Hodge complex such that for all k:

(IC∗(GrW
0

k
pL), F ) ' (GrWk IC

∗ pL, F )

The proposition follows from Proposition 9.3 in the local case.
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In general the Intersection complex of an extension of two local systems,
is not the extension of the intersection complex of the local systems.

In the case of a pure VHS pL, the weights of Ω∗ pL start with the subcom-
plex IC∗ pL. The next result on weights satisfy a property similar to ([De 80],
cor 3.3.5) in the case of varieties of positive characteristic.

Corollary 9.3. The de Rham logarithmic mixed Hodge complex (Ω∗ pL,W, F )
of a variation of HS of weight ω ≥ pw induces on the hypercohomolgy
Hi(X \ Y, pL) a MHS of weight ω ≥ pw + i.

Indeed, Wk = 0 on the logarithmic complex for k ≤ pw.

9.4 The logarithmic complex IC∗L(Log Z)

Let Z = ∪i∈IZ⊂IYi ⊂ Y ⊂ X be a sub-divisor of the NCD Y union of
components of Y with index in a subset IZ of I, jZ := (X \Z)→ X and L a
VMHS on X \Y . The induced filtrations W and F define a structure of mixed
Hodge complexe (MHC) on the logarithmic sub-complex IC∗L(Log Z) ⊂
Ω∗L isomorphic to jZ∗j

∗
Zj!∗L ∈ Db

c(X,C) (ch.3, §3.2).

9.4.0.1 Local decomposition of GrWi (IC∗L(Log Z))

Lemma 9.3. Let P Jk (L) be defined by Equation 9.21 for all J ⊂ MZ :=
M ∩ IZ , and IC∗(P Jk L) the Intersection complex defined by the nilpotent
orbit (P Jk (L), Ni, i ∈M \ J), then:

(GrWk IC
∗L(Log Z), F )

∼−→ ⊕J⊂MZ
IC∗P Jk−|J|L,F, i ∈M)[−|J |](−|J |)

(9.32)

Proof. The statement is similar to Proposition 9.2 with J ⊂ MZ instead of
J ⊂M . The proof is similar to the decomposition case of Ω∗L in (§9.2.2).

In terms of (ch. 3, §3.2, Remark 3.4), we introduce for J ′ ⊂M ′Z := M \MZ

the IMHS (NJ′L,W
J′ , F,Ni, i ∈MZ) and the following data DR(NJ′L):

{(NJ′L)J ,W
J′∪J , F J

′∪J , IKJ : NJ′L→ NJ′L,NJ\K : NJ′L→ NJ′L}K⊂J⊂MZ

with indices J ⊂MZ , constant term (NJ′L)J = NJ′L, and induced filtrations
W J′∪J , F J

′∪J = F on NJ′L.
For all K ⊂ J ⊂ MZ , NJ\K is induced by

∏
i∈J\K Ni (resp. IKJ by Id :

L → L). The property of distinguished pairs is satisfied, in particular for
consecutive terms Ni : NKL→ NJL for J = K ∪ i. Set for each J ⊂MZ

P Jk (NJ′L,W
J′) := ∩K⊂J,K 6=JKer (GrIJ,K : GrW

J∪J′

k NJ′L→ GrW
K∪J′

k+|J\K|NJ′L).
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As in (§9.2.2), we deduce the decomposition:

GrWk−|J′|Ω
∗(NJ′L,Ni)i∈MZ

= ⊕J⊂MZ
IC∗(P Jk−|J∪J′|(NJ′L,W

J′), i ∈MZ)[−|J |]

where IC∗ is limited to the variables i ∈MZ .
For each J ′ ⊂M ′Z , we have a surjective induced morphism NJ′

P Jk−|J|(L)
NJ′−−→ P Jk−|J∪J′|(NJ′L,W

J′) ' NJ′P Jk−|J|(L)

and a surjective morphismGrWk Ω
∗(L,Ni)i∈MZ

NJ′−−→ GrWk−|J′|Ω
∗(NJ′L,Ni)i∈MZ

which splits into a direct sum of surjective morphisms

⊕J⊂MZ
(IC∗(P Jk−|J|L, i ∈MZ)

NJ′−−→ ⊕J⊂MZ
IC∗(NJ′P

J
k−|J|L, i ∈MZ))[−|J |]

By summing the double complex over J ⊂MZ and J ′ ⊂M ′Z , we find the
statement of the lemma.

9.4.0.2 Structure of MHC on IC∗L(Log Z) ⊂ Ω∗L

We remark that (Equation 9.32) is similar to (Equation 9.23) except that the
sum is over J ⊂MZ instead of J ⊂M , hence (Definition 9.3) and (Corollary
9.2) apply. We deduce from (Lemma 9.3):

Theorem 9.3. Let Z := ∪i∈IZYi. With the notations of (Definition 9.3) and
(Corollary 9.2), the bifiltered complex (IC∗L(Log Z),W, F ) ⊂ (Ω∗L,W, F ),
is a MHC on X.

The perverse weight graded sheaves satisfy the decomposition property into
intermediate extensions for all k

(GrWk IC
∗ pL(Log Z), F )

∼−→ ⊕J⊂IZ (IC∗ZJP
J
k−|J|

pL[−|J |], F )(−|J |)

jZ!∗P
J
k−|J|(

pL) ' IC∗ZJP
J
k−|J|

pL
(9.33)

where jZ : Z∗J → ZJ is the inclusion for each J ⊂ IZ . Moreover, j!∗Gr
W 0

k
pL

for Z = ∅, otherwise the summands are supported by ZJ ⊂ Z for J 6= ∅.

The theorem follows from (Lemma 9.3). We remark that P Jk−|J|(
pL)[−|J |] for

J ⊂ IZ are perverse, as shifted local systems on Z∗J by [dimX−|J |] = dimZ∗J .

Definition 9.4. The MHS on H∗(X \ Z, j!∗ pL) is defined by the bifiltered
complex (IC∗ pL(Log Z),W, F ).

Remark 9.5. i) For any NCD Z such that Z∪Y is still a NCD, we may always
suppose that L is a variation of MHS on X − (Y ∪Z) (by enlarging Y ), then
Z is a union of components of Y ∪ Z.

ii) For any subset Z ⊂ X, the MHS on H∗(X \ Z, j!∗pL) is defined by
blowing up Z in a non singular X into a NCD without modifications above
X \ Z.
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9.4.0.3 Transversality

We denote by Z ′ := ∪i 6∈IZ⊂IYi ⊂ Y the sub-NCD of Y complement to Z,
such that Y = Z ∪Z ′. We say that Z ′ is transversal to Z. The equation 9.33
is interpreted as follows:

Lemma 9.4. Let X \ Y j′′−→ X \ Z ′ jZ′−−→ X and X \ Y j′−→ X \ Z jZ−→ X such
that jZ ◦ j′ = j = jZ′ ◦ j′′. We have the commutation isomorphism:

jZ∗j
′
!∗
pL ' jZ′!∗j′′∗pL.

The proof is local at each point of the intersection Z ∩ Z ′, by induction on
the strata of the stratification defined by Z and it is reduced to the case of
one point in the intersection.

In the case of the remark (ch. 3, Remark 3.4) where |M | = n and a point
0 ∈ Dn ⊂ Cn, we check that (jZ′!∗j

′′
∗
pL)0 is obtained by truncation in degree

≤ −1 of (jZ∗j
′
!∗
pL)0. However, by the same remark the complex (jZ∗j

′
!∗
pL)0

has no cohomology in degrees ≥ 0 (after the shift in degrees on pL).

9.5 Hodge theory on perverse cohomology along a
divisor

For basic results on perverse heaves along a divisor we refer to (ch. 3, §3.2.4),
and to (ch. 2, §2.4) for induced filtrations on perverse hypercohomology. In
the case of a NCD Z ⊂ Y ⊂ X, let i : Z → X. We deduce from the bifiltered
complex (IC∗L(Log Z),W, F ) various complexes (called logarithmic) with
weight and Hodge filtrations, realizing the following classes of complexes in
the derived category:

i!j!∗
pL, i∗j!∗

pL, jZ!j
∗
Zj!∗L and i∗jZ∗j

∗
Zj!∗

pL.

In particular we construct a MHS on the hypercohomology of the boundary
of a tubular neighborhood of Z with its central fiber Z deleted (§3.2.5).

Thus, we recover most of the results of (Proposition 5.7) without intro-
ducing the monodromy action.

Theorem 9.4 (W and F ). Let Z ⊂ Y be a locally principal divisor NCD in
X, and pL a PVHS of weight pw on X \ Y and let D denote Verdier dual

1. There exist unique global filtrations W and F on jZ∗j
∗
Zj!∗

pL such that

WpwjZ∗j
∗
Zj!∗

pL = j!∗
pL,

WljZ∗j
∗
Z(j!∗

pL) = WlIC
∗ pL(Log Z) if l > pw and 0 if l < pw

(9.34)



176 El Zein, Lê, Ye

2. There exist unique global filtrations W and F on i∗j!∗
pL[−1] (resp.

i!j!∗
pL[1]) such that

i∗Gr
W
l (i!j!∗

pL[1]) ' GrWl jZ∗j∗Z(j!∗
pL) if l > pw and 0 if l ≤ pw,

i∗j!∗
pL[−1](pw) ' D(i!j!∗

pL[1]) : GrWl (i∗j!∗
pL[−1]) = 0 if l ≥ pw,

GrWl (i∗j!∗
pL[−1]) = DGrW2 pw−l(i

!j!∗
pL[1]) if l < pw,

Wl(i
∗j!∗

pL) := (Wl−1(i∗j!∗
pL[−1]))[1]

(9.35)

3. Dually, i∗j!∗
pL[−1] embeds into jZ!j

∗
Zj!∗

pL and the filtration W on jZ!j
∗
Zj!∗

pL
satisfy GrWpwjZ!j

∗
Zj!∗

pL = j!∗
pL and:

GrWl jZ!j
∗
Zj!∗

pL ' i∗GrWl (i∗j!∗
pL[−1]) if l < pw.

4. If X is projective, the filtrations W and F on

i∗j!∗
pL[−1], i!j!∗

pL[1], jZ∗j
∗
Zj!∗

pL, jZ!j
∗
Zj!∗

pL

define respectively a structure of mixed Hodge complex.

Example 9.1. i) For a pure pL of weight pw, i∗i
!j!∗

pL is supported by Z, has
weights w ≥ pw, and i∗i

∗j!∗
pL has weights w ≤ pw such that: ∀` ≥ pw:

D(GrW` i
!j!∗

pL) ' GrW2 pw−`i∗j!∗pL = GrW2 pw−`−1i
∗j!∗

pL[−1].
The Intersection morphism I induces morphisms:

GrWi i∗i
!j!∗

pL→ GrWi j!∗
pL→ GrWi i∗i

∗j!∗
pL for i = pw and 0 for i 6= pw.

ii) Let pL be a polarized VHS on C∗ with a nilpotent endomorphism N on L.
The duality at 0 betweenGrWr i

∗(IC∗L(Log Z)/IC∗L) andGrW−r+1i
∗(j!∗

pL))[−1]
corresponds to the duality between GrW−r+1KerN and GrWr−1L/NL.

For pL on (C∗)n, this duality may be interpreted as a duality of perverse
sheaves for the action of N on the functor of nearby cycles or in terms of a
strict simplicial coverings of a NCD.

9.5.0.1 Weights of the MHS

As a MHC, the weights of IC∗ pL(Log Z) are ≥ pw by construction. The
weights of i!j!∗

pL are ≥ pw since the weights of IC∗ pL(Log Z)/IC∗ pL are
≥ pw + 1.

Corollary 9.4. The weights w satisfy the following inequalities:

wHi(X \ Z, j!∗pL) ≥ pw + i, wHic(X \ Z, j!∗pL) ≤ pw + i

wHiZ(X, j!∗
pL) ≥ pw + i, wHi(Z, j!∗pL) ≤ pw + i

Hi(Z,GrWj i∗j!∗pL) ' H−i(Z, (GrW−ji!j!∗pL( pw))(−j))∗
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We have the following duality isomorphisms for the weights of Hi(Z, j!∗pL):

Hi(Z,GrWj i∗j!∗pL) ' Hi(Z,GrWj Di!j!∗pL( pw))

' Hi(Z,D(GrW−ji
!j!∗

pL( pw))(−j)) ' H−i(Z, (GrW−ji!j!∗pL( pw))(−j))∗

where w(GrW−ji
!j!∗

pL( pw))(−j)) = − pw − j + 2j, hence

wH−i(Z, (GrW−ji!j!∗pL( pw))(−j))∗ = pw+i−j ≤ pw+i as it vanishes if j < 0.

Lemma 9.5. Let pL be a shifted polarized VHS of weight pw on a Zariski
open subset X \ Y and Z a closed subvariety of a projective variety X.

i) There exists a long exact sequence of MHS

→ Hi(X, j!∗pL)→ Hi(X, j!∗pL)→ Hi(X \ Z, j!∗pL)→ Hi+1
Z (X, j!∗

pL)→ · · ·
(9.36)

with weights: w(HiZ(X, j!∗
pL)) ≥ pw + i, w(Hi(X, j!∗pL)) = pw + i, and

w(Hi(X \ Z, j!∗pL)) ≥ pw + i.

ii) We have a dual exact sequence of MHS

→ Hic(X \ Z, j!∗pL)→ Hi(X, j!∗pL)→ Hi(Z, j!∗pL)→ Hi+1
c (X \ Z, j!∗pL)→

(9.37)
with weights: w(Hic(X \ Z, j!∗pL)) ≤ pw + i, w(Hi(X, j!∗pL)) = pw + i, and

w(Hi(Z, j!∗pL)) ≤ pw + i.

The lemma is proved first for X smooth projective, Y a NCD and Z ⊂ Y a
sub-NCD. The exact sequence is deduced from the distinguished triangle:
i∗i

!j!∗
pL → j!∗

pL → jZ∗(
pL|X\Z) and the inequalities on the weights follow

from the corollary above. In the general case, the lemma will be deduced from
the case of NCD by the decomposition theorem.

9.5.0.2 Compatibility of Thom isomorphism with MHS

Thom isomorphism (ch. 3, §3.2.1) is compatible with weight and Hodge fil-
trations up to a twist.

Lemma 9.6. Let Z ⊂ X such that Y ∪ Z is a NCD and let a smooth hy-
persurface H intersects transversally Y ∪ Z such that H ∪ Y ∪ Z is a NCD.
There is an isomorphism compatible with the weight and Hodge filtrations up
to a twist

IC∗(i∗HL)(Log Z ∩H)
∼→ i∗HIC

∗(L)(Log Z ∩H)
∼→ i!HIC

∗L(Log Z)[2](1)
(9.38)

By transversality, we have an isomorphism of the restriction i∗HIC
∗L(Log Z)

with the logarithmic complex IC∗(i∗HL)(Log Z ∩H) constructed directly on
H. The connecting isomorphism in the distinguished triangle

(iH)∗i
!
HIC

∗L(Log Z)→ IC∗L(Log Z)→ IC∗L(Log Z ∪H)
[1]→
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defines an isomorphism of the quotient complex with the cohomology with
support

(IC∗L(Log Z ∪H)/IC∗L(Log Z))
∼−→ Ri!HIC

∗L(Log Z)[1]

The isomorphism i!HIC
∗L(Log Z)[2](1)

∼−→ IC∗i∗HL(Log Z ∩H) is induced
by the residue ResH : IC∗L(Log Z ∪H)[1](1) → iH∗IC

∗(i∗HL)(Log Z ∩H)
compatible with the filtrations up to a shift in degrees since it vanishes on
IC∗L(Log Z).

Corollary 9.5. Under the hypothesis of the lemma, let i : H → X be a
general embedding of complex varieties of codimension d, transversal to the
strata of a stratification S of X including Z and Y .

Thom isomorphism Hi(H \Z ∩H, j!∗pL) ' Hi+2d
H\Z∩H(X \Z, j!∗pL)(d), and

Gysin morphism Hi(H \ Z ∩H, j!∗pL) ' Hi+2d(X \ Z, j!∗pL)(d)
are compatible with MHS.

In general, let iW : W → X be a closed embedding of a non singular vari-
ety of codimension d transverse to Z, Y and to the strata of an adequate
stratification S of X, then: i!W j!∗

pL[2d] ' i∗W j!∗pL.
The following isomorphism is compatible with MHS:

Hi(W \ (Z ∩W ), j!∗
pL) ' Hi+2d

W\(Z∩W )(X \ Z, j!∗
pL).

9.5.1 Hodge theory on i∗jZ∗j
∗
Zj!∗

pL

We have a distinguished triangle

jZ!j
∗
Zj!∗

pL
can−−→ jZ∗j

∗
Zj!∗

pL −→ i∗i
∗jZ∗j

∗
Zj!∗

pL
[1]−→ (9.39)

Definition 9.5. The structure of MHC on K ′ := i∗jZ∗j
∗
Zj!∗

pL is defined by
the mixed cone CM (can) with the following weight filtration:
WrCM (can) = Wr−1jZ!j

∗
Zj!∗

pL[1]⊕WrjZ∗j
∗
Zj!∗

pL

We recover the results of (Lemma 5.3). The terms of the weight spectral
sequence are Ep,q1 = Hp+q(X,GrW−pCM (can)) where

GrWr CM (can) = GrWr−1jZ!j
∗
Zj!∗

pL[1]⊕GrWr jZ∗j
∗
Zj!∗

pL:

Ep,q1 = Hp+q(X,GrW−pi
!j!∗

pL[1]) if −p > pw + 1

Ep,q1 = Hp+q(X, j!∗pL[1]⊕GrWpw+1i
!j!∗

pL[1]) if −p = pw + 1

Ep,q1 = Hp+q(X,GrWpw−1i
∗j!∗

pL[−1])[1]⊕ j!∗pL) if −p = pw

Ep,q1 = Hp+q(X,GrW−p−1i
∗j!∗

pL[−1])[1]) if −p < pw.
The terms with value in j!∗

pL[1] for −p = pw + 1 and j!∗
pL for −p = pw

vanish at rank 2. In particular, for −p = pw + 1 and q = pw, p+ q = −1 the
terms:
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1) E−
pw−1, pw

1 = j!∗
pL[1]⊕GrWpw+1i

!j!∗
pL[1] where

GrWpw+1i
!j!∗

pL[1] = GrWpw−1CokerN |ψf j!∗pL gives the term:

E−
pw−1, pw

2 = H−1(X,GrWpw−1CokerN |ψf j!∗pL) =⇒ GrWpwH−1(X, i∗jZ∗j
∗
Zj!∗

pL)

2) E−
pw, pw

1 = GrWpwjZ!j
∗
Zj!∗

pL[1]⊕ j!∗pL where

GrWpwjZ!j
∗
Zj!∗

pL)[1] = (GrWpw−1i
∗j!∗

pL[−1])[1]⊕ j!∗pL gives the term:

E−
pw, pw

2 = H1(X,GrWpw−1KerN |ψf j!∗pL) =⇒ GrWpwH0(X, i∗jZ∗j
∗
Zj!∗

pL)
The duality between the terms Ep,q2 above induces the duality at the limit.

The limits vanish according to the local purity theorem (crucial case).
The terms Ep,q2 coincide with the terms of the weight spectral sequence of

CM (I) (§5.2.2) since j!∗
pL in the terms Ep,q1 disappear at rank 2.

Remark 9.6. For any deformation retract neighborhood BZ of Z, let B∗Z :=
BZ \ Z with Z deleted in BZ , the MHS on the hypercohomology of B∗Z is
defined by

Hi(B∗Z , j!∗pL) ' Hi(Z, i∗jZ∗((j!∗pL)|X\Z))

We have an exact sequence of MHS

· · · → Hi(X \ Z, j!∗pL)→ Hi(B∗Z , j!∗pL)→ Hi+1(X, j!(j!∗
pL|X\Z))→ · · ·

and a duality isomorphism

i∗jZ∗(j!∗
pL|X\Z)[−1]

∼−→ D(i∗jZ∗(j!∗
pL|X\Z)).

9.6 The bi-filtered relative complexes IC∗
fL ⊂ Ω∗

fL

Let f : X → V be a smooth proper morphism of smooth complex algebraic
varieties, and let Y be a NCD in X. The relative logarithmic complex Ω∗fL :=
Ω∗X/V (LogY )⊗ LX is defined in ([De 70], §2.22).

Definition 9.6. i) A normal crossing divisor Y in a non singular algebraic
X is said “relative horizontal” if for each point v in a big stratum of V , the
fiber Yv ⊂ Xv is a NCD with smooth components in the smooth fiber Xv

and the restriction of f to Y is a topological fiber bundle over the big strata.
ii) A NCD inverse image of a strict subset W ⊂ V is called vertical NCD.
iii) The fibration is adapted to a local system pL defined on a Zariski open

algebraic subset if the restriction of the cohomology groups of the intermedi-
ate extension j!∗

pL, to the various strata of X, are locally constant.
The fibration is adapted to a NCD Y in X, if Y is a union of strata of the

underlying whitney stratification S of X.

Let Y be relative horizontal over V . For each point v ∈ V , the fiber Yv
is a NCD in Xv and the various intersections Yi1,··· ,ip of p- components are
smooth over V and Y → V is a topological fiber bundle.
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Let U := X \ Y and j : U → X. The sheaf of modules i∗XvLX induced by
the canonical extension LX on each fiber Xv, is isomorphic to the canonical
extension (i∗UvL)Xv of the induced local system i∗UvL.

The cohomology spaces Hi(Uv,L) (resp. Hi(Xv, j!∗L)) for v ∈ V , form a
variation of MHS. The logarithmic complex Ω∗X/V (LogY )⊗LX satisfy, in the

case of horizontal NCD: i∗XvΩ
∗
X/V (LogY )⊗ LX ' Ω∗Xv (LogYv)⊗ (i∗UvL)Xv .

When L underlies an admissible graded polarized VMHS: (L,W, F ), its
restriction to the open subset Uv in Xv is also admissible. The image of the
filtrations W and F , by the map Ω∗L → Ω∗fL

F :=Im(Rif∗FX → Rif∗(Ω
∗
X/V (LogY )⊗ LX)),

W :=Im(Rif∗WX → Rif∗(Ω
∗
X/V (LogY )⊗ LX))

define a variation of MHS on Ri(f ◦ j)∗L inducing at each point v ∈
V the corresponding weight W and Hodge F filtrations of the MHS on
(Hi(Uv,L),W, F ).

Proposition 9.7. Let f : X → V be a proper smooth morphism of non
singular complex varieties.
i) The direct image Ri(f ◦ j)∗L is a local system on V and

Ri(f ◦ j)∗L⊗OV ' Rif∗(Ω∗X/V (LogY )⊗ LX)

ii) The connecting morphism in Katz-Oda’s construction [KaOd 68] coincides
with the connection on V defined by the local system Ri(f ◦ j)∗L

Rif∗(Ω
∗
X/V (LogY )⊗ LX)

∇V−−→ Ω1
V ⊗Rif∗(Ω∗X/V (LogY )⊗ LX)

iii) The filtration F satisfy Griffith’s transversality with respect to ∇V , W
is locally constant and (Ri(f ◦ j)∗L,W, F ) is a graded polarized variation of
MHS on V .

Deligne’s proof of ([De 70], proposition 2.28) extends in (i), as well the
connecting morphism [KaOd 68] in (ii). Since Y is horizontal Ri(f ◦ j)∗L is
a local system and on each fiber W and F induce a MHS, hence W is locally
constant and F is a filtration by analytic sub-bundles.

9.6.1 The relative Intersection complex IC∗
fL

Let IC∗fL := Im(IC∗L → Ω∗fL) with image filtrations W and F :
W := Im(f∗W → f∗(IC

∗
fL)), F := Im(f∗F → f∗(IC

∗
fL)).

