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Abstract

Let G = (V,E) be a graph with unit-length edges and nonnegative costs assigned to its vertices.
Given a list of pairwise different vertices S = (s1, s2, . . . , sp), the prioritized Voronoi diagram of G with
respect to S is the partition of G in p subsets V1, V2, . . . , Vp so that, for every i with 1 ≤ i ≤ p, a vertex
v is in Vi if and only if si is a closest vertex to v in S and there is no closest vertex to v in S within the
subset {s1, s2, . . . , si−1}. For every i with 1 ≤ i ≤ p, the load of vertex si equals the sum of the costs
of all vertices in Vi. The load of S equals the maximum load of a vertex in S. We study the problem
of adding one more vertex v at the end of S in order to minimize the load. This problem occurs in the
context of optimally locating a new service facility (e.g., a school or a hospital) while taking into account
already existing facilities, and with the goal of minimizing the maximum congestion at a site. There is
a brute-force algorithm for solving this problem in O(nm) time on n-vertex m-edge graphs. We prove
a matching time lower bound – up to sub-polynomial factors – for the special case where m = n1+o(1)

and p = 1, assuming the so called Hitting Set Conjecture of Abboud et al. On the positive side, we
present simple linear-time algorithms for this problem on cliques, paths and cycles, and almost linear-
time algorithms for trees, proper interval graphs and (assuming p to be a constant) bounded-treewidth
graphs.

Keywords: graph Voronoi diagrams; facility location problems; HS-hardness; graph algorithms.

1 Introduction

For undefined graph terminology, see [7]. All graphs considered are finite, simple (they are loopless and
have no multiple edges), connected and with unit-length edges. Let G = (V,E) be a graph. Throughout the
paper, let n = |V | and m = |E|. The distance between two vertices u and v is the minimum number of edges
on a uv-path. We denote this distance by dG(u, v), or simply d(u, v) if G is clear from the context. Given
a vertex v and a vertex subset S = {s1, s2, . . . , sp}, let also d(v, S) = min1≤i≤p d(v, si) denote the distance
between v and S. A Voronoi diagram of G with respect to S is any partition V1, V2, . . . , Vp of V such that,
for every i with 1 ≤ i ≤ p, for every vertex v with v ∈ Vi, d(v, si) = d(v, S). This terminology originates
from Computational Geometry, where the Voronoi diagram is a well-studied data structure [3]. An example
of graph Voronoi diagram is given in Fig. 1. We stress that in general, a Voronoi diagram is not uniquely
defined, due to the possible existence of vertices v such that d(v, si) = d(v, sj) = d(v, S), for some i and j
with 1 ≤ i < j ≤ p.

To our best knowledge, Mehlorn was amongst the first to introduce the concept of graph Voronoi diagrams,
which he used in the design of an approximation algorithm for the Steiner Tree problem [24]. Erwig further
pursued the study of these objects, of which he presented some new algorithmic applications [14]. Since then,
graph Voronoi diagrams have appeared as a building block of even more algorithms [9, 11, 17]. In [26], Okabe
et al. introduced generalized network Voronoi diagrams, of which graph Voronoi diagrams are special cases.
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Figure 1: A graph Voronoi diagram with respect to three vertices s1, s2, s3. For each vertex of the graph,
the corresponding vertex of S is indicated in brackets. Since d(s1, u) = d(s2, u), this diagram is not unique.

Other variations such as furthest color Voronoi diagrams were considered in [21]. We only consider graph
Voronoi diagrams in what follows.

Hakimi and Labbé introduced graph Voronoi diagrams, which they called Voronoi partitions, as a location-
theoretic concept [19]. We build on their previous work and terminology. Specifically, given a vertex subset
S = {s1, s2, . . . , sp}, and a Voronoi diagram V1, V2, . . . , Vp of G with respect to S, we call sites the vertices in
S, and we call territories the subsets Vi, with 1 ≤ i ≤ p, of this partition. For concreteness, we may regard
the sites in S as locations of service facilities such as schools or hospitals. With this interpretation in mind,
every territory is the service area of some facility. Several optimization criteria can be considered for these
territories. Given some measure µ : V × 2V → R≥0 and a nonnegative integer p, the µ-Voronoi p-Center
problem is the problem of minimizing max1≤i≤p µ(si, Vi) amongst all possible graph Voronoi diagrams with
respect to p sites. For instance, if µ(si, Vi) = maxv∈Vi

d(v, si), then this is the classical p-Center problem.
Throughout the paper, let some function π : V → R≥0 assign nonnegative costs to the vertices. We call
p-Balance the µπ-Voronoi p-Center problem for the measure µπ such that µπ(si, Vi) =

∑
v∈Vi

π(v).
For concreteness, we may regard µπ(si, Vi), which we call the load of site si, as the population size in a
service area. We call our objective function max1≤i≤p µπ(si, Vi) the load of the Voronoi diagram. We stress
that minimizing the load is important in the context of critical facilities, such as hospitals. For instance,
during the recent COVID-19 outbreak, the relation between hospital saturation and increased risk of death
was documented [25]. The p-Balance problem is NP-hard if p is part of the input [20]. Interestingly, the
NP-hardness reduction in [20] outputs instances of the problem such that if there exists a graph Voronoi
diagram with load at most some value q, then there always exist p sites minimizing the load such that every
vertex is at minimal distance of exactly one site. This implies that the difficulty of this problem does not
come from the non-uniqueness of a Voronoi diagram.

In practice, we must account for the location of existing service facilities in order to optimally locate
a new one. This incremental approach has already been considered for the p-Center problem, under the
name of “center selection problem” [22]. However, it does not seem that it has also been studied for the
p-Balance problem. As a starter, let us consider the following problem (which is not quite yet what we
study in the paper). We are given a subset S of sites, and the goal is to compute a new site v, with v /∈ S,
and a Voronoi diagram with respect to S ∪ {v} such that the load is minimized. This problem is NP-hard
even if S is a singleton and G is a complete graph. Indeed, in this situation we can select any vertex v /∈ S
as the new site, but the difficulty consists in computing an optimal graph Voronoi diagram. The load of any
such diagram must be at least π(G)/2, where π(G) is the sum of the cost of all vertices. Moreover, deciding
whether there exists a solution with load π(G)/2 is equivalent to the well-known Partition problem [15].
In order to circumvent this negative result, we show that it is enough to force the Voronoi diagram to be
uniquely defined. More precisely, motivated by the practical need to minimally reorganize the diagram after
inserting a new site, we follow Erwig’s suggestion to prioritize the sites [14]. That is, S = (s1, s2, . . . , sp)
is a list, and every vertex v must be assigned to its first closest site in the list. Formally, for every i with
1 ≤ i ≤ p, we have v ∈ Vi if and only if d(v, si) = d(v, S) and d(v, sj) > d(v, S) for every j with 1 ≤ j < i.
We call it the prioritized Voronoi diagram, or simply the Voronoi diagram of G with respect to S, and we
denote it in what follows by Vor(G,S). Other conditions could be also considered. For instance, one could
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add every vertex v to the territories of all its closest sites in S, which is actually what Hakimi et al. did
in [20]. However, having a vertex partition is important in some practical scenarios (e.g., a student attends
to only one school). Furthermore, we stress that most results in the paper do not really depend on which
condition we choose (a notable exception being the hardness result of Theorem 2.8).

For every i with 1 ≤ i ≤ p, we denote by ℓπ(si, S) the load of site si in Vor(G,S). The load of Vor(G,S)
is denoted by Lπ(S). To our best knowledge, the following problem has not been considered before:

Problem 1 (Balanced Vertex).

Input: A graph G = (V,E); A cost function π : V → R≥0; A list S = (s1, s2, . . . , sp) of pairwise
different vertices.

Output: A vertex v ∈ V \ S such that Lπ(S + v) is minimized, where S + v = (s1, s2, . . . , sp, v).

Closest to our work is the one-round Voronoi game on graphs [4]. In the latter two-player game, Player 1
first selects a subset S of sites with some fixed cardinality. Then, Player 2 must select a k-set S′ of new sites,
with S′ ∩ S = ∅, in order to maximize the cumulative load of all k sites in S′ in the graph Voronoi diagram
with respect to S′ + S (the new sites in S′ have higher priority than the former sites in S). By contrast, in
our problem we aim at minimizing the load at any site, and we also account for the load of all former sites
in S and not just for the load of the new site. Furthermore, the new site is given the least priority.

Cliques O(n) Lemma 3.1
Cliques with k edges removed O(kn) Remark 3

Diameter ≤ 2 graphs O(n+m) Lemma 3.2
Diameter ≥ 3 graphs Ω(n2−o(1)) Theorem 2.8

Paths O(n) Lemma 3.3
Cycles O(n) Lemma 3.4
Trees O(n log |S|) Theorem 3.8 & Remark 4

Treewidth ≤ k graphs O(k2O(k)B(n, k)n|S| log n) Theorem 3.12
Proper interval graphs O(m+ n log n) Theorem 3.16

Table 1: Overview of our results.

Our contributions. We initiate the complexity study of the Balanced Vertex problem.
On general n-vertex m-edge graphs, the problem can be solved in O(nm) time by brute force, simply by

considering each vertex v /∈ S (Theorem 2.5). We prove a matching time lower bound – up to sub-polynomial
factors – assuming the so-called Hitting Set Conjecture (Theorem 2.8). The latter was introduced in [1] by
Abboud et al. as a way to explain our lack of progress toward computing faster either the radius or the
median of a graph. Since then, to our best knowledge, broader implications of the Hitting Set Conjecture,
for problems beyond radius and median computations, have not been investigated. Our work makes a step in
this direction. A better-studied conjecture, that is implied by the Hitting Set Conjecture and by the Strong
Exponential Time Hypothesis, is the so called Orthogonal Vectors Conjecture [28]. We leave as an open
problem whether we can prove a quadratic time lower bound for the Balanced Vertex problem assuming
this conjecture.

In the second and longest part of the paper, we break the quadratic barrier for Balanced Vertex on
several graph classes. For that, we exploit some tree-like or path-like underlying structure of these graphs.
Roughly, we adapt recent tools and frameworks for fast distance computation in these graphs, proving that
they can also be used in order to compute the load ℓπ(v, S + v) of every potential new site v /∈ S. In
doing so, we can solve Balanced Vertex, but only if there are constantly many sites in S. We detail this
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approach in Sec. 3.3, where it is applied to bounded treewidth graphs (Theorem 3.12). However, solving
Balanced Vertex for an arbitrary (possibly nonconstant) number of sites looks more challenging. Some
simple cases are first presented in Sec. 3.1. For n-node trees1, we combine a standard but rather intricate
dynamic programming approach with centroid decomposition, so as to derive an O(n log n)-time algorithm
(Theorem 3.8). The running time can be improved to O(n log |S|) (see Remark 4). Our second main
contribution in this part is for proper interval graphs, for which we get an O(m + n log n)-time algorithm
(Theorem 3.16). This result is derived from prior works on distance labeling schemes for this class of
graphs [16].

Results in the paper are summarized in Table 1. Some graph classes considered are related (e.g., paths
are trees, and trees and cycles have bounded treewidth). We obtain faster algorithms for paths than for
general trees (for trees and cycles than for bounded-treewidth graphs, resp.).

