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Reversal of the transverse force on a spherical bubble rising close to a vertical wall at moderate-to-high Reynolds numbers

The flow past a clean spherical bubble translating steadily parallel to a no-slip wall in a stagnant fluid is studied numerically over a wide range of moderate-to-high Reynolds numbers. We focus on situations where the distance separating the bubble from the wall is smaller than the size of the bubble to explore the competition between viscous and inertial effects in the gap. More precisely, the range of the wall distance considered is 1.1 L R 2 (L R being the distance from the bubble center to the wall normalized by the bubble radius), and that of the Reynolds number is 50 Re 1000 (Re being based on the bubble diameter and the slip velocity). In contrast to predictions based on potential flow theory, the numerical results reveal that, when the gap is smaller than a critical value that depends on the Reynolds number, the transverse force starts to decrease with decreasing separation and may finally reverse, changing from attractive to repulsive. This effect is found to be due to the strong shear generated in the gap, which, combined with the local transverse gradient of the streamwise velocity, results in a system of two counterrotating streamwise vortices and, consequently, a shear-induced lift pointing away from the wall. Computational results together with available high-Reynolds-number theory provide empirical expressions for the drag and transverse forces in the steady-state limit. Then the competition between the various transverse forces on a bubble bouncing close to the wall is examined, based on previously measured data for bubble trajectory. The central role of the history effects due to the misalignment between the wake and the instantaneous angle of the bubble path is confirmed. Computational results also reveal that, depending on the initial separation, a freely moving bubble may either reach a stable equilibrium position close to the wall or depart from the wall up to infinity.

I. INTRODUCTION

At moderate-to-high Reynolds numbers, a clean (i.e., surfactant-free) spherical bubble rising in a stagnant fluid bounded by a vertical wall is known to migrate towards the wall, provided that the initial separation is not too large. However, when the separation distance is small enough, the bubble is observed to bounce very close to the wall [START_REF] De Vries | Path and wake of a rising bubble[END_REF][START_REF] Hosokawa | Lateral migration of single bubbles due to the presence of wall[END_REF][START_REF] Takemura | The transverse force on clean and contaminated bubbles rising near a vertical wall at moderate Reynolds number[END_REF]. The migration toward the wall is well predicted by potential flow theory: the relative fluid velocity reaches a maximum in the gap, thus inducing an attractive transverse force, owing to the irrotational mechanism [START_REF] Van Wijngaarden | Hydrodynamic interaction between gas bubbles in liquid[END_REF][START_REF] Miloh | Hydrodynamics of deformable contiguous spherical shapes in an incompressible inviscid fluid[END_REF][START_REF] Legendre | Hydrodynamic interactions between two spherical bubbles rising side by side in a viscous liquid[END_REF]. The bouncing motion can be purely hydrodynamical, as the transverse force reverses when the bubble stands very close to the wall without touching it [START_REF] Takemura | The transverse force on clean and contaminated bubbles rising near a vertical wall at moderate Reynolds number[END_REF][START_REF] Sugioka | Direct numerical simulations of drag and lift forces acting on a spherical bubble near a plane wall[END_REF]. Therefore, it is expected that the flow in the gap, which becomes dominated by viscous effects when the separation is small enough, is responsible for this reversal.

A detailed understanding of the various mechanisms at play is difficult, since the lateral force balance on a bouncing bubble also involves time-dependent contributions resulting from the time variations of the flow disturbance [START_REF] Takemura | The transverse force on clean and contaminated bubbles rising near a vertical wall at moderate Reynolds number[END_REF][START_REF] Mougin | Wake-induced forces and torques on a zigzagging/spiralling bubble[END_REF]. As a first step towards a complete description of the phenomenon, we consider the flow past a spherical bubble moving steadily parallel to a wall in a stagnant fluid. By considering separation distances much smaller than the bubble radius, we expect to cover the transition from the attractive behavior to the near-wall repulsive behavior. The computational results for the drag and lift forces obtained in the steady-flow limit, together with the measured trajectory of a bouncing bubble from Ref. [START_REF] Takemura | The transverse force on clean and contaminated bubbles rising near a vertical wall at moderate Reynolds number[END_REF], are then used to evaluate the time-dependent contributions, in particular the history effects, to the lateral force balance. The results provided in this paper also provide a good starting point for the investigation of more complex near-wall bouncing motions, including, e.g., bubble-wall collision [START_REF] Zenit | The coefficient of restitution for air bubbles colliding against solid walls in viscous liquids[END_REF], bubble deformation [START_REF] Jeong | Near-wall rising behaviour of a deformable bubble at high Reynolds number[END_REF], and bubble clustering [START_REF] Tiwari | Growth-and-collapse dynamics of small bubble clusters near a wall[END_REF].