We deduce the filtrations on the i-th direct image (Rif∗j!∗L,W, F ):
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F pRif∗j!∗L := (Im (Rif∗F
pIC∗L → Rif∗IC

∗L),

WqR
if∗j!∗L := Im (Rif∗Wq → Rif∗IC

∗L))

where Wq is locally constant on V , and F p is an analytic sub-bundle on V .

Proposition 9.8. i) The direct image Rif∗j!∗L of the intersection complex
is a local system on V and

Rif∗j!∗L⊗OV ' Rif∗(IC∗fL)

ii) The filtrations W and F define a structure of variation of MHS on
Rif∗j!∗L.

We remark that Rif∗IC
∗
fL is locally constant since f is a topological fibra-

tion and induces a topological fibration on X\Y . Moreover, at each v ∈ V , the
Hodge decomposition GrWq Hi(Xv, j!∗L) =

∑
p+q=iHp,q(Xv, Gr

W
q j!∗L) shows

that the Hodge terms Rp,qf∗IC
∗
fL are locally free OV−modules ([De 68],

Théorème 5.5).

Lemma 9.7. Let Y be a relative NCD over the maximal strata of V and S
a stratum of V such that XS is a relative NCD over S:

i) Rif∗i
!
XS
j!∗

pL (resp. Rif∗i
∗
XS
j!∗

pL) are polarized VMHS on S of weight
w ≥ pw + i (resp. w ≤ pw + i).

ii) The image of the intersection morphism pLiS := Im I is a polarized
VHS of weight pw + i.

Proof. Set Z := XS and IC∗f
pL(logZ) := Im(IC∗ pL(logZ) → Ω∗f

pL). Let
v ∈ S and Nv a normally embedded section to S in V at v. Then Zv := Xv

is a NCD in XNv and for each v ∈ S:

(f∗IC
∗
f
pL(logZ))v ' IC∗f |XNv

pL|XNv (logXv) ⊂ Ω∗f |XNv
pL|XNv

(f∗i
!
XS

pL)v ' i!Xv (pL|XNv ), (f∗i
∗
XS

pL)v ' i∗Xv (pL|XNv )

By Thom-Whitney stratifications properties, Rif∗i
!
XS
j!∗

pL and Rif∗i
∗
XS
j!∗

pL
are local systems. The dimensions dimF p ∩Wq of the filtrations defined by
the MHS on Hi(i!Xv (pL|XNv ),Q) are constant when v ∈ S vary since no jump
in the dimension of the fiber of the coherent analytic sheaf :
(Wq ∩ F p)Rif∗i∗XS j!∗

pL occurs.

Remark 9.7. The above results in the relative version are applied generically
over the strata (ch. 11, §11.2) since refinements of Thom-whitney stratifica-
tions may be adapted.



182 El Zein, Lê, Ye

9.7 Admissible perverse VMHS on X \ Z

It has been suggested by the referee to give an exposition of the theory
of perverse PVMHS (Chapter 7, Definition 7.2) in terms of Grothendieck’s
six functors (see M. Saito’s theory of mixed Hodge modules [Sa 90] §2 and
[Shi 93]).

Such treatment is not in the spirit of this text.
Instead, we add this paragraph to give an informal study of the definition

of the direct image of an admissible PVMHS, from which we deduce various
cases (Remark 9.10).

In the same time, this is a motivation of the definition of N ∗W (§9.2.1.1).
Below a VMHS is always defined on a local system, a PVMHS is defined
on a perverse sheaf, while in general we extend the notation of mixed Hodge
complex (MHC) to a complex of sheaves (K,W,F ) with the property that its
global hypercohomology is a MHC, that is the hypercohomology on a complete
complex algebraic is a MHS with the induced filtrations in each degree.

9.7.1 PVMHS on j∗
pL

Hypothesis.We resume the notations of chapter 7. Let Y ⊂ X be a NCD,
Z ⊂ Y be a sub-NCD in Y and x ∈ Z∗M ⊂ Y , L := LX(x) (Definition 3.1).
An admissible VMHS (L,W 0, F ) (Definition 2.16) on U := X \Y defines at x
an IMHS (Remark 2.10) where the filtration W 0 on the limit L (preserved by
Ni) is the natural extension of the filtrationW0 of L. The relative monodromy
filtration M(

∑
i∈M Ni,W

0) exists by definition of admissibility and defines
a limit MHS on L:

(L,W0,F) defines the IMHS: (L,W 0, F, P,Ni, i ∈M) where L := LX(x).

Let Z be defined by an algebraic map f : X → C on X, then W 0pL defines a
filtration: W 0 = W 0( pψf j!∗

pL) := pψf j!∗W
0pL. By admissibility, the relative

filtration M(N,W 0) exists on pψf j!∗
pL (resp. pϕf j!∗

pL).
Let W := M(N,W 0)[−1] on pψf j!∗

pL such that Wr := M(N,W 0)r+1.

Proposition 9.9 (Perverse VMHS on pψf j!∗
pL and pϕf j!∗

pL). With the
notations of (Equation 5.36), let pL be a shifted admissible VMHS quasi-
unipotent along Y .

i) There exists a natural structure of perverse VMHS on pψf j!∗
pL (resp.

pϕf j!∗
pL) supported by the NCD Z such that the canonical morphism (denoted

can) is a filtered morphism while the morphism: N and the variation (denoted
var) are of type (−1,−1).

ii) Let W 0 = W 0( pψf j!∗
pL) := pψf j!∗W

0pL and W := M(N,W 0)[−1],

then GrWi
pψf j!∗

pL (resp. Gr
M(N,W 0)
i

pϕf j!∗
pL) decomposes into a direct sum

of intermediate extension of polarized VHS of weight i on the various inter-
section of components of Z.
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Proof. The proof is local. We suppose also L locally unipotent along Y . We
consider the de Rham family attached to L := L(x) and defined by the IMHS
ΨJL for various J ⊂MZ as in (Equation 5.18).
The relative monodromy filtration M(N,W 0) is well defined on the de Rham
complex Ψ∗IL and satisfy the decomposition of the relative monodromy
(Equation 9.5)

Gr
M(N,W 0)
i Ψ∗IL ' ⊕kGr

M(N,W 0)
i GrW

0

k Ψ∗IL (9.40)

As in (Equation 5.5), we define L[N ] with the filtrations F and the relative
filtration M(

∑
i∈MJ Ni,W0). Then, for each J ⊂ MZ , we define similarly a

MHS on

(ΨJL = (L[N ]/ImAJ ,W
0
J ,M

J , FJ),W 0
J = W 0

J (ΨJL) := ΨJW
0L (9.41)

Let BJ := N +
∑
i∈MJ Ni. Then, the relative monodromy filtration MJ :=

M(BJ ,W 0) exists on ΨJL.

Let BJk denote the nilpotent morphism induced on Gr
W 0
J

k ΨJL. By defini-

tion MJ
j+k induces the monodromy filtration Wj(B

J
k ) on Gr

W 0
J

k ΨJL. Hence

GrM
J

j+kGr
W 0
J

k ΨJL is of weight j + k − 1. Let W J := MJ [−1] such that

W J
r := MJ

r+1, then GrW
J

j+kGr
W 0
J

k ΨJL is of weight j + k on Gr
W 0
J

k ΨJL.

Thus, (W J ,MJ , FJ) induces a MHS on each Gr
W 0
J

i ΨJL and defines a MHS

on ΨJL since GrW
J

r ΨJL ' ⊕iGrW
J

r Gr
W 0
J

i ΨJL.
The case of ϕuf j!∗L is deduced by the vanishing cycle lemma (5.1).

Lemma 9.8 (jZ∗j
∗
Zj!∗

pL and ϕuf (jZ∗j
∗
Zj!∗

pL)). Let i : Z → X and

i∗jZ∗j
∗
Zj!∗

pL ' Cone ( pψuf (j!∗
pL)

N−→ pψuf (j!∗
pL)(−1)

be the mixed cone by (Equation 2.16, [Br 82], Proposition 2.3.6)
and let ϕf j!∗L be defined as the mixed cone over the specialization sp:
ϕuf (jZ∗j

∗
Zj!∗

pL) := CM (sp : i∗jZ∗j
∗
Zj!∗

pL→ ψuf (jZ∗j
∗
Zj!∗

pL), then:

var : ϕuf (jZ∗j
∗
Zj!∗

pL)→ ψuf (jZ∗j
∗
Zj!∗

pL)(−1) (9.42)

is an isomorphism.

We have the triangles where ψuf (j!∗
pL) = ψuf (jZ∗j

∗
Zj!∗

pL)

i∗jZ∗j
∗
Zj!∗

pL
sp //

Id

��

ψuf (jZ∗j
∗
Zj!∗

pL)

Id

��

can // ϕuf (jZ∗j
∗
Zj!∗

pL)
[1]−→

var
��

i∗jZ∗j
∗
Zj!∗

pL
sp // ψuf (jZ∗j

∗
Zj!∗

pL)
N // ψuf (jZ∗j

∗
Zj!∗

pL)(−1)
[1]−→

(9.43)
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where N induces the vertical isomorphism var. Hence The morphism var is
an isomorphism and this is a characterization of the extension jZ∗j

∗
Zj!∗

pL in
Verdier’s classification (§2.2.3.1 4)).
To define the limit Hodge filtrations on j!∗L as well on Ψ∗IL ' ψuf j!∗L (ch.4,
4.2) we used the complexes IC∗L, F ) ⊂ (IC∗L(log Z), F ) ⊂ (Ω∗L, F ) (ch.
3, §3.8) isomorphic respectively to j!∗L ⊂ jZ∗j∗Zj!∗L ⊂ j∗j!∗L.

Example 9.2. i) Let L be on C∗, i : 0→ C, j : C∗ → C, then:

1) ψuzL = L at 0, i∗j∗L ' (L
N−→ L(−1)). The action of N on i∗j∗L induces

0 on cohomology. Then ϕuz j∗L := cone (i∗j∗L
sp−→ ψuzL) is isomorphic to

ϕuz j∗L := (L
d−1:=(−N,id)−−−−−−−−−→ L(−1)⊕ L) in degrees −1 and 0

with unique cohomology in degree 0

H0 := (L(−1)⊕ L)/Im d1
var'−−−→ ψuzL(−1) = L(−1) : (b, c) 7→ b+Nc.

2) The canonical map can : ψuzL→ ϕuz j∗L is defined in degree 0 by

Id : L
(0,id)−−−→ L(−1)⊕ L : a 7→ (0, a).

3) The variation map varψ = var ◦ can : L→ L(−1) : a→ Na.

ii) In the case of j!∗L: ϕuz j!∗L ' (L
d−1:=(−N,id)−−−−−−−−−→ ImN ⊂ L(−1)⊕ L)[1],

var : ϕuz j!∗L ' ImN ⊂ L(−1) : (b, c) 7→ b+Nc ∈ ImN ⊂ L(−1).

4) This example apply to perverse sheaves, as we can see for example on the
associated de Rham family.

9.7.1.1 (jZ∗j
∗
Zj!∗

pL,W, F ) and N ∗W

Proposition 9.10. Let pL be a polarized VMHS on the complement of a NCD
Y of an algebraic variety X, ilmp its intermediate extension, Z ⊂ X a NCD
and (j∗Zj!∗

pL,W 0, F ) on X.
i) There exists a weight filtration W on the complex

(jZ∗j
∗
Zj!∗

pL, F ) ' (IC∗pL(log Z), F ) by perverse sub-sheaves on X such that

(jZ∗j
∗
Zj!∗

pL,W, F ) is a PVMHS and Wk is a perverse extension of j∗ZW
0
k j!∗

pL.

ii) There exits a short exact sequence of perverse sheaves

0→ (j!∗
pL,W, F )→ (jZ∗j

∗
Zj!∗

pL,W, F )→ iZ∗i
!
Zj!∗

pL[1]→ 0

iii) Moreover: (GrWk j!∗
pL, F ) = (j!∗Gr

W 0

k
pL, F )

The proof of the proposition follows from (Corollary 9.9) below, as we need
to describe the weight filtration W first.

Let Z be a locally principal NCD, the proof is reduced to the case
where Z is principal defined by an equation f , in which case the weight
and Hodge filtrations are defined on ψuf (j!∗

pL) and ϕuf (j!∗
pL). Such filtra-

tions defined locally, will induce a unique filtration on CokerN , hence on
jZ∗j

∗
Zj!∗

pL/jZ!∗j
∗
Zj!∗

pL which is a characterization of W .
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Interpretation of N ∗W 0 in terms of Verdier’s classification (§2.2.3). Let
Z be defined by an equation f . We deduce from the filtered perverse sheaf
(pL,W 0), a perverse filtration W 0j∗Zj!∗

pL := j∗Zj!∗W0. Let

W 0 := pψuf (W 0j∗Zj!∗
pL) on pψuf (j∗Zj!∗

pL).
To apply Verdier’s classification, we need to define a sequence

W 0
k
pψuf (j∗Zj!∗

pL)
a−→Wk

b−→W 0
k
pψuf (j∗Zj!∗

pL) (9.44)

with the correct weight and Hodge filtrations on Wk. Below, there will be
weight filtrations on various spaces all denoted by W .

It is convenient to define the filtration N ∗W 0 by perverse sub-sheaves of
pψuf (j∗Zj!∗

pL) with a change of indices. Set:

∗W 0
k := NW 0

k +Mk−1(N,W 0) ∩W 0
k ⊂ pψuf (W 0)

where ∗W 0 = N ∗W 0[1] such that ∗W 0
k+1 := (N ∗W 0)k.

Remark 9.8. ∗W 0 is defined here in the abelian category of perverse sheaves.
Equivalently it si defined on the de Rham family of vector spaces associated to
pψuf (W 0). It is related to the weight on jZ∗j

∗
Zj!∗

pL by Verdier’s correspondence
and the isomorphism jZ∗j

∗
Zj!∗

pL/j!∗
pL ' CokerN .

We have by (Equations 9.8 and 9.9):

M(N, ∗W 0) = M(N,N ∗W 0)[1] = M(N,W 0)[1]

since M(N,N ∗W 0) = M(N,W 0). We have now: W 0
k

N−→ ∗W 0
k

I−→W 0
k .

From now on, we write ϕuf for pϕuf (jZ∗j
∗
Zj!∗

pL) and pψuf for pψuf (j∗Zj!∗
pL).

We have Ker(ϕf
can−−→ ψf ) = Ker(N : ψf → ψf ). Set

W 0
k (ϕuf ) := var−1(W 0

kψ
u
f ) and NW 0

k (ϕuf ) := var−1(NW 0
kψ

u
f ), then:

NW 0
k (ϕuf ) = Im (C : W 0

k → ϕuf )
var'−−−→ NW 0

k (ψf ).

The weights. As perverse sheaves, ϕuf and ψuf are isomorphic, but with
different weights.

The sub-quotient sheaf (Gr
M(N,W 0)
k−1 , F ) of pψuf is pure Hodge of weight k−2.

Set (Wk−2
pψuf (j∗Zj!∗

pL), F ) := (Mk−1(N,W 0), F ), then (W,F ) is a PVMHS
of pψuf (j∗Zj!∗

pL), while (W ′, F ) := (W,F )(−1) is a PVMHS of pϕuf (jZ∗j
∗
Zj!∗

pL)
such that by (Equation 9.42):

( pϕuf ,W
′, F )

var'−−−→ ( pψuf ,W, F )(−1) (9.45)

Remark 9.9. In order to apply the results of [Ka 86] and the classification
of Verdier in their terminology, we keep the convention W 0

k (ψuf ) := ψuf (W 0
k )

instead of W 0
k (ψuf ) := ψuf (W 0

k+1) in ([Shi 93] §3.1).

We introduce the subspace
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Wk
pϕuf := NW 0

k +W ′k ∩W 0
k :Wk

pϕuf
var'−−−→ (∗W 0

k ) pψuf

( pψuf ,W
0)

C−→ ( pϕuf ,W )
V−→( pψuf ,W

0)
(9.46)

satisfying V ◦C = N and C◦V = N . Set Wk := Wk
pϕuf (jZ∗j

∗
Zj!∗

pL) in (Equa-
tions 9.44 and 9.46). The extension Wk

pϕuf (jZ∗j
∗
Zj!∗

pL) above, corresponds
to a term Wk of the weight filtration on (jZ∗j

∗
Zj!∗

pL, F ). The filtrations W ′

and F are essential in the definition of Wk and in the proof below.

Lemma 9.9. The sequence

ψuf (W 0
k j
∗
Zj!∗

pL)
Ck−−→ φk := Wk

pϕuf jZ∗j
∗
Zj!∗

pL
Vk−→ ψuf (W 0

k j
∗
Zj!∗

pL)

defines by Verdier’s classification, the perverse extension WkjZ∗j
∗
Zj!∗

pL of
W 0
k j
∗
Zj!∗

pL such that (W,F ) is a PVMHS.

Proof. We write Wk
pϕuf for Wk

pϕuf (jZ∗j
∗
Zj!∗

pL). In terms of the sequence
in (Equation 9.31) and with the definition of W ′ (Equation 9.45) and by
(Equations 9.8 and 9.9):

GrWk
pϕuf '

Im (Ck : GrW
0

k
pψuf → GrWk

pϕuf )⊕ ker (Vk : GrWk
pϕuf → GrW

0

k
pψuf )

(9.47)

∀l < k,GrWl Gr
W 0

k
pϕuf = 0

GrWk Gr
W 0

k
pϕuf ' Im (N : GrW

0

k
pψuf → GrW

0

k
pψuf )

∀l ≥ k + 1, GrWl Gr
W 0

k ' Coker (N : GrW
′

l+2Gr
W 0

k
pϕuf → GrW

′

l GrW
0

k
pϕuf ).

(9.48)

Hence the corresponding perverse filtration Wk on jZ∗j
∗
Zj!∗

pL satisfies the
equation: (GrWk jZ∗j

∗
Zj!∗

pL, F ) =

(jZ!∗j
∗
ZGr

W 0

k j!∗
pL, F )⊕p≤k Coker (N : GrW

′

k+2Gr
W 0

p ϕuf → GrW
′

k GrW
0

p ϕuf )

Moreover, the filtration W induces on (GrW
0

k jZ∗j
∗
Zj!∗

pL, F ) the weight

filtration on (jZ∗Gr
W 0

k j∗Zj!∗
pL, F )

Finally, by the splitting of (GrW
′

k
pϕuf , F ) ' ⊕pGrW

′

k GrW
0

p
pϕuf , F ) (Equa-

tion 9.5), we deduce a perverse HS of weight k on

(GrWk jZ∗j
∗
Zj!∗

pL, F ) ' (jZ!∗j
∗
ZGr

W 0

k j!∗
pL, F )⊕p<kGrWk jZ∗GrW

0

p (j∗Zj!∗
pL, F ).

The above results extend to the singular case as follows:

Corollary 9.6. Let (pL,W 0, F ) be a graded polarized admissible VMHS on
the non singular set V ∗ of an algebraic variety V , j!∗

pL its intermediate
extension and g : V → C an algebraic map with central fiber Z := g−1(0):
i) the nearby (resp. vanishing) cycles complex pψgj!∗

pL (resp. pϕug j!∗
pL) is a

PVMHS on Z is a PVMHS on Z.
ii) let U := V \ Z, jZ : U → V , then pϕug j

∗
Zj!∗

pL is a PVMHS on Z.
iii) the direct image jZ∗j

∗
Zj!∗

pL is a PVMHS on X.
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Proof. We consider a desingularization π : V ′ → V such that Z ′ := π−1(Z)
is a NCD. Let f := g ◦ π, u : V ∗ → V ′ and uZ : V ′ \ Z ′ → V ′. We suppose
Y ′ := π−1(V \ V ∗) a NCD.

i) The PVMHS: pψfu
∗
Zu!∗

pL and pϕfuZ∗u
∗
Zu!∗

pL are well defined by as-
sumption of admissibility. We apply the weight spectral sequence to the de-
rived direct image π∗ (Equation 7.4, Proposition 7.2):

pEp,q1 := pHp+q(π∗GrW−p pψfu!∗
pL) =⇒ GrWq

pψg
pHp+q(π∗u!∗

pL)

which degenerate at rank 2, to deduce the PVMHS. In the case p + q = 0,
the limit is the weight filtration on pψg

pH0(π∗u!∗
pL) ⊃ pψgj!∗

pL.
The case of pϕfuZ∗u

∗
Zu!∗

pL is similar.
ii) We have: var : pϕgj

∗
Zj!∗

pL ' pψgj!∗
pL(−1).

iii) In the case jZ∗j
∗
Zj!∗

pL, we apply the weight spectral sequence to the
derived direct image π∗ (Equation 7.4):

pEp,q1 := pHp+q(π∗GrW−puZ∗u∗Zu!∗
pL) =⇒ GrWq

pHp+q(π∗uZ∗u∗Zu!∗
pL)

which degenerates at rank 2.
Since uZ and jZ are affine and π projective, we have:

π∗uZ∗u
∗
Zu!∗

pL = jZ∗j
∗
Zπ∗u!∗

pL. We consider π∗W induced on

jZ∗j
∗
Zπ∗u!∗

pL ⊃ pτ≤0jZ∗j
∗
Zπ∗u!∗

pL and then projected on:
pH0(jZ∗j

∗
Zπ∗u!∗

pL) = jZ∗j
∗
Z
pH0(π∗u!∗

pL) ⊃ jZ∗j∗Zj!∗pL.

Corollary 9.7. The direct definition of ∗W 0 on V corresponds by Verdier’s
classification (Equation 9.46) to the structure of PVMHS on jZ∗j

∗
Zj!∗

pL.

Proof.(Equation 9.46) is defined directly on V by (Corollary 9.6 i) and ii)). In

both constructions, the induced structure on jZ∗(Gr
W 0

∗ j∗Zj!∗
pL,W ) coincide.

9.7.1.2 (jZ∗j
∗
ZV,W, F ) for V a PVMHS and N ∗W

Hypothesis. We assume now that (V,W, F ) is a PVMHS on a complex alge-
braic variety V , Z ⊂ V a locally principal divisor, U := V \ Z, jZ : U → V
and iZ : Z → V .

To construct the PVMHS on (jZ∗j
∗
ZV,W, F ), we suppose Z principal

defined by a morphism f defined on the algebraic complex variety V ,
Z := f−1(0). Indeed, the various constructions for different local equations
f will glue together. The functor ψf (resp. φf ) is well defined on (V,W ).

Let Wi denote the filtration on ψfV : WiψfV := ψfWiV and the filtration

F is well defined on ψfGrWi (V, F ) since GrWi (V, F ) is perverse pure Hodge.

Definition 9.7. A PVMHS (V,W, F ) on V \ Z is admissible along Z if:
1) There exists a filtration F on ψf (V,W ) inducing, for each index i, the

filtration F on ψfGrWi (V, F )
2) Let W on ψf (V) be defined by Wiψf (V) := ψfWiV. The relative

monodromy filtration M := M(N,W ) exists on ψf (V).
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Corollary 9.8. Let W̃ := M [−1] be the filtration defined by W̃k−1 = Mk and

jZ : U → V , then (ψf j
∗
ZV, W̃ ,W, F ) is a PVMHS on Z. Moreover:

(ϕf jZ∗j
∗
ZV, W̃ ,W, F )

var'−−−→ (ψf jZ∗j
∗
ZV, W̃ ,W, F )(−1) defines a structure

of PVMHS on ϕf .

Hint to the proof. By (Equation 9.5): GrMr (ψfV, F ) ' ⊕k(GrMr GrWk ψfK,F ).
Hence the proof is reduced to the case of a direct sum of intermediate exten-
sions of perverse VHS (Definition of IH 7.1) then (Corollary 9.6) apply.