Organization of the paper. Basic results about theBalanced Vertex problem, along with a polynomial-
time algorithm for solving it and a matching conditional time lower bound, are presented in Sec. 2. Faster
algorithms for special graph classes are presented in Sec. 3. We conclude the paper in Sec. 4 with some open
questions and perspectives.

Additional notations and terminology. Let G = (V,E) be a graph. The open neighbourhood of a
vertex v is denoted in what follows by NG(v) = {u ∈ V | uv ∈ E}. We denote by NG[v] = NG(v) ∪ {v} its
closed neighbourhood. The ball of center v and radius k is denoted by Nk

G[v] = {u ∈ V | dG(u, v) ≤ k}. For
every vertices u and v, let IG(u, v) = {w ∈ V | dG(u, v) = dG(u,w) + dG(w, v)} denote the metric interval
between u and v. Let WG(u, v) = {w ∈ V | dG(u,w) < dG(v, w)} contain all vertices closer to u than to v. In
the same way, for a vertex subset S (a vertex list, resp.), let NG(S) =

⋃
s∈S NG(s)\S and NG[S] = NG(S)∪S

denote its open and closed neighbourhoods, respectively. The subgraph induced by a subset S is denoted
by G[S]. For every vertex subset S (vertex list, resp.), let ProjG(v, S) = {s ∈ S | dG(v, s) = dG(v, S)} be
the metric projection of a vertex v on S. We sometimes omit the subscript if G is clear from the context.
A vertex list S = (s1, s2, . . . , sp) such that si ̸= sj for every i, j with 1 ≤ i < j ≤ p is called in what follows
a proper vertex list. We denote the territories V1, V2, . . . , Vp of Vor(G,S) by T(s1, S), . . . ,T(sp, S). Finally,
given a cost function π : V → R≥0, the cost of a vertex subset X is defined as π(X) =

∑
x∈X π(x).

2 The general case

We here consider the Balanced Vertex problem on general graphs. In Sec. 2.1, we prove a few simple
properties of prioritized Voronoi diagrams. We derive from the latter a quadratic-time algorithm, in the
number of edges, for solving Balanced Vertex. This algorithm is presented in Sec. 2.2. In Sec. 2.3, our
quadratic running time is proved to be optimal – up to sub-polynomial factors – assuming the Hitting Set
Conjecture.

2.1 Basic properties

We start the section with some easy results on the territories in a Voronoi diagram. In particular, we prove
the following relation between territories and metric intervals.

Lemma 2.1. Let G = (V,E) be a graph and let S = (s1, s2, . . . , sp) be a proper vertex list. For every vertex
v ∈ T(si, S), with 1 ≤ i ≤ p, we have I(v, si) ⊆ T(si, S).

Proof. Suppose by contradiction the existence of some vertex u ∈ I(v, si) \ T(si, S). Let j, with 1 ≤ j ≤ p,
be such that u ∈ T(sj , S). In particular, d(u, S) = d(u, sj) ≤ d(u, si). Note that d(v, sj) ≤ d(v, u) +
d(u, sj) ≤ d(v, u) + d(u, si) = d(v, si) = d(v, S). Therefore, we must have d(u, sj) = d(u, si) = d(u, S) and
d(v, si) = d(v, sj) = d(v, S). However, because v ∈ T(si, S), j > i, thus contradicting that u ∈ T(sj , S).

1Throughout the paper, we only use ,,node” for trees and tree-based data structures.
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We immediately deduce from Lemma 2.1 the following result about territories:

Corollary 2.2. Let G = (V,E) be a graph and let S = (s1, s2, . . . , sp) be a proper vertex list. For every i
with 1 ≤ i ≤ p, T(si, S) is a connected subset.

We often use in our proofs the following structural description of the last territory in a diagram. Similar
but more complicated descriptions of the other territories can be derived from this result.

Lemma 2.3. Let G = (V,E) be a graph and let S = (s1, s2, . . . , sp) be a proper vertex list. For every vertex
v /∈ S, we have that T(v, S + v) =

⋃
1≤j≤p (W (v, sj) ∩ T(sj , S))

Proof. Let j with 1 ≤ j ≤ p be fixed. For every vertex u ∈ T(sj , S), we have that u ∈ T(v, S+ v) if and only
if d(u, v) < d(u, S) = d(u, sj). The vertices that satisfy this inequality are exactly those of W (v, sj).

2.2 A quadratic-time algorithm

We present our quadratic-time algorithm for solving Balanced Vertex. It is based on the following
observation that for every proper vertex list, we can compute the prioritized Voronoi diagram in linear time.

Proposition 2.4. Let G = (V,E) be a graph and let S = (s1, s2, . . . , sp) be a proper vertex list. We can
compute Vor(G,S) in O(n+m) time.

Proof. We run a BFS on S (i.e., we consider all vertices in S as being one supervertex, on which we run a
BFS). In doing so, we order the vertices v ∈ V \ S by nondecreasing distance to S. Then, we compute r(v),
for every vertex v, so that:

r(v) =

{
v, if v ∈ S

min{r(u) | u ∈ N(v) and d(u, S) = d(v, S)− 1} otherwise.

We prove by induction on d(v, S) that r(v) is the unique site of S such that v ∈ T(r(v), S). This is
straightforward if v ∈ S. Thus, from now on we assume that d(v, S) ≥ 1. For every u ∈ N(v), if d(u, S) <
d(v, S), then by the induction hypothesis we have r(u) ∈ Proj(v, S). By Lemma 2.1, the unique site si ∈ S
such that v ∈ T(si, S) is contained in {r(u) | u ∈ N(v) and d(u, S) = d(v, S)− 1}. Therefore, r(v) = si.

In order to solve Balanced Vertex, it is sufficient to compute all prioritized Voronoi diagrams with
one more site. We summarize our observations as follows.

Theorem 2.5. We can solve Balanced Vertex in O(nm) time.

Proof. For every vertex v ∈ V \ S, we compute Vor(G,S + v). By Proposition 2.4, this computation takes
O(n+m) time. Furthermore, we can compute Lπ(S+v) in additional O(n) time if we scan each territory of
Vor(G,S+v) sequentially. The running time follows since there are at most n vertices v to be considered.

2.3 HS-hardness

Our main technical contribution in this section is a conditional time lower bound for Balanced Vertex,
which matches – up to sub-polynomial factors – the quadratic running time of the simple algorithm presented
in Theorem 2.5. Our hardness result is based on the following hypothesis.

Conjecture 1 (The Hitting Set Conjecture [1]). There is no ε > 0 such that for all c ≥ 1, there is an
algorithm that given two lists A,B of n subsets of a universe U of size at most c log n, can decide in O(n2−ε)
time if there is a set in the first list that intersects every set in the second list, i.e., a “hitting set”.
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In what follows, we call the triple (A,B,U) a HS-instance. Two HS-instances (A,B,U) and (A′, B′, U ′)
are called equivalent if either both contain a hitting set or none of them does.

Insofar, the Hitting Set Conjecture has been understudied. We next present reductions from arbitrary
HS-instances to equivalent ones with some more structure (Lemmas 2.6 and 2.7). The running times of these
reductions are roughly linear in the cumulative cardinalities of all subsets in the input, which (since there
are 2n such subsets and the universe has size O(log n)) is in O(n log n).

Lemma 2.6. Every HS-instance (A,B,U) can be reduced in O(n log n) time to some equivalent HS-instance
(A′, B′, U ′) with the following additional property: every set in B′ intersects at most half of the sets in B′.

Proof. Let (A0, B0, U0) and (A1, B1, U1) be disjoint copies of (A,B,U). Let also x0, x1 /∈ U0 ∪ U1. We set:

A′ = {a0 ∪ U1 | a0 ∈ A0} ∪ {a1 ∪ U0 | a1 ∈ A1},
B′ = {b0 ∪ {x0} | b0 ∈ B0} ∪ {b1 ∪ {x1} | b1 ∈ B1},
U ′ = U0 ∪ U1 ∪ {x0, x1}.

The construction of (A′, B′, U ′) takes O(n log n) time.
We can bipartition B′ in two sublists B′

0, B
′
1 such that, for every i ∈ {0, 1}, all sets in B′

i contain xi and
are contained in Ui ∪{xi}. Since U0 ∪{x0} and U1 ∪{x1} are disjoint, every set of B′ intersects exactly half
of the sets of B′. Furthermore, if a ∈ A is a hitting set for (A,B,U), then let a0, a1 be its copies in A0, A1.
By construction, a0 ∪ U1 and a1 ∪ U0 are hitting sets for (A′, B′, U ′). Conversely, let a′ ∈ A′ be a hitting
set for (A′, B′, U ′). By symmetry, we may assume to have a′ = a0 ∪ U1, for some set a0 ∈ A0. Since x0 /∈ a′

and, for every set b0 ∈ B0, b0 ∩U1 = ∅, we must have a0 is a hitting set for (A0, B0, U0). In particular, there
is also a hitting set for (A,B,U).

Lemma 2.7. Let α, β be arbitrary integers so that α ≥ 2. Every HS-instance (A,B,U) can be reduced in
O(n log n) time to some equivalent HS-instance (A′, B, U ′) with the following additional properties: for some
t = O(|U |), the universe U ′ has cardinality α · t+ β, and every set in A′ has cardinality t.

Remark 1. We only need to apply the following reduction with α = 2, β = −1 for proving Theorem 2.8.
However, the general case with α, β arbitrary might be useful for future works on the Hitting Set Conjecture.

Proof. First, we reduce (A,B,U) to some equivalent instance (Atmp, B, Utmp) so that all sets in Atmp have
equal cardinality. Then, we reduce (Atmp, B, Utmp) to our final HS-instance (A′, B, U ′).

In order to construct (Atmp, B, Utmp), we start computing the extreme cardinalities ∆ = max{|a| | a ∈ A}
and δ = min{|a| | a ∈ A} of sets in A. Let Udummy = {u1, u2, . . . , u∆−δ} be a universe of cardinality ∆− δ
that is disjoint from U . We set Utmp = U ∪ Udummy. For every set a ∈ A, we add in Atmp the set
a ∪ {u1, u2, . . . , u∆−|a|}.

Every set in Atmp has cardinality ∆. In order to construct (A′, B′, U ′), there are two different cases to
be considered.

• Case α ·∆+ β > |Utmp|. We complete Utmp with α ·∆ + β − |Utmp| new elements in order to create

U ′. The two lists are unchanged (i.e., we set A′ = Atmp, B
′ = B).

• Case α ·∆+ β < |Utmp|. Let us write |Utmp| − α ·∆ − β = q · (α − 1) + r for some unique q ≥ 0 and

r ∈ {0, 1, . . . , α−2}. Let X,Y be disjoint universes of respective cardinalities α−1− r and q+1, both
disjoint from Utmp. We set U ′ = Utmp ∪X ∪ Y , A′ = {a ∪ Y | a ∈ Atmp}, B′ = B. Doing so, every set
in A′ has cardinality equal to t = ∆+ q + 1, while the universe U ′ has cardinality:

|Utmp|+ |X|+ |Y | = α ·∆+ β + (|Utmp| − α ·∆− β) + (q + 1) + (α− 1− r)

= α ·∆+ β + (q · (α− 1) + r) + q + α− r

= α ·∆+ β + q · α+ α

= α · (∆ + q + 1) + β

= α · t+ β
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In both cases, our construction ensures that every set in A′ has cardinality |U ′|−β
α .