The paper is organized as follows. In Sec. II we formulate the problem, specify the considered range of parameters, and outline the numerical approach, which is essentially similar to that employed in Refs. [START_REF] Shi | Hydrodynamic forces on a clean spherical bubble translating in a wall-bounded linear shear flow[END_REF][START_REF] Shi | Drag and lift forces on a rigid sphere immersed in a wall-bounded linear shear flow[END_REF]. Section III discusses the evolution of the velocity and vorticity fields with the wall distance and Reynolds number. Section IV is devoted to an extensive analysis of the numerical results obtained for the hydrodynamic forces acting on the bubble. Concluding remarks are given in Sec. V.

II. STATEMENT OF THE PROBLEM AND OUTLINE OF THE NUMERICAL APPROACH

In this study, we examine the steady-state hydrodynamic force acting on a clean spherical bubble rising parallel to a wall in a stationary liquid. The problem is analyzed in a reference frame moving with the bubble, rendering the bubble stationary while the surrounding fluid and the no-slip wall move at a constant velocity. We define a Cartesian coordinate system (Oxyz) with the origin located at the center of the bubble, as illustrated in Fig. 1. In this coordinate system, the bubble is stationary, and the ambient flow is U ∞ = U ∞ e y . The wall is located at x = -L, and e x denotes the wall-normal unit vector pointing into the fluid. The fluid velocity and pressure fields in the presence of the bubble are denoted by u and p, respectively, and ω = ∇ × u denotes the vorticity.

The flow past the bubble is assumed to be governed by the incompressible Navier-Stokes equations:

∇ • u = 0, ∂u ∂t + u • ∇u = - 1 ρ ∇ p + ∇ • τ, ( 1a,b) 
where τ = ν[∇u + T ∇u] is the viscous part of the stress tensor = -pI + ρτ, and ρ is the fluid density, with I denoting the Kronecker tensor. In the reference frame attached to the center of the bubble, the disturbance vanishes both at the wall and in the region far away from the bubble, namely,

u = U ∞ e y for x = -L ∪ r → ∞, (2) 
where r = (x 2 + y 2 + z 2 ) 1/2 denotes the distance to the bubble center. On the bubble surface, the normal velocity must vanish, owing to the nonpenetration condition. Moreover, the dynamic viscosity of the gas within the bubble is assumed to be much smaller than that of the ambient liquid, and the bubble surface is considered to be free of any surfactant, so that the outer fluid adheres to a shear-free condition at the interface. Last, we assume the surface tension is strong enough for the capillary force to maintain the bubble's sphericity, regardless of the local strength of the hydrodynamic stresses. Under such conditions, the boundary conditions at the bubble surface are

u • n = 0 n × (τ • n) = 0 for r = R, ( 3 
)
where n denotes the outward unit normal to the bubble surface and R is the bubble radius. Under the above boundary conditions, the steady solution of the problem depends on two characteristic parameters: namely, the Reynolds number Re and the wall distance L R . They are defined as

Re = U ∞ (2R) ν , L R = L R . ( 4 
)
To achieve a systematic investigation, we have considered 10 Re 1000 and 1.1 L R 10.

Nevertheless, a majority of the results presented herein focus on 50 Re 1000 and 1.1 L R 2 since our aim is to elaborate on the hydrodynamic interaction between the bubble and the wall in the moderate-to-high Re regime. We are particularly interested in obtaining the hydrodynamic force acting on the bubble. This force may be split into its drag component F D , parallel to e y , and its lift or transverse component F L , parallel to e x . We thus define

F D = e y • • n d , F L = e x • • n d , (5) 
where is the bubble surface. Results concerning these forces will be expressed in terms of the dimensionless lift and drag coefficients, C L and C D , obtained by dividing the corresponding component of the force by π R 2 ρU 2 ∞ /2. Note that a negative (respectively, positive) value of the lift coefficient corresponds to an attractive (respectively, repulsive) force with respect to the wall.