Corollary 9.9. Let Z ⊂ V be a locally principal divisor and j the embedding
of U := V \ Z in V . The derived direct image of an admissible PVMHS
(V,W 0, F ) on U , is a PVMHS (j∗V,W,W

0, F ).

Hint to the proof. We suppose Z locally defined by an equation f (as local
constructions on a local covering of Z glue together). The relative monodromy
filtration Mk := Mk(N,ψfW

0) on ψf jZ∗V defines the weight filtration W
such that (Wk−1, F ) := (Mk, F ) from which we deduce by the isomorphism
var : ϕf → ψf (−1) the definition of (ϕf jZ∗j

∗
ZV,W ′, F )

In this case (Equation 9.46) is well defined (see also Corollary 9.7).
Verdier’s extension (§2.2.3, equation 2.23 the case 5) applies and defines the
weight filtration W on (jZ∗j

∗
ZV,W, F ) as extension of W 0.

Moreover, the filtration induced by W on (jZ∗Gr
W 0

∗ j∗ZV,W, F ) coin-
cide with the filtration constructed by desingularization in the case of
(jZ∗Gr

W 0

∗ j∗ZV,W, F ). By (Equations 9.47 and 9.48), the filtrations W is
unique.

Corollary 9.10. The induced filtration W on (jZ!∗j
∗
ZV, F ) satisfy:

(GrWi j!∗V, F ) ' (j!∗GrW
0

i V, F )

Remark 9.10. As in (§5.2.1.4, Corollary 9.4 and Theorem 9.4), we deduce
from the open embedding case the filtration W for various functors:

1) The filtrations (W,F ) on j!V may be defined by duality with j∗(V,W
0, F ).

A direct proof is based on the filtration (N!W )k := Wk−1 + Mk(N,W ) ∩
N−1Wk−1 dual to N ∗W ([Ka 86] Equation 3.4.2).

2) The filtrations (W,F ) on (i!ZV,W, F )[1] may be defined as a mixed

cone of the morphism ρ in the natural sequence i!ZV→ V
ρ−→ jZ∗j

∗
ZV.

3) The filtrations (W,F ) on i∗ZV may be defined by duality.

9.7.1.3 Proof of (Equation 9.5)

The result of Kashiwara involves sections GrMr GrWk L → GrMr L (Equation
9.5). The following description in ([Sa 90]) of the sections is clear.

Since the filtration induced by M on GrWk coincides the shifted mon-
odromy filtration W (N)[k], we can define the following primitive object
PGrMi+kGrWk L, denoted by Pi+k,k
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Pi+k,k := Ker(GrMi+kGrWk N
i+1 : GrMi+kGrWk L→ GrM−i−2+kGrWk L)

The definition of the section is by induction and compatible with the action
of N , such that the definition is reduced to the case of the primitive subspace
si+k,k : Pi+k,k → GrMi+kWkL as follows. If we suppose sj+l,l defined for
l ≤ k − 2 for all j, we define the subspace Vi+k,k by the sum:

Vi+k,k =
∑
j,m,l∈Sk ImNmsj+l,l ⊂ GrM−i−2+kWkL where

Sk := {j,m ≥ 0, l ≤ k−2 such that j ≥ m, j+ l < i+k, j+ l−2m = k−i−2}

and Pj+l,l
sj+l,l−−−→ GrMj+lWkL

Nm−−→ GrMj+l−2mWkL. Then,

si+k,k : Pi+k,k
∼−→ Ker(N i+1 : GrMi+kWkL→ GrM−i−2+kWkL/Vi+k,k).

The section si+k,k extends (by the primitive decomposition) to define the

section on GrMi+kGrWk L ([Sa 90] Proposition 1.5).





Chapter 10

Relative local purity and
Decomposition

We prove the decomposition theorem (ch. 1,Theorem 1.2) and the local purity
(ch. 4, Theorem 4.1) in terms of a Thom-Whitney stratification, by induction
on n := dimX the dimension of X and reduction to isolated strata.

Let π : X̃ → X be a desingularization of X. The decomposition theorem
for f : X → V follows directly from the case of π and f◦π ([De 68] Proposition
2.16), hence to start the proof of Theorem 1.2, we suppose X non singular
and f surjective such that dimV ≤ dimX.

The proof of the decomposition (§10.3, Theorem 10.1), is reduced, by in-
duction (§10.0.0.1), to the case of isolated strata of v ∈ V , and it is related
to the properties of the cohomology of the NCD above v stated in terms of
the relative local purity (§10.6).

10.0.0.1 Induction statement D(n)

D(n): Theorem 9.2 on relative local purity and the decomposition theorem
(ch.1, Theorem 1.2) apply to projective morphisms f : X → V on projective
varieties X of dimension ≤ n.

The assertion D(0) is obvious. To prove D(n−1)⇒ D(n), we assume first
that X is nonsingular. Recall that L is a PVHS of weight w′ on a Zariski-
open subset U ⊂ X such that Y = X \ U is a NCD, pL := L[dimX] is of
weight pw := w′ + dimX and j!∗

pL ' IC∗ pL (§3.1.4) is endowed with a
Hodge filtration F .

10.0.1 The case dimV = 0 and dimX = n

We distinguish the case where dimV = 0 which is admitted since the de-
composition is reduced to the purity of the HS on H∗(X, j!∗L) proved in

191
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[KaK 87] and [CaKSc 87] by comparison with L2-cohomology (see Theorem
3.1). A proof by reduction to the case where X is over a curve is in [Sa 88].

Hard Lefschetz theorem is proved by the classical reduction to an hy-
perplane section ([KaK 87]. In particular, Hi(X, j!∗pL) is a polarized HS of
weight pw + i as a direct sum of primitive polarized HS. By the property of
auto-duality [KaK 86], all HS coincide with the HS defined in this article by
the subcomplex (IC∗ pL, F ) ⊂ (Ω∗ pL, F ).
The statement of relative local purity is trivial in this case since B∗Xv = ∅.

10.0.2 Intermediate statement D(n, V ∗) in the case
0 < dimV ≤ n

Hypothesis. Let f : X → V be defined on a non singular complex variety X
of dimension n, K := f∗j!∗

pL, S a Thom-Whitney stratification of f adapted
to the intermediate extension of a shifted polarized VHS j!∗

pL on X.
We denote by V0 ⊂ V the union of zero-dimensional strata of S, iV0

:
V0 → V, V ∗ := V \ V0 and k : V ∗ → V .

Assuming D(n−1) and dimV > 1, the first step is to prove the decompo-
sition theorem over V ∗. The assumption D(n) over V ∗, denoted by D(n, V ∗),
is proved by reduction to hyperplane sections of V transversal to the strata
of V .

Lemma 10.1 (D(n, V ∗)). Under the Hypothesis above, assuming D(n− 1),
and dimV > 1:

i) The restriction of the perverse cohomology to V \V0 decomposes in each
degree i into a direct sum of intermediate extensions of shifted polarized VHS
pLiS (ch. 1, Equation 1.7) of weight pw + i on the strata S of dimension
0 < dimS ≤ n

pHi(k∗K)
∼−→ ⊕S∈S, S⊂V \V0

k∗iS !∗
pLiS (10.1)

ii) The iterated cup-product η with the class of an hyperplane section of X,
induces an isomorphism on the restrictions to V \ V0

ηi : pH−i(f∗j!∗ pL)|V \V0

∼−→ pHi(f∗j!∗ pL)|V \V0
(10.2)

Proof. Let f : X → V be a surjective morphism, K := f∗j!∗L on V and
let N denote a normally embedded subvariety of V of dimension d < dimV
intersecting a stratum S of dimension s > 0 at a point u, such that XN

intersect transversally the strata of X. If X is non singular, then XN is also
non singular for a general N . The induction apply to f ◦ iXN since we have
good reductions:

i∗NK ' (f ◦ iXN )∗j!∗L, i∗N
pHi(K) ' pHi((f ◦ iXN )∗j!∗L). (10.3)
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Remark that pLiS is uniquely defined by the decomposition as pLiS =
i∗SH

−s( pHi(K)).
Since Ri−sfS∗(i

!
XS
j!∗

pL) and Ri−sfS∗(i
∗
XS
j!∗

pL)) are variation of MHS of

weights w ≥ pw+ i−s (resp. w ≤ pw+ i−s), the image pLiS of IS is a PVHS
of weight w = pw + i − s (ch. 9, . Lemma 9.7) including a reduction to the
case where XS is a fibration by NCD).
The isomorphisms in (10.2) follow by induction since dimXN < dimX.

Example 10.1. By definition of the big stratum U in V , the restriction
f| : XU → U of the morphism f to XU := f−1(U) is smooth and the restric-
tions of the cohomology sheaves Hi(K) are locally constant on U . Hence:
pHi(K)|U = Hi−dimV (K)|U [dimV ] is a shifted polarized VHS on U . At a
point u ∈ U : (Rif∗j!∗L)u ' Hi(Xu, j!∗L) is isomorphic to the intersection
cohomology of the restriction of L to the fiber Xu, hence Hard Lefschetz
apply.

10.1 Proof of the relative local purity

In the next step, we deduce the relative local purity at points v ∈ V0 from
the decomposition over V \ V0 (Lemma D(n, V ∗) 10.1). As the statement is
local at points in V0, we can suppose V0 reduced to one point v.

10.1.0.1 Perverse filtration by sub-MHS on the Link

Since we assume X non singular, we may also assume that pL is a VHS on
the complement of a NCD Y ⊂ X so to apply the results of chapters 3 and
9. Let f : X → V , v ∈ V a closed point. We also assume that Xv := f−1(v)
and Xv ∪ Y are NCD in X.

Let i : Xv → X, the complex (K ′,W, F ) := (i∗jXv∗(j!∗
pL)|(X−Xv),W, F )

(ch. 9, §9.5.1, Definition 9.35) defines a structure of MHC on the space of
global sections RΓ (Xv,K

′,W, F ).
The topological interpretation of this intrinsic cohomology space in terms

of balls with center v is more suggestive. A small ball Bv ⊂ V with center v
is defined as the trace of a ball B ∈ CN with center 0. The link at a point
v ∈ V is a topological invariant represented by the boundary of a ball Bv of
V . As B∗v retracts on the boundary, we use the hypercohomology of B∗v .

The inductive limit of the hypercohomology when the radius of Bv is small
is an intrinsic group representing the hypercohomology of the link.

Let Xv := f−1(v), XBv := f−1(Bv) its tubular neighborhood and XB∗v
=

XBv \Xv. There exists an isomorphism

Hr(XB∗v
, j!∗

pL)
∼−→ Hr((Xv, i

∗(jXv )∗j
∗
Xvj!∗

pL) (10.4)
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Set k : V \ {v} → V, jXv : X \ Z → X and iv : v → V . We denote
again by W and F the filtrations (f|Xv )∗W, (f|Xv )∗F on (f|Xv )∗K

′. The iso-
morphism (f|Xv )∗K

′ ' iv∗k∗((f∗j!∗
pL)|(V−v)), defines by transport of struc-

ture, a filtration pτ∗ on (f|Xv )∗K
′ deduced from the perverse filtration pτ on

(f∗j!∗
pL)|(V \v)

pτ∗(f|Xv )∗K
′ ' pτ∗(iv∗k∗(f∗j!∗

pL)|(V \v)) := iv∗k∗(
pτ(f∗j!∗

pL)|(V \v))
(10.5)

Thus we have three filtrations W,F, pτ∗ on the complex (f|Xv )∗K
′ inducing

filtrationsW,F and pτ∗ on the cohomology space Hj(Xv, i
∗jXv∗(j!∗

pL)|(X\Xv)).

Lemma 10.2 (Compatibility with MHS). i) With the notations of (Def-
inition 9.35), let K ′ := i∗jXv∗j

∗
Xv
j!∗

pL. Under the decomposition over V ∗

(D(n, V ∗)) the filtration pτ∗, induced by the filtration pτ on f∗j!∗
pL, is com-

patible with the MHS on Hj(Xv, j!∗
pL):

The induced filtrations W and F on Gr
pτ∗

i (f|Xv )∗K
′ define a MHS and we

have an isomorphism of MHS:

Hj(v,Gr
pτ∗

i (f|Xv )∗K
′,W, F ) ' Gr

pτ∗

i Hi+j(Xv,K
′,W, F ) (10.6)

ii) Equivalently, we have an isomorphism of graded polarized MHS:

Hj(B∗v , pHi(K),W, F ) ' Gr pτi Hi+j(B∗Xv , j!∗
pL,W, F ).

Proof. The filtration pτ∗ in the lemma corresponds to the perverse filtration
pτ on the hypercohomology of B∗Xv (Equation 11.5).

Let Bj := Hj(B∗Xv , j!∗
pL,W, F ) with the filtration pτ , B := ⊕jBj and

K := f∗j!∗
pL. The morphism η : K −→ K[2], defined by cup product with the

Chern class c1 of an ample line bundle, induces a morphism on the perverse
cohomology sheaves ([BBD 83], Théorème 5.4.10).

We deduce a morphism of MHS η : B → B(1). Let A be the following
increasing filtration on B:

Ai := ⊕j<−i pτj−1B
j ⊕ pτ−iB

−i ⊕j>−i pτjBj

Ai−1 := ⊕j<−i pτj−1B
j ⊕ pτ−i−1B

−i ⊕j>−i pτjBj

Ai−2 := ⊕j+2<−i+2
pτj+1B

j+2 ⊕ pτ−i+2B
−i+2 ⊕j+2>−i+2

pτj+2B
j+2

η : Ai → Ai−2, η : GrAi =Gr
pτ
−iB

−i → GrAi−2 = Gr
pτ
−i+2B

−i+2

(10.7)

We deduce: ηi : GrAi = Gr
pτ
−iB

−i ' Gr
pτ
i B

i(i) = GrA−i. Hence Ai is the
unique increasing filtration defined by the nilpotent endomorphism η on B
in the category of MHS. The lemma follows by the fact that A is necessarily
a filtration by MHS.

Once the above MHS is defined, we can express the conditions of local
purity and give a meaning to the purity theorem in [DeG 81].

We prove now (Theorem 9.2) in the case dimX = n:
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Proposition 10.1 (Local purity). The weight w satisfy the inequalities :

w > pw + i+ j on Hj(Bv \ v, pHi(f∗j!∗pL)) if j ≥ 0,

w ≤ pw + i+ j on Hj(Bv \ v, pHi(f∗j!∗pL)) if j ≤ −1 .

(10.8)

Remark 10.1. Equivalently, the inequalities may be written as:

w > pw + r on pτ≤rHr(BXv \Xv, j!∗
pL),

w ≤ pw + r on Hr(BXv \Xv, j!∗
pL)/ pτ≤rHr(BXv \Xv, j!∗

pL).
(10.9)

The proof in [DeG 81] is based on the local invariant cycle theorem. Our
proof is based on duality and the polarization of the Intersection cohomology
H∗(X, j!∗pL).
In the case of a variety V with an isolated singularity and X is its desingu-
larization, the polarization occurs also in the proof in the case of constant
coefficients by ([Na 85], Prop. 5.1).

As in [DeG 81], the proof of the inequalities below is by induction on an
hyperplane section of X, except the case: GrWpwGr

pτ
0 H−1(BXv \Xv, j!∗

pL) = 0
(i = 0 and j = −1, equivalently by duality j = 0 and i = 0). The reader may
skip the induction and go directly to the crucial case (§10.2).

10.1.0.2 Duality

Lemma 10.3. The dual of GrWpw+lH−1(Bv \ v, pHi(f∗j!∗pL)) for all i and

l ≤ i− 1 is GrWpw−lH0(Bv \ v, pH−i(f∗j!∗pL)) for all i and −l ≥ −i+ 1.

Proof. Let k : V \ {v} → V,K := f∗j!∗
pL and K(∗v) := i∗vk∗k

∗K.
We have quasi-isomorphisms of derived complexes:

K(∗v)
∼−→ Γ (Bv \ v,K)

∼−→ Γ (BXv \Xv, j!∗
pL).

The duality isomorphism D(K(∗v))[1]
∼−→ K(∗v) where D stands for

Verdier dual, is deduced from the auto-duality of of j!∗
pL, Verdier’s dual-

ity formula for the direct image by a proper morphism f and the duality
between k∗ and k! (resp. i∗v and i!v).

The dual of the distinguished triangle k!k
∗K → k∗k

∗K → iv∗i
∗
vk∗k

∗K is
the distinguished triangle: iv∗i

!
vk∗k

∗K → k!k
∗K → k∗k

∗K.
By identifying the terms of the triangles, we deduce the isomorphisms

D(K(∗v))[1]
∼−→ iv∗i

!
vk!k

∗K[1]
∼−→ K(∗v).

The duality isomorphism is compatible with the weight filtration:

D(GrWpw−qH
−j(K(∗v)))

∼−→ GrWpw+qH
j(DK(∗v))

∼−→ GrWpw+qH
j−1(K(∗v)).

and corresponds to the duality of the Intesection cohomology of the boundary:
∂BXv = f−1(∂Bv) with coefficients in the restriction of j!∗

pL.
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Since the perverse filtration is compatible with duality and weight, we
deduce an isomorphism: D( pH−i(K))

∼−→ pHi(K) and

D(GrWpw−qGr
pτ
−iH

−j(K(∗v)))
∼−→ GrWpw+qGr

pτ
i H

j−1(K(∗v)).

Hence, the dual of GrWpw+lHj(Bv \ v, pHi(f∗j!∗pL)) for all i, l ≤ i − 1 and

j ≤ −1 is GrWpw−lH−j−1(Bv \ v, pH−i(f∗j!∗pL)) for all i, −l ≥ −i + 1 and
−j − 1 ≥ 0.

The proof of (Proposition 10.1) is reduced by the above duality, to one of the
two cases in degree j ≥ 0 or j ≤ −1.

10.1.1 Preliminaries on hyperplane sections of X

Let H be a general hyperplane section of X transversal to all strata of a
stratification S of X. We prove here by induction the inequalities of the
equation 10.8, except the case i = 0, j = 0, w = pw (see §10.2).
Recall that pL is defined on the complement X \ Y of a NCD Y .

We suppose H∩Y a NCD. Let j : (X \Y )→ X, j′ : H \(H∩Y )→ H, and
iH : H → X. By transversality, the restriction i∗Hj!∗

pL[−1] ' j′!∗(pL|H [−1]) is
perverse. Let KH = f∗iH∗i

∗
Hj!∗

pL[−1].
By induction, the local purity theorem apply to the perverse cohomology

sheaves of KH since dimH < dimX. We use Artin-Lefschetz vanishing the-
orem to deduce the local purity for the perverse cohomology sheaves of K in
degrees i 6= 0.

Lemma 10.4. Let jH : (X \H)→ X and Kc = f∗(jH)!j
∗
Hj!∗

pL.

i) The complex Kc ∈ pD≥0
V , equivalently: pHi(Kc) = 0 for i < 0.

ii) Dually K(∗) := f∗(jH)∗j
∗
Hj!∗

pL ∈ pD≤0
V ( pHi(K(∗)) = 0 for i > 0).

Proof. As f ◦ jH : (X \ H) → V is affine, by a version of Artin-Lefschetz

vanishing theorem, the functor f∗ ◦ jH! transforms pD≥0
X−H into pD≥0

V (the

functor is left t-exact [BBD 83], corollary 4.1.2), hence Kc ∈ pD≥0
V .

The statement pHi(K(∗)) = 0 for i > 0 follows by duality.

Let K = f∗j!∗
pL. The restriction morphism ρ : K → KH [1], and dually

the Gysin morphism G : KH [−1]→ K, induce morphisms

ρi : pHi(K)→ pHi+1(KH), Gi : pHi−1(KH)→ pHi(K), (10.10)

The cup product with the Chern class c1 of an ample line bundle (or equiv-
alently relative ample) defines a morphism η : K −→ K[2] inducing mor-
phisms of perverse sheaves ([BBD 83], Théorème 5.4.10)

ηi = Gi+2 ◦ ρi : pHi(K) −→ pHi+2(K)
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Corollary 10.1. i) The restriction ρi : pHi(K)→ pHi+1(KH) is an isomor-
phism for each integer i < −1 and a monomorphism for i = −1.
Dually, the Gysin morphism Gi : pHi−1(KH) → pHi(K) is an isomorphism
for i > 1, and an epimorphism for i = 1.

ii) The filtrations W and F define a MHS for i < 1 on:
Gr

pτ
i Hi+j(B∗Xv , j!∗

pL,W, F ) ' Gr pτi Hi+j(BHv \Hv, i
∗
Hj!∗

pL[−1]).
We have a dual statement for i > 1.

Proof. Here monomorphism (resp. epimorphism) stands for the perverse ker-
nel is zero (resp. the perverse cockernel is zero). We deduce from the dis-

tinguished triangle (jH)!j
∗
Hj!∗

pL → j!∗L → iH∗i
∗
Hj!∗

pL
(1)−−→, and its derived

direct image by f∗, an exact sequence of perverse cohomology ([BBD 83],
Théorème 1.3.6)

· · · → pHi(Kc)
cani−−−→ pHi(K)

ρi−→ pHi+1(KH)
∂i−→ pHi+1(Kc)→ · · · (10.11)

The corollary follows from Lemma 10.4 as pHi(Kc) = 0 for i < 0.

We consider the diagrams:

pH−1(KH)(−1)
G0−−→ pH0(K)

ρ0−→ pH1(KH)

pH−1(K)|V \v
ρ−1−−→ pH0(KH)|V \v

G1−−→ pH1(K)|V \v(1)
(10.12)

Lemma 10.5 (Induction). The morphism G0 is injective, ρ0 is an epimor-
phism and by induction D(n− 1) (§10.0.0.1)

pH0(K)
∼−→ ImG0 ⊕Ker ρ0. (10.13)

Respectively, ρ−1 is a monomorphism , G1 is an epimorphism and by induc-
tion (Lemma D(n, V ∗) 10.1)

pH0(KH)|V \v
∼−→ Im ρ−1 ⊕KerG1 (10.14)

Proof. Since ρ0 ◦G0 = ηH in the equation 10.12 is an isomorphism on H by
induction D(n-1), we deduce the decomposition in Equation 10.13.

Since G1 ◦ ρ−1 = η in the equation 10.12 is an isomorphism on V \ v
by induction (Lemma D(n, V ∗) 10.1), we deduce the decomposition in the
equation 10.14.

Still we have no information on Ker ρ0, for example if f(H) is closed of
dimension strictly less than dimV . This will be the crucial case in the proof.

10.1.1.1 Reduction to an hyperplane section

Let Hv := Xv ∩H, B∗v := Bv \ v, B∗Xv := BXv \Xv and B∗Hv := B∗Xv ∩H.
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Hj(B∗v , pHi(K),W, F )

DX'
��

ρi // Hj(B∗v , pHi(KH [1]),W, F )

DH'
��

Gr
pτ
i Hi+j(B∗Xv , j!∗

pL,W, F )
ρi // Gr

pτ
i Hi+j(B∗Hv , i

∗
Hj!∗

pL[−1],W, F )

(10.15)
where the isomorphisms (by the decomposition) DX and DH transport the
filtration W and F by induction over V ∗ and ρi respects the filtrations W and
F . This diagram will be used to check that W and F define MHS satisfying
local purity by (including a new proof of the compatibility of pτ with MHS)
by induction on an hyperplane section H. We resume the notations of the
proof of (Corollary 10.1).

Let K := f∗j!∗
pL, KH = f∗iH∗i

∗
Hj!∗

pL[−1], ρ : K → KH [1], and dually the
Gysin morphism G : KH [−1]→ K.

Corollary 10.2. The local purity in proposition 10.1 applies to pHi(K) with
the MHS defined by W and F , except eventually for the component Ker ρ0 ⊂
pH0(K) in Equation 10.13.