We are now ready to combine both reductions in order to prove our main result in this part.

Theorem 2.8. Assuming Conjecture 1, there is no ε > 0 such that for all c ≥ 1, there is an algorithm that
solves Balanced Vertex in O(n2−ε) time on the n-vertex graphs with at most cn log n edges.

Proof. Let (A,B,U) be any HS-instance with the following properties:

1. every set of B intersects at most half of the sets in B;

2. every set of A has cardinality |U |+1
2 .

We stress that every HS-instance can be reduced to an equivalent one with these properties by applying the
reductions of Lemma 2.6 and 2.7, in this order. Intuitively, we identify the subsets of A∪B and the elements
of U with vertices in some graph G (to be defined later). We further define a unique site s, which is close
to every vertex in A but distant to every vertex in B. Therefore, in order to minimize the load, one should
pick a new site which is closer than s to every vertex in B. At first glance, one may think about picking
some new site in U . However, the vertices in U are closer than s to far too many vertices, thus making the
load increase. The first property above ensures that no vertex of B should be picked either. Therefore, we
are left picking (if any) a vertex of A that is close to every vertex of B, a.k.a., a hitting set. Note that in
general, the exact load should also depend on the size of U and the cardinality of the hitting set. The second
property above ensures that it is not the case for our reduction.

For convenience, in what follows let t = |U |+1
2 denote the cardinality of every set in A. We may further

assume that t > 2 (otherwise, we can detect a hitting set in O(n) time because there are O(1) distinct sets
in A) and that n is above some large enough constant. We construct a graph G = (V,E) with 2n+ |U |+3 =
2(n+ t+ 1) vertices, as follows:

• V = A ∪B ∪ U ∪ {s, x, y};

• U ∪ {x, y} is a clique;

• NG(s) = {x, y};

• for every set a ∈ A, NG(a) = {y} ∪ {u ∈ U | u ∈ a};

• for every set b ∈ B, NG(b) = {u ∈ U | u ∈ b}.

See Fig. 2 for an illustration. Let S = (s) and let π : V → R≥0 be the all-one function (i.e., π(v) = 1
for every vertex v). Given a vertex v ̸= s, let Sv = (s, v). By Lemma 2.3, T(v, Sv) = WG(v, s). We now
compute the load of Sv for every vertex v ̸= s:

• Case v = x. We have W (x, s) = U ∪ {x} ∪B. Then, Lπ(Sx) = ℓπ(x, Sx) = n+ 1 + |U | = n+ 2t.

• Case v = y. We have W (y, s) = V \ {s, x}. Then, Lπ(Sy) = ℓπ(y, Sy) = 2n+ |U |+ 1 = 2(n+ t).

• Case v ∈ U . We have U ∪B ⊆ W (v, s). Then, Lπ(Sv) = ℓπ(v, Sv) ≥ n+ |U | = n+ 2t− 1.

• Case v ∈ B. Since every vertex of A is at distance at least two from vertex v, A ∩ W (v, s) = ∅.
Furthermore, |W (v, s) ∩ B| ≤ |B|/2. We also know that s, x, y /∈ W (v, s). As a result, we have
Lπ(Sv) = ℓπ(s, Sv) ≥ |A|+ |B|/2 + 3 = 3n/2 + 3.

• Case v ∈ A. We have W (v, s) = {v} ∪ (NG(v) ∩ U) ∪
(
N2

G[v] ∩B
)
. Let us write k = |N2

G[v] ∩ B|. In
this situation, ℓπ(v, Sv) = k + t+ 1 while ℓπ(s, Sv) = 2n− k + t+ 1. In particular, Lπ(Sv) is minimal
if and only if k = n, that is if and only if v is a hitting set.

Note that 2(n + t) > n + 2t > n + 2t − 1 > n + t + 1, where the last inequality follows from t > 2. Since
t = O(log n), we also have 3n/2 + 3 > n + t + 1 for large enough n. As a result, for large enough n, the
existence of some vertex v such that Lπ(Sv) ≤ n+t+1 is equivalent to that of a hitting set for (A,B,U).

Remark 2. The hardness result of Theorem 2.8 holds for unit costs and |S| = 1.

7



a

s

xy

A U B

Figure 2: The reduction of Theorem 2.8. For clarity of the picture, we omitted the edges between vertices
of U and the edges between U and A \ {a}, with a some hitting set.

3 Almost linear-time algorithms

In this section, we break the quadratic barrier for Balanced Vertex on various graph classes. We obtain a
linear-time algorithm only for simple topologies, see Sec. 3.1. Nevertheless, we achieve an almost linear-time
computation on trees (Sec. 3.2), proper interval graphs (Sec. 3.4) and bounded-treewidth graphs with a
constant number of sites (Sec. 3.3).

One of the reviewers observed that for Balanced Vertex, we only need to consider vertices v /∈ S
that reduce all territories T(si, S) of maximum load. This observation does help in reducing the number of
vertices to be considered in practice. However, it cannot be applied if there is only one site in S (a case
which is already hard, see Theorem 2.8).

3.1 Simple cases

First, we present a complete dichotomy of the parameterized complexity of Balanced Vertex if the
parameter is the diameter of the graph. The graphs of unit diameter are exactly the complete graphs. Given
a proper vertex list S in such graph, every vertex of V \ S must belong to the territory of the site in S
with the highest priority. We deduce from this observation a simple linear-time algorithm for Balanced
Vertex on complete graphs.

Lemma 3.1. We can solve Balanced Vertex in O(n) time if G is a clique.

Proof. Let Λ = π(G) −
∑p

i=2 π(si). It suffices to output a vertex v /∈ S such that max{π(v),Λ − π(v)} is
minimized. Indeed, since G is a clique we have the following for every vertex v /∈ S: T(s1, S + v) = V \
{s2, s3, . . . , sp, v} = T(s1, S)\{v}; T(si, S+v) = {si} = T(si, S) for every i with 2 ≤ i ≤ p; T(v, S+v) = {v}.
In particular, we have Lπ(S + v) = max ({π(si) | 2 ≤ i ≤ p} ∪ {π(v),Λ− π(v)}).

We now generalize the simple idea behind Lemma 3.1 to the graphs of diameter two.
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Lemma 3.2. We can solve Balanced Vertex in O(n+m) time if G has diameter two.

Proof. We compute Vor(G,S), which by Proposition 2.4 we can do in O(n + m) time. Doing so, we can
compute in O(n) time the values ℓπ(si, S), for every i with 1 ≤ i ≤ p. We can also compute in O(n) time,
for every i with 1 ≤ i ≤ p, the value µi such that:

µi =

{
max{ℓπ(s2, S), ℓπ(s3, S), . . . , ℓπ(sp, S)} if i = 1

max{ℓπ(sj , S) | j ∈ {2, 3, . . . , p} \ {i}} otherwise.

For every vertex v /∈ S, let si be the unique site of S such that v ∈ T(si, S). Note that we can compute
si from Vor(G,S) in O(1) time. We compute the value λ(v) such that:

λ(v) =

{
max {π (N(v) \N [S]) + π(v), ℓπ(s1, S)− π (N(v) \N [S])− π(v), µ1} if i = 1

max {π (N(v) \N [S]) + π(v), ℓπ(s1, S)− π (N(v) \N [S]) , ℓπ(si, S)− π(v), µi} otherwise.

Since we precomputed all values µ1, µ2, . . . , µp, we can compute the values λ(v), for every v /∈ S, in O(n+m)
time, simply by scanning the neighbourhoods of every vertex. Finally, we output a vertex v /∈ S such that
λ(v) is minimized. Indeed, we claim that λ(v) = Lπ(S + v). This is because we assume the diameter of G
to be two, and therefore T(sj , S) ⊆ N [sj ] for every j with 2 ≤ j ≤ p. In particular, we have:

WG(v, sj) ∩ T(sj , S) =

{
{v} if v ∈ T(sj , S)
∅ otherwise.

In the former case, ℓπ(sj , S + v) = ℓπ(sj , S) − π(v), while in the latter case ℓπ(sj , S + v) = ℓπ(sj , S).
Furthermore, T(v, S + v) = {v} ∪ (N(v) \N [S]), and so, ℓπ(v, S + v) = π (N(v) \N [S]) + π(v). Finally,

WG(v, s1) ∩ T(s1, S) =

{
{v} ∪ (N(v) \N [S]) if v ∈ T(s1, S)
N(v) \N [S] otherwise.

Altogether combined, we obtain as claimed that λ(v) = Lπ(S + v).

Remark 3. If G is a clique to which we remove k edges, for some constant k, then the runtime of Lemma 3.2
can be improved to O(kn) as follows. First, in order to compute T(s2, S),T(s3, S), . . . ,T(sp, S), we scan the
neighbours of every vertex u ∈ V \ (N [s1] ∪ S) and we compute the least i such that si, u are adjacent (if it
exists). There are at most k vertices in V \N [s1]. Therefore, this can be done in O(kn) time. Furthermore,
in additional O(n) time we can also compute Vor(G,S). Then, given Vor(G,S), we can continue as in the
proof of Lemma 3.2 and compute all values µ1, µ2, . . . , µp in O(n) time. In order to compute the values
ℓπ(v, S + v) for every v /∈ S (and so, complete our algorithm), as explained in the proof of Lemma 3.2, it
now suffices to compute N(v) \N [S] for every v /∈ S. For that, let U = T(s1, S) \N [s1] be the set of vertices
of V \ S with no neighbour in S. Observe that, for every v /∈ S, N(v) \N [S] = N(v)∩U . In particular, the
subset N(v) ∩ U , for every v /∈ S, can be computed in O(|U |) = O(k) time.

We cannot extend Lemmas 3.1 and 3.2 any further because the graph constructed in the proof of Theo-
rem 2.8 has diameter three. Therefore, we can solve Balanced Vertex in linear time if the diameter is at
most two, while we cannot solve this problem in truly subquadratic time if the diameter is at least three.

Next, we consider paths and cycles. The problem becomes local, in the following sense. Let us subdivide
a path G in maximal subpaths whose every end is either a site of S or one of the two ends of G. See Fig. 3
for an illustration. Doing so, we can prove that there are at most two sites of S whose territory may be
modified upon inserting a new site v, namely, those at the ends of the maximal subpath containing v. In
particular, we can compute the load Lπ(S+ v), for every node v /∈ S, by applying to every maximal subpath
a classical partial sum trick for vector problems.

Lemma 3.3. We can solve Balanced Vertex in O(n) time if G is a path.
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π:

λ(i, j):

1 19 3 5 1 1 0 2 1 1 1 4 10

1 20 23 28 2 2 3 4 5 9
s1 s3 s2

P1 P2 P3

Figure 3: Subdivision of a path G in maximal subpaths with respect to the sites in S.

Proof. We first describe our algorithm. See Fig. 3 for an illustration.