The numerical simulations are carried out with the JADIM code developed at IMFT [START_REF] Magnaudet | Accelerated flows past a rigid sphere or a spherical bubble. Part 1. Steady straining flow[END_REF][START_REF] Calmet | Large-eddy simulation of high-Schmidt number mass transfer in a turbulent channel flow[END_REF][START_REF] Legendre | The lift-force on a spherical bubble in a viscous linear shear flow[END_REF]. The computational domain is cylindrical, and the bubble center stands on the axis of the cylinder. The no-slip wall coincides with one base of the cylinder, while the unperturbed far field is approached at the other base and at the cylindrical surface. More details about the grid system are given in the Appendix. The reader is referred to Refs. [START_REF] Shi | Hydrodynamic forces on a clean spherical bubble translating in a wall-bounded linear shear flow[END_REF][START_REF] Shi | Drag and lift forces on a rigid sphere immersed in a wall-bounded linear shear flow[END_REF] for numerical aspects concerning the specificities of the code and the boundary conditions. The major difference in the present problem compared to the previous ones in Refs. [START_REF] Shi | Hydrodynamic forces on a clean spherical bubble translating in a wall-bounded linear shear flow[END_REF][START_REF] Shi | Drag and lift forces on a rigid sphere immersed in a wall-bounded linear shear flow[END_REF] is that much smaller wall distances have been considered in this work. To properly resolve the boundary layer that develops along the wall, the grid in the gap is highly refined. A systematic grid study was carried out to achieve grid-independent results, as detailed in the Appendix.

III. FLOW AND VORTICITY FIELDS

Figure 2 illustrates the structure of the spanwise vorticity ω z = ω • e z and the streamline in the symmetry plane z = 0. Vorticity is generated both at the bubble surface, due to the finite interface curvature, and at the wall, owing to the no-slip condition. In the discussion that follows, the contributions from these two distinct boundaries are designated as surface vorticity and wall vorticity, respectively. The typical structures of these two different vortical contributions can be clearly observed in Fig. 2(c), where the interaction between them is weak, due to the moderate wall distance (L R = 1.25) and the high Reynolds number (Re = 500) involved. In this case, the surface vorticity exhibits opposite signs depending on x and, for the structure shown in the symmetry plane z = 0, is nearly symmetric with respect to x = 0. The wall vorticity features a positive thread (in which ω z > 0) concentrated in the gap and advected away from the wall, and a negative thread that adheres to the wall, spanning a larger distance downstream in the wake. As Re decreases, the 023601-3 FIG. 2. Isocontours of the normalized spanwise vorticity (R/U ∞ )ω • e z as well as the streamlines in the symmetry plane z = 0. The wall is situated at the bottom of each panel. The relative flow with respect to the bubble proceeds from left to right. thicknesses of the boundary layers at the wall and at the bubble surface increase, enhancing the vortical interaction between them. As observed in Figs. 2(a The vortical interaction depicted at L R = 1.125 differs notably from that at L R = 1.25. First, it can be observed from the streamlines shown in Figs. 2(d)-2(f) that, downstream in the wake, the fluid elements on the unbounded side are strongly entrained towards negative x, causing the positive surface vorticity to bend towards the wall. Specifically, at Re = 200 and L R = 1.125 [Fig. 2(e)], this shift is sufficiently pronounced such that the positive surface vorticity reaches the lower half of the bubble and is further advected downwards. Given that the generation of the negative thread of the surface vorticity is substantially suppressed by the wall, the surface vorticity maintains a constant sign in the bubble wake. The shift is not obvious at Re = 500 [Fig. 2(f)], yet the development of the surface vorticity at the lower half of the bubble remains suppressed by the wall. Consequently, the structure of the surface vorticity is strongly asymmetric, which contrasts with the nearly axisymmetric wake structure that persists for L R = 1.25 [Fig. 2(c)].

Another intriguing perspective of the flow is depicted in Fig. 3, illustrating the distribution of the streamwise relative fluid velocity u y = u • e y along the x-axis. According to the potential flow theory, the wall proximity induces an acceleration of the flow in the gap. This is qualitatively validated by the present simulation results at Re = 500, where the maximum velocity exhibits a rapid increase with a decrease in L R for L R 1.15. Nonetheless, this increment does not persist at smaller separations (L R 1.15), and the maximum velocity even decreases when L R decreases from 1.125 to 1.1. This contradictory behavior can be attributed to the vortical interaction in the gap [Fig. 2(f)], which attenuates the flow acceleration in the region proximal to the lower half of the bubble. For the same reason, the maximum velocity at a given L R decreases with decreasing Re. For instance, for L R = 1.125, this maximum achieves 1.87U ∞ at Re = 500, while it is only 1.22U ∞ at Re = 50. Additionally, the critical wall distance L R,C1 (Re), below which the maximum velocity start to decrease, increases with a reduction in Re. For instance, we observe that L R,C1 (200) ≈ 1.15, while L R,C1 (100) ≈ 1.25. In all scenarios, the velocity on the unbounded side is only marginally influenced by the presence of the wall.