Proof. The conditions on the weights wHj(Bv \ v, pHi+1(KH)): w > pw −
1 + i+ 1 + j if j ≥ 0 are assumed by induction, since KH is of weight pw− 1.

Since for i < −1 the restriction morphisms ρi are isomorphisms, the filtra-
tions W and F on Hj(Bv \v, pHi(K)) define a MHS satisfying the conditions
on the weight by transport of structure.

In the case i = −1, ρ−1 induces an isomorphism onto a direct summand
Im ρ−1 of pH−1(f∗(iH)∗i

∗
Hj!∗

pL)|V−v (Equation 10.14), hence the MHS is
carried to Hj(B∗v , pH−1(K),W, F ) and satisfy local purity. The case i ≥ 1
follows by duality.

In the case i = 0, local purity holds for ImG0 since G0 is an isomorphism by
(Lemma 10.5).

Only the case of Ker ρ0 ⊂ pH0(K) is not deduced by induction from KH .

Lemma 10.6 (The case i = 0, j 6= 0,−1). Let j!∗
pL be of weight a. The

MHS on
Gr

pτ
0 Hj(B∗Xv , j!∗

pL) ' Hj(B∗v ,
pH0(K))

is of weight ω > pw+j for j > 0 and dually of weight ω ≤ pw+j for j < −1.

Proof. Let H be a general hyperplane section of V containing v, Hv = Bv∩H
and H∗v = B∗v ∩H. Since H is general, it is normally embedded outside v so
that the perverse cohomology commute with the restriction to H \ v.

We consider the exact sequence

HjH∗v (B∗v ,
pH0(K))

αj→ Hj(B∗v , pH0(K))→ Hj(Bv \Hv,
pH0(K))
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Since HjH∗v (B∗v ,
pH0(K)) ' Hj−2(H∗v ,

pH0(K))(−1) by Thom isomorphism

(see Corollary 9.5), we deduce w > pw + j on HjH∗v (B∗v ,
pH0(K)) as w >

pw + j − 2 on Hj−2(H∗v ,
pH0(K)) by induction.

By Artin-Lefshetz hyperplane section theorem, extended and applied to
the Stein open subset Bv \Hv with coefficients in pH0(K) ∈ pD≤0

c (V,Q):
Hj(Bv \Hv,

pH0(K)) ' 0 for j > 0.
Then, αj is an isomorphism for j > 1 and surjective for j = 1, and

w > pw + j on Hj(B∗v , pH0(K)) by the surjectivity of αj for j > 0.

10.1.2 The large inequality: w ≥ pw for j = 0

We prove by induction:

Lemma 10.7. i) H0(B∗v ,
pH0(K)) is of weight w ≥ pw.

ii) Dually: H−1(B∗v ,
pH0(K)) is of weight w ≤ pw.

Proof. Let H1 63 v be a general hyperplane section not containing v, k :
(V \ v)→ V . We deduce from the distinguished triangle:

k!k
∗ pH0(K)→ k∗k

∗ pH0(K)→ iv∗i
∗
vk∗k

∗ pH0(K),
the exact sequence of hypercohomology on U1 := V \H1

H0(U1, k∗k
∗ pH0(K))

γ0−→ H0(i∗vk∗k
∗ pH0(K))→ H1(U1, k!k

∗ pH0(K)) = 0

where H1(U1, k!k
∗ pH0(K)) = 0 since U1 is affine ([BBD 83] Théorème 4.1.1)

as k!k
∗ pH0(K) ∈ pD≤0

c .
We deduce the lemma since, the weight w of Hj(U1, k∗k

∗ pH0(K)) satisfy
w ≥ pw on the open set U1 \ v, and γ0 is surjective.

10.2 The crucial case

It remains to prove:

GrWpwGr
pτ
0 H−1(B∗Xv , j!∗L)

∼−→ GrWpwH−1(B∗v ,
pH0(K))

∼−→ 0. (10.16)

and by duality GrWpwGr
pτ
0 H0(B∗Xv , j!∗L)

∼−→ 0.
Let k : (V \V0)→ V , iV0

: V0 → V and K := Rf∗j!∗L. As the proof below
is local, it applies to all isolated strata v ∈ V0 of dimension 0 at the same
time. We can suppose V0 reduced to a unique stratum iv : v → V .

The proof is based on the idea that the cohomology of B∗v fits in two exact
sequences associated to distinguished two triangles involving i∗vk∗k

∗K

k!k
∗K → k∗k

∗K → iv∗i
∗
vk∗k

∗K and i!vK → i∗vK → i∗vk∗k
∗K (10.17)
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from which we deduce the commutative diagram

H−1(B∗Xv , j!∗
pL)

∂

��

γ

))

∂X // H0
c(X \Xv, j!∗

pL)

αX

��
H0
Xv

(X, j!∗
pL)

A // H0(X, j!∗
pL)

(10.18)

where αX and A are natural, ∂X (resp. ∂) is a connecting morphism defined
by the first (resp. the second) triangle, and γ = αX ◦ ∂X = A ◦ ∂.

Lemma 10.8. i) We have:
GrWpw

pτ0H−1(B∗Xv , j!∗
pL) ' GrWpwGr

pτ
0 H−1(B∗Xv , j!∗

pL) ' GrWpwH−1(B∗v ,Ker ρ0).

ii) For all elements u ∈ GrWpw pτ0H−1(B∗Xv , j!∗
pL), the image γ(u) vanish:

γ(u) = 0 ∈ pτ0Gr
W
pwH0(X, j!∗

pL) = pτ0H0(X, j!∗
pL).

i) Under the decomposition by induction D(n, V ∗) on V ∗ (see Lemma 10.1),
we apply the decomposition in equation 10.13 to deduce a decomposition over
B∗v :

k∗ pτ≤0K ' ⊕i≤−1k
∗ pHi(K)⊕ k∗Ker ρ0 ⊕ k∗ImG0 (10.19)

Since (Equation 10.8) is proved for i < 0, we deduce :
GrWpwH−1(B∗v ,

pHi(K)) = 0 for i < 0 and j = −1: w = pw + i− 1 < pw.
If i = 0, since (Equation 10.8) is proved for ImG0: GrWpwH−1(B∗v , ImG0) = 0.
We deduce:

GrWpw
pτ≤0H−1(B∗Xv , j!∗

pL) ' GrWpwH−1(B∗v ,
pτ≤0K) ' GrWpwH−1(B∗v ,Ker ρ0)

(10.20)
ii) We suppose the element u in GrWpwH−1(B∗v ,Ker ρ0) and prove first:
γ(u) is primitive: Let ρ : H0(X, j!∗

pL) → H0(H, j!∗
pL) denote the restric-

tion to a general hyperplane section H, we prove:

ρ ◦ αX ◦ ∂X(u) = 0 for u ∈ pτ0Gr
W
pwH0(X, j!∗

pL).

Let H∗v := B∗v ∩H,X∗ := X \Xv, V
∗ := V \ v in the following diagram

pτ≤0H−1(B∗Xv , j!∗
pL)

∼r1−→ H−1(B∗v ,
pτ≤0K)

ρ∗v−→ H−1(H∗v ,KH [1])
↓ ∂X ↓ ∂V ↓ ∂H

pτ≤0H0
c(X

∗, j!∗
pL)

∼r2−→ H0
c(V

∗, pτ≤0K)
ρ∗c−→ H0

c(H
∗, pτ≤0KH [1])

↓ αX ↓ αV ↓ αH
pτ≤0H0(X, j!∗

pL)
lX←− H0(V, pτ≤0K)

ρ−→ H0(H, pτ≤0KH [1])
↓ ρ ↓ ρ ↓'

pτ≤0H0(H, j!∗
pL)

∼lH←− pτ≤0H0(H, j!∗
pL)

∼−→ pτ≤0H0(H, j!∗
pL)
(10.21)

where the restriction ρ : K → KH [1] induces the various morphisms: ρ∗v, ρ
∗
c , ρ,

the natural morphisms r1, r2, lH are isomorphisms by the decomposition
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assumption on the complement of v or on H, and lX is a morphism by
definition of pτ≤0.

All the morphisms in the diagram are commutative as the columns repre-
sent ρ ◦ γ respectively on X, on V and γ on H.
We are interested by the level GrWpw of all the spaces in the diagram.

Since u ∈ GrWpwH−1(B∗v ,Ker ρ0) (Equation 10.20) is killed by ρ:
GrWpw(ρ∗v ◦ r1)(u) = 0 on the first line. By the commutativity of the diagram:

GrWa (ρ ◦ αX ◦ ∂X)(u) = GrWpw(αH ◦ ∂H ◦ ρ∗v ◦ r1)(u) = 0
where the isomorphism on the last line gives the equality.

iii) To prove γ(u) = 0, we just apply Poincaré duality to the diagram

GrWpwH0(X, j!∗
pL)

A∗

))
GrWpwH0

Xv
(X, j!∗

pL)

A

55

I // GrWpwH0(Xv, j!∗
pL)

where A∗ is the dual of A, I := A∗ ◦A.
Poincaré duality is expressed by a scalar product P on H0(X, j!∗

pL) and a
non-degenerate pairing Pv

Pv : GrWpwH0
Xv

(X, j!∗
pL)⊗GrWpwH0(Xv, j!∗

pL)→ C.

while the duality between A and A∗ is defined by the relation

P (Ab, c) = Pv(b, A
∗c).

for all b ∈ GrWpwH0
Xv

(X, j!∗
pL) and c ∈ GrWpwH0(X, j!∗

pL).

Let C be the Weil operator defined by the HS on GrWa H0
Xv

(X, j!∗
pL),

respectively on GrWpwH0(X, j!∗
pL) and u ∈ GrWpwH−1(B∗Xv , j!∗

pL), then

P (C.A(∂u), A(∂u)) = Pv(C∂u,A
∗ ◦A(∂u)) = Pv(C.∂(u), I(∂u)) = 0

(10.22)
since I◦∂ = 0 by the long exact sequence defined by the second triangle in the
equation 10.17. Since the polarization Q on the primitive part of H0(X, j!∗

pL)
is defined by the relation Q(a, b) := P (Ca, b), we deduce: γ(u) = A(∂u) = 0
by polarization as γ(u) is already primitive.

iv) The end of the proof of the crucial case i = 0, j = 0, w = pw is based
on two lemmas.

Lemma 10.9. The morphism GrWpwH0
c(X \Xv, j!∗

pL)
αX→ H0(X, j!∗

pL) is in-
jective.

In the long exact sequenceH−1(Xv, j!∗
pL)→ H0

c(X\Xv, j!∗
pL)

αX→ H0(X, j!∗
pL),

the weight w of H−1(Xv, j!∗
pL) satisfy w < pw since Xv is closed, hence

the morphism αX in the lemma is injective since GrWpwH0(X, j!∗
pL) =

H0(X, j!∗
pL).
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Lemma 10.10. i) The connecting morphism ∂X in the diagram 10.18 in-
duces an injective morphism:

GrWpwGr
pτ
0 H−1(B∗Xv , j!∗

pL)
∂X−−→ GrWpwGr

pτ
0 H0

c(X \Xv, j!∗
pL).

ii) Moreover GrWpw
pτ0H−1(B∗Xv , j!∗

pL)
∂X−−→ GrWpwGr

pτ
0 H0

c(X \Xv, j!∗
pL) is

injective.

Let V ∗ := V \ v. We prove first:
Sub-lemma: 1) H1

c(V
∗, pH0(K)) is pure of weight pw + 1.

2) By duality, H−1(V ∗, pH0(K)) is pure of weight pw − 1.

Proof of the sub-lemma. 1) Let H1 be a general hyperplane section of V not
containing v intersecting the strata transversally with non singular inverse
image X1 ⊂ X.
Let k : V \ H1 → V . The long exact sequence of hypercohomology with
coefficients in k!k

∗ pH0(K):

H1
H1

(V, k!k
∗ pH0(K))

ϕ−→ H1(V, k!k
∗ pH0(K))→ H1(V \H1, k!k

∗ pH0(K))

where H1(V \H1, k!k
∗ pH0(K)) = 0, since V \H1 is affine and k!k

∗ pH0(K) ∈
pD≤0

c ([BBD 83] Théorème 4.1.1); hence ϕ is surjective.
Since v 6∈ V ∗, the decomposition apply to X1 → H1 and to (X\Xv)→ V ∗.

Then, Thom isomorphism on X \Xv corresponds to a Thom isomorphism

H−1(H1,
pH0(K))(−1)

∼−→ H1
H1

(V, pH0(K)) = H1
H1

(V, k!k
∗ pH0(K))

of pure HS of weight pw + 1. We deduce that the middle term:
H1(V, k!k

∗ pH0(K)) = H1
c(V

∗, pH0(K)) is pure of weight pw + 1.
2) By duality, H−1(V ∗, pH0(K)) is pure of weight pw − 1.

Proof. i) We deduce from the sub-lemma and the long the long exact se-
quence:

H−1(V ∗, pH0(K))→ H−1(B∗v ,
pH0(K))

∂V→ H0
c(V

∗, pH0(K))
that the kernel of ∂V has weight < pw, hence:

GrWpwH−1(B∗v ,
pH0(K))

∂V−−→ GrWpwH0
c(V

∗, pH0(K))
which translates by the decomposition over V ∗ := V \ v into the statement
i) of the lemma.

ii) follows by the isomorphism (Equation 10.20):

GrWpw
pτ0H−1(B∗Xv , j!∗

pL) ' GrWpwGr
pτ
0 H−1(B∗Xv , j!∗

pL).

Corollary 10.3. GrWpwGr
pτ
0 H−1(B∗Xv , j!∗

pL) = 0.

Proof. Let u ∈ GrWpw pτ0H−1(B∗Xv , j!∗
pL) = GrWpwGr

pτ
0 H−1(B∗Xv , j!∗

pL) by
(Equation 10.20). We consider the sequence

GrWpw
pτ0H−1(B∗Xv , j!∗

pL)
∂X−−→ GrWpw

pτ0H0
c(X −Xv, j!∗

pL)
αX−−→ H0(X, j!∗

pL)

Since γ(u) = 0 (Lemma 10.8) and αX is injective on GrWpw by Lemma (10.9),
we deduce that

∂Xu = 0 ∈ GrWpw pτ0H0
c(B

∗
Xv
, j!∗

pL).
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Since the class ∂Xu = 0 ∈ Gr pτ0 GrWpwH0
c(B

∗
Xv
, j!∗

pL), we deduce by Lemma

(10.10) u = 0 ∈ GrWpw pτ0H−1(B∗Xv , j!∗
pL) ' GrWpwGr

pτ
0 H−1(B∗Xv , j!∗

pL)
which ends the proof of the corollary and the the crucial case.

Example 10.2. ([Na 85] Proposition 5.1) In the case of isolated singularity

x ∈ X, let X̃ denote a desingularization of X of dimension n such that the
inverse image Z of x is a NCD. Local purity at x has interesting cohomological
consequences on Z:

If k < n, the MHS on Hk
x (X,Q) is of weight < k and the morphism

Hk
Z(X̃,Q)→ Hk(Z,Q) is injective.
The MHS on Hn

x (X,Q) is of weight < n and the morphism

Hk
Z(X̃,Q)→ Hk(Z,Q) is an isomorphism.
If k > n, the MHS on Hk

x (X,Q) is of weight ≥ k and the morphism

Hk
Z(X̃,Q)→ Hk(Z,Q) is surjective.

10.3 The decomposition theorem at v

We complete the proof of the decomposition in the case of a non signlar
complex variety X, of dimension n := dimX, 1 ≤ dimV ≤ n.

We suppose D(n, V ∗) satisfied on V − V0 (Lemma 10.1) and the relative
local purity at isolated strata in V0 (Proposition 10.1). Since the proof is
local, we suppose V0 reduced to an isolated stratum v ∈ V .

In this section, we extend the decomposition to v. The case of a singular
variety X follows by desingularization (see §10.3.3).

10.3.1 Extension of the perverse cohomology across v

The description below of the extensions of perverse cohomology sheaves across
v is based on properties of the intermediate extension across v and in general
along a stratification ([BBD 83], 2.1.11 and ch.2, §2.2).

Lemma 10.11. Let S be a fixed stratum of V of dimension l, L′ a local
system on S, pL′ := L′[l], iv : v → V a closed point in the closure of S,
k : (V \ v)→ V and j : S → V . i)

1. We have a short exact sequence of perverse sheaves

0→ j!∗
pL′ → pH0(k∗k

∗j!∗
pL′)

h→ R0k∗k
∗j!∗

pL′ → 0

2. pHi(k∗k∗j!∗ pL′) = 0 if i < 0, pHi(k∗k∗j!∗ pL′) = Rik∗k
∗j!∗

pL′ if i > 0.

In particular: H0( pH0(k∗k
∗j!∗

pL′))
∼−→ R0k∗(k

∗j!∗
pL′).
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ii) Let j!∗
pLj , j ∈ Z, be a family of intermediate extensions of local systems

on S and let K ′ := ⊕jj!∗ pLj [−j] denote their direct sum.
We have short exact sequences of perverse sheaves for i ∈ Z

0→ j!∗
pLi → pHi(k∗k∗K ′)

h→ Rik∗k
∗pτ≤iK

′ → 0 (10.23)

where the last term Rik∗k
∗pτ≤iK

′ ' ⊕j≤iRi−jk∗k∗j!∗ pLj is a sum of vector
spaces supported on v in degee zero.

iii) There exist isomorphisms of the cohomology in degree 0

H0( pHi(k∗k∗K ′)) ' Rik∗k∗pτ≤iK ′
∼−→ ⊕j≤iRik∗(k∗j!∗ pLj [−j]). (10.24)

iv) A morphism of perverse sheaves ϕ : P → pHi(k∗k∗K ′) factors through
j!∗

pLi if and only if h ◦ ϕ = 0.

Proof. We recall that S is a non singular locally closed subvariety but V
may be singular along S.

i) The perverse long exact sequence defined by the distinguished triangle:

τ≤−1k∗k
∗j!∗

pL′ → k∗k
∗j!∗

pL′ → τ≥0k∗k
∗j!∗

pL′ (10.25)

is reduced to the statement in i) since: j!∗
pL′ := τ≤−1k∗k

∗j!∗
pL′ is perverse,

pHi(j!∗ pL′) = 0 for i 6= 0 and τ≥0k∗k
∗j!∗

pL′ is supported by v.

ii) The statement follows from the case of a unique local system in i) since
pHi(k∗k∗K ′) = pHi(k∗k∗pτ≤iK ′) ' ⊕j≤i pHi−j(k∗k∗j!∗ pLj)

as for j > i: pHi(k∗k∗j!∗ pLj [−j]) = pHi−j(k∗k∗j!∗ pLj) = Ri−jk∗k
∗j!∗

pLj .
The statements iii) and iv) are clear.

Instead of the triangle in equation 10.25, we could refer to the distinguished
triangle

iv∗i
!
vj!∗

pL′ → j!∗
pL′ → Rk∗k

∗j!∗
pL′

[1]−→ (10.26)

since in the statement i): R0k∗k
∗j!∗

pL′ ' H1(iv∗i
!
vj!∗

pL′).

Remark 10.2. [Dual statements for k!k
∗] We deduce from the long exact se-

quence of perverse cohomology defined by the triangle dual to (10.26):

k!k
∗j!∗

pL′ → j!∗
pL′ → iv∗i

∗
vj!∗

pL′
[1]−→ (10.27)

i) A short exact sequence:

0→ iv∗H
−1(i∗vj!∗

pL′)→ pH0(k!k
∗j!∗

pL′)→ j!∗
pL′ → 0

pHi(k!k
∗j!∗

pL′) = iv∗H
i−1(i∗vj!∗

pL′) for i < 0, pHi(k!k
∗j!∗

pL′) = 0 for i > 0.
Moreover: iv∗H

−1(i∗vj!∗
pL′)

∼−→ H0(i∗v
pH0(k!k

∗j!∗
pL′)).

ii) pHi(k!k
∗K ′) = ⊕j≥i pHi−j(k!k

∗j!∗
pLj) and we have short exact se-

quences
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0→ ⊕j≥iiv∗Hi−j−1(i∗vj!∗
pLj)

h′→ pHi(k!k
∗K ′)→ j!∗

pLi → 0

where the first term is supported on v in degee zero.
iii) A morphism of perverse sheaves ϕ defined on pHi(k!k

∗K ′) factors
through j!∗

pLi if and only if ϕ ◦ h′ = 0.

10.3.2 Proof of the decomposition at v

The proof of the decomposition at v in the case dimX = n and Xv is a
NCD follows from D(n, V ∗) ( Lemma 10.1). The result is a consequence of
the properties of the cohomology of the NCD above v following the relative
local purity (Proposition 10.1).

Theorem 10.1. With the Hypothesis of §10.0.2, let:
K := f∗j!∗

pL, k : V ∗ → V, iv : {v} → V .
i) The decomposition of pHi(k∗K) (Equations 10.1 and 10.2) extends into a
decomposition over V , including the term pLiv (ch. 1, Equation 1.7)

pHi(K) ' pLiv ⊕ k!∗k
∗ pHi(K) (10.28)

ii) Hard Lefschetz: Let η : pHi(K)→ pHi+2(K) denote the cup-product with
the class of a relative hyperplane section of X. The Lefschetz isomorphisms
k∗ηi on the open subset V \ v, extend to Lefschetz isomorphisms ηi on V :

k∗ηi : pH−i(K)|V \v
∼→ pHi(K)|V \v =⇒ ηi : pH−i(K)

∼→ pHi(K) (10.29)

Proof. Given the distinguished triangle iv∗i
!
vK

α−→ K
ρ−→ k∗k

∗K
[1]−→, let

pHi−1(k∗k
∗K)

pδi−1

→ pHi(iv∗i!vK)
pαi→ pHi(K)

pρi→ pHi(k∗k∗K)
pδi→

(10.30)
be the associated long exact sequence of perverse cohomology on V

Lemma 10.12. Under the decomposition k∗ pHi(K)[−i] ' ⊕S⊂V \viS !∗
pLiS

on V \ v. The perverse image Im pρi (Equation 10.30) is isomorphic to:

Im pρi
∼−→ k!∗k

∗ pHi(K)
∼−→ ⊕SiS !∗

pLiS .

Proof of the lemma. We use the description of the intermediate extension of
a perverse sheaf P on V \ v in terms of the functor k! (extension by 0) and
the derived direct image k∗: k!∗P = Im ( pH0(k!P )→ pH0(k∗P )) is the image
in the abelian category of perverse sheaves ([BBD 83], section 2.1.7).

We fix a Whitney stratification S of V , morphisms σj : k∗ pHj(K) →
k∗K[j] and a decomposition k∗K ' ⊕jk∗ pHj(K)[−j] on V \ v.

We apply (Lemma 10.11) in the case of a direct sum of local systems over
all strata S 6= v of to prove
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1) There exists a monomorphism: k!∗k
∗ pHi(K) ⊂ pHi(k∗k∗K):

The morphism of functors φ : k! → k∗ induces the following morphisms

k!∗k
∗ pHi(K) = Im

(
pH0(k!k

∗ pHi(K))
pφii−−→ pH0(k∗k

∗ pHi(K))

)
=

⊕jIm
(
pHi(k!

pHj(k∗K)[−j])
pφji−−→ pHi(k∗ pHj(k∗K)[−j])

)
=

Im

(
pHi(k!k

∗K)
pφi−−→ pHi(k∗k∗K)

)
⊂ pHi(k∗k∗K)

The first equality follows by definition of k!∗. The second equality follows as
in the direct sum over j, only the term for j = i is significant since:
pHi(k!k

∗iS !∗
pLjS [−j]) = 0 for j < i, and pHi(k∗k∗iS !∗

pLjS [−j]) = 0 for j > i.
The last equality follows from the decomposition of k∗K (Equations 10.1 and
10.2).