1. We compute Vor(G,S) and the loads ℓπ(sj , S), for every j with 1 ≤ j ≤ p.

2. Let C1, C2, . . . , Cq be the connected components of G \ S. Note that we have q ≤ p + 1. For every i
with 1 ≤ i ≤ q, let Si = N(Ci), and let Pi be the subpath induced by N [Ci] = Ci ∪ Si. We stress that
|Si| = 2, except maybe if i ∈ {1, q} for which we may have |Si| = 1.

3. We consider each subpath Pi, with 1 ≤ i ≤ q, sequentially. In what follows, let Pi = (wi
0, w

i
1, . . . , w

i
ti−1).

• We compute Λi = maxs∈S\Si
ℓπ(s, S). Note that Λi equals the maximum load amongst the sites

of S \ Si. We show later in the proof that the territory of any site in S \ Si cannot be altered if
we add a new node v ∈ V (Pi) at the end of S.

• We compute λ(i, j) =
∑j

k=0 π(w
i
k), for every k with 0 ≤ k < ti.

Then, there are two different cases to be considered.

(a) Case |Si| = 1. Either i = 1, w1
0 /∈ S1 or i = q, wq

tq−1 /∈ Sq. We observe that both subcases
are symmetric up to reverting the path G. Therefore, we assume without loss of generality that
i = 1, w1

0 /∈ S1. In this situation, w1
0 is the leftmost end of path G, and S1 = {w1

t1−1}. For every
j with 0 ≤ j < t1 − 1, let jR =

⌈
t1−1+j

2

⌉
− 1. For every v ∈ Ci, we compute:

Λ(v) = max{Λ1, λ(1, jR), ℓπ(w
1
t1−1, S)− λ(1, jR)}

(b) Case |Si| = 2. We first compute jilim = max{j | 0 ≤ j < ti, wi
j ∈ T(wi

0, S)}. Note that if ti is

even, then we always have jilim = wi
ti/2−1. However, if ti is odd, then jilim ∈ {wi

(ti−3)/2, w
i
(ti−1)/2},

and the exact value depends on the respective positions of wi
0, w

i
ti−1 in S. Then, we consider each

node of Ci sequentially. In what follows, let j with 0 < j < ti − 1. Let jL =
⌊
j
2

⌋
+ 1, and let

jR =
⌈
t1−1+j

2

⌉
− 1. For every v ∈ Ci, we compute:

Λ(v) = max{Λi, λ(i, jR)− λ(i, jL − 1),

ℓπ(w
i
0, S)− λ(i, jilim) + λ(i, jL − 1),

ℓπ(w
i
ti−1, S)− λ(i, jR) + λ(i, jilim)}

4. Finally, we output a node v /∈ S such that Λ(v) is minimized.

Complexity. By Proposition 2.4, Step 1 of the algorithm can be done in O(n) time. Step 2 can be also done
in O(n) time. Then, for every i with 1 ≤ i ≤ q, in order to compute the value Λi, it suffices to totally order
the vertices of S by non-increasing load, and to search for the first such vertex that is not in Si. For that,
it is sufficient to only consider the max{|Si|+ 1, p} nodes of S with maximum load. Since we have |Si| ≤ 2
for every i with 1 ≤ i ≤ q, we can compute all values Λ1,Λ2, . . . ,Λq in O(n) time, simply by keeping track
of the max{3, p} nodes of S with maximum load. Let i with 1 ≤ i ≤ q be fixed. By dynamic programming,
we compute in O(ti) time the values λ(i, j), for every j with 0 ≤ j ≤ ti − 1. Then, we can compute in O(ti)
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time the values Λ(v), for every v ∈ Ci, simply by scanning once the path Pi and performing O(1) operations
for each node. Since we have

∑q
i=1 ti = O(n), the total running time for Step 3 is also in O(n).

Correctness. Let i be such that 1 ≤ i ≤ q, and let v ∈ Ci be arbitrary. We prove in what follows that
Λ(v) = Lπ(S + v). First we claim that Ci ∪ Si ⊆

⋃
{T(s, S) | s ∈ Si}. Indeed, suppose by contradiction

that some node u ∈ Ci belongs to T(s′, S), for some s′ ∈ S \ Si. The unique us′-path intersects Si, which
by Lemma 2.1 implies that T(s′, S) ∩ Si ̸= ∅, a contradiction. In the same way, we have T(v, S + v) ⊆ Ci ⊆⋃
{T(x, S + v) | x ∈ Si ∪ {v}}. This implies that for every s ∈ Si we have T(s, S + v) \ Ci = T(s, S) \ Ci,

while for every s′ ∈ S \ Si, we have T(s′, S) = T(s′, S + v). Hence, we obtain:

Lπ(S + v) = max ({ℓπ(s′, S + v) | s′ ∈ S \ Si} ∪ {ℓπ(x, S + v) | x ∈ Si ∪ {v}})
= max ({Λi} ∪ {ℓπ(x, S + v) | x ∈ Si ∪ {v}})

Clearly, T(v, S + v) = {u ∈ Ci | d(u, v) < d(u, Si)}. Let j with 0 ≤ j ≤ t1 − 1 and v = wi
j . There are two

cases to be considered:

• Case |Si| = 1. By symmetry, we may further assume i = 1, w1
0 /∈ S1. Then, C1 ⊆ T(w1

t1−1, S), and
by Lemma 2.3 we have T(v, S + v) = W (v, w1

t1−1) = {w1
0, w

1
1, . . . , w

1
jR
}. In particular, ℓπ(v, S + v) =∑jR

k=0 π(w
1
k) = λ(1, jR), and so ℓπ(w

1
t1−1, S + v) = ℓπ(w

1
t1−1, S)− λ(1, jR).

• Case |Si| = 2. In this situation, T(v, S + v) = {wi
jL
, wi

jL+1, . . . , w
i
jR
}. Therefore, ℓπ(v, S + v) =∑jR

k=jL
π(wi

k) = λ(i, jR) −
∑jL−1

k=0 π(wi
k) = λ(i, jR) − λ(i, jL − 1). By the definition of jilim we have

T(wi
0, S) ∩ Ci = {wi

1, . . . , w
i
jilim

} while T(wi
ti−1, S) ∩ Ci = {wi

jilim+1
, . . . , wi

ti−2}.

Furthermore, we claim that jL− 1 ≤ jilim ≤ jR. Indeed, let us first assume that j ≤ jilim. In particular,
jL − 1 ≤ j ≤ jilim. For every k with j ≤ k ≤ jilim, we have d(v, wi

k) < d(wi
ti−1, w

i
k), which follows from

d(wi
0, w

i
k) ≤ d(wi

ti−1, w
i
k) and v is on the wi

0w
i
k-path. Therefore, jilim ≤ jR. From now on, we assume

that jilim < j. In particular, jilim < jR. For every k with jilim < k ≤ j, we have d(v, wi
k) < d(wi

0, w
i
k),

which follows from d(wi
0, w

i
k) ≥ d(wi

ti−1, w
i
k) and v is on the wi

ti−1w
i
k-path. Therefore, jL ≤ jilim + 1.

As a result,

ℓπ(w
i
0, S + v) = ℓπ(w

i
0, S)−

jilim∑
k=jL

π(wi
k)

= ℓπ(w
i
0, S)−

(
λ(i, jilim)− λ(i, jL − 1)

)
and

ℓπ(w
i
ti−1, S + v) = ℓπ(w

i
ti−1, S)−

jR∑
k=jilim+1

π(wi
k)

= ℓπ(w
i
ti−1, S)−

(
λ(i, jR)− λ(i, jilim)

)
Overall, we proved that in both cases Λ(v) = Lπ(S + v). Therefore, the algorithm is correct.

Up to slight adjustments (e.g., in the special case where |S| = 1), we can directly apply to cycles our
techniques for paths. We prove it below.

Lemma 3.4. We can solve Balanced Vertex in O(n) time if G is a cycle.

Proof. Let us first assume that p = |S| = 1. Let (v0, v1, . . . , vn−1) be a cyclic ordering of the vertices, and
let us assume without loss of generality that S = (v0). We compute by dynamic programming the values

λ(j) =
∑j

k=0 π(vk), for every j with 1 ≤ j < n. It takes O(n) time. By symmetry, we only consider in what
follows the vertices vi with 0 < i ≤ n/2. In this situation, by Lemma 2.3,

T(vi, S + vi) = W (vi, v0) = {v⌊ i
2⌋+1, v⌊ i

2⌋+2, . . . , v⌈n−i
2 ⌉−1}.
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Let ℓi = λ(
⌈
n−i
2

⌉
− 1)− λ(

⌊
i
2

⌋
). Note that Lπ(S + vi) = max{ℓi, π(G)− ℓi}. Therefore, it suffices to output

a vertex vi with 1 ≤ i ≤ n/2 and such that max{ℓi, π(G)− ℓi} is minimized. The running time is in O(n).
From now on, we assume that p = |S| > 1. We compute Vor(G,S) and the loads ℓπ(sj , S), for every j

with 1 ≤ j ≤ p. By Proposition 2.4, this can be done in O(n) time. Let C1, C2, . . . , Cq be the connected
components of G\S. If q = 1, then p = 2 and the two vertices of S form an edge of the cycle. In this special
case we remove the edge induced by S and then we apply Lemma 3.3 to the resulting path. Thus from now
on we assume q > 1. For every i with 1 ≤ i ≤ q, let Si = N(Ci), and let Pi be the subpath induced by
N [Ci] = Ci ∪ Si. Note that the two vertices of Si are the two ends of Pi. We are done applying the exact
same procedure for each subpath Pi as in Lemma 3.3 (Step 3 of the algorithm for paths). The running time
is in O(n). Correctness follows from the exact same arguments as in the proof of Lemma 3.3, and it is even
simpler because the case |Si| = 1 cannot occur.

3.2 Trees

We now address the case of general trees. Unlike for paths, the number of former sites in S whose territory
is modified after insertion of a new site may be arbitrarily large. See Fig. 4 for an illustration. Fortunately,
we can use centroid decomposition in order to compute, for every v /∈ S, a set of O(log n) nodes that are on
the paths between v and the territories of all but O(log n) former sites in S. More precisely, given a tree T ,
we can summarize our strategy as follows:

1. We compute a centroid, i.e. a node c such that every connected component of T \{c} contains at most
n/2 nodes.

2. We process the unique site si ∈ S such that c ∈ T(si, S) (see Lemma 3.5);

3. We process all sites sj whose territories are on different connected components of T \ {c} than v (see
Lemmas 3.6 and 3.7);

4. Finally, we recursively apply our strategy in order to process all remaining sites whose territories are
on the same connected component of T \ {c} as v.

v
. . .

s1

s2

s3

s4

Figure 4: Beginning of the construction of a tree with p former sites in S and O(p2) nodes. There is a central
path with p nodes whose first node is v. Each former site si, with 2 ≤ i ≤ p, is connected to the central path
by a path of length 3i− 2. The thick edges represent the paths between the new site v and every node in its
territory. In particular, for every i with 2 ≤ i ≤ p, exactly one node is removed from the territory of si.
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Lemma 3.5. Let s be an arbitrary node in a tree T = (V,E). Let π : V → R≥0 be any cost function. We
can compute α(v) = π (W (v, s)), for every node v ∈ V , in O(n) time.