The downward bending (i.e., towards -x) of the flow in the wake revealed from Fig. 2 can be better understood by examining the streamwise vorticity, ω y = ω • e y . This is illustrated in Fig. 4 which displays the ω y -distribution in the region excluding the wall boundary layer, i.e., for x -1. The streamwise vorticity is concentrated within two elongated vortices situated on both sides of the symmetry plane z = 0. The fluid located between the two vortex threads is entrained downwards, as revealed from the streamlines shown in Fig. 2. Not shown in Fig. 4 is the ω y -distribution in the wall boundary layer. As previously discussed in Ref. [START_REF] Shi | Hydrodynamic forces on a clean spherical bubble translating in a wall-bounded linear shear flow[END_REF], two counterrotating "pancake" streamwise vortices are present there. The orientation of these two vortices is opposite to their counterparts in the bubble wake. The two pancake vorticities are pronounced in the gap, bending the positive component of the wall vorticity away from the wall, as observed in Fig. 2.

The generation of streamwise vorticity in the wake is closely related to the vortical interaction in the gap, as in the corresponding unbounded case, the flow is axisymmetric irrespective of Re [START_REF] Blanco | The structure of the axisymmetric high-Reynolds number flow around an ellipsoidal bubble of fixed shape[END_REF]. In the limit L R → 1, the vortical wall-bubble interaction is pronounced, and the flow in the 

l = (U max -U ∞ )(L -R) ν = Re 2 U max U ∞ -1 (L R -1), (6) 
where U max is the maximum streamwise relative fluid velocity in the gap. At a given Re, the value of U max depends only weakly on L R for L R 1.25 (see Fig. 3). Therefore, the proximity to the wall decreases Re l , enhancing the vortical interaction and, consequently, the generation of streamwise vorticity as observed in Fig. 4. However, at a given L R , Re l monotonically increases with increasing Re, indicating that ω y decreases as Re increases. This is indeed the case for Re beyond Re c ≈ 200 (respectively, 100) at L R = 1.125 (respectively, 1.25). However, a gradual increase in ω y with increasing Re for Re < Re c is also observed in Fig. 4. This contradicting behavior at moderate Re may be understood by noting that the vortical interaction depends not solely on Re l , but also on the vorticity generated at the bubble surface and at the wall. In this context, it is noted that while the surface vorticity rapidly saturates at 3U ∞ /R, the wall vorticity at moderate Re l is proportional to Re 1/2 l . This suggests that the Re 1/2 l increase in the wall vorticity contributes significantly to the ω y generation at moderate Re.

To better understand the relationship between vortical interactions and the generation of the streamwise vorticity, we examine the budget equation of ω y :

D Dt - ∂u y ∂y ω y -ν∇ 2 ω y = ω z ∂u y ∂z + ω x ∂u y ∂x = - ∂u x ∂y ∂u y ∂z S 1 + ∂u z ∂y ∂u y ∂x S 2 , ( 7 
)
where D/Dt = ∂/∂t + u • ∇ represents the material derivative and u i = u • e i and ω i = ω • e i (with i = x, y, z) are projections along i of the velocity and vorticity, respectively. In Eq. ( 7), the generation of ω y is attributed to two distinct contributions, namely S 1 and S 2 , which are dot products of different velocity gradients. When the flow is unbounded, the two streamwise gradients are symmetric with respect to the plane x = 0 and decay rapidly in the bubble wake at large but finite Re. The presence of the wall mitigates their decay, maintaining finite values for S 1 and S 2 within the lower part of the bubble wake.

Figure 5 displays the values of S 1 and S 2 , and their sum in the cross-stream plane y/R = 1/2 at L R = 1.125. Alongside the vortical structure depicted in Fig. 2, S 1 is confined within the boundary layer at the bubble's lower half, while S 2 is delicate and maintains finite values within the boundary layers both at the bubble surface and the wall. Since S 1 is positive (respectively, negative) in the half-plane z > 0 (respectively, z < 0), it serves to amplify the streamwise vortex threads visible in Fig. 4. Conversely, S 2 opposes S 1 , but due to its comparatively mild intensity, the sign of S 1 + S 2 mostly mirrors that of S 1 . The variation of the sum with respect to Re is in accordance with that experienced by ω y [Figs. 4(e)-4(h)]. In particular, for Re increases from 100 to 200, the maximum of

|S 1 + S 2 | in the plane y/R = 1/2 is increased from 1.2(U ∞ R) 2 to 1.4(U ∞ R) 2 .