2) k!∗k
∗ pHi(K) ⊂ Im pρi:

We deduce from the (non canonical) morphism σi : k∗ pHi(K) → k∗K[i]
on V \ v and from the composition of morphisms k!k

∗ pHi(K)→ pHi(K)→
k∗k
∗ pHi(K):

pH0(k!k
∗ pHi(K))

a−→ pHi(K)
pH0(ρi)−−−−−→ pH0(k∗k

∗ pHi(K))
σ0
i
↪→ pH0(k∗k

∗K[i])

where pφii = pH0(ρi)◦a, pρi = σ0
i ◦ pH0(ρi) since pH0(k∗k

∗K[i]) = pHi(k∗k∗K)
and σ0

i is an isomorphism by the decomposition hypothesis on V \ v. Hence:

k!∗k
∗ pHi(K) = σ0

i (Im pφii) ⊂ Im(pρi) ⊂ pH0(k∗k
∗K[i])

3) Im pρi = k!∗k
∗ pHi(K) = ⊕Sl⊂V \viS !∗

pLiS :
By (Lemma 10.11 iv), it is enough to prove that the induced morphism below
ρi0 := H0(i∗v

pρi) vanish in degree 0:

Lemma 10.13. The morphism ρi0 induced by i∗v
pρi on the cohomology in

degree zero

H0(i∗v
pHi(K))

ρi0=0−−−→ H0(i∗v
pHi(k∗k∗K)) = Rik∗(k

∗pτ≤iK)
vanish.

Proof of the lemma. This result involves the intricate relation between de-
composition and local purity. The equality with the last term on the right
follows by (Lemma 10.11 iii) and (Equation 10.24) applied to various strata.

i) Let Bv ⊂ V be a small ball with center v. We prove:

H0(i∗v
pHi(K)) = H0(Bv,

pHi(K)) ' H0(Bv,
pτ≤0(K[i])) = Hi(Bv, pτ≤iK)

(10.31)
Indeed, we deduce from the distinguished triangle:

pτ<0(K[i])→ pτ≤0(K[i])→ pHi(K)
[1]−→

an exact sequence:
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H0(Bv,
pτ<0(K[i]))→ H0(Bv,

pτ≤0K[i])→ H0(Bv,
pHi(K))→ H1(Bv,

pτ<0K[i])

where the two terms Hr(Bv, pτ<0(K[i])) = 0 for r = 0, 1 by definition of pτ<0.
ii) Since (Rik∗(k

∗pτ≤iK))v = Hi(Bv \v, pτ≤iK) = pτ≤iHi(BXv \Xv, j!∗
pL)

by the decomposition of the restriction of K := f∗j!∗
pL to V \ v, the proof of

the lemma is reduced to the following interpretation in terms of Bv ⊂ V and
BXv := f−1(Bv):

Hi(Bv, pτ≤iK)
ρi0=0−→ pτ≤iHi(BXv \Xv, j!∗

pL) (10.32)

We lift the problem to BXv and deduce a factorization of the morphism ρi0
through the morphism ρ′ below:

Hi(Bv, pτ≤iK)→ pτ≤iHi(BXv , j!∗pL)
ρ′−→ pτ≤iHi(BXv \Xv, j!∗

pL)

where pτ≤iHi(BXv , j!∗pL) := Im(Hi(Bv, pτ≤iK)→ Hi(BXv , j!∗pL).

Any element u of Hi(BXv , j!∗pL) ' Hi(Xv, j!∗
pL) is of weight w ≤ pw + i

since Xv is closed (§9.5.0.1, Corollary 9.4), while by the relative local purity
(§9.1.0.3, Theorem 9.2) and (Proposition 10.1):

The weight w of pτ≤iHi(BXv \Xv, j!∗
pL) satisfy: w > pw + i

hence ρ′(u) = 0 and ρi0 = 0, which ends the proof of the lemmas 10.13 and
10.12.

Remark 10.3. The space pτ≤iHi(BXv , j!∗pL) is a sub-MHS. In the above proof
this result is not needed yet and will be proved later (Lemma 10.17).
However, there exists an independent proof (Proposition 11.3).

Lemma 10.14. Let pLiv := Im(HiXv (X, j!∗
pL)→ Hi(Xv, j!∗

pL)), then:

Im pαi ' i∗pLiv.

Proof. By (Equation 10.30): Ker pδi−1 = Im pρi−1 = ⊕S⊂V \viS !∗
pLi−1
S and by

(Equation 10.23), we extract from the exact sequence (Equation 10.30) the
sub-exact sequence of perverse sheaves :

0→ Ri−1k∗k
∗(pτ≤i−1K)

pδi−1

→ HiXv (X, j!∗
pL)

pαi→ pHi(K)
pρi→ (10.33)

where the perverse cohomology pHi(i!vK) of the derived complex of vector
spaces i!v(K) coincides with its cohomology HiXv (X, j!∗

pL) and pδi−1 induces

an isomorphism onto Ker pαi. On the other hand, by definition, pLiv is the
image of Ii in the exact sequence

Hi−1(i∗vk∗k
∗K)

δi−1

→ Hiv(V,K)
Ii→ Hi(i∗vK)

ρi→ Hi(i∗vk∗k
∗K). (10.34)

If we prove Im δi−1 = Im pδi−1 up to the isomorphism Hiv(V,K) ' HiXv (X, j!∗
pL)

in (10.34) and (10.33), we deduce the result in the form of an exact sequence

0→ iv,∗
pLiv

pαi|−−→ pHi(K)
pρi|−−→ ⊕S⊂V \viS !∗

pLjS → 0. (10.35)
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Again, by the decomposition theorem on V \ v, we have:

Ri−1k∗k
∗pτ≤i−1K = Hi−1(Bv \v, pτ≤i−1K) = pτ≤i−1Hi−1(BXv \Xv, j!∗

pL) in

(Equation 10.33) and since Hi−1(i∗vk∗k
∗K) = Hi−1(BXv \ Xv, j!∗

pL)) in
(Equation 10.34), we need to prove:

Sub-lemma. δi−1(pτ≤i−1Hi−1(BXv\Xv, j!∗
pL)) = δi−1(Hi−1(BXv\Xv, j!∗

pL))

The proof is based again on the relative local purity theorem since then, the
quotient space Hi−1(BXv \Xv, j!∗

pL))/pτ≤i−1 has weight w < pw + i, while
HiXv (X, j!∗

pL) has weight w ≥ pw + i (ch. 9, Corollary 9.4), hence pδi−1 and

δi−1 have the same image in HiXv (X, j!∗
pL), which ends the proof of (Lemma

10.14).

Proof of the splitting in (Equation 10.28: Dually, we introduce the distin-

guished triangle k!k
∗K

β−→K γ−→iv∗i∗vK, its exact sequence

pHi(k!k
∗K)

pβi→ pHi(K)
pγi→ pHi(iv∗i∗vK)

pδi→ pHi+1(k!k
∗K) (10.36)

and the sequence of morphisms: Hiv(V,K)
pαi−−→ pHi(K)

pγi−−→ Hi(i∗vK).

Lemma 10.15. The restriction pγi| : Im pαi
∼−→ Im pγi is an isomorphism

and the perverse cohomology pHi(K) splits on V into a direct sum:

pHi(K)
∼→ Im pαi ⊕ Im pβi = pLiv ⊕ k!∗k

∗ pHi(K) = Ker pρi ⊕ Im pβi

Ker pγi = Im pβi := Im (pβi : pHi(Rk!k
∗K)→ pHi(K)) ' k!∗k

∗ pHi(K)

Ker pρi ' Im pαi ' Im pγi ◦ pαi ' Im Ii := iv,∗
pLiv

(10.37)

By (Remark 10.2) and by an argument dual to (Lemma 10.13), we deduce
that pβi factors through the morphism si in the sequence:

pHi(k!k
∗K)→⊕S⊂V \v iS !∗

pLiS
si−→ pHi(K)

pρi|→ Im pρi ⊂ pHi(k∗k∗K)
(10.38)

such that pρi| ◦ si induces an isomorphism onto Im pρi = ⊕Sl⊂V \viS !∗
pLiS .

Hence si defines a section of pρi| in (Equation 10.38).

Since Im pαi = Ker pρi in the exact sequence (Equation 10.30), we deduce
the splitting. Moreover, we deduce from the the relation Ker pγi = Im pβi
(Equation 10.36) that pγi induces an isomorphism:

Im pαi
∼−→ Im pγi ◦ pαi := iv∗

pLiv ⊂ Hi(i∗vK).

Remark 10.4. We extract from the sequence (Equation 10.30) an exact sub-
sequence

0→ ⊕S⊂V \v,i−j>0R
i−j−1k∗k

∗iS !∗
pLjS

pδi−1

→ Hiv(X,K)
pαi→ iv,∗

pLiv → 0
(10.39)

Im pδi−1 ' ⊕Sl⊂V \v,i−j>0H
i−j
v (iS !∗

pLjS) ' Ker pαi ' Ker Ii ' Im δi−1
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10.3.2.1 Hard Lefschetz

The duality between pHi(K)) and pH−i(K) follows from the auto-duality of
j!∗

pL by the general statement of Verdier duality for proper morphisms.

Lemma 10.16 (Hard Lefschetz). By induction, let the restriction of the
iterated cup-product ηi : pH−i(K) → pHi(K) for i ≥ 0 to V \ v be an
isomorphism and set

pLiv := Im (HiXv (X, j!∗
pL)

Ii→ Hi(Xv, j!∗
pL)).

i) The HS on pLiv is Poincaré dual to pL−iv for i ≥ 0 and the iterated
cup-product induces isomorphisms ηi : pL−iv → pLiv for i > 0.

ii) The morphism ηi for i ≥ 0 extends across v to an isomorphism on V .

Since the restriction of ηi on k∗ pH−i(K) to V \ v is an isomorphism, it
remains an isomorphism on the intermediate extension k!∗k

∗ pHi(K) across
the point v ∈ V0. Hence it remains to prove Hard Lefschetz on the family
of components pLiv. i) The duality between pLiv and pL−iv is deduced from
Verdier duality between the functors i!Xv and i∗Xv in the definition of pLiv.

The proof is by induction on a general hyperplane section H transversal
to the NCD Y and Xv. Let iH denote the closed embedding of H in X; the
morphism η is equal to the composition of Gysin and restriction morphisms:

j!∗
pL

ρ−→ iH∗i
∗
Hj!∗

pL
G→ j!∗

pL[2].

We consider the induced morphisms on perverse cohomology. By (Corol-
lary 10.1) it remains to consider the case i = 1 in i). Let

pL(H)0
v := Im(H0

Xv∩H(X, j!∗
pL[−1])

I0−→ H0(Xv ∩H, j!∗pL[−1]))

be a polarized HS by induction on H and set KH = f∗iH∗i
∗
Hj!∗

pL[−1].
Recall the diagram

pH−1(K)
ρ−1−−→ pH0(KH)

G1−−→ pH1(K)(1) (10.40)

where ρ−1 is a monomorphism, G1 an epimorphism. We consider the sequence

pL−1
v

ρ−1→ pL(H)0
v
G1−−→ pL1

v(1).

By induction pL(H)0
v is a polarized HS, while pL−1

v and pL1
v(1) are HS.

Hence, the image Im ρ−1 is a polarized sub-HS of pL(H)0
v and by duality

ker G1 is the sub-HS orthogonal to Im ρ−1.
It follows that η is injective and by duality surjective. The lemma fol-

lows since the isomorphism extends at v on the intermediate extension
k!∗k

∗ pHi(K) Recall that this concept of proof has been used for the first
time by Deligne in (Weil II [De 80], théorème 4.1.1).

Lemma 10.17 (Compatibility with MHS). i) The filtration pτ∗ on
Hj(Xv, j!∗

pL) induced by the filtration pτ on f∗j!∗
pL is a filtration by mixed

Hodge sub-structures.
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ii) Equivalently the induced filtrations W and F on i∗v
pHi(f∗j!∗pL),W, F )

define a graded polarized MHS.

Proof. The filtration is defined as in (§10.1.0.1) on the link. The proof is
also similar to (Lemma 10.2). Let Bj := Hj(BXv , j!∗pL,W, F ) with the same
definition of the filtration pτ on B := ⊕jBj . Then η : B → B(1) defined
by cup-product with the hyperplane class is a morphism of MHS. We define
an increasing filtration A on B by the same (Equation 10.7). We deduce:

ηi : GrAi = Gr
pτ
−iB

−i ' Gr
pτ
i B

i = GrA−i. Hence Ai is the unique increasing
filtration defined by the nilpotent endomorphism η on the MHS on B. Then
A is necessarily a filtration by MHS.

Corollary 10.4 (Splitting of F ). The decomposition (Equation 10.28) is
compatible with the induced filtrations F :

(iv,∗
pLiv, F )⊕ (k!∗k

∗ pHi(K), F )
ϕ∼→ ( pHi(K), F ) (10.41)

The induced filtration F on iv,∗
pLiv is a HS embedded in the MHS on

i∗v
pHi(f∗j!∗pL),W, F ) and the decomposition is in the category of MHS.

Example 10.3. In the case of the desingularization f : X → V of an isolated
singularity v ∈ V , the decomposition is described in (Eexample 10.2) in
terms of Hi

Xv
(X,Q[dimX]) for i < 0 and Hi(Xv,Q[dimX]) for i ≥ 0, since

the morphism Hi
Xv

(X,Q[dimX])→ Hi(Xv,Q[dimX]) is injective for i < 0,
surjective for i > 0 and an isomorphism for i = 0.

Corollary 10.5. The perverse filtration pτ on (Hi+j(X, j!∗pL), F ) is compat-
ible with Hodge filtration and the following decomposition:

Gr
pτ
i Hi+j(X, j!∗pL) ' Hj(V, pHi(f∗j!∗pL))

∼−→ ⊕S⊂V Hj(V, iS !∗
pLiS).

consists of a direct sum of polarized HS of weight a+ i+ j

Proof. The proof is similar to (Lemma 10.2). Let Bj := Hj(X, j!∗pL, F ) with
the same definition of the filtration pτ on B := ⊕jBj .

Then η : B → B(1) defined by cup-product with the hyperplane class is
a morphism of HS. We define an increasing filtration A on B by the same
(Equation 10.7). We deduce: ηi : GrAi = Gr

pτ
−iB

−i ' Gr
pτ
i B

i = GrA−i.
Hence Ai is the unique increasing filtration defined by the nilpotent endo-

morphism η on the MHS on B. Then A is necessarily a filtration by HS.
The HS on Hj(V, pHi(f∗j!∗pL)) is isomorphic to Gr

pτ
i Hi+j(X, j!∗pL).

Moreover, Since the decomposition of pHi(f∗j!∗pL) is naturally compatible
with the filtration F , the decomposition of Hj(V, pHi(f∗j!∗pL)) is also com-
patible with HS.

Remark 10.5. Let V be projective. The decomposition into primitive sub-
spaces may be carried in two steps:
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1) We deduce a scalar product on pH−i(f∗j!∗pL) from Lefschetz isomor-
phism ηi and the duality pH−i(f∗j!∗pL) ' D pHi(f∗j!∗pL). The primitive sub-
perverse sheaf is defined by Ker ηi+1 ⊂ pHi(f∗j!∗pL) [De 93].

2) Let ηV denote the cup product with the class c1(V ) of an hyperplane
section H of the projective variety V . The scalar product is defined by Hard
Lefschetz isomorphisms on V defined by iteration of ηV and duality. The
polarized primitive sub-HS is defined by Ker ηj+1

V : H−j(V,Ker ηi+1) →
Hj+2(V,Ker ηi+1) . The proof of polarization, by induction on the hyper-
plane section HV of V is similar to Deligne’s original proof (Weil II [De 80],
théorème 4.1.1) (see also [CaMi 5]).

10.3.2.2 Octahedron diagram

With the notations of (Theorem 10.1), set K := f∗j!∗
pL and I := γ ◦ α the

composition map I : iv∗i
!
vK

α−→ K
γ−→ iv∗i

∗
vK. We consider the following

upper and lower ’cap’ diagrams ([BBD 83], 1.1.6)

iv∗i
!
vK

I c

��

α

""

k∗k
∗K

δ[1]
oo

K

γ
{{

d ρ
<<

iv∗i
∗
vK

δ′[1] // k!k
∗K

d β

cc c β′

OO iv∗i
∗
vK

+1 c

��

c′

&&

iv∗i
!
vKI

oo

iv∗i
∗
vk∗k

∗K

δ′′[1]xx

d δ′′′[1]
88

k!k
∗K

β′ // k∗k∗K
d γ′

ff
c +1

OO

(10.42)
where iv : v → V and k : V \ v → V , iv∗i

∗
vk∗k

∗K is isomorphic to the cone
of I : iv∗i

!
vK → iv∗i

∗
vK: iv∗i

∗
vk∗k

∗K ' C(I) ' C(β′).

Corollary 10.6. i) The long perverse exact sequence of four terms defined
by the common boundary of the diagrams is exact:

→ pHi(iv∗i!vK)
pIi→ pHi(iv∗i∗vK)

pδ′i→ pHi+1(k!k
∗K)

pβ′i+1→ pHi+1(k∗k
∗K)

pδi+1→
(10.43)

ii) The morphism pγi in (Equation 10.36) induces an isomorphism:

Im pαi
∼−→ Im pIi := Im(HiXv (X, j!∗

pL)→ Hi(Xv, j!∗
pL)) ' Liv (10.44)

Proof. i) In the case of the decomposition: pHi(K)
∼−→ Im pαi ⊕ Ker pγi

(Lemma 10.15) in the left commutative triangle of the upper cap, the ex-
act sequence (Equation 10.43) follows by general properties of octahedron
diagrams.

ii) The isomorphism in (Equation 10.44) is induced by pγi.
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10.3.3 Singular variety X

The decomposition theorem has been proved in the previous chapters in the
case of non singular variety X.

We present here a short review of the case where X is projective singular
by reduction to a desingularization of X.

1) The decomposition theorem of f : X → V is deduced directly by
Deligne’s argument on the composition of f with the desingularization mor-
phism π : X ′ → X ([De 68] Proposition 2.16). We refer to (§6.2.2.2) for this
method.

2) However, the theorem may be deduced again by the previous induction
D(n) applied in this setting.

3) The relative local purity theorem apply for all projective morphisms f
(of singular varieties).

10.3.3.1 Hodge structure on H∗(X, j!∗
pL) for singular X

Let X be a projective complex variety maybe singular, j : U → X the
embedding of a smooth Zariski open subset of X and pL defined on U .

Corollary 10.7 (HS on H∗(X, j!∗pL)). There exists a HS on Hi(X, j!∗pL)
independent of the choice of a desingularization.

Proof. Let π : X ′ → X be a non singular modification of X, j′ : U → X ′ the
embedding of U in X ′ and j′!∗

pL the intermediate extension in X ′. Let S be
a Thom-Whitney stratification of π compatible with j′!∗

pL.
There exists a decomposition on X of pHi(π∗j′!∗pL) ' ⊕S⊂X iS !∗

pLiS into a
direct sum consisting of intermediate extensions of polarized VHS. We deduce
a decomposition into a direct sum of polarized HS of weight a+ i+ j

Gr
pτ
i Hi+j(X ′, j!∗pL) ' Hj(X, pHi(f∗j!∗pL))

∼−→ ⊕S⊂X Hj(X, iS !∗
pLiS).

where for each stratum S, the hypercohomology is a direct sum of polarized
primitive subspaces of the hypercohomology on X with coefficients into the
primitive decomposition of iS !∗

pLiS .
Since on the big strata U of X, we have j!∗

pL = iU !∗
pL0
U , we deduce the HS

on Hi(X, j!∗pL) as a sub-quotient HS of Hi(X ′, j′!∗pL), precisely a polarized
sub-HS of Gr

pτ
0 Hi(X ′, j′!∗pL).

The uniqueness is deduced by the method of comparison of two non singu-
lar modifications X ′1 and X ′2 with a non singular modification X ′ of the fiber
product X ′1 ×X X ′2 such that X ′ → X1 (resp. X ′ → X2) is a composition of
non singular modifications, then the HS on Hi(X, j!∗pL) deduced from X ′1 or
X ′2 coincide with the HS deduced from X ′.
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10.3.4 Decomposition of pHi(f∗j!∗
pL)

Independently of Deligne’s argument (Equation 6.22), a direct proof by in-
duction D(n) (§10.0.0.1) applies. The case dimV = 0 as initial step, is proved
(§10.3.3.1).

The assumptionD(n, V ∗) on the complement of isolated singularity follows
by general normally embedded sections of V , which reduces the proof to
isolated strata of V .

Let π : X ′ → X be a desingularization, pτ ′ the perverse truncation of
K ′ := π∗j

′
!∗
pL on X and pτV the perverse truncation of K := (f ◦ π)∗j

′
!∗
pL =

f∗K
′ on V . We deduce from pτ ′ a filtration pτX := f∗(

pτ ′) on K

K := (f ◦ π)∗j
′
!∗
pL = f∗K

′, pτV ,
pτX := f∗(

pτ ′), F := (f ◦ π)∗F (10.45)

The filtrations pτX , pτV and F are strict on K since the respective spectral
sequence degenerates at rank one.

The induced filtration pτX on pHi(K) := Gr
pτV
i K is defined by

( pτX)j
pHi(K) := Im( pHi(f∗( pτX)jK)→ pHi(K))

such that Gr
pτX
j

pHi(K) ' pHi(f∗Gr
pτ ′

j K ′) ' pHi(f∗ pHj(K ′)).
In terms of the decomposition of pH0(K ′) ' j!∗

pL ⊕S⊂X,dimS<dimX

iS!∗
pL0
S :

Gr
pτX
0

pHi(K) ' pHi(f∗ pH0(K ′)) ' pHi(f∗j!∗pL)⊕S pHi(f∗iS!∗
pL0
S) (10.46)

where the sum is over all strata S of X : dimS < dimX.

10.3.4.1 Relative local purity for all projective morphisms f

Let V0 denote the union of the strata of dimension zero of V and k : (V \V0)→
V . We suppose V0 reduced to a point v to simplify the notations.

Corollary 10.8. The weight w of the space Hi(i∗vk∗k
∗ pHj(f∗j!∗pL)), isomor-

phic to the Intersection cohomology Hi(Bv \ {v}, pHj(f∗j!∗pL)), satisfies the
relations:

w ≤ pw + j + i if i ≤ −1 and w > pw + j + i if i ≥ 0 (10.47)

The inequalities on the weights w of the space Hi(Bv − {v}, pHj(K)) in the
equation 10.47 are satisfied since f ◦ π is a stratification by NCD over the
isolated strata as proved in (§10.6). Since Hi(Bv \ {v}, Gr

pτX
0

pHj(K)) is a
sub-quotient MHS of Hi(Bv \ {v}, pHj(K)), the inequalities on the weight w
are also satisfied .
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Finally the corollary follows since pHj(f∗j!∗pL) is a summand ofGr
pτX
0

pHj(K)
(Equation 10.46) and there exists necessarily a decomposition of pHi(f∗j!∗pL)
(Equation 6.23) into intermediate extensions of (pL)iS as in theorem (ch.1,
Theorem 1.2).

Corollary 10.9. Let Vm denote the union of maximal strata of V . We have
the decomposition

pHi(f∗j!∗pL) ' ⊕jV !∗(R
if∗j!∗

pL|Vm [dimV ])⊕S⊂S, dimS<dimV iS!∗
pLiS

(10.48)

10.3.4.2 Duality and polarization

The duality between pL−kS and pLkS follows from the auto-duality of j!∗
pL by

Verdier duality formula for the proper morphism f .
Since Hard Lefschetz isomorphisms pL−kS ' pLkS are also satisfied, we de-

duce that the VHS pLkS are direct sum of polarized primitive sub-VHS.
For each strata S of V , the local system pLiS defined by f∗j!∗

pL is a direct
sum polarized variation of Hodge structure on the smooth variety S.

