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Abstract

We perform a quantitative assessment of different strategies to compute the con-
tribution due to surface tension in incompressible two-phase flows using a conservative
level set (CLS) method. More specifically, we compare classical approaches, such as
the direct computation of the curvature from the level set or the Laplace-Beltrami
operator, with an evolution equation for the mean curvature recently proposed in lit-
erature. We consider the test case of a static bubble, for which an exact solution for
the pressure jump across the interface is available, and the test case of an oscillating
bubble, showing pros and cons of the different approaches.
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1 Introduction

Interfacial flows with surface tension play an important role in several industrial
and engineering applications [15, 17]. Many modelling approaches have been pro-
posed to capture the motion of the interface. We consider here the conservative level
set (CLS) method, originally proposed in [20], [21], to which we refer for a detailed
description of the scheme. In this framework, the normal to the interface and the cur-
vature are implicitly determined from the level set function. We compare here different
approaches to compute the force due to surface tension. More specifically, we consider
three possible strategies: the use of the Laplace-Beltrami operator, the estimation of
the total curvature directly from the level set function, and the use of an evolution
equation for the mean curvature recently proposed in [23].

The paper is structured as follows: in Section 2, we briefly recall the different
formulations chosen to model the surface tension force. In Section 3, we briefly outline
the numerical method employed for the analysis. Section 4 is devoted to a quantitative
assessment of relations introduced in Section 2 for the test case of a static bubble and
for the test case of an oscillating bubble. Finally, some conclusions and insights for
future work are presented in Section 5.

2 Mathematical model

Let Ω ⊂ Rd, 2 ≤ d ≤ 3 be a connected open bounded set with a sufficiently smooth
boundary ∂Ω and denote by x the spatial coordinates and by t the temporal coordinate.
The two fluids in Ω are considered immiscible and they are contained in the subdomains
Ω1(t) and Ω2(t), respectively, so that Ω1(t)∪Ω2(t) = Ω. The interface between the two
fluids is denoted by Γ(t), defined as Γ(t) = ∂Ω1(t) ∩ ∂Ω2(t). We consider the classical
unsteady, isothermal, incompressible Navier-Stokes equations without gravity, which
read as follows [22]:

∂ (ρ(x, t)u)

∂t
+∇· (ρ(x, t)u⊗ u) = −∇p+∇· [2µ(x, t)D(u)] + fσ

∇·u = 0, (1)

for x ∈ Ω, t ∈ (0, Tf ], supplied with suitable initial and boundary conditions. Here,
Tf is the final time, u is the fluid velocity, p is the pressure, ρ is the fluid density and
µ is the dynamic viscosity. We assume that both density and viscosity are defined as

ρ(x, t) =

{
ρ1 in Ω1(t)

ρ2 in Ω2(t)
and µ(x, t) =

{
µ1 in Ω1(t)

µ2 in Ω2(t)
(2)

with ρ1, ρ2, µ1, and µ2 constant values. Moreover, D(u) denotes the symmetric part of
the gradient. Finally, fσ represents a volumetric force which takes into account surface
tension, defined as [14]

fσ = σκnΓδ(Γ(t)), (3)

where σ is the constant surface tension coefficient, nΓ is the outward unit normal
to Γ, κ = −∇·nΓ is the total curvature, and δ(Γ(t)) is the Dirac delta distribution
supported on the interface. In the following, for the sake of simplicity in the notation,
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we omit the explicit dependence on space and time for the different quantities. As
discussed in [16], we can rewrite the volumetric force as

fσ = ∇· [σ (I− nΓ ⊗ nΓ) δ(Γ)] , (4)

which corresponds to the application of the Laplace-Beltrami operator. The CLS
method [20, 21] describes implicitly the interface in terms of a regularized Heaviside
function ϕ and its evolution equation reads as follows:

∂ϕ

∂t
+ u · ∇ϕ = 0. (5)

For the sake of completeness, we report the definition of ϕ in terms of the signed
distance function φ, employed in the classical level set method [25]. The following
relation is assumed:

ϕ =
1

1 + e−φ/ε
, (6)

where ε helps smoothing the transition of the discontinuous physical properties between
the two subdomains and it is also known as interface thickness. From definition (6),
it follows that