IV. HYDRODYNAMIC FORCES

A. Drag force

Figure 6(a) displays the numerical results for the drag coefficient C D as a function of the Reynolds number at various wall distances L R . The results at L R = 40 align well with those in the unbounded limit, C D0 , predicted using the correlation proposed in Ref. [START_REF] Mei | A note on the history force on a spherical bubble at finite Reynolds number[END_REF]. This indicates that the unperturbed far field is satisfactorily approached at a distance r = 40R from the bubble center. Comparison of the results at smaller L R with those at L R = 40 elucidates that the wall effects are only pronounced for L R 1.5, where the drag increases rapidly with closer wall proximity, especially when Re is large.

023601-6 FIG. 5. Isocontours of the source terms S 1 , S 2 , and S 1 + S 2 in Eq. ( 7) at the cross-stream plane y/R = 1/2 for L R = 1.125. All terms are rendered dimensionless via multiplication by (R/U ∞ ) 2 . The wall is situated at the bottom of each panel, while the relative flow with respect to the bubble is oriented inwards, along the y axis.

To highlight the drag alteration due to the wall effects, Fig. 6 denotes the present numerical results. (a) --, semiempirical correlation (Re/16)C D0 = 1 + [8/Re + 1/2(1 + 3.315Re -1/2 )] -1 proposed in Ref. [START_REF] Mei | A note on the history force on a spherical bubble at finite Reynolds number[END_REF]. (b) * , numerical results from Ref. [START_REF] Shi | Hydrodynamic forces on a clean spherical bubble translating in a wall-bounded linear shear flow[END_REF]; ----, Eq. 8(a) with h D = 0;--, Eq. 8(a) with h D given by Eq. (8b). 023601-7 FIG. 7. Lift coefficient C L as a function of the wall distance L R -1. , present numerical results;--, C L prediction from Eq. ( 10) with h L = 0; different colors denote different Re. in Ref. [START_REF] Shi | Hydrodynamic forces on a clean spherical bubble translating in a wall-bounded linear shear flow[END_REF], derived from data for L R 1.25:

C D = 0.47L -4 R + 5.5 × 10 -3 L -6 R Re 3/4 .
Not surprisingly, the quantitative agreement with the present results deteriorates for L R < 1.2 where C D is underestimated for Re 100. This underestimation may be understood by noting that the vortical interaction between the boundary layers at the wall and the bubble surface is still significant at small L R [Figs. 2(e) and 2(f)]. Based on the present numerical results, we find it feasible to extend the previous expression to situations with L R down to 1.1 using

C D = 0.47L -4 R + 5.5 × 10 -3 L -6 R Re 3/4 + h D (Re, L R ), ( 8a 
)
h D (Re, L R ) = exp(-7 × 10 3 Re -2 )[1.2 × 10 -4 (L R -1) -7/2 ]. ( 8b 
)
As seen in Fig. 6(b), the extended expression significantly improves the agreement at smaller L R . Throughout the ranges of parameters considered in this work, the deviation between the predicted drag coefficient using Eqs. [START_REF] Mougin | Wake-induced forces and torques on a zigzagging/spiralling bubble[END_REF] and the numerical results is always less than 5%.

B. Transverse force

Figure 7 shows the variation in the lift coefficient as a function of the wall distance for 50 Re 500. Note that the horizontal axis of this plot involves the quantity L R -1 because this choice is more appropriate to exhibit the rapid C L in the limit L → 1 where the bubble comes in contact with the wall. The most feature revealed by this plot that for any considered Re, the magnitude of the transverse force starts to decrease with decreasing separation when L R is smaller than a critical value that depends on the Reynolds number. Then, when Re is not too large, there is a second critical wall distance L R,C2 smaller than which the lift force reversals from attractive to repulsive. Our numerical results indicate that, for Re increases from 50 to 200, L R,C2 decreases from 1.3 to around 1.1.

The reversal of the transverse force is due to the vortical interaction between the bubble and the wall as discussed in Sec. III. In particular, the two counterrotating streamwise vortices shown in Fig. 4 are known to produce a lift force directed away from the wall [START_REF] Auton | The lift force on a spherical body in a rotational flow[END_REF]. To better understand this vortical contribution, let us first consider the case of two identical bubbles rising side-by-side in a stagnant fluid. According to potential flow theory, each bubble experiences an attractive transverse 023601-8 FIG. 8. Results for h L (Re, L R ) as a function of the Reynolds number. Symbols: h L computed from present numerical results; dashed lines: the Re 3/2 and Re -1/2 scaling; solid lines: empirical expression Eq. [START_REF] Tiwari | Growth-and-collapse dynamics of small bubble clusters near a wall[END_REF].