Corollary 10.10. Let f : X → V be a morphism of projective varieties where
X is non singular. The decomposition consists of a direct sum of polarized
HS of weight a+ i+ j

Gr
pτ
i Hi+j(X, j!∗pL) ' Hj(V, pHi(f∗j!∗pL))

∼−→ ⊕S⊂V Hj(V, iS !∗
pLiS).

Remark 10.6. The proof of the existence of HS on the hypercohomology of
a singular complex variety X with coefficients in intermediate extensions of
polarized VHS is reduced to the case where X is projective, by the decom-
position theorem applied to a birational morphism π : X ′ → X where X ′ is
projective and non singular (§6.2.2.1).

10.4 Relative local purity and Intersection morphisms

The relative local purity theorem may be interpreted in terms of the inter-
section morphism.

In the case of an isolated singularity v ∈ V , the local purity theorem has
consequences on the weights of the cohomology with support HiXv (X,Q).
A direct proof of some consequences of the relative local purity appears in
the work of Navarro Aznar ([Na 85] Proposition 5.1), where the results are
treated in terms of the exceptional NCD in a desingularization and the MHS
of HiXv (X,Q).
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In the case of constant coefficients, the intersection morphism is studied in
([CaMi 5] section 6.3) where a generalized Grauert contractibility criterion is
proved. In fact, the statement is equivalent to the purity theorem.

10.4.1 Intersection morphism

Let f : X → V be a projective morphism of complex algebraic varieties,
v ∈ V , Xv := f−1(v) ⊂ X and BXv := f−1(Bv) the inverse image of a small
ball Bv ⊂ V . With the notations of Lemma 10.8, the perverse filtration pτ
on K := f∗j!∗

pL on V induces a filtration pτ on i!vK defined functorially by
i!v
pτK and computed by i!v-acyclic filtered representative of (K, pτ).
Similarly, we define pτ on i∗vK and i∗vk∗k

∗K, from which we deduce increas-
ing filtrations pτ on HiXv (X, j!∗

pL), Hi(Xv, j!∗
pL) and Hi(B∗Xv , j!∗

pL) (Lemma
10.2). The following proposition is equivalent to the local purity theorem.

Proposition 10.2 (Intersection morphism). i) The morphisms induced
by the intersection morphism I (ch. 2, Equation 2.1.3.1)

Gr
pτ
j HiXv (X, j!∗

pL)
pτIji−−−→ Gr

pτ
j Hi(Xv, j!∗

pL) (10.49)

are isomorphisms for each i = j and vanish for all indices i 6= j.
ii) Conversely, if the intersection morphism

pτIji is an isomorphism in the
case i = j, the inequalities on the weights in the local purity theorem hold.

We start the proof with a general result

Lemma 10.18. The induced perverse filtrations pτ have the properties:

pτiHiXv (X, j!∗
pL) = HiXv (X, j!∗

pL) and pτ i−1Hi(Xv, j!∗
pL) = 0.

Proof. Let K := f∗j!∗
pL. We have convergent spectral sequences associated

to the increasing induced filtrations pτ

pτE
pq
v1 := H2p+q

v (V, pH−p(K))⇒ Gr
pτ
−pH

p+q
Xv

(X, j!∗
pL)

pτE
pq
1 (v) := H2p+q(v, pH−p(K))⇒ Gr

pτ
−pHp+q(Xv, j!∗

pL).
(10.50)

Since pH−p(K) is perverse, we have

Hiv(V, pH−p(K)) = 0 for i < 0 (resp. Hi(v, pH−p(K)) = 0 for i > 0)

then: pτE
pq
v1 = 0 for 2p+ q < 0, (resp. pτE

pq
1 (v) = 0 for 2p+ q > 0), and

Gr
pτ
j HiXv (X, j!∗

pL) = 0 for i < j : pτiHiXv (X, j!∗
pL) = HiXv (X, j!∗

pL),

Gr
pτ
j Hi(Xv, j!∗

pL) = 0 for i > j : pτi−1 Hi(Xv, j!∗
pL) = 0

(10.51)
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Proof of the proposition. The long exact sequence

Hi−1(B∗Xv , j!∗
pL)

∂i−→ HiXv (X, j!∗
pL)

Ii−→ Hi(Xv, j!∗
pL)

γi−→ Hi(B∗Xv , j!∗
pL)

[1]−→
is deduced from the distinguished triangle:

Ri!Xvj!∗
pL

I−→ i∗Xvj!∗
pL−→i∗XvRjXv∗j

∗
Xv
j!∗

pL. By the decomposition theo-
rem, the morphisms of the exact sequence are strictly compatible with the
induced pτ filtrations. We deduce the exact sequence (on the next two lines)

Gr
pτ
j Hi−1(Xv, j!∗

pL)

pτγji−1−−−−→ Gr
pτ
j Hi−1(B∗Xv , j!∗

pL)
pτ∂ji−−−→ Gr

pτ
j HiXv (X, j!∗

pL)
pτIji−−−→ Gr

pτ
j Hi(Xv, j!∗

pL)
pτγji−−−→ Gr

pτ
j Hi(B∗Xv , j!∗

pL)

pτ∂ji+1−−−−→ Gr
pτ
j Hi+1

Xv
(X, j!∗

pL)

By the lemma, the morphism
pτIji vanishes if i 6= j.

For j = i, by the relative local purity theorem, the weights w of the
term Gr

pτ
i Hi−1(B∗Xv , j!∗

pL) satisfy w ≤ pw + i − 1 and those of the term

Gr
pτ
i Hi(B∗Xv , j!∗

pL) satisfy w > pw + i. Moreover the weights w of the term

HiXv (X, j!∗
pL) satisfy: w ≥ pw + i, hence:

pτ∂ii = 0.

We have
pτγii = 0 since the weights w of the term Gr

pτ
i Hi(Xv, j!∗

pL) satisfy

w ≤ pw + i. Hence
pτIii : Gr

pτ
i HiXv (X, j!∗

pL)→ Gr
pτ
i Hi(Xv, j!∗

pL)

is an isomorphism. Remark that by the decomposition theorem:

Gr
pτ
i HiXv (X, j!∗

pL) ' H0(i!v
pHi(K)) ' Liv ' Gr

pτ
i Hi(Xv, j!∗

pL) ' H0(i∗v
pHi(K)).

Conversely, we prove the crucial step of the relative local purity theorem
(ch. 11, Equation 11.5): GrWpwGr

pτ
0 H−1((B∗Xv , j!∗

pL) = 0. We consider the
exact sequence:

Gr
pτ
0 H−1

Xv
(X, j!∗

pL)

pτI0−1−−−→ Gr
pτ
0 H−1(Xv, j!∗

pL)

pτγ0
−1−−−−→ Gr

pτ
0 H−1(B∗Xv , j!∗

pL)
pτ∂0

0−−−→ Gr
pτ
0 H0

Xv (X, j!∗
pL)

pτI00−−−→ Gr
pτ
0 H0(Xv, j!∗

pL)

By the above lemma Gr
pτ
0 H−1

Xv
(X, j!∗

pL) = 0, hence
pτI0
−1 = 0 and

pτγ0
−1 is

injective. If the morphism
pτI0

0 is an isomorphism, then
pτ∂0

0 = 0 and
pτγ0
−1

is surjective, hence an isomorphism. By compatibility of pτ with MHS,
pτγ0
−1

induces an isomorphism

GrWw Gr
pτ
0 H−1(Xv, j!∗

pL) ' GrWw Gr
pτ
0 H−1((B∗Xv , j!∗

pL)

Since Xv is closed, the weights of H−1(Xv, j!∗
pL) are ≤ a− 1, which proves

GrWpwGr
pτ
0 H−1(Xv, j!∗

pL) = GrWpwGr
pτ
0 H−1((B∗Xv , j!∗

pL) = 0.

Remark 10.7. We deduce from the intersection isomorphism above and the
duality map D : Gr

pτ
−rH

−r
Xv

(X, j!∗
pL)

∼−→ Gr
pτ
r Hr(Xv, j!∗

pL)∗ a non degenerate
intersection form

Gr
pτ
r HrXv (X, j!∗

pL)⊗Gr
pτ
−rH

−r
Xv

(X, j!∗
pL) −→ Q, (a, b) 7→ D(b)(I(a))
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When Xv is a NCD on a smooth surface and in the case of intersection coho-
mology with rational coefficients viewed as homology, Grauert’s contractibil-
ity theorem states that the intersection form defined on H2(Xv) is negative
definite if and only if Xv contracts to a point v on a normal surface (see also
[CaMi 5], [BPV 84] Theorem 2.1).





Chapter 11

Related results

We present in this chapter, in the first two sections interesting results that
has been originally used in the text but were not strictly necessary. In the
third section a tentative combinatorial description of the weight filtration on
the logarithmic complex is given.

11.1 Hodge theory on perverse cohomology

Let f : X → V be a projective morphism on a non singular complex algebraic
variety X of dimension n+ 1, j!∗

pL on X, K := f∗j!∗
pL, v ∈ V a closed point

such that Z = Xv := f−1(v) is a NCD in X and B∗v a punctured small ball
with deleted center v.

An independent direct proof that pτ∗Hr(XB∗v
, j!∗

pL) and pτ∗Hr(XBv , j!∗
pL)

are filtrations by sub-MHS (Proposition 11.3 below) may be deduced from
the description of the perverse filtration directly on X ([CaMi 10]). In chapter
10, the filtration pτ∗ has been deduced after the proof of the decomposition
theorem (Lemma 10.17 and 10.2).

11.1.1 Preliminaries

Let V be a quasi-projective variety and K ∈ Db
c(V,Q) a complex with con-

structible cohomology sheaves. The topological middle perversity truncations
on K on V define an increasing perverse filtration pτ on K.

A corresponding increasing filtration pτ is defined on the hypercohomology
of K on open subsets U of V

pτiHk(U,K) := Im
{
Hk(U, pτiK)→ Hk(U,K)

}
. (11.1)

219
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This perverse filtration pτ on the hypercohomology groups Hk(V,K) is de-
scribed by algebraic-geometric techniques in [CaMi 10] as follows.

Given an affine embedding V ⊂ PN and n := dimV , we consider two
families of hyperplanes Λ∗ := Λi and Λ′∗ := Λ′i for 1 ≤ i ≤ n in PN , defining
on V two families H∗ and W∗ of increasing closed sub-varieties of V :
H−r := ∩1≤i≤rΛi ∩ V and W−r := ∩1≤i≤rΛ

′
i ∩ V

H∗ : V = H0 ⊃ H−1 ⊃ . . . ⊃ H−n, W∗ : V = W0 ⊃W−1 ⊃ . . . ⊃W−n
(11.2)

and H−n−1 = ∅ = W−n−1. Let hi : (V \ Hi−1) → V denote the open
embeddings with indices in [−n, 0] . The decreasing filtration δ:

δpH∗(V,K) := Im

(
⊕i+j=pH∗W−j (V, (hi)!h

∗
iK)→ H∗(V,K)

)
(11.3)

([CaMi 10], Remark 3.6.6) determines pτ and is well adapted to computation
in Hodge theory.

Proposition 11.1 ([CaMi 10], Theorem 4.2.1).
For an affine embedding of V into a projective space and for a general

choice of both families H∗ and W∗ depending on K and the embedding of V ,
the filtration δ is equal to the perverse filtration pτ up to a change in indices.
Precisely

δiH∗(V,K) = pτ−i+lHl(V,K)

11.1.2 Hodge structure on the perverse filtration

We consider two cases: U := V \ W is quasi-projective, complement of a
closed subvariety W ⊂ V (resp. U is a punctured small ball B∗v with deleted
center v).

Proposition 11.2 (MHS on perverse hypercohomology).
Let f : X → V be a projective morphism where X is smooth, V projective,

pL a shifted admissible variation of MHS on X \ Y the complement of a
normal crossing divisor Y and j : X \ Y → X.

Let W ⊂ V be a closed algebraic subset of V such that XW := f−1(W )
is a sub-normal crossing divisor of Y . The perverse filtration pτ on the hy-
percohomology H∗(X \XW , j!∗

pL) (resp. H∗c(X \XW , j!∗
pL) by duality) is a

filtration by sub-MHS.

Proof. The proof is in terms of logarithmic complexes. Let Z := f−1W the
inverse image of W and jZ : (X − Z) → X. We apply (Proposition 11.1)
to K := f∗jZ∗j

∗
Zj!∗

pL (including Z = Y or Z = ∅) (the case f∗jZ!j
∗
Zj!∗

pL is
dual).
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The perverse filtration pτ on Hk(X − Z, j!∗pL) is defined via the isomor-
phism Hk(X \ Z, j!∗pL) ' Hk(V \W, f∗j!∗L):

pτiHk(X \ Z, j!∗L) := pτiHk(V \W, f∗j!∗L).
We check that the filtration pτ is a filtration by sub-MHS on Hk(X \Z, j!∗pL)
using (Proposition 11.1). The system of truncations morphisms:
· · · → pτ≤−if∗IC

∗ pL(Log Z) → pτ≤−i+1f∗IC
∗ pL(Log Z) · · · is defined

over Q and it is isomorphic in Db
c(V,C) to a system of inclusions maps:

· · · → P iK → P i−1K · · · where P iK ' pτ≤−if∗IC
∗ pL(Log Z) is de-

creasing and where we suppose K, all P iK and GriPK injective complexes
([BBD 83], 3.1.2.7) defined over Q.

The filtration P on K is defined up to unique isomorphism in the category
of derived filtered complexes. Moreover, we represent the filtrations W and
F by acyclic resolutions for the global sections functor Γ (V, ∗) on the same
complex (K,P,W,F ) representative of (f∗IC

∗ pL(Log Z), P,W, F ).
To prove that RΓ (V,GrPi K,W,F ) is a MHC, hence Hr(V,GrPi K,W,F ) is a
MHS, it is enough to check the following lemma:

Lemma 11.1. Let f : X → V be a fibration by NCD over the strata, and W
a closed subvariety of V such that Z := f−1(W ) is a NCD in X.

The induced filtration δ (11.3) on Hj(X \ Z, j!∗pL) corresponds to a fil-
tration δ′ by sub-MHS on Hj(X, IC∗ pL(Log Z)). Consequently the perverse
filtration pτ on Hj(X \ Z), j!∗

pL) is compatible with the MHS.

Proof. Let U := V \W . We reduce the proof to the case of an affine embedding

of U . Let π : Ṽ → V be the blowing up of W such that the embedding of
U ↪→ Ṽ is affine. Since f−1(W ) is a NCD in X, the morphism f : X → V

factors as f = π ◦ g with g : X → Ṽ .
We apply the Proposition 11.1 to the embedding of U in Ṽ , to construct

the families H∗ and W∗ in Ṽ as intersection with two general families of
hyperplanes Λ∗ and Λ′∗ in the ambient projective space with inverse image
H ′∗ := g−1H∗ and W ′∗ := g−1W∗ in X, such that the various intersections
H ′i ∩W ′j are transversal and intersect transversally the various strata in X.
Let h′i : (X\H ′i)→ X, iH′i : H ′i → X and K ′ := IC∗ pL(Log Z). The filtration
in the formula 11.3 is written on X as

δpH∗(X,K ′) := Im(⊕i+j=pH∗W ′−j (X, (h
′
i)!h

′∗
i K

′)→ H∗(X,K ′)) (11.4)

Since the inverse image H ′∗ and W ′∗ are transversal in X and not critical
for L, the construction of the intermediate extension j!∗

pL, commute with
the restriction to each H ′i for various indices i.

By (ch 9, §9.5), there exists a structure of bifiltered complex on h′i!h
′∗
i K

′

(resp. on i!W ′−j
h′i!h

′∗
i K

′) such that δpH∗(X,K ′) is defined by sub-MHS.

Remark 11.1. The filtrations may be constructed as mixed cones over mor-
phisms of logarithmic complexes.
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In particular, (h′i)!h
′∗
i K

′ is the mixed cone C(ρ′) over the canonical mor-
phism ρ′ : K ′ → iH′i∗i

∗
H′i
K ′.

To construct i!W ′−j
h′i!h

′∗
i K

′, since W ′−j is not an hypersurface, we introduce

the blowing up π−j : X̃ → X of W ′−j in X such that W̃ ′−j := π−1
−j (W ′−j) is a

smooth hypersurface. We consider the bifiltered logarithmic complex K ′′ :=
IC∗ pL(Log(π−1

−jZ) ∪ W̃ ′−j) on X̃ and the cone C(ρ′′) over the morphism

ρ′′ : π−j∗K
′′ → iW ′−j∗i

∗
W ′−j

K ′. Then, i!W ′−j
K ′ ' C(ρ′′). This construction

applies similarly to the term iH′i∗i
∗
H′i
K ′ instead of K ′, hence it applies also

to the cone C(ρ′) to define the structure of bifiltered logarithmic complex on
i!W ′−j

h′i!h
′∗
i K

′.

11.1.3 Mixed Hodge structure (MHS) on the Link

Let f : X → V , X non singular, v ∈ V a closed point such that Xv := f−1(v)
and Xv ∪ Y are NCD in X and i : Xv → X. The bifiltered complex
(K ′,W, F ) := (i∗jXv∗(j!∗

pL)|(X−Xv),W, F ) (ch. 9, §9.5.1, Definition 9.35) de-
fines a structure of MHC on the space of global sections RΓ (Xv,K

′,W, F ).
The topological interpretation of this intrinsic cohomology space in terms

of balls with center v is more suggestive. A small ball Bv ⊂ V with center v
is defined as the trace of a ball B ∈ CN with center 0. The link at a point
v ∈ V is a topological invariant represented by the boundary of a ball Bv of
V . As B∗v retracts on the boundary, we use the hypercohomology of B∗v .

The inductive limit of the hypercohomology when the radius of Bv is small
is an intrinsic group representing the hypercohomology of the link. The link
at v corresponds to the tubular neighborhood of Xv := f−1(v).

In terms of XB∗v = XBv \Xv, there exists an isomorphism

Hr(XB∗v
, j!∗

pL)
∼−→ Hr((Xv, i

∗(jXv )∗j
∗
Xvj!∗

pL) (11.5)

Set k : V \ {v} → V, jXv : X \ Z → X and iv : v → V . We denote
again by W and F the filtrations (f|Xv )∗W, (f|Xv )∗F on (f|Xv )∗K

′. The iso-
morphism (f|Xv )∗K

′ ' iv∗k∗((f∗j!∗
pL)|(V−v)), defines by transport of struc-

ture, a filtration pτ∗ on (f|Xv )∗K
′ deduced from the perverse filtration pτ on

(f∗j!∗
pL)|(V \v)

pτ∗(f|Xv )∗K
′ ' pτ∗(i∗vk∗(f∗j!∗

pL)|(V \v)) := i∗vk∗(
pτ(f∗j!∗

pL)|(V \v))
(11.6)

Thus we have three filtrations W,F, pτ∗ on the complex (f|Xv )∗K
′ inducing

filtrationsW,F and pτ∗ on the cohomology space Hj(Xv, i
∗jXv∗(j!∗

pL)|(X\Xv)).

Proposition 11.3 (Compatibility with MHS). i)The induced filtration
pτ∗ on Hj(Xv,K

′) is a filtration by mixed Hodge substructures.



11.1 Hodge theory on perverse cohomology 223

ii) The induced filtrations W and F on Gr
pτ∗

i (f|Xv )∗K
′ define a MHS

compatible with the isomorphism:

Hj(v,Gr
pτ∗

i (f|Xv )∗K
′,W, F ) ' Gr

pτ∗

i Hi+j(Xv,K
′,W, F ) (11.7)

The filtration pτ∗ in the proposition corresponds to the perverse filtration pτ
on the hypercohomology of B∗Xv (Equation 11.5)

Corollary 11.1. If the restriction of f to XB∗v
satisfy the decomposition the-

orem, there exists a MHS on Hj(B∗v , pHi(f∗j!∗pL)) with filtrations W and F
satisfying the isomorphism

Hj(B∗v , pHi(f∗j!∗pL),W, F ) ' Gr
pτ
i Hi+j(B∗Xv , j!∗

pL,W, F ) (11.8)

Once the above MHS is defined, we can express the notion of local purity
and give a meaning to the purity theorem [DeG 81].

The proof of the proposition is reduced to the global result in [CaMi 10].
To construct pτ∗ := iv∗k∗

pτ on (f∗K
′, pτ∗,W, F ) (i∗v

pHi(K) 6= pHi(i∗vK) in
general), we introduce the blowing up of v in the diagram

Z := Xv
i
↪→ X

jZ←↩ X∗

gv ↓ ↓ g ↓ g′

Z̃
ĩ
↪→ Ṽ

k̃←↩ Ṽ ∗

πv ↓ ↓ π '↓ π′

v
iv
↪→ V

k←↩ V ∗

(11.9)

where V ∗ := V \ {v} and X∗ := X \ Xv, π : Ṽ → V is the blowing up of

v ∈ V such that the embedding of V ∗ in Ṽ is affine.
Since Z := f−1(v) is a divisor, the morphism f to X, factors through

g : X → Ṽ . Let P := (j!∗
pL)|X∗ and K ′ := i∗jZ,∗P :

Hj(Z,K ′) ' Hj(f|Z)∗K
′) ' Hj(i∗vk∗((f∗j!∗pL)|V ∗)).

Let (f|Z) = πv ◦ gv. The complex RΓ (Z,K ′) is a MHC (see Definition
9.35), endowed with a weight filtration W . Let pHi(g′∗P ) denote the perverse

cohomology on Ṽ ∗. Since π′∗
pHi(g′∗P ) ' k∗ pHi(f∗j!∗pL), we have:

i∗vk∗k
∗ pHi(f∗j!∗pL) ' πv∗ĩ∗k̃∗ pHi(g′∗P ) ' RΓ (Z̃, k̃∗

pHi(g′∗P )) (11.10)

where k̃∗
pHi(g′∗P ) is perverse. We apply (ch. 3, Equation 3.24) to write

ĩ∗k̃∗
pHi(g′∗P ) as a cone over the morphism can : k̃!

pHi(g′∗P )→ k̃∗
pHi(g′∗P ).

Hence RΓ (Z̃, k̃∗
pHi(g′∗P )) carry the structure of a mixed cone of two MHC

by (Proposition 11.2).

Remark 11.2. A covering of B∗v ⊂ Cn by Stein open subsets complements of
linear hyperplanes through 0 in Cn corresponds by blowing up to a covering
of Z̃.
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11.2 Fibration by normal crossing divisors

The proof of the decomposition by induction assume the reduction to a fi-
bration by NCD over the strata S, locally on S. It is possible once for all to
define a class of fibrations by NCD (Definition 11.1) over the strata. In this
case we can rely on logarithmic complexes in all arguments based on Hodge
theory.

Definition 11.1 (topological fibration by NCD over the strata).

A morphism f : X → V is a topological fibration by NCD over the strata
of a stratification S = (Sα) of V underlying a Thom-Whitney stratification
of f , if X is smooth and the spaces Vl = ∪dimSα≤lSα satisfy the following
properties:

1) The subspaces XVi := f−1(Vi) with indices 0 ≤ i ≤ dimV are successive
sub-NCD embedded in X.

2) The restriction of f to XS := f−1(S) over each stratum S of S is a
topological fibration: f| : XS → S.

3) For each point v ∈ Vi \ Vi+1 (hence Vi is smooth at v) and a general
normal section Nv to Vi at v, the subvariety f−1(Nv) is smooth in X and
intersects the NCD XVi transversally.