Proof. We root T at s. Then, we preprocess T in O(n) time so that the following holds for every node v:

• We store dT (v, s) — the level of node v;

• We store π(Tv) — the cost of all nodes in the subtree Tv rooted at v;

• For every i with 0 ≤ i ≤ dT (v, s), we can compute the ith-level ancestor of v in O(1) time [5].

We consider each node v ∈ V sequentially. Let dT (v, s) = 2q + ε, with ε ∈ {0, 1}. In this situation,
W (v, s) = Tx, with x the (q+1)th-level ancestor of v. In particular, we can compute x, and so, π(Tx) = α(v),
in O(1) time. Overall, the total running time is in O(n).

Let c be an arbitrary cut-vertex in a tree T (in our Theorem 3.8, this node c will always be a centroid
of the tree). The next two lemmas allow us to process, for all potential locations v for a new site, all former
sites in S whose territory is disconnected from v in T \ {c}. In particular, using Lemma 3.6 we can compute
the cost of all nodes in those territories that are closer to v than to S (and so, that would end up in v’s
territory). Using Lemma 3.7, we can compute the maximum load of those sites in the Voronoi diagram of T
with respect to S + v.

Lemma 3.6. Let c be an internal node in a tree T = (V,E), and let S be a proper vertex list. We can
compute β(v) =

∑
{π(x) | x ∈ V, c ∈ I(v, x) and d(x, v) < d(x, S)}, for every node v ∈ V \ {c}, in O(n)

time.

Proof. Let us first describe our algorithm:

1. In O(n) time, we compute d(x, S) and d(x, c) for every node x.

2. For every i with 0 ≤ i ≤ n, we compute a[i] =
∑

{π(x) | x ∈ V, d(x, c) + i < d(x, S)}. For that, we
start computing b[j] =

∑
{π(x) | x ∈ V, d(x, S) = d(x, c) + j}, for every j with 0 ≤ j ≤ n, simply by

scanning each node x once. Since a[i] =
∑

j>i b[j], we are done in additional O(n) time by dynamic
programming.

3. We consider each connected component C1, C2, . . . , Cq of T \ {c} sequentially. Let k with 1 ≤ k ≤ q be
fixed. For every i with 0 ≤ i ≤ |Ck|, we compute ak[i] =

∑
{π(x) | x ∈ Ck, d(x, c)+ i < d(x, S)}. This

can be done in O(|Ck|) time by using the exact same approach as for the prior step of the algorithm.
Finally, for every node v ∈ Ck, we set:

β(v) = a[d(v, c)]− ak[d(v, c)].

This can be computed in O(1) time per node of Ck, and therefore, in O(|Ck|) time.

The total running time of the algorithm is in O(n). In order to prove correctness of the algorithm, let
v ∈ V \ {c} be arbitrary. We have v ∈ Ck for some k with 1 ≤ k ≤ q. For every node x, we have
c ∈ I(x, v) if and only if x /∈ Ck. Furthermore, in this situation we have d(x, v) < d(x, S) if and only if
d(x, c) + d(c, v) < d(x, S). The sum of the costs of all nodes x such that d(x, c) + d(c, v) < d(x, S) is exactly
a[d(v, c)]. In order to compute β(v) from a[d(v, c)], we need to remove from the latter the sum of the costs
of all such nodes x with x ∈ Ck, that is exactly ak[d(v, c)].

Lemma 3.7. Let c be an internal node in a tree T = (V,E), and let S be a proper vertex list. We can
compute γ(v) = max{ℓπ(s, S+v) | s ∈ S, c /∈ T(s, S), c ∈ I(v, s)}, for every node v ∈ V \{c}, in O(n) time.
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Proof. Let C1, C2, . . . , Cq be the connected components of T \ {c}. For convenience, given any node v with
v ̸= c, we denote by C(v) the unique component Ci that contains v, for some i with 1 ≤ i ≤ q. We denote
by S′ the sublist obtained from S by erasing the unique site sc such that c ∈ T(sc, S). For every j with
0 ≤ j ≤ n, let us define, for every node s ∈ S′,

ℓj(s) = ℓπ(s, S)−
∑

{π(x) | x ∈ T(s, S) and d(x, s) > d(x, c) + j}.

Intuitively, ℓj(s) would be the load of s upon insertion of a new node v, with v /∈ C(s) and d(v, c) = j. In
particular, the following holds for every node v, with v ̸= c and d(v, c) = j: γ(v) = max{ℓj(s) | s ∈ S′\C(v)}.
Therefore, in order to compute γ(v), for every node v with v ̸= c, it suffices to compute the following
information for every j with 0 ≤ j ≤ n:

• a node sj maximizing ℓj(sj) within S′;

• a node s′j maximizing ℓj(s
′
j) within S′ \ C(sj).

For that, we first compute Vor(T, S), and the distances d(x, S) and d(x, c) for every node x. By Propo-
sition 2.4, this can be done in O(n) time. We order the nodes x, with x ̸= c, by nondecreasing values
d(x, S) − d(x, c), which can also be done in O(n) time by using counting sort. For every node s ∈ S′, let
λ(s) = ℓπ(s, S). Intuitively, at the end of each step j of our main procedure (presented next), we must have
λ(s) = ℓj(s). We now proceed as follows for every j with 0 ≤ j ≤ n:

• Case j = 0 (first step). Let X0 = {x ∈ V \ {c} | d(x, S) > d(x, c)}. We consider each node x ∈ X0

sequentially. Let s ∈ S be such that x ∈ T(s, S). If c /∈ T(s, S), then we set λ(s) = λ(s)−π(x). Finally,
we compute a vertex s0 (s′0, resp.) that maximizes λ(s0) (λ(s′0), resp.) within S′ (within S′ \ C(s0),
resp.).

• Case j > 0. Let Xj = {x ∈ V \ {c} | d(x, S) − d(x, c) = j}. We scan each node in Xj , computing
along the way a subset Sj of relevant nodes in S′. Initially, we set Sj = ∅. We consider each node
x ∈ Xj sequentially. Let s ∈ S be such that x ∈ T(s, S). If c /∈ T(s, S), then we add s in Sj , then we
set λ(s) = λ(s) + π(x). Finally, we compute a vertex sj (s′j , resp.) that maximizes λ(sj) (λ(s

′
j), resp.)

within Sj ∪ {sj−1} (within
(
Sj ∪ {sj−1, s

′
j−1}

)
\ C(sj), resp.).

Step 0 can be done in O(n) time. Furthermore, since we ordered all nodes x with x ̸= c by nondecreasing
values d(x, S)−d(x, c), all subsets X1, X2, . . . , Xn can be computed in O(n) time. Given Xj , for some j with
1 ≤ j ≤ n, Step j can be done in O(|Xj | + |Sj |) = O(|Xj |) time, provided we can compute in O(1) time,
for every x ∈ Xj the unique s ∈ S such that x ∈ T(s, S). That is indeed the case because we precomputed
Vor(T, S) in O(n) time. Overall, the running time is in O(

∑
j |Xj |) = O(|X0|) = O(n).

In order to prove correctness of the algorithm, we prove (as claimed above) that at the end of each step
j, we have λ(s) = ℓj(s), for every s ∈ S′. We prove it by induction on j. If j = 0, then at the end of step 0
we have:

λ(s) = ℓπ(s)−
∑

{π(x) | x ∈ X0 ∩ T(s, S)}

= ℓπ(s)−
∑

{π(x) | x ∈ T(s, S), d(x, S) > d(x, c)}

= ℓπ(s)−
∑

{π(x) | x ∈ T(s, S), d(x, s) > d(x, c)}

= ℓ0(s)

From now on, we assume that j > 0. By the induction hypothesis, we have λ(s) = ℓj−1(s) before we start
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step j. Therefore, at the end of step j we have:

λ(s) = ℓj−1(s) +
∑

{π(x) | x ∈ Xj ∩ T(s, S)}

= ℓj−1(s) +
∑

{π(x) | x ∈ T(s, S), d(x, S) = d(x, c) + j}

= ℓπ(s)−
∑

{π(x) | x ∈ T(s, S), d(x, s) > d(x, c) + j − 1}+
∑

{π(x) | x ∈ T(s, S), d(x, S) = d(x, c) + j}

= ℓπ(s)−
∑

{π(x) | x ∈ T(s, S), d(x, s) > d(x, c) + j}

= ℓj(s)

Finally, we need to prove the maximality of the selected nodes sj , s
′
j at each step j. We also prove it by

induction on j. This is straightforward if j = 0 because we consider all nodes of S′ (of S′ \ C(s0), resp.) in
order to compute s0 (s′0, resp.). From now on, we assume that j > 0. Suppose by contradiction the existence
of some node s ∈ S′, with s ̸= sj and ℓj(s) > ℓj(sj). In particular, s /∈ Sj , which implies ℓj(s) = ℓj−1(s).
But then, by induction on j,

ℓj(s) = ℓj−1(s) ≤ ℓj−1(sj−1) ≤ ℓj(sj−1) ≤ ℓj(sj).

A contradiction. We can prove similarly as above that s′j maximizes ℓj(s
′
j) within S′ \ C(sj).

We are now ready to prove the main result in this subsection:

Theorem 3.8. We can solve Balanced Vertex in O(n log n) time for trees.

Proof. Let T = (V,E) be an n-node tree, let π be any nonnegative cost function and let S be a proper vertex
list. We consider a more general problem, where every node v /∈ S is further assigned nonnegative values
λ(v),Λ(v) (initially, both values equal 0). Intuitively, we account for sites and territories in a supertree of T
but not in the tree T that we are currently considering. Let us define:

R(v) = max ({ℓπ(v, S + v) + λ(v),Λ(v)} ∪ {ℓπ(s, S + v) | s ∈ S}) .

Our algorithm in what follows compute all values R(v), for every v /∈ S. We may assume S ̸= ∅ (otherwise,
R(v) = max{λ(v) + π(T ),Λ(v)} for every node v). If V \ S is reduced to a unique node v, then we first
compute Vor(T, S + v), which by Proposition 2.4 can be done in O(n) time. Doing so, we can compute in
O(n) time the values ℓπ(v, S + v) and ℓπ(s, S + v), for every s ∈ S, and so, R(v). Thus, from now on we
assume that |V \ S| > 1. Our algorithm goes as follows:

1. We compute Vor(T, S). By Proposition 2.4, this can be done in O(n) time.

2. We compute a centroid, i.e. a node c such that every connected component of T \{c} contains at most
n/2 nodes. It can be done in O(n) time [18, p. 215]. If furthermore c /∈ S, then we compute R(c). It
can be done in O(n) time if we are given Vor(T, S+c). Therefore, by Proposition 2.4, we can compute
R(c) in O(n) time.

3. Let sc ∈ S be such that c ∈ T(sc, S). We locally define a modified cost function πc: obtained from
π by setting the cost of every node in V \ T(sc, S) to 0. Then, we compute α(v) =

∑
{π(x) | x ∈

W (v, sc) ∩ T(sc, S)}, for every v /∈ S, which can be done in O(n) time if we apply Lemma 3.5 for πc.
Note that we only use πc during this step (i.e., it is not used in the remainder of the algorithm).