force with the corresponding lift coefficient being [START_REF] Van Wijngaarden | Hydrodynamic interaction between gas bubbles in liquid[END_REF][START_REF] Miloh | Hydrodynamics of deformable contiguous spherical shapes in an incompressible inviscid fluid[END_REF] C L,pot ≈ -

3 8 L -4 R 1 + 1 8 L -3 R + 1 6 L -5 R + 3 256 L -6 R + 15 128 L -7 R + 11 384 L -8 R - 3 8 L -4 R 65 1024 L -9 R + 767 9216 L -10 R + 0.3L -25 R . (9) 
Then, at large but finite Re, weak viscous effects in the gap are known to produce a positive contribution to the lift coefficient with a magnitude of 15Re -1 L -4 R [START_REF] Legendre | Hydrodynamic interactions between two spherical bubbles rising side by side in a viscous liquid[END_REF]. Although the problem considered in the present work is different from the one in Ref. [START_REF] Legendre | Hydrodynamic interactions between two spherical bubbles rising side by side in a viscous liquid[END_REF], it still seems reasonable to treat the transverse force as a combination of two distinct contributions: one due to the irrotational mechanism and the other due to the vortical interaction. We introduce the function h L (Re, L R ) such that the lift coefficient in the presence of a no-slip wall can be expressed in the form

C L = C L,pot + 15Re -1 L -4 R [1 + h L (Re, L R )], (10) 
where C L,pot is the potential prediction by Eq. ( 9). To get a first idea about the role of h L , we compare the prediction from Eq. ( 10) using h L = 0 with the numerical results. As seen in Fig. 7, the prediction agrees well with the numerical results obtained at large L R where C L is negative and decreases with decreasing L R . However, the agreement deteriorates when C L according to the numerical data reincreases with decreasing L R , indicating that h L reaches significant positive values at small L R . We then compute h L using Eq. (10) based on the numerical results for C L .

The obtained h L are shown in Fig. 8 for L R up to 1.3. For L R > 1.3, the leading-order vortical contribution 15Re -1 L -4 R becomes small, and numerical inaccuracy in the estimated h L cannot be excluded. We observe from Fig. 8 that h L at a given Re increases with decreasing L R , especially when Re is large. Conversely, at a given L R , h L initially increases with increasing Re and, for Re beyond a critical value that decreases with increasing L R , redecreases as Re increases. Thus, we attempt to propose two different semiempirical expressions for h L that are locally valid at moderate and high Reynolds numbers, respectively, and then combine them to develop a general expression. For Re 100, the gradual increase in h L with increasing Re aligns with the increase in the wall vorticity, which increases as Re 1/2 , leading us to expect h L to scale with Re 3/2 . Then, at large but finite Re (Re 500), the wake past the bubble does not interact significantly with the wall, and the bubble perceives the wall as a symmetry plane. In this case, weak viscous effects in the gap result in a correction to the irrotational solution [START_REF] Legendre | Hydrodynamic interactions between two spherical bubbles rising side by side in a viscous liquid[END_REF]. Adjacent to the leading-order term, the Re correction is of O(Re -3/2 ), making h L to scale with Re -1/2 . The two dashed lines in Fig. 8 [START_REF] Legendre | Hydrodynamic interactions between two spherical bubbles rising side by side in a viscous liquid[END_REF] for two bubbles rising side-by-side; the gray area corresponds to the subregion of initial wall distance L R,i for which the bubble migrates away from the wall up to infinity, while the white area is the basin of attraction of the stable equilibrium position L R,1 (Re ∞ ).

-, L R,1 (Re ∞ ); ----, L R,2 (Re ∞ ); • • • • • •, L R,2 (Re ∞ ) obtained in Ref.
scaling laws concerning Re. Based on the data at Re = 50 and 500, we find it appropriate to scale h L with the wall distance as L -5 R at moderate Re and as (L R -1) -7/2 at high Re. Consequently, we propose a general expression for h L in the form

h L (Re, L R ) = aRe 3/2 L -5 R c T + bRe -1/2 (L R -1) -7/2 (1 -c T ), with (11a) 
a = 0.0045, b = 0.05, c T = tanh[0.3 × 10 5 Re -3 (L R -1) -2 ], (11b) 
As depicted in Fig. 8, Eq. ( 11) shows good agreement with the numerical results across the considered range of Re.