Sometimes we need to have the fibration by NCD to be adapted to a subspace
Y of X or to a subspace Z of V , hence it is convenient to introduce:

Definition 11.2. i) The fibration is adapted to a NCD Y in X, or to a local
system L defined on a Zariski open algebraic set in the complement of Y in
X, if in addition:
Y is a union of strata of the underlying whitney stratification S of X, the

union of the sub-spaces XVi ∪ Y are relative NCD over the strata of V for
each 1 ≤ i ≤ n and the intermediate extension j!∗L of L is constructible with
respect to the strata.

ii) The fibration is adapted to a subspace Z of V , if Z is a union of strata
of the underlying whitney stratification S of V .

11.2.1 Fibration by NCD over the strata

Let X be smooth, and v ∈ Vi \ Vi−1 6= ∅ (hence Vi is smooth at v); the
inverse image of a normal section Nv to Vi at v in general position, is a
smooth subvariety f−1(Nv) of X intersecting the NCD XVi transversally,
then XVi ∩ f−1(Nv) = f−1(v) is a NCD in f−1(Nv).

We say for simplification, that XVi\Vi−1
:= f−1(Vi \ Vi−1) is a relative

NCD, and that the stratification S is admissible for f .
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Proposition 11.4. Let f : X → V be a projective morphism of complex
algebraic varieties and Y a closed algebraic strict subspace containing the
singularities of X.

There exists a diagram X
π′← X ′

f ′→ V where π′ is a non-singular mod-
ification of X, and Thom-Whitney stratifications of f , π′ and f ′ := f ◦ π′
simultaneously, satisfying the following properties.

i) The morphism π′ (resp. f ′) is a fibration by relative NCD over the strata
of the underlying Whitney stratification of X (resp. V ).

ii) The inverse image Y ′ := π′
−1

(Y ) ⊂ X ′ is a NCD and there exists a
non singular Zariski open subset U ⊂ f(X) dense in the image f(X) of f
such that f ′ is smooth on U ′ := f ′−1(U) and π′ induces an isomorphism:

U ′ \ U ′ ∩ Y ′ ∼−→ Ω := f−1(U) \ f−1(U) ∩ Y .
iii) The fibrations are adapted to Y ′ over U : U ′ ∩ Y ′ is a strict relative

NCD over U in the smooth fibers of f ′ (called horizontal or strict in the fibers,
eventually empty).

Remark 11.3. i) We need the open subset Ω to be embedded in X and in X ′

such that we can lift a local system on Ω ⊂ X to a dense open subset in X ′.
ii) The NCD f ′−1(U) ∩ Y ′ is called horizontal when at each point v in a

maximal stratum of U the intersection f ′−1(v) ∩ Y ′ is a NCD in the smooth
fiber X ′v, while at each point v in a stratum S of V − U the fiber itself is a
NCD in the inverse image of a general normal section at v.

We prove the Proposition 11.4 in three steps to simplify the exposition:
First we transform the morphism f (Lemma 11.2), then the desingularization
π : X ′ → X (Corollary 11.2), then f and π simultaneously.

11.2.2 Existence of fibrations by NCD over the strata

Let S = (Sα) an algebraic Whitney stratification by a family of strata Sα of
an algebraic variety V . The subspaces Vl = ∪dimSα≤lSα form an increasing
family of closed algebraic subsets of V of dimension ≤ l, with index l ≤ n,
where n is the dimension of V ,

V0 ⊂ V1 ⊂ · · · ⊂ Vn−1 ⊂ Vn = V

Let f : X → V be an algebraic map. The inverse of a subspace Z ⊂ V , is
denoted XZ := f−1(Z). We are interested in the inverses XS = f−1(S) of
strata S of the stratification S.

Definition 11.3. A Thom-Whitney stratification of an algebraic map f :
X → V consists of two Whitney stratifications one for V and one for X such
that the inverse XS of each stratum S of V is a union of connected strata of
X, the restriction of f to each stratum of XS has maximal rank dimS and
the restriction f| : XS → S is a locally trivial topological fibration.



226 11 Related results

Using Thom-Mather first isotopy theorem ([Mat 12]), one can prove the
following property:

• (W) The link at any point of a stratum is a locally constant topological
invariant of the stratum [Mat 12], [LeT 83].

If f is endowed with a Thom-Whitney stratification, the restriction of f
to XS is a topological fibration. (See [GMacP 88], [CaMi 5] subsection 3.5
for some consequences and [DeK 73], subsection 1.3.5).

The following lemma is based on the simple idea that the intersection of
a NCD by a general non-singular subspace gives a family of relative NCD.
This lemma is important for the proof of Proposition 11.4.

Lemma 11.2. Let f : X → V be a projective morphism of algebraic va-
rieties. We consider Y a closed algebraic strict subset of X containing the
singularities of X and eventually the singularities of a local system on X.
There exists a commutative diagram:

X
π1←− X1 · · · πi←− Xi · · ·

πk←− Xk
πk+1←− Xk+1

f ↓ f1 ↓ fi ↓ fk ↓ fk+1 ↓
V

id←− V · · · id←− V · · · id←− V
id←− V

where ρi := π1 ◦ . . . ◦ πi, for 1 ≤ i ≤ k + 1, is a desingularization of X, π1

is given by modifications over Y and Yi := ρ−1
i (Y ) is a NCD in Xi for i ≥ 1

such that:

1. there exists V 1 ⊂ V and inductively a decreasing sequence V i, for 0 <
i ≤ k, of closed algebraic subspaces of V of dimension di > 0;

2. for 1 ≤ j ≤ i, the inverse image f−1
i+1(V j) is a NCD in the non-singular

variety Xi+1,
3. f−1

i+1(V j) \ f−1
i+1(V j+1) is a relative NCD over V j \ V j+1.

The morphisms πi+1 are modifications over f−1
i (V i), for all i ≥ 1, obtained

by blowing-ups over f−1
i (V i) in Xi and the space f−1

i (V i) is a NCD in Xi

such that πi+1 induces an isomorphism:

(πi+1)| : (Xi+1 \ f−1
i+1(V i))

∼−→ Xi \ f−1
i (V i).

Since ρi are desingularizations , the Xi are smooth for i ≥ 1 and the
commutativity of the diagram above gives fi+1 := fi ◦ πi+1. Moreover, there
exists a Whitney stratification Si of V adapted to V j for j ≤ i, satisfying the
following property: the strata of Si and of Si−1 coincide outside V i.

The open subsets Ωi := f−1
i (V \ V 1) ⊂ Xi (resp. Ω := f−1(V \ V 1) ⊂ X)

are dense in Xi (resp. X) and we can suppose that, for k + 1 ≥ i ≥ 1, ρi
induces an isomorphism (Ωi \ Yi) ' (Ω \ Y ), and that, for k + 1 ≥ i ≥ 1,
the morphisms fi induce on ρ−1

i (Y ∩Ω) a fibration by relative NCD over the
strata of V \ V 1.
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Definition 11.4. An algebraic morphism f : X → V of complex varieties
is an admissible fibration if X is a smooth variety and there exists a Thom-
Whitney stratification S of f satisfying the following conditions

1. Let Vi denote the union of the strata of V of dimension ≤ i, then f−1(Vi)
is a NCD in X.

2. f induces a fibration by relative NCD of f−1(Vi)\f−1(Vi−1) over Vi\Vi−1.

Moreover, let Y be a strict NCD in X. Let S0 the strata of maximal dimension
in V . We say that f is an admissible fibration with respect to Y if Y ∩f−1(S0)
is a relative NCD over S0.

Remark 11.4. 1. The open subset Ω is embedded in all Xi such that one
can lift a local system L defined on Ω. The intersection ρ−1

i (Y ∩ Ω) in
Xi is a horizontal relative NCD (remark 11.3).

2. Consider the stratification Sk of V and let di := dimV i , Vdi the union of
strata of the stratification Sk of dimension ≤ di. Then, f−1

k+1(Vdi \ Vdi+1)

is a NCD in Xk+1 fibred by NCD over V i \ V i+1 = Vdi \ Vdi+1
.

3. Moreover, we can suppose that the family of subspaces V i is maximal in
the following sense: the dimension of V i is n− i for 0 < i ≤ k = n.

4. From Lemma 11.2 we obtain that the morphism fk+1 : Xk+1 → V is an
admissible fibration.

Proof of Lemma 11.2. Since f is projective, we can always suppose V =
f(X). By Hironaka’s resolution result [Hiro 64] we have a desingularization
morphism π1 : X1 → X of X with NCD as exceptional divisor such that
Y1 := π−1

1 (Y ), as well as the inverse images of the irreducible components of
Y , are sub-NCD of Y1 in X1.

Let f1 := f ◦ π1. Since X1 is smooth, there exists an open subset U ⊂ V
such that the restriction of f1 to f−1

1 (U) is smooth.
If the dimension of f(Y ) is strictly smaller than n := dimV , let U ⊂ V \

f(Y ) such that the restriction of f1 to f−1
1 (U) is smooth and let V 1 := V \U .

In the case f(Y ) = V , since Y1 is a NCD, there exists U such that the
restriction of f1 to Y1 ∩ f−1

1 (U) is a fibration by relative NCD over U . Let
V 1 := V \ U , since V is irreducible d1 := dim V 1 is strictly smaller than
dimV = n. We can always choose U , hence V 1, such that d1 = n− 1.

We consider a Thom-Whitney stratification of the morphism f1 : X1 → V ;
in particular the image by f1 of a stratum of X1 is a stratum of V . We suppose
also that the stratification of X1 is compatible with the divisor Y1. Let S0

denotes the underlying stratification of V .
We shall construct the algebraic subspaces V i of V , the morphisms fi =

Xi → V , and πi : Xi → Xi−1 in the lemma by descending induction on
dimV i. Let S1 be a Whitney stratification of V compatible with V 1 which is
a refinement of S0. Let D1 := f−1

1 (V 1); we introduce the horizontal divisor
(remark 11.3):

Y 1
h := Y1 ∩ f−1

1 (V \ V 1).
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Notice that Y 1
h \D1 is a NCD. We construct π2 : X2 → X1 by blowing-ups

over D1 such that the inverse image D2 := π−1
2 (D1) of D1 and the union

D2 ∪ Y 2
h with Y 2

h := π−1
2 (Y 1

h ) are NCD in the smooth variety X2. We can do
this construction without modification of X1 \D1 because Y 1

h \D1 is already
a NCD.

Let f2 := f1 ◦ π2, hence D2 := f−1
2 (V 1), the next argument allows us to

construct a subspace V 2 such that D2 ∩ f−1
2 (V 1 \ V 2) = f−1

2 (V 1 \ V 2) is a
relative NCD over V 1 − V 2.

The next lemma provides the argument used in the inductive construction of
the diagram in lemma 11.2

Lemma 11.3. Let f : X → Z be a projective morphism on a non-singular
space X, T an algebraic subspace of Z such that D := f−1(T ) is a NCD in
X as well the inverse image of each irreductible component of T .

Then, there exists a non singular algebraic subset S0 in T , such that the
dimension of T \ S0 is strictly smaller than dimT and f induces a relative
NCD over T \ S0.

Proof. i) Let Dβi denote the components of the divisor D and Dβ1,...,βj the
intersection of Dβ1 , . . . , Dβj . Let d := dimT be the dimension of T ; there
exists an open subset Sβ1,...,βj complementary of an algebraic subspace of T
of dimension strictly smaller than d, such that f−1(Sβ1,...,βj ) ∩ Dβ1,...,βj is
either empty, or a topological fibration over Sβ1,...,βj . Over the open subset
S′0 := ∩j(∩β1,...,βjSβ1,...,βj ), the divisor D∩f−1(S′0) is a topological fibration.

This property is required to obtain the big stratum in T of a Whitney
stratification over which we have a fibration by NCD and which satisfies the
assertion (2) of the definition 11.1 above.

ii) Still, we need to check the assertion (3) of the definition 11.1 on a dense
open subset of S′0. Let T1 be an irreductible component of T of dimension d.
Since the inverse image of T1 is also a NCD contained in D, there exists a
dense open subset S′1 in T1 with inverse image a sub-NCD of D.

As the argument is local, we consider an open affine subset U of Z with
non empty intersection S1 := T1∩U ⊂ S′1 and a projection q : U → Cd whose
restriction to S1 is a finite projection. There exists an open affine dense subset
U1 of Cd such that q ◦ f induces a smooth morphism over U1.

Considering S′0 defined in i) above, we notice that f induces over q−1(U1)∩
S′0 a fibration by NCD: indeed, let x be a point in q−1(U1) ∩ S′0 ∩ S1. There
exists an open neighborhood Ux of x in (q−1(U1) ∩ S′0) ⊂ U , small enough
such that the restriction of q to Ux ∩ S1 is not ramified on its image.

On the other hand, for all y ∈ Ux, the space f−1(q−1(q(y))∩Ux) is smooth,
since q(y) ∈ U1. The dimension of f−1(q−1(q(y) ∩ Ux) is dimX − d. As x is
in S′0 the dimension of f−1(y) ∩D is dimX − 1 − d and it is a divisor with
normal crossings in f−1(q−1(q(y) ∩ Ux) which has dimension: dimX − d.

We remark that q−1(q(x))∩Ux is a normal section of q−1(U1)∩S′0 at x in
Z. Hence f induces on q−1(U1) ∩ S′0 a fibration by NCD lying in the normal
sections.
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The open subset S0 is the union of open subsets q−1(U1)∩S′0 for the various
irreductible components T1 of T of maximal dimension d. The strata which
are the connected component of S0 satisfy the property (3) of the definition
11.1 and this ends the proof of the Lemma 11.3.

End of the proof of Lemma 11.2. Let d1 be the dimension of V 1. Ac-
cording to Lemma 11.3 there exists an open algebraic subset S0 of V 1, over
which the restriction of f2 induces a relative NCD over S0, moreover, the
dimension d2 of the algebraic set V 2 := V 1 \ S0 is d2 < d1. If d1 = n− 1, we
can always choose S0 such that d2 = n− 2.

We define a new Whitney stratification S2 of V , compatible with V 2 which
coincides with S1 outside V 1, by keeping the same strata outside V 1 and by
adding Thom-Whitney strata adapted to V 1 and to the connected compo-
nents of the open algebraic subset S0 that we have just defined.

We complete the proof by repeating this argument for the closed algebraic
subspace V 2 of V 1.

This process is the beginning of an inductive argument. The initial step is
the construction of V 1 above.

Induction hypothesis: Given projective morphisms fj : Xj → V for 1 ≤ j ≤ i
as in the diagram above, and πj : Xj → Xj−1, fj := fj−1 ◦ πj where Xj is
non-singular, a Whitney stratification Si of V compatible with a family of
algebraic subspaces V j ⊂ · · · ⊂ V 1 ⊂ V for j ≤ i such that there exists a
Whitney stratification on Xi stratifying fi, and such that f−1

i−1(V j) are NCD
in Xi, as well as the inverse image of each irreducible component of V j for
1 ≤ j < i, and moreover fi induces an admissible morphism over V \ V i.
Also, Yi := ρ−1

i (Y ) is a NCD divisor of Xi such that f−1
i (V 1) ∪ Yi is a NCD

and Yi ∩ (Xi \ f−1
i (V 1)) is a horizontal relative NCD over V \ V1.

Inductive step: A sequence of blowings-up centered over f−1
i (V i) leads to

the construction of πi+1 : Xi+1 → Xi such that Xi+1 is non-singular and
the inverse images of V j , as well as its irreductible components, by fi+1 :=
fi ◦ πi+1, for 1 ≤ j ≤ i, and their union with Yi+1 := π−1

i+1(Yi) are NCD

in Xi+1. Moreover Yi+1 \ f−1
i+1(V 1) is a fibration by NCD over the strata of

V \ V 1.
The stratification Si of V underlies a Thom-Whitney stratification of fi+1.

It follows from Lemma 11.3 that in each maximal stratum S of V i in Si,
there exists an open dense subset Si0(S) over which πi+1 induces a relative
NCD. Let V i0 be the union of all Si0(S). The complement V i \ V i0 of V i0 is
a closed algebraic strict subspace V i+1 of V i, and fi+1 is admissible over
V \V i+1 (see definition in Remark 11.4 (3)). We construct a Thom-Whitney
stratification Si+1 of V compatible with V i+1, keeping the same strata of
the stratification Si outside V i and introducing as new strata subsets of the
connected components of the open subset V i0 of V i.

The inductive argument ends when V k+1 = ∅, which occurs after a finite
number of steps since the family V i is strictly decreasing.
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Corollary 11.2. i) Let f : X → V be an algebraic morphism and Y a strict
subvariety containing the singularities of X, there exists a desingularization
X ′

π−→ X of X such that Y ′ = π−1Y is a NCD and f ◦ π is admissible with
respect to Y ′.

ii) Let X be an algebraic variety and Y a strict algebraic subspace, there

exists a desingularization X ′
π−→ X of X such that Y ′ = π−1Y is a NCD and

π is admissible with respect to Y ′.

Indeed by Lemma 11.2, the morphism fk+1 is a fibration by NCD over the
strata, moreover we can suppose k = n.

To construct π as a fibration by NCD, we apply the lemma to the case
f = Id : X → X.

By the corollary we can choose π or f ◦ π to be admissible. To show that
we can choose both to be admissible we shall need the following improved
version of lemma 11.2

Lemma 11.4 (Fibrations relative to a subspace). With the notations
of Lemma 11.2, let Z be a strict algebraic subspace of V . There exists a
modification π′ of X

X
π′←− X ′ f

′

−→ V, f ′ := f ◦ π′

and a Thom-Whitney stratification of f ′ compatible with Z such that f ′ :=
f ◦ π′ is admissible and f ′−1(Z) = π′−1(f−1(Z)) is a relative NCD over the
strata in Z.

Proof. The proof is a slight modification of the proof of Lemma 11.2 such
that we construct stratifications compatible with Z.

Let ` be the dimension of Z. Since V is a variety and Z is a strict algebraic
subspace, we have dimV > `. In the proof of lemma 11.2, if the dimension
d1 of V 1 is ≥ ` we may suppose that V 1 ⊃ Z. Inductively, as long as dj ≥ `,
we may suppose that V j ⊃ Z.

If we reach an index s such that dimV s = ds = `, we may suppose Z ⊂ V s,
then by blowing-ups over f−1

s (V s) we can assume that f−1
s+1(V s) ⊂ Xs+1 and

f−1
s+1(Z) are transformed into NCD. Thus f−1

s+1(V s) (resp. f−1
s+1(Z)) induces

a fibration over a open subset U of Vs (resp. Z) such that dim(V s − U) <
dimV s. Then we suppose the stratification Ss+1 of V compatible with Z and
we continue similarly as in the above proof of the Lemma 11.2.

Otherwise, if we reach the situation where ds > ` > ds+1, we consider
the subspace W s+1 := Z ∪ V s+1 of dimension l and define the space Xs+1

by blowing-ups over the subspace f−1
s (W s+1) ⊂ Xs such that the inverse

image of f−1
s+1(Z) is a NCD and we continue with Whitney stratifications

of V compatible with Z. Then, by proceeding as in the end of the proof of
Lemma 11.2, we obtain our proof.

Proof of the Proposition 11.4. We need to construct a diagram:
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X ′
π−→ X

f−→ V

such that π and f ◦ π are simultaneously fibrations by NCD over the strata.
Going back to the inductive argument for f in the Lemma 11.2, we apply

at each step of the induction the corollary 11.2 to construct π.

The initial step of the induction starts with the desingularization by an
admissible modification.

Induction hypothesis. We suppose there exists:
1) A diagram Di of morphisms where π′i is admissible:

X
π′i← Xi

fi→ V, fi = f ◦ π′i

2) A decreasing family of algebraic subspaces V i ⊂ V j for j < i with
inverse image f−1

i (V j) consisting of NCD in Xi for j < i, and a stratification
Si of V compatible with the family V j , such that the restriction of fi to
Xi − f−1

i (V i) over V − V i is a fibration by relative NCD over the strata.

Inductive step. Let di (resp. n − i) be the dimension of V i. We want to
define a sub-space V i+1 ⊂ V i of dimension strictly smaller di+1 < di (resp.
n − i − 1) and to extend the diagram Di over the open subset V i − V i+1,

that is, to construct a diagram Di+1 of morphisms: X
π′i+1← Xi+1

fi+1→ V where
fi+1 = f ◦ π′i+1 such that:

1) π′i+1 is admissible and defined as a composition map π′i+1 : Xi+1
πi+1→

Xi
π′i→ X of π′i : Xi→X with a modification πi+1 inducing an isomorphism:

Xi+1 \ f−1
i+1(V i)

∼−→ Xi − f−1
i (V i).

2) f−1
i+1(V i) is a relative NCD over the open subset V i \ V i+1.

To achieve this step, we remark that the variety f−1
i (V i) in Xi is over f−1(V i)

in X. Then, we apply the lemma 11.4 to the morphism π′i : Xi → X (instead
of f : X → V in the lemma), and f−1(V i) ⊂ X (instead of Z ⊂ V in
the lemma) to construct πi+1 such that π′i+1 := π′i ◦ πi+1 is an admissible
morphism:

f−1(V i) ⊂ X π′i←− Xi
πi+1←−−− Xi+1, π′i+1 := π′i ◦ πi+1 : Xi+1 → X

That is we develop the constructions of the lemma 11.2 to construct π′i+1

over X by modification only of subspaces over f−1
i (V i) to transform f−1

i (V i)
into a NCD, hence Xi+1 in the diagram Di+1 differs from Xi in the diagram
Di only over f−1

i (V i). The stratification of X is modified inside the subset
f−1(V i), hence we modify adequately the stratification of V inside the subset
V i.

There exists an open algebraic subset U ⊂ Vi in the big strata of Vi over
which fi+1 induces a fibration by NCD (Lemma 11.3). Let V i+1 := Vi \U of
dimension strictly smaller than di. Then, the Thom-Whitney stratifications of
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f and π′i outside Vi extend over U into Thom-whitney stratifications of f and
π′i+1 . Hence, we deduce a diagram Di+1 which extend the diagram Di such

that fi+1 (resp. π′i+1) is a fibration by NCD over the strata of f−1
i+1(V i\V i+1)

(resp. f−1(V i \ V i+1).
Thus we complete the construction of the diagram Di+1 and the inductive

step. At the end we define π′m and fm both admissible for some index m.

Corollary 11.3. The decomposition theorem for f can be deduced from both
cases π′ and f ′ in the proposition 11.4.

Let L be a local system on X−Y , there exists an open algebraic set Ω ⊂ X\Y
dense in X such that Ω′ := π′−1(Ω) ⊂ X ′ is isomorphic to Ω, which carry
the local system L. Let j′ : Ω′ → X ′, then the decomposition theorem for
j!∗L with respect to the orginal proper algebraic morphism f follows from
both cases of f ′ and π′ ([De 68] Proposition 2.16).

11.3 Combinatorial description of the weight

We resume the notations of (§3.1). The intersection complex may be described
by a combinatorial complex [KaK 86]. Such description leads to a definition
of the weight filtration W on a combinatorial complex quasi-isomorphic to
the de Rham complex Ω∗L.

First we take some time to associate to the set I of indices of the irreducible
components of the NCD Y , a category S(I) whose objects are indices of the
combinatorial complex (still denoted Ω∗L).

The combinatorial weights W0 or W−1 on Ω∗L describe a combinatorial
sub-complex IC∗L quasi- isomorphic to the intermediate extension j!∗L.

To study the local properties of the graded complexes GrWr Ω
∗L for r ∈ Z,

we introduce locally the complexes CKMr L for K ⊂ M ⊂ I. In particular,
the main task is to show that for K = M the complex CKr L has a unique
non zero cohomology H |K|CKr L for r > 0 (resp. H |K|−1CKr L for r > 0) with
a pure polarized HS.