4. We replace π with some new cost function π′ so that:

π′(x) =

{
π(x) if x /∈ T(sc, S)
0 otherwise.
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5. For every v with v /∈ S ∪ {c}, we compute the cost of all vertices x ∈ T(v, S + v) such that v, x are in
separate connected components of T \ {c}. Equivalently, we aim at computing β(v) =

∑
{π′(x) | c ∈

I(v, x) and d(x, v) < d(x, S)}, which can be done in O(n) time if we apply Lemma 3.6. For every v
with v /∈ S ∪ {c}, we further compute the maximum cost of a subset T(s, S + v), amongst all sites s
with s ̸= sc and v,T(s, S) are in separate connected components of T \ {c}. Equivalently, we aim at
computing γ(v) = max{ℓπ′(s, S + v) | c /∈ T(s, S), c ∈ I(v, s)}, which can be done in O(n) time if we
apply Lemma 3.7.

6. Let C1, C2, . . . , Cq be the connected components of T\{c}. We consider each component Cj sequentially,
for every j with 1 ≤ j ≤ q. Let Sj = (S \ {sc}) ∩ Cj . Let πj be the restriction of π′ to Cj . For every
v ∈ Cj , we define:

λj(v) = λ(v) + α(v) + β(v)

Λj(v) = max{Λ(v), ℓπ(sc, S)− α(v), γ(v)}
Rj(v) = max

(
{λj(v) + ℓπj

(v, Sj + v),Λj(v)} ∪ {ℓπj
(s, Sj + v) | s ∈ Sj}

)
We compute Rj(v) for every v ∈ Cj . For that, it suffices to apply our algorithm recursively on
Cj , πj , Sj , λj ,Λj . Finally, we set R(v) = Rj(v) for every v ∈ Cj .

The recursion depth is in O(log n) because at each stage the maximum number of nodes in a subtree
considered is halved. Since all subtrees considered at any recursion stage are node disjoint, the running time
of the stage is in O(n). Hence, the total running time is in O(n log n).

In order to prove correctness of the algorithm, it suffices to prove that for every j with 1 ≤ j ≤ q, for
every v ∈ Cj , Rj(v) = R(v). For that, by Lemma 2.3:

T(v, S + v) = {x ∈ V | d(x, v) < d(x, S)}

=
⋃

{W (v, s) ∩ T(s, S) | s ∈ S}

In particular,

λ(v) + ℓπ(v, S + v) = λ(v) +
∑
s∈S

π (W (v, s) ∩ T(s, S))

= λ(v) + π (W (v, sc) ∩ T(sc, S)) +
∑

s∈S\{sc}

π (W (v, s) ∩ T(s, S))

= λ(v) +
∑

{π(x) | x ∈ W (v, sc) ∩ T(sc, S)}+
∑

s∈S\{sc}

π (W (v, s) ∩ T(s, S))

= λ(v) + α(v) +
∑

s∈S\{sc}

π (W (v, s) ∩ T(s, S))

= λ(v) + α(v) +
∑

s∈S\{sc}

π′ (W (v, s) ∩ T(s, S))

= λ(v) + α(v) +
∑

s∈S\(Sj∪{sc})

π′ (W (v, s) ∩ T(s, S)) +
∑
s∈Sj

π′ (W (v, s) ∩ T(s, S))

= λ(v) + α(v) +
∑

{π′(x) | c ∈ I(v, x) and d(x, v) < d(x, S)}+
∑
s∈Sj

π′ (W (v, s) ∩ T(s, S))

= λ(v) + α(v) + β(v) +
∑
s∈Sj

πj (W (v, s) ∩ T(s, Sj))

= λj(v) + ℓπj
(v, Sj + v)
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For every s ∈ S, we have that T(s, S + v) = T(s, S) \W (v, s). Therefore,

max ({Λ(v)} ∪ {ℓπ(s, S + v) | s ∈ S}) = max ({Λ(v), ℓπ(sc, S + v)} ∪ {ℓπ(s, S + v) | s ∈ S \ {sc}})
= max

(
{Λ(v), ℓπ(sc, S)− α(v)} ∪ {ℓπ(s, S + v) | s ∈ S \ (Sj ∪ {sc})}

∪ {ℓπ(s, S + v) | s ∈ Sj}
)

= max ({Λ(v), ℓπ(sc, S)− α(v), γ(v)} ∪ {ℓπ(s, S + v) | s ∈ Sj})
= max

(
{Λj(v)} ∪ {ℓπj (s, Sj + v) | s ∈ Sj}

)
By combining both equalities, we obtain as desired R(v) = Rj(v).

Remark 4. In the recursive algorithm presented for trees, a site sc is discarded from S at every recursion
stage. Therefore, the running time of the algorithm is in O(n|S|), that is linear if |S| is a constant. This can
be improved to O(n log |S|) as follows: at every recursion stage, we compute a node c so that there are at
most |S|/2 sites in every connected component of T \{c}. It can be done in O(n) time because it is a special
case of weighted centroid computation [18, p. 215]. In doing so, the recursion depth goes down to O(log |S|).

3.3 Bounded-treewidth graphs

We generalize the results of the prior subsections to some increasing hierarchy of graph classes, namely,
graphs of bounded treewidth, but only for constantly many sites. Recall that a tree decomposition of a
graph G is a pair (T,X ), where T is a tree and X : V (T ) 7→ 2V (G) is a mapping that satisfies the following
properties:

• For every vertex v ∈ V (G), there exists a node t ∈ V (T ) such that v ∈ Xt;

• For every edge uv ∈ E(G), there exists a node t ∈ V (T ) such that u, v ∈ Xt;

• For every vertex v ∈ V (G), the node subset {t ∈ V (T ) | v ∈ Xt} induces a connected subtree of T .

The subsets Xt, for every node t ∈ V (T ), are called the bags of the tree decomposition. We define the width
of a tree decomposition as the largest size of its bags minus one. The treewidth of G is the minimum width
of its tree decompositions. In particular, graphs of unit treewidth are exactly the forests, and every cycle
has treewidth two.

Cabello and Knauer were the first to propose a reduction from some polynomial-time solvable distance
problems on bounded-treewidth graphs to orthogonal range queries [10]. We propose a novel application of
their framework to the Balanced Vertex problem with constant number of sites in S.

We only consider counting queries in what follows. In particular, a range query will always refer to a
counting orthogonal range query. Let P denote a n-set of k-dimensional points in Rk. Let also f : P 7→ R
be fixed. A box is the Cartesian product of k intervals. Finally, a range query asks to compute∑

{f(−→p ) | −→p ∈ P ∩ B}

for some box B. Bentley presented the k-range tree data structure in order to answer to range queries [6].
The performance analysis of the latter has been recently improved:

Lemma 3.9 ([8]). Let B(n, k) =
(
k+logn

k

)
. Given a n-set of k-dimensional points, and any weight function

f , a k-range tree can be constructed in O(k2B(n, k)n) time. Moreover, a range query can be answered in
O(2kB(n, k)) time.

Throughout this subsection, we write all running times as some functions of B(n, k). We refer to Remark 5
for a more detailed analysis of B(n, k).

Roughly, our strategy consists in mimicking our previous approach for trees. Specifically, centroids in a
tree decomposition of width at most k are balanced separators of size at most k. We generalize Lemma 3.6,
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for cut-vertices in trees, to the following Lemma 3.10 for k-separators. Our generalization makes use of range
queries. Intuitively, the function DS in the statement of Lemma 3.10 below represents the distances to the
sites of S in some supergraph of G. Some edges in G may have a positive integer weight larger than one,
that is in order to account for shortest paths in some supergraph of G. Then, the distances in G depend on
the edge weights.

Lemma 3.10. Given a graph G = (V,E, λ) with positive integer edge weights, and two nonnegative cost
functions π and DS, let A and B satisfy: A ∪ B = V , |A ∩ B| ≤ k and there is no edge between A \ B
and B \ A. We can compute δ(a,B) =

∑
{π(b) | b ∈ B \ A and d(b, a) < DS(b)}, for every a ∈ A \ B, in

O(km+ k2kB(n, k)n) time.

Proof. For convenience, let X = A ∩ B. We further assume for simplicity that |X| = k. Since we assume
that there is no edge between A \B and B \A, every path between a vertex of A and a vertex of B must go
through X. We first compute a shortest-path tree rooted at x, for every x ∈ X. Since all edge weights are
positive integer, this can be done in O(m) time per vertex in X, using Thorup’s single-source shortest-path
algorithm [27]. Let X = (x1, x2, . . . , xk) be totally ordered in some arbitrary way. We proceed as follows for
every i with 1 ≤ i ≤ k.

1. For every b ∈ B \X, we create a k-dimensional point
−−→
pi(b) = (pi,1(b), pi,2(b), . . . , pi,k(b)), where:{

pi,i(b) = DS(b)− d(b, xi)

pi,j(b) = d(b, xj)− d(b, xi) for every j with 1 ≤ j ≤ k, j ̸= i

Let f(
−−→
pi(b)) = π(b). We add all these points and their weights in some k-range tree. By Lemma 3.9,

this can be done in O(k2B(n, k)n) time.

2. For every a ∈ A \X, we aim at computing the cost δi(a,B) of all vertices b ∈ B \X with the following
properties: DS(b) > d(b, a), xi is on a shortest ab-path; no vertex of {x1, x2, . . . , xi−1} is on a shortest

ab-path. We can formulate these properties as range constraints for each coordinate of
−−→
pi(b), as follows:

pi,j(b) = d(b, xj)− d(b, xi) > d(a, xi)− d(a, xj), for every j with 1 ≤ j < i

pi,i(b) = DS(b)− d(b, xi) > d(a, xi)

pi,j(b) = d(b, xj)− d(b, xi) ≥ d(a, xi)− d(a, xj), for every j with i < j ≤ k

As a result, for a fixed a, we can compute the cost of all corresponding vertices of B \X with a single
range query, which by Lemma 3.9 can be answered in O(2kB(n, k)) time.

Finally, we compute δ(a,B) =
∑k

i=1 δi(a,B), for every a ∈ A \X.

Given a tree decomposition (T,X ) of width O(k), the following result is a combination of Lemma 3.10
with a centroid decomposition of T .

Lemma 3.11. Let S be an arbitrary vertex subset in a graph G = (V,E), and let π be any nonnegative cost
function. If G has treewidth at most k, then we can compute δ(v) =

∑
{π(u) | d(u, v) < d(u, S)}, for every

v ∈ V \ S, in O(k2O(k)B(n, k)n log n) time.

Proof. We consider a more general case where we are also given a positive integral edge weight function λ
(initially, we have λ(e) = 1 for every e ∈ E). We may assume that n > k + 1 (otherwise, we can compute
all values δ(v) in O(k2) time, if we use a brute-force algorithm). We may further assume that all distances
DS(v) = d(v, S), for every vertex v, are known throughout the entire procedure, which can always be ensured
by running a BFS on S before the algorithm starts. Let (T,X ) be a tree decomposition of G of width O(k).
Such a tree decomposition can be computed in O(2O(k)n) time [23]. We often use that m = O(kn).
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1. We compute some bag Xt, with t ∈ V (T ), such that every connected component of G \ Xt contains
at most n/2 vertices. Such a bag always exists and it can be computed in O(kn) time if (T,X ) is
given [13, Lemma 11.16]. For every x ∈ Xt \ S, we can compute δ(x) in O(m) = O(kn) time if we run
a BFS on x.