Γ =

{
x ∈ Ω : ϕ =

1

2

}
. (7)

The Continuum Surface Force (CSF) approach, introduced in [6], is employed to treat
density, viscosity, and surface tension. More specifically, we set

ρ ≈ ρ2 + (ρ1 − ρ2)ϕ (8)

µ ≈ µ2 + (µ1 − µ2)ϕ. (9)

For the surface tension term, we recall that [9]

δ(Γ) = δ

(
ϕ− 1

2

)
|∇ϕ| , (10)

where δ
(
ϕ− 1

2

)
is the Dirac delta distribution with support equal to the interface

implicitly described by ϕ = 1
2 . Hence, we consider the following approximations:

fσ ≈ ∇·
[
σ

(
|∇ϕ| − ∇ϕ⊗∇ϕ

|∇ϕ|

)]
(11)

fσ ≈ −σ∇·
(

∇ϕ

|∇ϕ|

)
∇ϕ = σ

∇ϕ ·Hϕ∇ϕ− |∇ϕ|2∆ϕ

|∇ϕ|3
(12)

where we exploit the relation nΓ = ∇ϕ
|∇ϕ| . Notice that, since ϕ represents a regularized

Heaviside function, we approximate

δ

(
ϕ− 1

2

)
=

dθ
(
ϕ− 1

2

)
dϕ

≈
dθ

(
θ (φ)− 1

2

)
dϕ

=
dθ (φ)

dϕ
≈ dϕ

dϕ
= 1 (13)

with θ denoting the Heaviside function. The second relation in (12) is based on the
so-called Bonnet’s formula [11] for the curvature and Hϕ denotes the Hessian matrix
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of ϕ. Finally, we propose here another strategy to evaluate fσ. We compute κ from an
evolution equation for the mean curvature H = κ

2 recently proposed in [23]:

∂H

∂t
+ u · ∇H = H (∇u)nΓ · nΓ +

1

2
∇nΓ : (∇u)T

− 1

2
(∇u)T nΓ · (∇nΓ)nΓ

− 1

2
(nΓ ⊗ nΓ − I) :

[
∇
[
(∇u)T nΓ

]]T
, (14)

or, equivalently,

∂H

∂t
+ u · ∇H =

1

2
∇nΓ : (∇u)T +

1

2
∇·

[
(I− nΓ ⊗ nΓ) (∇u)T nΓ

]
, (15)

so that
fσ ≈ 2σH∇ϕ. (16)

The discretization of incompressible Navier-Stokes equations poses several major com-
putational issues. In particular, the velocity u and the pressure p are coupled by the
incompressibility constraint ∇·u = 0. We adopt here the so-called artificial compress-
ibility formulation, originally introduced in [7] and employed in [3], [4], [18], [22], [24]
among many others. The incompressibility constraint is relaxed and a time evolution
equation for the pressure is introduced. Hence, the final form of the system reads as
follows:

∂ (ρu)

∂t
+∇· (ρu⊗ u) = −∇p+∇· [2µD(u)] + fσ

1

ρ0c2
∂p

∂t
+∇·u = 0 (17)

∂ϕ

∂t
+ u · ∇ϕ = 0,

with c being the artificial speed of sound and ρ0 being a reference density. A dimen-
sional analysis can be carried out (we refer to [22] for all the details), so as to obtain
the following system of equations:

∂ (ρu)

∂t
+∇· (ρu⊗ u) = −∇p+

1

Re
∇· [2µD(u)] +

1

We
fσ

M2∂p

∂t
+∇·u = 0 (18)

∂ϕ

∂t
+ u · ∇ϕ = 0,

where, with a slight abuse of notation, we employ the same symbols to mark non-
dimensional quantities. Here Re,We and M are the Reynolds, Weber, and Mach
number, respectively, defined as

Re =
ρrefUrefLref

µref
We =

ρrefU
2
refLref

σ
M =

Uref

c
, (19)

with Uref being the reference velocity, Lref denoting the reference length, ρref being
the reference density and µref denoting the reference viscosity.
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3 Numerical method