The result is a computation of the decomposition of GrWr Ω
∗L into inter-

mediate extensions of the VHS defined by H |K|CKr L on the non singular
intersections of components YK of the NCD.

11.3.0.1 Complexes with indices in the category S(I)

The objects of the category S(I) attached to a set I, consist of sequences of
decreasing subsets of I of the following form:

(s.) = (I = s1 ⊃
6=
s2 . . . ⊃

6=
sp 6= ∅), (p > 0)
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Subtracting a subset si defines a morphism δi(s.) : (s. \ si) → s. and more
generally Hom(s.′, s.) is equal to one element iff (s.′) ≤ (s.) that is (s.′) is
obtained from (s.) by deleting some subsets. We write s. ∈ S(I) and define
its degree or length |s.| as the number of subsets si in (s.).

Correspondence with an open simplex. If I = {1, . . . , n} is finite, S(I)
can be realized as a barycentric subdivision of the open simplex ∆n−1 of
dimension n−1. A subset sλ corresponds to the barycenter bsλ of the vertices
of sλ and a sequence of subsets sλ corresponds to the oriented sub-simplex
of ∆n−1 defined by the vertices bsλ .
For example, for I = {1, 2}, the barycenter {3/2} of ]1, 2[ is defined by {1, 2},
and the open simplices ]1, 3/2[, ]3/2, 2[ are defined resp. by the sequences
{1, 2} ⊃ {1} and {1, 2} ⊃ {2}, plus the integer {3/2} corresponding to {1, 2}.

Since all sequences contain I, all corresponding simplices must have the
barycenter of ∆n−1 defined by I as vertex and the sub-simplices form a
partition of the open simplex ∆∗n−1 = ∆n−1 \ ∂∆n−1. In this way we define
an incidence relation ε(s., s.′) between two adjacent sequences equal to +1
or −1.

Combinatorial objects of an abelian category with indices in S(I) are de-
fined as functors on S(I).
We need the following construction. An algebraic or analytic variety over a
fixed variety X with indices in S(I) is a contravariant functor defined by
Π(s.) : X(s.) → X and denoted by Π with morphisms Π(s.′ ≤ s.) : Xs. →
Xs.′ over X.

A complex F of abelian sheaves Fs. over Xs. is defined with functorial
morphisms ϕ(s.′ ≤ s.) : Fs. → Fs.′ for (s.′) ≤ (s.). For each sλ 6= I ∈ (s.)
and the couple δsλ := ((s.)\sλ < (s.)) corresponds a morphism Πδsλ

: Xs. →
X(s.)\sλ and a morphism ϕ(δsλ : Π∗Fs. → Π∗F(s.)\sλ with a sign εδsλ defined
by the incidence relation in the open simplex interpretation.
The direct image of a complex of abelian sheaves over Π is the simple complex
complex associated to a double complex on X:

s(Fs.)s.∈S = ⊕s.∈S(Π∗Fs.)[|s.| − |I|], d = Σδsλ ε(δsλ)ϕ(δsλ)

denoted by Π∗F or preferably s(Fs.)s.∈S(I).

Example 11.1. In the case of the constant variety Xs. = X defined by a
variety X, the constant sheaf Z lifts to a sheaf on Xs. such that the diagonal
morphism:

ZX → ⊕|(s.)|=|I|ZXs. : n ∈ Z→ (. . . , ns. = n, . . .) ∈ ⊕|(s.)|=|I|Z
defines a quasi-isomorphism ZX ∼= Π∗Π

∗(ZX), as the barycentric subdivision
of an open simplex of dimension |I| − 1 shows.
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11.3.0.2 Local definition of the weight filtration

If Y ⊂ X is a NCD with indices i ∈ I and M ⊂ I, we consider the category
S(M) attached to M whose objects consist of sequences of decreasing subsets
of M of the form (s.) = (M = s1 ⊃

6=
s2 . . . ⊃

6=
sp 6= ∅), p > 0.. Geometrically

S(M) corresponds to the case of a normal section to Y ∗M = ∩i∈MYi in X.
Let (L, (Ni)i∈M , F,m) be a polarized nilpotent orbit of weight m with

monodromy weight filtrations W J := W (
∑
i∈J Ni) for J ⊂M .

We introduce a local definition of the weight filtration on the family of de
Rham complexes (Ω∗L)s.∈S(M).

Notations. For each s. ∈ S(M) let W sλ = W (
∑
i∈sλ Ni) be centered at 0.

For J ⊂ M and an integer r, we define asλ(J, r) = |sλ| − 2|sλ ∩ J | + r, and
the functorial filtered vector space

Wr(J, s.)L : =
⋂
sλ∈s.

W sλ
asλ (J,r)L, F r(J, s.) : = F r−|J|L (11.11)

The following definition reduces for r = −1 to the construction of the
intersection complex by Kashiwara and Kawai [KaK 86].

Definition 11.5. The weight W (centered at zero) and Hodge F filtrations
on the combinatorial de Rham complex Ω∗L := s(Ω∗L)s.∈S(M) are defined
by summing over J and s.:

Wr(Ω
∗L) : = s(

⋂
sλ∈s.

W sλ
asλ (J,r)L)(J⊂M,s.∈S(M)) (11.12)

where asλ(J, r) = |sλ|−2|sλ∩J |+r and F r(Ω∗L) : = s(F r−|J|L)(J⊂M,s.∈S(M)).
We denote the bifiltered sum complex by

(Ω∗L,W,F )

The filtrations can be constructed in two times, first by summing over J to
get the sub-complexes:
weight: Wr(s.) = s(Wr(J, s.))J⊂M and Hodge: F r(s.) : = s(F r(J, s.))J⊂M .

Example 11.2. in dimension 2.
Let W 1,2 = W (N1 +N2),W 1 = W (N1) and W 2 = W (N2), the weight Wr is
a double complex:
Wr({1, 2}⊃1)⊕Wr({1, 2}⊃2)→Wr({1, 2})
where the first line is the direct sum of Wr({1, 2}⊃1) =

(W 1,2
r+2∩W 1

r+1

(N1, N2)−→ W 1,2
r ∩W 1

r−1⊕W 1,2
r ∩W 1

r+1

(−N2, N1)−→ W 1,2
r−2∩W 1

r−1)
and Wr({1, 2}⊃2) =

(W 1,2
r+2∩W 2

r+1

(N1, N2)−→ W 1,2
r ∩W 2

r+1⊕W 1,2
r ∩W 2

r−1

(−N2, N1)−→ W 1,2
r−2∩W 2

r−1)
The second line for {1, 2} is Wr({1, 2}) =
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(W 1,2
r+2

(N1, N2)−→ W 1,2
r ⊕W 1,2

r

(−N2, N1)−→ W 1,2
r−2).

Lemma 11.5 (Kashiwara and Kawai [KaK 86]). There exists a quasi-
isomorphism IC∗L 'W−1(Ω∗L).

11.3.0.3 The complexes CKM
r L and CK

r L

To study the graded part of the weight, we need to introduce the following
full sub-categories:
For each subset K ⊂ M , let SK(M) = {s. ∈ S(M) : K ∈ s.} (that is
∃λ : K = sλ). We remark the isomorphism of categories:

S(K)× S(M −K)
∼→SK(M), (s., s.′)→ (K ∪ s.′, s.)

We consider the vector spaces with indices J ⊂M, s. ⊂∈ SKM,

CKMr L(J, s.) : =
⋂
K 6=sλ∈s.W

sλ
aλ(J,r−1)Gr

WK

aK(J,r)
L and for each (s.) the asso-

ciated complex obtained by summing over J (resp. over (s.):
CKMr L(s.) : = s(CrL(J, s.))J∈M+

.
, CKMr L : = s(CKMr L(s.))(s.)∈SKM .

We write CKr L(J, s.), CKr L(s.) and CKr L when K = M .

Definition 11.6. For K ⊆ M the complex CKMr L is defined by summing
over J and (s.)

CKMr L : = s (
⋂

K 6=sλ∈s.

W sλ
aλ(J,r−1)Gr

WK

aK(J,r)
L) J⊂M,s.∈SK(M) (11.13)

In the case K = M we write CKr L

CKr L = s((∩K⊃
6=
sλ∈s.W

sλ
asλ (J,r−1)Gr

WK

aK(J,r)
L)J⊂K,s.∈S(K) (11.14)

Example 11.3. For n = 1, K and M reduces to one element 1 and the theorem
reduces to

GrWr (Ω∗L) ' C1
rL : = GrW

1

r+1L
N1→GrW

1

r−1L

By the elementary properties of the weight filtration of N1, it is quasi-
isomorphic to GrW

1

r−1(L/N1L)[−1] if r > 0, GrW
1

r+1(kerN1 : L → L) if r < 0
and C1

0L ' 0.

Remark 11.5. The above combinatorial filtration W on the combinatorial de
Rham complex Ω∗L ' s(Ω∗L)s.∈S(I) where I is the set of indices of the NCD
Y ⊂ X, has been studied in [E 08].

The decomposition of GrW∗ Ω
∗L depends on the fact that the cohomology

of the complex CKr L vanishes in all but the degree |K| for r > 0 and CK0 L ' 0.
There is a mistake in the proof which occurs on ([E 08] Lemma A.12 iii).

We give below a correction in the case of surfaces.
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Proposition 11.5. Let (L,N1, N2) be an IMHS and let K = M = {1, 2}.
The non zero cohomology of CKr L is H2(CKr L) for r ≥ 0 and CK0 L = 0.

Proof. Let L1 resp. L2, L3 denote the following complexes

0→ GrW
12

r+2 W
1
r+1

N1,N2 // GrW
12

r W 1
r−1 ⊕GrW

12

r W 1
r+1

N2,N1 // GrW
12

r−2 W
1
r−1 → 0

0→ GrW
12

r+2 W
2
r+1

N1,N2 // GrW
12

r W 2
r+1 ⊕GrW

12

r W 2
r−1

N2,N1 // GrW
12

r−2 W
2
r−1 → 0

0→ GrW
12

r+2 L
N1,N2// GrW

12

r L⊕GrW
12

r L
N2,N1 // GrW

12

r−2 L→ 0

The complex CKr L is the sum of the double complex:

CKr L := (0→ L1 ⊕ L2
i1,i2−−−→ L3 → 0)

with natural embeddings (i1, i2).

The sum of L1
i1−→ L3 is a complex quasi-isomorphic to L4[−1] where

L4 := (L3/L1) is:

GrW
12

r+2 (L/W 1
r+1)

N1,N2−−−−→ GrW
12

r (L/W 1
r−1)⊕GrW

12

r (L/W 1
r+1)

N2,N1−−−−→ GrW
12

r−2 (L/W 1
r−1)

We compute first the cohomology of L2 and L4.

Lemma 11.6. i) The cohomology of L2 for r ≥ 0 is equal to:

H0(L2) = 0, H1(L2) = GrW
12

r Ker (N2 : L/N1 → L/N1L) and

H2(L2) = GrW
12

r−2 Coker (N2 : L/N1 → L/N1L).
ii) The cohomology of L4 for r ≥ 0 is equal to:

H0(L4) = H2(L2) = 0, H1(L4) = GrW
12

r Ker (N2 : L/N1 → L/N1L).

The computation of the cohomology is based on Kashiwara’s canonical de-

composition [KaK 86]: GrW
12

r L ' ⊕kGrW
12

r GrW
i

k L for i = 1, 2, applied to
the subspace KerNj ⊂ L, j = 1, 2.
Sub-lemma. Let KerN2 := KerN2 : L→ L.

i) GrW
12

r KerN2 = ⊕k≤0GrW
12

r GrW
2

k (KerN2),

GrW
12

r CokerN2 = ⊕k≥0GrW
12

r GrW
2

k (CokerN2).

ii) GrW
12

r KerN2 = ⊕k>r−1GrW
12

r GrW
1

k (KerN2).
Since the morphism Nj , j = 1, 2 is strict for the filtration W i, i = 1, 2, an

element a ∈ L satisfy: Nj(a) = 0 if and only if its class in GrW
i

k L is in the

kernel of the restriction Ñj of Nj to GrW
i

k L (an element c ∈ GrW
i

k L such
that Njc = 0 is the class of an element ai ∈W i

kKerNj).
For i) we remark that KerN2 is of weights W 2

k for k ≤ 0, while ii) follows

from the isomorphism: GrW
12

r GrW
1

k L ' GrW̃
2

r−kGrW
1

k L where W̃ 2 := W (Ñ2)

is the monodromy filtration of the restriction Ñ2 to GrW
1

k L.
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In fact Ñ2 : GrW̃
2

r−kGrW
1

k → GrW̃
2

r−k−2GrW
1

k is injective for r − k ≥ 1 and
surjective for r − k ≤ 1 which proves the sub-lemma.

Proof continued. We write L2 as the sum of a double complex L′2
N2−−→ L′′2:

L′2 = (GrW
12

r+2 W
2
r+1

N1−−→ GrW
12

r W 2
r+1), L′′2 := (GrW

12

r W 2
r−1

N1−−→ GrW
12

r−2 W
2
r−1)

Let Ñ1 be induced by N1 then:

L′2 = ⊕k≤r+1(Gr
W (Ñ1)
r+2−kGrW

2

k L
Ñ1−−→ Gr

W (Ñ1)
r−k GrW

2

k L)

L′′2 = ⊕k≤r+1(Gr
W (Ñ1)
r+2−kGrW

2

k−2L
Ñ1−−→ Gr

W (Ñ1)
r−k GrW

2

k−2L),

hence Ñ1 is injective on L′2 and L′′2 since r − k ≥ −1. We deduce

L′2 = ⊕k≤rPrim Gr
W (Ñ1)
r−k GrW

2

k L[−1] := ⊕k≤rPrim1
r−kGrW

2

k L[−1]

L′′2 = ⊕k≤rPrim Gr
W (Ñ1)
r−k−2GrW

2

k−2L[−1] := ⊕k≤rPrim1
r−k−2GrW

2

k−2L[−1]

In particular H0(L′2) = H0(L′′2) = 0. Let

L2(k) := (Prim1
r−kGrW

2

k L
N ′2−−→ Prim1

r−k−2GrW
2

k−2L)[−1] (11.15)

where N ′2, induced by N2, is injective for k ≥ 1 and surjective for k−2 ≤ −1,
hence we consider the cases k ∈ [1, r] where r ≥ 0, k < 1, k = 1 or r + 1.

The complex L2 splits into: (⊕k<1L2(k))⊕ (⊕k∈[1,r]L2(k)) where:

⊕k<1 L2(k) ' GrW
12

r KerN2 : (L/N1L)→ L/N1L)[−1],

⊕k∈[1,r] L2(k) ' GrW
12

r−2 CokerN2 : (L/N1L)→ (L/N1L)[−2]
(11.16)

Since k ≤ r, the formula does not cover all CokerN2 but covers GrW
12

r−2 , and
L2 ' 0 for k = 1 or r + 1. In particular:

H1(L2) ' GrW
12

r KerN2 : (L/N1L)→ L/N1L),

H2(L2) ' ⊕k>1CokerN ′2 ' GrW
12

r−2 CokerN2 : (L/N1L)→ (L/N1L).

Sub-lemma . H1(L4) ' GrW
12

r KerN2 : (L/N1L)→ L/N1L),
Hi(L4) = 0 if i 6= 1.

We apply a similar argument to L4: Ñ1 : ⊕k>r+1GrW
12

r+2 GrW
1

k → GrW
12

r GrW
1

k−2

is injective on GrW
1

k since k > 1 as r ≥ 0, hence

L′4[1] = ⊕k>r+1GrW
12

r PrimGrW
1

k−2, L′′4 [1] = ⊕k>r+1GrW
12

r−2 PrimGrW
1

k−2

then Ñ2 : Gr
W (Ñ2)
r−k+2PrimGrW

1

k−2 → Gr
W (Ñ2)
r−k PrimGrW

1

k−2 is surjective since

r − k < −1, hence Hi(L4) = 0 for i 6= 1, while:

H1(L4) = GrW
12

r Ker (N2 : L/N1L→ L/N1L)

Corollary 11.4. For r = 0, CK0 Lis acyclic. For r ≥ 1, Hi(CKr L) = 0 if i 6= 2

and H2(CKr L) ' GrW
12

r−2 (L/(N1L+N2L)),

Indeed, i2 : H1(L2)→ H1(L4) is an isomorphism.
From now on, we assume:

LKr := H |K|(CKr L), CKr L ' LKr [−|K|], CK0 L ' 0 (11.17)
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The complex CKMr L is related to CKr L by the following formula

CKMr L ' IC∗(CKr L) ' IC∗(LKr )

where IC∗(CKr L) is the simple complex defined by application of IC∗ to each
term of CKr L.

Lemma 11.7 (decomposition). let (L,Ni, i ∈M) be a nilpotent orbit. For
all subsets K ⊂ M there exist canonical embeddings of CKMr L in GrMr Ω

∗L
inducing a quasi-isomorphism (decomposition as a direct sum in the derived
category)

GrWr (Ω∗L) ∼= ⊕K⊂MCKMr L, GrW0 (Ω∗L) ' 0 (11.18)

The proof is based on the following elementary remark:

Let W i for i = 1, 2 be two increasing filtrations on an object V of an
abelian category and ai two integers, then we have an exact sequence:

0 → W 2
a2−1Gr

W 1

a1 ⊕ W 1
a1−1Gr

W 2

a2 → W 1
a1 ∩ W

2
a2/W

1
a1−1 ∩ W 2

a2−1 →
GrW

1

a1 GrW
2

a2 → 0
The proof of the lemma is by induction by repeating such exact sequences

on the terms of the combinatorial sum ([E 08], Theorem A.30).

11.3.0.4 Mixed case

In the case of a VMHS (L,W 0, F ) on X \Y we define a structure of MHC on
Ω∗L. The global construction is reduced to the following local case expressed
in terms of an IMHS (L,W 0, F,Ni, i ∈M) attached to a point x ∈ Y ∗M .

In the definition (11.5) we consider now for each sλ ∈ S(M) the relative
monodromy filtration on L Msλ := W (Nsλ ,W

0)) where Nsλ :=
∑
i∈sλ Ni

with respect to the constant filtration W 0 defined on L by Deligne’s extension
of the locally constant filtration W 0 on L.

Let asλ(J, r) = |sλ| − 2|sλ ∩ J | + r, we consider on the combinatorial de
Rham complex Ω∗L ' s(Ω∗L)s.∈S(M) various filtrations

Mr(J, s.) =
⋂
sλ∈s.

Msλ
asλ (J,r)L, Wr(J, s.)L = W 0

r ∩Mr(J, s.)L

Mr(Ω
∗L) = s(Mr(J, s.))J⊂M,s.∈S(M), F

r(Ω∗L) = s(F r−|J|L)J⊂M,s.∈S(M)

Wr(Ω
∗L) = s(Wr(J, s.))J⊂M,s.∈S(M)

(11.19)

Definition 11.7. The bifiltered complex (Ω∗L,W 0,W, F ) sum of the com-
binatorial de Rham complex Ω∗L ' s(Ω∗L)s.∈S(M) is endowed with

1. the constant filtration W 0 defined by Deligne’s extension of the locally
constant filtration W 0 on L,
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2. the weight filtration W (Equation 11.19) and Hodge filtration F .

Lemma 11.8 (decomposition). let (L,W 0, Ni, i ∈M) be an IMHS. There
exist a canonical quasi-isomorphism (decomposition as a direct sum in terms

of GrW
0

i L in the pure case

GrWr (Ω∗L) ∼= IC∗(GrW
0

r L)⊕k<r GrWr−k(Ω∗(GrW
0

k L) (11.20)

Proof. We use the exact sequence for each J ⊂M, (s.) ⊂ S(M)

0→M(J, s.)r−1Gr
W 0

r ⊕W 0
r−1Gr

M(J,s.)
r → GrW (J,s.)

r → Gr
M(J,s.)
r GrW

0

r → 0

The first term may be expressed in terms of W (J, s.) of the pure case GrW
0

r L

M(J, s.)r−1Gr
W 0

r L = W (J, s.)−1(GrW
0

r L)

(Equation 11.11). By (Lemma 11.5) the sum is the intersection complex

s(M(J, s.)r−1Gr
W 0

r L)J⊂M,s.∈S(M) ' IC∗(GrW
0

r L)

The second term decomposes into the sum of pure cases

Gr
M(J,s.)
r W 0

r−1 ' ⊕k<rGrM(J,s.)
r GrW

0

k L = ⊕k<rGr
W (J,s.)
r−k (GrW

0

k L)

The sum over J ⊂M, s. ∈ S(M) decomposes as a sum of pure cases

s(Gr
M(J,s.)
r W 0

r−1)J⊂M,s.∈S(M) ' ⊕k<rGrWr−kΩ
∗(GrW

0

k L)

While the sum of the last term vanish by equation 11.18:

s(Gr
M(J,s.)
r GrW

0

r L)J⊂M,s.∈S(M) = GrW0 Ω∗(GrW
0

r L) ' 0

Example 11.4. For n = 1, x a singular point of L, K = M = x

Ω∗L = (L
N1−−→ L),Wr = (M1

r+1 ∩W 0
r L

N1−−→M1
r−1 ∩W 0

r L)

GrWr (Ω∗L) ' (GrM
1

r+1W
0
r−1

N1−−→ GrM
1

r−1W
0
r−1)⊕ (M1

rGrW
0

r
N1−−→M1

r−2GrW
0

r )

C1
rL = (GrM

1

r+1W
0
r−1L

N1−−→ GrM
1

r−1W
0
r−1L)

C∅Mr = (M1
rGrW

0

r
N1−−→M1

r−2GrW
0

r )

By the basic property of M1: GrM
1

r+1W
0
r−1L ' ⊕k<rGrM

1

r GrW
0

k L,
the complex GrWr C

1
rL ' ⊕k≤r−1C

1
r,kL splits into a sum where

C1
r,kL = (GrM

1

r+1GrW
0

k L
N1−−→ GrM

1

r−1GrW
0

k L) '

(Gr
W (Ñ1)
r−k+1GrW

0

k L
N1−−→ Gr

W (Ñ1)
r−1−kGrW

0

k L)

Since r − k − 1 ≥ 0, C1
r,kL[1] ' PrimGr

W (Ñ1)
r−1−kGrW

0

k L is a polarized HS of

weight r − 1. Moreover C∅Mr ' KerN1 : M1
rGrW

0

r → M1
r−2GrW

0

r ) coincides
with IC∗L.

The sheaf with restriction to the complement of x is GrW
0

r L and with fiber
C∅Mr coincides with j!∗L.
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11.3.0.5 Global weight filtration on Ω∗L

Let (L,W 0, F ) be a graded admissible polarized variation of MHS on X∗ :=
X \ Y . There exists a filtration W on Ω∗L, extending W 0 on L, which coin-
cides locally with the various local weight filtrations at points x ∈ Y (Defi-
nition 11.7), by the isomorphism Ω∗L ' (Ω∗L)x. We deduce:

Theorem 11.1. Let (L,W 0, F ) be a graded polarized admissible VMHS on
X \Y . There exists a weight filtration W by perverse sub-sheaves on the loga-
rithmic complex with coefficients LX , and a Hodge filtration F by complexes
of analytic sub-sheaves such that the bi-filtered complex

Ω∗L := (Ω∗X(Log Y )⊗ LX ,W, F ) (11.21)

induces a MHS on the cohomology groups Hi(X \ Y,L).

Let GrW
0

k L denote the graded polarized VHS defined by (L,W 0) on X \ Y
and let W be the combinatorial weight filtration defined on Ω∗(GrW

0

k L) in
(§11.3), we deduce from (Lemma 11.8):

GrWr (Ω∗L) ∼= IC∗(GrW
0

r L)⊕k<r GrWr−kΩ
∗(GrW

0

k L) (11.22)
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ton Univ. Press 49, 2014.
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