2. We group the connected components of G\Xt in two subsets A and B so that: A∪B = V , A∩B = Xt

and max{|A|, |B|} ≤ 2n/3. We apply Lemma 3.10 twice in order to compute δ(a,B) for every a ∈ A\Xt

(δ(b, A), for every b ∈ B \ Xt, resp.). This can be done in O(km + k2kB(n, k)n) = O(k2kB(n, k)n)
time.

3. Let GA (GB , resp.) be obtained from G[A] (G[B], resp.) by adding edges xx′ of weights d(x, x′), for
every two x, x′ ∈ Xt. The computation of all distances d(x, x′) can be done in O(km) = O(k2n) time,
if we run a BFS on every vertex of Xt. We apply our algorithm recursively to GA, GB in order to
compute the values δGA

(a) =
∑

{π(a′) | a′ ∈ A, d(a, a′) < DS(a
′)}, for every a ∈ A, and the values

δGB
(b) =

∑
{π(b′) | b′ ∈ B, d(b, b′) < DS(b

′)}, for every b ∈ B.

4. For every a ∈ A \ Xt, we set δ(a) = δ(a,B) + δGA
(a). In the same way, for every b ∈ B \ Xt, we set

δ(b) = δ(b, A) + δGB
(b).

The recursion depth is in O(log n). Each recursive stage can be done in O(k2kB(n, k)n) time (the running
time is dominated by Step 2). Therefore, the running time of the algorithm is in O(k2O(k)B(n, k)n log n).

Finally, we reduce Balanced Vertex with constant number of sites to Lemma 3.11.

Theorem 3.12. We can solve Balanced Vertex in O(k2O(k)B(n, k)n|S| log n) time if G has treewidth
at most k.

Proof. For every v /∈ S, our algorithm in what follows computes ℓπ(v, S + v) and all values ℓπ(s, S + v), for
every s ∈ S. Note that doing so, we can compute Lπ(S + v), for every v /∈ S, in additional O(n|S|) time.

1. We compute Vor(G,S). By Proposition 2.4, this can be done in O(m) time, that is in O(kn) if G has
treewidth k. Doing so, we can compute the loads ℓπ(s, S), for every s ∈ S, in additional O(n) time.

2. We apply Lemma 3.11 in order to compute ℓπ(v, S + v), for every v /∈ S.

3. We then consider each s ∈ S sequentially. We replace S by the list (s) with a unique site, and the cost
function π by a new cost function πs such that{

πs(u) = 0 if u /∈ T(s, S)
πs(u) = π(u) otherwise.

Note that we can compute the new cost function πs in O(n) time, that is because we are given
Vor(G,S). We apply Lemma 3.11 in order to compute, for every v /∈ S, π(W (v, s) ∩ T(s, S)). Doing
so, we can compute ℓπ(s, S + v) = ℓπ(s, S)− π(W (v, s) ∩ T(s, S)).

Overall, since we apply Lemma 3.11 |S|+ 1 times, the running time is in O(k2O(k)B(n, k)n|S| log n).

Remark 5. Bringmann et al. proved that for every ε > 0, there exists a constant c such that B(n, k) =
2cknε [8]. In particular, for every ε > 0, there exists a constant c′ such that the running time of our
algorithm for bounded treewidth graphs is in O(2c

′k|S|n1+ε). The exponential dependency on the treewidth
is necessary, even for one site, if one assumes the Hitting Set Conjecture. Indeed, the graph constructed in
the proof of Theorem 2.8 has treewidth O(log n).
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3.4 Proper interval graphs

We devote our last and arguably most technical subsection to proper interval graphs. Recall that an interval
graph is the intersection graph of a family of intervals on the real line. A realization of an interval graph G is
a mapping of its vertices to closed intervals on the real line, so that two vertices are adjacent in G if and only
if their corresponding intervals are intersecting. It is a proper realization if there are no two vertices such
that the interval of one is contained in the interval of the other. A proper interval graph is one admitting a
proper realization. Note that a proper realization can be computed in O(n+m) time [12].

Our scheme only applies to proper interval graphs, not to interval graphs, and it is good to explain why it
is so. Roughly, we would like to mimic the scheme for paths (see Lemma 3.3). A natural path representation
for the interval graphs is to order the vertices by nondecreasing left boundary, within some fixed realization.
Then, what we would like to prove is the existence of some constant κ (ideally, κ = 1) such that if we
insert a new site v at the end of S, then only the κ closest sites to v on the left and right of the path
representation could have their respective territories modified. Unfortunately, this is impossible due to the
potential existence of vertices whose interval covers an arbitrary number of other intervals. Therefore, we
restrict ourselves to proper realizations, for which the latter case cannot happen. Some important properties
of proper realizations are captured by the following distance formula:

Lemma 3.13 ([16]). Let G = (V,E) be a proper interval graph, and let x0 be the vertex with the minimum left
boundary in some proper realization of G. We can compute in O(n) time a total ordering σ : V → {1, . . . , n}
so that, for every vertices u and v with d(u, x0) ≤ d(v, x0):

d(u, v) =

{
d(v, x0)− d(u, x0) if d(u, x0) < d(v, x0) and σ(v) < σ(u)

d(v, x0)− d(u, x0) + 1 otherwise.

First, we combine Lemma 3.13 with orthogonal range queries (see Sec. 3.3) in order to precompute the
load of every new site in a prioritized Voronoi diagram. We could easily do so with 3-dimensional range
queries because, for every vertex u, we only need to memorize σ(u) and d(u, x0), d(u, S). However, we can
shave some polylogarithmic factors by reducing further down to 1-dimensional range queries. Indeed, a
1-range tree is just a balanced binary search tree2. In particular, by using a self-balanced binary search tree
implementation, we can serve range queries on a dynamic collection of values. Doing so, we only need to
store σ(u), for every vertex u, while other relevant distance information can be deduced contextually for the
vertices u that are currently stored in the search tree.

Lemma 3.14. Let G = (V,E) be a proper interval graph, let x0 be the vertex with the minimum left boundary
in some proper realization of G, and let σ be as in Lemma 3.13. For every nonnegative cost function π, and
every proper vertex list S, we can compute the values ℓπ(v, S + v), for every v /∈ S, in O(m+ n log n) time.

Proof. We first describe the algorithm.

1. We compute all distances d(v, x0), d(v, S), for every vertex v. Doing so, we partition V into distance
layers X0 = {x0}, X1 = N(x0), X2, . . . , Xe(x0), where e(x0) = maxv∈V d(x0, v) and, for every j with
0 ≤ j ≤ e(x0), Xj = {v ∈ V | d(x0, v) = j}. This can be done in O(n + m) time. Let us further
compute Vor(G,S), which by Proposition 2.4 can also be done in O(n + m) time. For convenience,
for every vertex v, we denote in what follows by sv the unique site of S such that v ∈ T(sv, S).

2. We consider each distance layerX0, X1, . . . , Xe(x0) sequentially. Throughout all iterations of this phase,
we maintain a counter Λ− and a balanced binary search tree T− such that the following invariants
hold before considering any layer Xj :

• Λ− =
∑

{π(u) | d(x0, u) < j, and d(u, su) > j − d(x0, u) + 1}.
Initially, Λ− = 0. Then, for every vertex u, we can precompute the values d(x0, u) + 1 and
d(u, su) + d(x0, u) − 1, which represent the layers for which we must add and remove π(u) from

2Values are stored at the leaves, but this feature is not important in our case.
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Λ−, respectively. Note that given the distance layers X0, X1, . . . , Xe(x0), and given Vor(G,S),
the values d(x0, u)+1 and d(u, su)+d(x0, u)−1 for every vertex u can be computed in total O(n)
time. Furthermore, if d(x0, u) = e(x0) or d(x0, u)+ 1 ≥ d(u, su)+ d(x0, u)− 1, then we never add
nor remove π(u) from Λ−. If d(u, su)+ d(x0, u)− 1 > e(x0), then we never remove π(u) from Λ−.
Since the cost π(u) of every vertex u needs to be added and removed from Λ− at most once, we
can maintain the counter Λ− throughout this whole phase in total O(n) time.

• we store in T− all vertices u such that: d(x0, u) < j, and d(u, su) = j − d(x0, su) + 1. A vertex u
is identified in T− with the value σ(u). Furthermore, at each vertex u in T− we store the sum of
the costs π(u′) of all vertices u′ in its rooted subtree.

Each vertex u is inserted and deleted from T− at most once. Standard implementations such as
AVL [2] can be easily modified in order to dynamically maintain the cost of rooted subtrees after
each insertion/deletion. As a result, we can maintain T− throughout this whole phase in total
O(n log n) time.

For every v ∈ Xj , we compute the cumulative cost of all vertices u ∈ T− such that σ(v) < σ(u). Since
every node of T− stores the cost of its rooted subtree, this can be done in O(log n) time by using range
searching techniques, namely: we search for the vertex u of T− such that σ(u) > σ(v) and σ(u) is
minimized, then we process the costs of all vertices on the path to the root and of their respective right
subtrees (details left out can be found, e.g., in [6, 8]). Let λ−(v) = Λ−+

∑
{π(u) | u ∈ T−, σ(v) < σ(u)}.

3. Roughly, we do the reverse of the previous phase. Specifically, we consider each distance layer
Xe(x0), Xe(x0)−1, . . . , X0 sequentially. Throughout all iterations of this phase, we maintain a counter
Λ+ and a balanced binary search tree T+ such that the following invariants hold before considering
any layer Xj :

• Λ+ =
∑

{π(u) | d(x0, u) > j, and d(u, su) > d(x0, u)− j + 1}.
• we store in T+ all vertices u such that: d(x0, u) > j, and d(u, su) = d(x0, su)− j + 1. A vertex u
is identified in T+ with the value σ(u). Furthermore, at each vertex u in T+ we store the sum of
the costs π(u′) of all vertices u′ in its rooted subtree.

For every v ∈ Xj , we compute the cumulative cost of all vertices u ∈ T+ such that σ(v) > σ(u). Let
λ+(v) = Λ+ +

∑
{π(u) | u ∈ T+, σ(v) > σ(u)}.

The total running time is in O(m+ n log n).

Let j with 0 ≤ j ≤ e(x0) be fixed. We set Π(j) =
∑

{π(u) | u ∈ Xj , d(u, su) > 1}. For every v ∈ Xj \ S,
we claim that we have

ℓπ(v, S + v) =

{
λ−(v) + λ+(v) + Π(j) if d(v, sv) > 1

λ−(v) + λ+(v) + Π(j) + π(v) else

Indeed, let u ∈ V \ {v} be arbitrary. There are three different cases:

• If d(u, x0) = j, then by Lemma 3.13, d(u, v) = 1. In particular, u ∈ T(v, S + v) if and only if
d(u, su) > 1. Therefore, the contribution to ℓπ(v, S + v) of all vertices u′ such that d(u′, x0) = j must
equal Π(j) if d(v, sv) > 1, and it must equal Π(j) + π(v) if d(v, sv) = 1.