In this Section, we briefly outline the numerical method employed for the discretiza-
tion of system (18). We refer to [22] for a detailed description of the numerical scheme.
We consider a decomposition of the domain Ω into a family of hexahedra (quadrilat-
erals in the two-dimensional case) Th and denote each element by K. The skeleton E
denotes the set of all element faces and E = EI ∪EB, where EI is the subset of interior
faces and EB is the subset of boundary faces. Classical jump and average operators are
then defined as customary for finite element discretizations. A face e ∈ EI shares two
elements that we denote by K+ with outward unit normal n+ and K− with outward
unit normal n−, whereas for a face e ∈ EB we denote by n the outward unit normal.
For a scalar function Ψ the jump is defined as

[[Ψ]] = Ψ+n+ +Ψ−n− if e ∈ EI [[Ψ]] = Ψn if e ∈ EB. (20)

The average is defined as

{{Ψ}} =
1

2

(
Ψ+ +Ψ−) if e ∈ EI {{Ψ}} = Ψ if e ∈ EB. (21)

Similar definitions apply for a vector function Ψ:

[[Ψ]] = Ψ+ · n+ +Ψ− · n− if e ∈ EI [[Ψ]] = Ψ · n if e ∈ EB (22)

{{Ψ}} =
1

2

(
Ψ+ +Ψ−) if e ∈ EI {{Ψ}} = Ψ if e ∈ EB. (23)

We now introduce the following finite element spaces:

Qk =
{
v ∈ L2(Ω) : v|K ∈ Qk ∀K ∈ Th

}
(24)

and
Qk = [Qk]

d , (25)

where Qk is the space of polynomials of degree k in each coordinate direction. The
finite element spaces that will be used for the discretization of velocity and pressure
are Vh = Qk and Wh = Qk−1 ∩ L2

0(Ω), respectively, where k ≥ 2. For what concerns
the level set function and the curvature, we consider instead Xh = Qr with r ≥ 2,
so that its gradient is at least a piecewise linear polynomial. In the present work, we
consider k = r = 2.

We briefly recall for the convenience of the reader the formulation of the TR-BDF2.
Let ∆t = Tf/N be a discrete time step and tn = n∆t, n = 0, . . . , N , be discrete time
levels for a generic time dependent problem u′ = N (u). The incremental form of the
TR-BDF2 scheme can be described in terms of two stages, the first one from tn to
tn+γ = tn + γ∆t, and the second one from tn+γ to tn+1, as follows:

un+γ − un

γ∆t
=

1

2
N

(
un+γ

)
+

1

2
N (un) (26)

un+1 − un+γ

(1− γ)∆t
=

1

2− γ
N

(
un+1

)
+

1− γ

2 (2− γ)
N

(
un+γ

)
+

1− γ

2 (2− γ)
N (un) . (27)

Here, un denotes the approximation at time n = 0, . . . , N . Notice that, in order to
guarantee L-stability, one has to choose γ = 2−

√
2 [12].
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A reinitialization procedure is adopted for the level set function. We employ the
following PDE [20, 21]:

∂ϕ

∂τ
+∇· (ucϕ (1− ϕ)nΓ) = ∇· (βεuc (∇ϕ · nΓ)nΓ) , (28)

where τ is an artificial pseudo-time variable, uc is an artificial compression velocity,
and β is a constant. It is important to notice that nΓ does not change during the
reinitialization procedure, but it is computed using the initial value of the level set
function. The supplementary equation for the mean curvature (14)-(15) has to be
discretized using (16) to evaluate the surface tension contribution. For the sake of
completeness, we report the first stage of the TR-BDF2 scheme for (14)-(15):

Hn+γ −Hn

γ∆t
+

1

2
un+ γ

2 · ∇Hn+γ +
1

2
un+ γ

2 · ∇Hn =

1

2

(
1

2
∇nn+γ

Γ : ∇un+ γ
2

)
+

1

2

(
1

2
∇nn

Γ : ∇un

)
(29)

+
1

2

(
1

2
∇·

[(
I− nn+γ

Γ ⊗ nn+γ
Γ

)(
∇un+ γ

2

)T
nn+γ
Γ

])
+

1

2

(
1

2
∇·

[
(I− nn

Γ ⊗ nn
Γ) (∇un)T nn

Γ

])
,

where un+ γ
2 =

(
1 + γ

2(1−γ)

)
un − γ

2(1−γ)u
n−1 is defined by extrapolation. Hence, the
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weak formulation for (29) reads as follows:∑
K∈Th