C. Equilibrium position

We observed in Fig. 7 that the transverse force might change its sign at a critical wall distance, provided that Re is not too large. According to our computational results, the critical Re below which this force reversal is observed is around 250. Figure 9(a) illustrates how the sign of the transverse force evolves in the plane (Re, L R ). Note that, to acquire a more general picture of this force evolution, we have extended the range of parameters by considering Re down to 10 and L R up to 10. Given the small values of C L for 2 L R 10, two steps have been carried out to enhance the numerical accuracy in these instances. First, the computational domain along the unbounded side has been extended up to R ∞ = 100R (instead of using R ∞ = 40R as for cases where L R < 2) to avoid confinement effects. Second, the number of cells along the azimuthal direction has been doubled (N ϕ = 128 instead of N ϕ = 64) to further increase the resolution along ϕ (see the Appendix for the grid details). According to Fig. 9(a), the transverse force is always repulsive when the Reynolds number is lower than a critical value Re REP ≈ 37.5 (based on linear interpolation) corresponding to an equilibrium wall distance L R,c (Re REP ) ≈ 2. This is consistent both with the low-Reynolds number solution [START_REF] Takemura | Drag and lift forces on a bubble rising near a vertical wall in a viscous liquid[END_REF][START_REF] Magnaudet | Drag, deformation and lateral migration of a bouoyant drop moving near a wall[END_REF], according to which the transverse force is repulsive in this Re regime irrespective of L R , and with the experimental study of Ref. [START_REF] Takemura | The transverse force on clean and contaminated bubbles rising near a vertical wall at moderate Reynolds number[END_REF] where the critical Reynolds number below which the transverse force is always repulsive was found to be Re REP ≈ 35.
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Our computational results facilitate addressing the fate of a bubble with a given diameter, and therefore a given Re ∞ , released at an initial wall distance L R,i , moving under the effect of buoyancy. Assuming that the vertical drag force precisely balances the buoyancy force, the quantity Re 2 C D (Re, L R ) remains constant, this constant being determined by the value of the Galileo number Ga = gR 3 /ν 2 , with g denoting gravity. Taken together with the drag expression in the unbounded limit proposed by Ref. [START_REF] Mei | A note on the history force on a spherical bubble at finite Reynolds number[END_REF], the map of the force evolution in the plane (Re, L R ) [Fig. 9(a)] is transformed into the plane (Re ∞ , L R ), as displayed in Fig. 9(b). A key change compared with Fig. 9(a) is that all data points with a given L R are shifted rightwards, i.e., towards the direction where the Reynolds number increases, especially when L R is small. This shift is due to the wall-induced drag increase discussed in Sec. IV A, which decreases the rising velocity and therefore the Reynolds number as the bubble approaches the wall.

Based on the data points in Fig. 9(b), we can construct the critical curve corresponding to C L = 0 by linearly interpolating the values of C L identified in the computations. Figure 9(b) reveals that the critical curve, at which the transverse force vanishes, can be further bifurcated into two branches by the critical point (Re ∞,REP , L R,c ). These are denoted by L R,1 (Re ∞ ) and L R,2 (Re ∞ ), which progressively increase and decrease as Re ∞ increases, respectively. Thus, for Reynolds numbers greater than Re ∞,REP and wall distances in the considered range (i.e., 1.1 L R 10), the critical curve indicates the presence of two equilibrium positions. For instance, the transverse force is found to vanish for both L R,c ≈ 1.175 and ≈6 at Re = 50. A meticulous inspection indicates that only the smallest of the two equilibrium values of L R,c , i.e., L R,1 (Re ∞ ), is stable, because if the wall distance is marginally increased (respectively, decreased) above (respectively, below) L R,1 , the transverse force becomes attractive (respectively, repulsive), leading to a reduction of the difference |L R -L R,1 |. Conversely, any deviation of L R from the larger equilibrium value L R,2 tends to amplify