• If d(u, x0) < j, then by Lemma 3.13, d(u, v) ∈ {j − d(u, x0), j − d(u, x0) + 1}. In particular, u /∈
T(v, S + v) if d(u, su) ≤ j − d(u, x0). Furthermore, u ∈ T(v, S + v) if d(u, su) > j − d(u, x0) + 1.
Otherwise, d(u, su) = j−d(u, x0)+1, and so we have u ∈ T(v, S+v) if and only if d(u, v) = j−d(u, x0),
which by Lemma 3.13 is equivalent to σ(v) < σ(u). As a result, the contribution to ℓπ(v, S + v) of all
vertices u′ such that d(u′, x0) < j must equal λ−(v).
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• Otherwise, d(u, x0) > j. By Lemma 3.13, d(u, v) ∈ {d(u, x0) − j, d(u, x0) − j + 1}. In particular,
u /∈ T(v, S + v) if d(u, su) ≤ d(u, x0) − j. Furthermore, u ∈ T(v, S + v) if d(u, su) > d(u, x0) − j + 1.
Otherwise, d(u, su) = d(u, x0)−j+1, and so we have u ∈ T(v, S+v) if and only if d(u, v) = d(u, x0)−j,
which by Lemma 3.13 is equivalent to σ(u) < σ(v). As a result, the contribution to ℓπ(v, S + v) of all
vertices u′ such that d(u′, x0) > j must equal λ+(v).

Our claim directly follows from this case analysis.

From another application of Lemma 3.13, where we process distance layers from x0 in a different way
than what we did for Lemma 3.14, we obtain the following complementary result:

Lemma 3.15. Let G = (V,E) be a proper interval graph, let x0 be the vertex with the minimum left boundary
in some proper realization of G, and let σ be as in Lemma 3.13. For every nonnegative cost function π, and
every proper vertex list S, we can compute the values Λ(v) = max{ℓπ(s, S + v) | s ∈ S}, for every vertex
v /∈ S, in O(m+ n log n) time.

Proof. We need some notations for what follows. Let e(x0) = maxv∈V d(x0, v). For every j with 0 ≤ j ≤
e(x0), let Xj = {v ∈ V | d(x0, v) = j}. Finally, for every vertex v, let sv be the unique site of S such that
v ∈ T(sv, S).

Roughly, the algorithm consists of two phases. During its first phase, we compute the Voronoi diagram
of G with respect to S, and we create a max-heap H storing all sites in S. Then, during the second and
main phase, we process the heap in order to compute Λ(v), for every v ∈ V \ S. More precisely, we iterate
over the distance layers X0, X1, . . . , Xe(x0) and, for every j with 0 ≤ j ≤ e(x0), we compute all values Λ(v),
for v ∈ Xj \ S, sequentially. Intuitively, when we consider a vertex v ∈ Xj \ S, the key of every site s in H
must be equal to ℓπ(s, S + v).

First Phase. We compute Vor(G,S), which by Proposition 2.4 can be done in O(n+m) time. We compute,
also in O(n + m) time, the distances d(x0, v), d(v, S) for every vertex v. Doing so, we can partition V in
X0, X1, . . . , Xe(x0). Finally, we create a max-heap H and, for every site s of S, we insert s into H with key
equal to

key(s) = ℓπ(s, S)

Given Vor(G,S), we can compute all the keys in O(n) time. Every insertion in a heap can be done in
O(log n) time. Therefore, we can initialize the heap H in O(n log n) time.

Throughout every loop j of the second phase, we maintain the following invariant for H: for every site s
of S,

key(s) = ℓπ(s, S)−
∑

{π(u) | u ∈ T(s, S) and d(u, su) > |j − d(u, x0)|+ 1}

Intuitively, this is because any such vertex u must be in the territory of v /∈ S, provided v ∈ Xj . For that,
before we start the jth loop, we need to actualize the keys of all sites. More precisely, for every vertex u:

• We claim that we must set key(su) = key(su)− π(u) if the following conditions hold:{
d(u, su) ≥ 2

j = max {0, d(u, x0)− d(u, su) + 2}

Indeed, if d(u, su) ≤ 1, then there is no j′ such that d(u, su) > |j′ − d(u, x0)| + 1. Otherwise, for
j ≤ d(u, x0), we have d(u, su) > d(u, x0)− j + 1 if and only if j > d(u, x0)− d(u, su) + 1.

• We claim that we must set key(su) = key(su) + π(u) if the following conditions hold:{
d(u, su) ≥ 2

j = d(u, su) + d(u, x0)− 1

Indeed, if d(u, su) ≥ 2 and j ≥ d(u, x0), then we have d(u, su) > j − d(u, x0) + 1 if and only if
j < d(u, su) + d(u, x0)− 1.
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For every vertex u, there are at most two loops such that we modify key(su). Furthermore, given the
distance layers X0, X1, . . . , Xe(x0), and given Vor(G,S), the indices j = max {0, d(u, x0)− d(u, su) + 2} and
j = d(u, su)+d(u, x0)−1 of these two loops can be precomputed in O(1) time. Therefore, we need to modify
any key O(n) times during the second phase. Overall, we can maintain our invariant throughout the second
phase in O(n log n) time.

Second Phase. We are now ready to describe the main loop of the algorithm. We consider each distance
layer X0, X1, . . . , Xe(x0) sequentially. Let j with 0 ≤ j ≤ e(x0) be fixed. We compute Λ(v) for every vertex
v ∈ Xj \ S.

For that, we define the frontier Fj , as follows:

Fj = {u ∈ V \Xj | d(u, su) = |j − d(u, x0)|+ 1}.

Intuitively, given a vertex v ∈ Xj \S, the vertices u in the frontier may or may not be in T(v, S+v) depending
on whether σ(u) is bigger or smaller than σ(v). Determining, for every site s, the vertices in Fj ∩ T(s, S)
that belong to v’s territory, is the main difficulty in our algorithm. In what follows, we find it convenient to
bipartition Fj in F<

j , F>
j such that:

F<
j = {u ∈ Fj | d(x0, u) < j}

F>
j = {u ∈ Fj | d(x0, u) > j}

We subdivide the loop in many intermediate steps:

1. For every site s of S, we set:

key(s) = key(s)−
∑

{π(u) | u ∈ F<
j ∩ T(s, S)}

Since we are given Vor(G,S), for every vertex u ∈ F<
j we can access to su in O(1) time; then, we can

decrease key(su) by π(u), and reordering the heap, in O(log n) time. Hence, this whole step can be
done in O(|F<

j | log n) time by scanning the vertices of F<
j .

2. We order the vertices of Fj ∪Xj according to σ. This can be done in O(|Fj | log n+ |Xj | log n) time by
using any fast sorting algorithm.

3. We scan the vertices of Fj ∪Xj by increasing σ values:

• Case of a vertex u ∈ F<
j . We set key(su) = key(su) + π(u).

• Case of a vertex u ∈ F>
j . We set key(su) = key(su)− π(u).

• Case of a vertex v ∈ Xj \ S. First, if d(sv, v) = 1, then we set key(sv) = key(sv)− π(v). We set
Λ(v) to be the maximum key in H. Finally, if d(sv, v) = 1, then we reset key(sv) = key(sv)+π(v).

This can be done in O(log n) time per vertex considered.

4. We reset the keys in H, namely, for every site s of S, we set:

key(s) = key(s) +
∑

{π(u) | u ∈ F>
j ∩ T(s, S)}

It takes O(|F>
j | log n) time.

The total running time for the jth loop, excluding the cost for maintaining our invariant for H, is in
O(|Fj | log n+ |Xj | log n). Furthermore, every vertex u can appear in the frontier Fj′ for at most two indices
j′, and both indices can be pre-computed in O(1) time per vertex. Hence, the overall running time of
the second phase is in O(n log n) plus the total cost for maintaining the invariant for H, which is also in
O(n log n).
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In order to prove correctness of our algorithm, let j with 0 ≤ j ≤ e(x0) be fixed. Let v ∈ Xj \ S be
arbitrary. In order to prove that we correctly computed Λ(v), it suffices to prove that at the time we consider
this vertex during the jth loop we have key(s) = ℓπ(s, S + v) for every site s of S. For that, recall that by
Lemma 3.13, for every vertex u ∈ Fj we have that |j − d(u, x0)| ≤ d(u, v) ≤ |j − d(u, x0)|+ 1. Furthermore,
d(u, v) = |j − d(u, x0)| if and only if: u ∈ F<

j and σ(u) > σ(v); or u ∈ F>
j and σ(u) < σ(v). As a result,

key(s) = ℓπ(s, S)−
∑

{π(u) | u ∈ T(s, S) and d(u, su) > |j − d(u, x0)|+ 1}

−
∑

{π(u) | u ∈ F<
j ∩ T(s, S)}

+
∑

{π(u) | u ∈ F<
j ∩ T(s, S) and σ(u) < σ(v)}

−
∑

{π(u) | u ∈ F>
j ∩ T(s, S) and σ(u) < σ(v)}

− 1[s = sv and d(s, v) = 1] · π(v)

= ℓπ(s, S)−
∑

{π(u) | u ∈ T(s, S) \ {v} and d(u, su) > |j − d(u, x0)|+ 1}

−
∑

{π(u) | u ∈ F<
j ∩ T(s, S) and σ(u) > σ(v)}

−
∑

{π(u) | u ∈ F>
j ∩ T(s, S) and σ(u) < σ(v)}

− 1[s = sv] · π(v)

= ℓπ(s, S)−
∑

{π(u) | u ∈ T(s, S) \ {v} and d(u, su) > |j − d(u, x0)|+ 1}

−
∑

{π(u) | u ∈ F<
j ∩ T(s, S) and d(u, v) = j − d(u, x0)}

−
∑

{π(u) | u ∈ F>
j ∩ T(s, S) and d(u, v) = d(u, x0)− j}

− 1[s = sv] · π(v)

= ℓπ(s, S)−
∑

{π(u) | u ∈ T(s, S) and d(u, v) < d(u, s)}

= ℓπ(s, S + v)

The following theorem summarizes our results in this subsection:

Theorem 3.16. We can solve Balanced Vertex in O(m+ n log n) time if G is a proper interval graph.

Proof. We compute a proper realizer, which can be done in O(n +m) time [12]. Then, in additional O(n)
time, we compute the vertex x0 of minimum left boundary and the ordering σ of Lemma 3.13. We are done
applying Lemmas 3.14 and 3.15.

4 Conclusion

In this paper, we introduced a new problem on graph Voronoi diagrams, and we completely settled its
complexity for general graphs under plausible complexity assumptions. We left open whether our conditional
time lower bound could also hold under weaker complexity hypotheses.

We proposed various ways to tackle with our new problem on tree-like and path-like topologies. In
this respect, two immediate questions following our work could be whether our results can be extended to
bounded-treewidth graphs with nonconstant number of sites, and to interval graphs.
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