∫
K

Hn+γ

γ∆t
wdΩ+

1

2

∑
K∈Th

∫
K
un+ γ

2 · ∇Hn+γwdΩ

+
1

2

∑
e∈E

∫
e

{{
Hn+γun+ γ

2

}}
· [[w]] dΣ− 1

2

∑
e∈E

∫
e

{{
un+ γ

2

}}
·
[[
Hn+γw

]]
dΣ

+
1

2

∑
e∈E

∫
e

λn+ γ
2

2

[[
Hn+γ

]]
· [[w]] dΣ (30)

=
∑
K∈Th

∫
K

Hn

γ∆t
wdΩ+

1

2

∑
K∈Th

∫
K
un+ γ

2 · ∇HnwdΩ

− 1

2

∑
e∈E

∫
e

{{
Hnun+ γ

2

}}
· [[w]] dΣ− 1

2

∑
e∈E

∫
e

{{
un+ γ

2

}}
· [[Hnw]] dΣ

− 1

2

∑
e∈E

∫
e

λn+ γ
2

2
[[Hn]] · [[w]] dΣ

+
1

2

∑
K∈Th

∫
K

1

2
∇nn+γ

Γ : ∇un+ γ
2wdΩ+

1

2

∑
K∈Th

∫
K

1

2
∇nn

Γ : ∇unwdΩ

+
1

2

∑
e∈E

∫
e

{{
∇nn+γ

Γ un+ γ
2

}}
· [[w]] dΣ+

1

2

∑
e∈E

∫
e
{{∇nn

Γu
n}} · [[w]] dΣ

− 1

2

∑
e∈E

∫
e

{{
∇nn+γ

Γ un+ γ
2

}}
:
〈〈

un+ γ
2w

〉〉
dΣ− 1

2

∑
e∈E

∫
e
{{∇nn

Γ}} : ⟨⟨wun⟩⟩ dΣ

− 1

2

∑
K∈Th

∫
K

1

2

(
I− nn+γ

Γ ⊗ nn+γ
Γ

)(
∇un+ γ

2

)T
nn+γ
Γ · ∇wdΩ

+
1

2

∑
e∈E

∫
e

{{(
I− nn+γ

Γ ⊗ nn+γ
Γ

)(
∇un+ γ

2

)T
nn+γ
Γ

}}
· [[w]]

− 1

2

∑
K∈Th

∫
K

1

2
(I− nn

Γ ⊗ nn
Γ) (∇un)T nn

Γ · ∇wdΩ

+
1

2

∑
e∈E

∫
e

{{
(I− nn

Γ ⊗ nn
Γ) (∇un)T nn

Γ

}}
· [[w]] ∀w ∈ Xh,

with

λn+ γ
2 = max

(∣∣∣∣(un+ γ
2

)+
· n+

e

∣∣∣∣ , ∣∣∣(un+ γ
2

)
· n−

e

∣∣∣) . (31)

The numerical approximation of non-conservative terms is based on the approach pro-
posed in [5]. We recast the non-conservative term into the sum of two contributions:
the first one takes into account the elementwise gradient, whereas the second one con-
siders its jumps across the element faces. The second TR-BDF2 stage can be described
in a similar manner. Finally, we consider the following spatial discretization for fσ:

fσ ≈ 2H∇ϕ ≈
∑
K∈Th

∫
K
2H∇ϕ·φdΩ+

∑
e∈E

∫
e
2 {{Hϕ}} [[φ]] dΣ−

∑
e∈E

∫
e
2 {{H}} [[ϕφ]] dΣ,

(32)
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which is again based on the approach presented in [5]. Here, φ is a basis function of
the finite element space chosen to discretize the momentum equation, i.e. Vh.

4 Numerical results

In this Section, we present the results from simulations comparing the different ap-
proaches presented in Section 2 to evaluate fσ. The numerical method outlined in
Section 3 has been implemented in the framework of the deal .II library [1, 2].

4.1 Static bubble

We consider the 2D stationary bubble in a zero force field described e.g. in [8, 13, 26].
According to the Laplace–Young law [10], the pressure jump across the interface of two
immiscible fluids is directly related to surface tension. Indeed, the following relation
holds:

∆p = pin − pout =
σ

R
, (33)

where pin and pout are the pressure inside and outside the bubble, respectively, whereas
R is the radius of the bubble. A bubble with R = 0.25m centered in (x0, y0) = (0.5, 0.5)
in Ω = (0, 1)2 is considered. The fluid properties are ρ1 = ρ2 = 104 kgm−3, µ1 = µ2 =
1kgm−1 s−1, and σ = 1Nm−1, so that ∆p = 4Nm−2. Finally, we set Tf = 25 s and a
fixed time step ∆t = 0.2 s. The artificial speed of sound is set to c ≈ 1428m s−1, which
is of the same order of magnitude of the speed of sound in water. The reference length
is equal to Lref = 2R = 0.5m and the reference velocity Uref is chosen in such a way
that the reference pressure pref = ρrefU

2
ref is unitary. Hence, we get Uref = 0.01m s−1,

so as to obtain Re = 50,We = 0.5, and M = 7× 10−6. Periodic boundary conditions
are considered. Following [8], we consider three metrics to assess the pressure jump
computation:

1. ∆ptotal = pin− pout, where the subscripts in denotes quantities inside the bubble

(averaged over cells with r =
√
(x− x0)

2 + (y − y0)
2 ≤ R) and out quantities

outside the drop (averaged over cells with r > R,

2. ∆ppartial = pin−pout, where the subscripts in denotes quantities inside the bubble
(averaged over cells with r ≤ R

2 and out quantities outside the drop (averaged
over cells with r > 3

2R), so as to avoid the interface region,

3. ∆pmax = pmax − pmin, where pmax and pmin are the maximum and minimum
pressure on the whole domain, respectively.

We also monitor the degree of circularity, defined in [14] as

χ =
2
√
π |Ω2|
Pb

, (34)

with Ω2 being the subdomain occupied by the bubble, |Ω2| being the area of the bubble
and Pb being its perimeter. The degree of circularity is the ratio between the perimeter
of a circle with the same area of the bubble and the current perimeter of the bubble
itself. Since, for a perfectly circular bubble, the degree of circularity is unitary, we
expect values equal to one or very close to it.
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4.1.1 Use of Laplace-Beltrami operator

In this Section, we consider relation (11) to evaluate fσ and we report the results in
Table 1. Notice that we add a small number η = 10−10 to the denominator |∇ϕ| so
as to avoid division by zero. The same workaround is adopted to evaluate the unit
normal vector in (12). The approximation is very robust and no oscillations for the
pressure jump arise during the time evolution (see Figure 3). However, one can easily
notice that we achieve convergence towards a value which is different with respect
to the analytical one. This is in agreement with what happens using the Volume
of Fluid method, as reported in [8], and we will further discuss this issue in Section
4.1.3. Finally, the degree of circularity is always around 1 for all the configurations,
meaning that the circular shape is preserved. The relative error for χ with Nel is
around 2× 10−5. Finally, the generation of spurious currents, which typically appear
in the form of vortices around the interface, is strongly reduced, as evident from Figure
1. This further confirms the robustness of this approach.

Nel ∆ptotal ∆ppartial ∆pmax χ
40 3.37 4.15 4.16 1.00
80 3.37 4.13 4.16 1.00
160 3.37 4.13 4.16 1.00
320 3.37 4.13 4.17 1.00

Table 1: Static bubble test case, pressure jump across the interface and degree of circularity
at final time t = Tf with fσ computed using the Laplace-Beltrami operator (11). Nel denotes
the number of elements along each direction.

4.1.2 Computation of the total curvature from the level set

In this Section, we consider relations (12) for fσ. Table 2 shows the results obtained
with Bonnet’s formula. One can easily notice that the results are much less accurate
with respect to those obtained with the Laplace-Beltrami operator. Moreover, the
values of pressure jump are strongly oscillating, as one can notice from Figure 3. The
two relations in (12), namely the computation of fσ with Bonnet’s formula and with the
divergence of the unit normal are equivalent for continuous functions. However, they
yield different values once projected onto discrete functional spaces. Notice also that,
to apply the first relation in (12), we need to project the unit normal vector ∇ϕ

|∇ϕ| onto a
suitable space, so as to compute the divergence. In spite of this discrepancy, analogous
results are achieved as evident from Table 3 and Figure 3. The presence of spurious
oscillations in the curvature field computed from the level set formulation is well known
in the literature and different filtering approaches have been proposed to mitigate this
issue, see e.g. [11] for a comparison different filtering strategies. For the degree of
circularity, we notice a small degradation in the description of the interface, especially
at coarse resolutions. However, good results are obtained overall. The relative error
for χ with Nel = 320 is around 4× 10−4 for both relations (12).
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Figure 1: Static bubble test case, velocity magnitude at t = Tf using (11) with Nel = 320.

Nel ∆ptotal ∆ppartial ∆pmax χ
40 2.81 3.40 10.26 0.98
80 3.00 3.59 3.64 1.00
160 2.95 3.54 3.59 1.00
320 2.94 3.53 3.58 1.00

Table 2: Static bubble test case, pressure jump across the interface and degree of circularity
at final time t = Tf with fσ computed using the Bonnet’s formula (12). Nel denotes the
number of elements along each direction.

Nel ∆ptotal ∆ppartial ∆pmax χ
40 2.26 2.81 9.62 0.98
80 2.98 3.57 3.62 1.00
160 2.95 3.54 3.59 1.00
320 2.94 3.53 3.58 1.00

Table 3: Static bubble test case, pressure jump across the interface and degree of circularity
at final time t = Tf with fσ computed using the divergence of unit normal vector (12). Nel

denotes the number of elements along each direction.
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4.1.3 Use of an evolution equation for the curvature

The use of the Laplace-Beltrami operator is a very robust technique, but, as already no-
ticed, it yields slightly inaccurate results. The reason is that there are functions, such as
the unit normal vector or the curvature, whose definitions are properly meaningful only
for the points on the surface Γ [19, 23]. The capillarity flux tensor (I− nΓ ⊗ nΓ) |∇ϕ|
introduces instead spurious contributions far from the interface. Analogous consider-
ations hold for the total curvature computed from the level set, for which spurious or
even singular values arise if |∇ϕ| ≈ 0. In order to overcome this issue, we employ an
evolution equation for the mean curvature, so as to evaluate fσ with (16). This strat-
egy is conceptually similar to the one proposed in [27], where a curvature-augmented
approach to the level set method has been proposed. However, the evolution equation
(14)-(15) is more general and valid for any sufficiently regular moving closed surface.
A key point is the choice of the initial value for the mean curvature H0, so as to avoid
spurious contributions far from the interface. We set therefore

H0 =

−1
2

1√
(x−x0)

2+(y−y0)
2

if
∣∣∇ϕ0

∣∣ > β
h

0 otherwise.
(35)

Here, β = 5× 10−4, ϕ0 is the initial value of the level set function, and h = L
Nelr

is the
space step size, with L = 1m being the domain length, Nel denoting the number of
elements along each direction and r being the polynomial degree of the finite element
space chosen for the discretization of the mean curvature. Recall that, in the present
work, we take r = 2. The resulting initial datum for the curvature with Nel = 320 is
reported in Figure 2.

Relation (35) allows us to consider contributions of the curvature in fσ only at
the interface and close to it, namely when |∇ϕ| is above a certain threshold. Table
4 shows the obtained results and one can easily notice that we achieve more accurate
results with respect to those obtained with the Laplace-Beltrami operator. Moreover,
∆ppartial and ∆pmax are closer as the resolution is increased, meaning that the presence
of spurious contributions far from the interface is progressively reduced. No oscillations
arise for the pressure jump, as evident from Figure 3, analogously to what is observed
for the Laplace-Beltrami operator. Finally, for what concerns the degree of circularity,
the relative error with Nel = 320 is around 1 × 10−5, which is analogous to the value
obtained with the Laplace-Beltrami operator and one order of magnitude lower than
what obtained with (12).

Nel ∆ptotal ∆ppartial ∆pmax χ
40 3.53 4.36 4.40 0.99
80 3.38 4.13 4.15 1.00
160 3.36 4.10 4.11 1.00
320 3.35 4.05 4.06 1.00

Table 4: Static bubble test case, pressure jump across the interface and degree of circularity
at final time t = Tf with fσ computed using (16). Nel denotes the number of elements along
each direction.
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Figure 2: Static bubble test case, initialization of H using (35) with Nel = 320.

For longer times, the numerical solution of H is corrupted. As discussed in [27],
a reinitialization procedure is necessary, analogously to what is done for the level set
and, more generally, for transport equations of interfacial quantities. This issue starts
arising with the formation of spurious currents in the form of vortices around the
interface, as one can notice from Figure 4. Nevertheless, the magnitude of spurious
currents is significantly reduced with respect to (12), meaning that, in this test case,
the present approach is more robust and accurate with respect to the one presented
in Section 4.1.2. The development of suitable reinitialization techniques for (14)-(15)
will be matter of future analysis.

4.2 Oscillating bubble

We now consider a more dynamic example. Starting from the configuration described
in Section 4.1, we modify the initial shape from a circle to an ellipse by scaling the
semi-axes by a factor 1.25 in the x-direction and 0.75 in the y-direction, respectively.
The final time is now Tf = 20 s. Indeed, as already discussed in Section 4.1, for
longer simulation times the approach based on the evolution equation (14)-(15) is
corrupted. We consider two computational grids, composed by Nel = 40 and Nel = 80
elements, along each direction, respectively. We compare the use of the Laplace-
Beltrami operator (11), the use of the Bonnet’s formula (12) and the computation of
surface tension contribution (16) using the evolution equation for the mean curvature
(14)-(15). Figure 5 shows the interface ϕ = 1

2 at the final time. One can easily notice
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Figure 3: Static bubble test case, evolution of ∆ppartial with Nel = 320. The black line
reports the results obtained with the Laplace-Beltrami operator (11), the red line shows
the results obtained with the Bonnet’s formula in (12), whereas the blue dots represent
the results achieved with the divergence of the unit normal in (12). Finally, the green line
shows the results obtained with the evolution equation (14)-(15) for the mean curvature and
surface tension computed with (16).

a) b)

Figure 4: Static bubble test case, velocity magnitude at t = Tf with Nel = 320, a) curvature
computed from divergence of unit normal as in (12), b) curvature computed from evolution
equation (14)-(15) and surface tension evaluated with (16).
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that oscillations around the configuration captured by (11) are present using Bonnet’s
formula (12). These oscillations are stronger employing the evolution equation for the
mean curvature (14)-(15). Analogous considerations hold using the 80× 80 grid, even
though the oscillations are reduced as long as the resolution increases, as one can notice
from Figure 6.

Figure 5: Oscillating bubble test case, isoline ϕ = 1
2
at t = Tf with Nel = 40. The black line

shows the results with the use of the Laplace-Beltrami operator (11), the red line reports the
results obtained with the use of the Bonnet’s formula (12), whereas the blue line represents
the results achieved using the evolution equation for the mean curvature (14)-(15) to compute
(16). Nel denotes the number of elements along each direction.

5 Conclusions

We have performed a quantitative assessment of different strategies to compute the
contribution due to surface tension in immiscible incompressible flows. The conserva-
tive level set method developed in [22] has been employed for this comparison. The
results show that the use of an evolution equation for the curvature can be considered
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Figure 6: Oscillating bubble test case, isoline ϕ = 1
2
at t = Tf with Nel = 80. The black line

shows the results with the use of the Laplace-Beltrami operator (11), the red line reports the
results obtained with the use of the Bonnet’s formula (12), whereas the blue line represents
the results achieved using the evolution equation for the mean curvature (14)-(15) to compute
(16). Nel denotes the number of elements along each direction.

as a valid alternative to investigate in order to compute this quantity. The most accu-
rate results presented in Section 4.1 are those obtained using the evolution equation for
the mean curvature (14)-(15) to compute the surface tension contribution (16). Issues
are instead present for longer times and for dynamic configurations, as discussed in
Section 4.2, for which this approach, at the current stage, yields less accurate results
and requires therefore further investigation. In future work, we aim to develop suitable
reinitialization techniques for the evolution of the mean curvature, so as to improve the
accuracy for longer simulation times and to incorporate this relation and the analo-
gous one for the interfacial area density described in [23] into classical models for both
incompressible and compressible two-phase flows, so as to improve the computation of
interfacial source term in the case of a not well resolved interface.
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