the difference |L R -L R,2 |.
The computational results enable us to hypothesize about the asymptotic branches of the critical curve L R,c (Re ∞ ) in the limit of both large (L R → ∞) and small (L R → 1) wall distances. When L R is small, L R,c (Re ∞ ) follows L R,1 (Re ∞ ), the asymptotic behavior of which can be estimated from Eqs. [START_REF] Jeong | Near-wall rising behaviour of a deformable bubble at high Reynolds number[END_REF] and [START_REF] Tiwari | Growth-and-collapse dynamics of small bubble clusters near a wall[END_REF]. Given that L R,1 decreases with increasing Re, for L R 1.1 and Re = O(100), the leading-order term in h L scales with O(Re -1/2 (L R -1) -7/2 ), making the repulsive contribution to the transverse force to be O(Re -3/2 (L R -1) -7/2 ). Since the irrotational contribution to C L never exceeds unity when L R → 1 [START_REF] Legendre | Hydrodynamic interactions between two spherical bubbles rising side by side in a viscous liquid[END_REF], it is straightforward to conclude that L R,1 -1 scales with O(Re -3/7 ). Consequently, regardless of the magnitude of Re, the lift force is expected to always reverse before the bubble contacts the wall. Notably, the slope of the curve L R,1 (Re ∞ ) for 1.1 L R 1.15 is slightly larger [about -1/3; see Fig. 9(b)], since the wall-induced drag increase causes Re at a given L R to scale with Re m ∞ , where m > 1. To ascertain the asymptotic behavior of L R,c (Re ∞ ) in the opposite limit, L R → ∞, we first recall that beyond a critical wall distance, which gradually decreases with the Reynolds number, the transverse force satisfactorily follows the irrotational solution, corrected for weak viscous effects in the gap [START_REF] Legendre | Hydrodynamic interactions between two spherical bubbles rising side by side in a viscous liquid[END_REF]. In other words, the bubble consistently "sees" the no-slip wall as a symmetry plane in the moderate-to-high Re regime, provided that L R is large. In Fig. 9, we also present the counterpart of the critical curve L R,2 , as determined in Ref. [START_REF] Legendre | Hydrodynamic interactions between two spherical bubbles rising side by side in a viscous liquid[END_REF] for two bubbles rising side-by-side. Despite the considerable numerical uncertainty in the computations for L R 2 carried out in both works, the two critical curves tend to converge at Re ∞ ≈ 200, suggesting that the vortical interaction between the boundary layers at the wall and at the bubble surface becomes negligibly small and does not affect the asymptotic behavior of the critical curve L R,2 for Re ∞ 200. The asymptotic behavior of L R,2 at large L R has been comprehensively discussed in Ref. [START_REF] Legendre | Hydrodynamic interactions between two spherical bubbles rising side by side in a viscous liquid[END_REF], where it is proposed that L R,2 becomes independent of Re ∞ at larger, yet finite, Re ∞ .

Based on the discussions above, the following scenario emerges. If a clean, spherical bubble with a sufficiently large Galileo number (such that its rise Reynolds number Re ∞ exceeds Re ∞,REP ) is released in a wall-bounded stagnant fluid with an initial wall distance of L R,i , then, depending on whether L R,i is larger or smaller than L R,2 (Ga), the bubble will either move away from the wall indefinitely or will move towards or away from the wall until it reaches the stable equilibrium 023601-11 position L R = L R,1 (Ga). Conversely, if the Galileo number is too small for Re ∞ to exceed Re ∞,REP , then the bubble will migrate away from the wall indefinitely, regardless of L R,i . The subdomain corresponding to values of L R,i , for which the bubble migrates away from the wall to infinity, is colored grey in Fig. 9(b).

D. Lateral force balance on a bouncing bubble

In most practical situations [START_REF] De Vries | Path and wake of a rising bubble[END_REF][START_REF] Takemura | The transverse force on clean and contaminated bubbles rising near a vertical wall at moderate Reynolds number[END_REF], nearly spherical clean bubbles rising at Re = O(100) do not remain at an equilibrium position but bounce repeatedly near the wall. This behavior has been hypothesized to be attributable to the existence of a strong transverse component of the history force, which competes with the quasisteady lift during the near-wall rising motion. The objectives of this subsection are twofold: (1) to evaluate the significance of the history force in a repetitive near-wall bubble motion and (2) to ascertain if its magnitude can be approximated using the low-Reynolds number solution. To check the significance of the history effects, we examine the evolution of various transverse forces on a bubble undergoing near-wall bouncing motion. Following Ref. [START_REF] Takemura | The transverse force on clean and contaminated bubbles rising near a vertical wall at moderate Reynolds number[END_REF], the transverse force balance on a bouncing bubble may be approximately formulated as

4 3 π R 3 ρC M - dW dt
Added mass

+ 4πμR(-W )h(Re)(1 + C ww ) Lateral drag + 4πμR t -∞ K (t -τ ) - dW dτ dτ
History force

+ π R 2 ρC L U 2 2 Lift = 0. (12) 
In Eq. ( 12), C M is the added mass coefficient corresponding to a sphere moving perpendicularly to a plane, C ww represents the near-wall correction to the quasisteady drag force, h(Re) signifies the finite-Re drag correction in an unbounded uniform stream, W and U are the instantaneous bubble velocities along the wall-normal and the streamwise directions, respectively, and K (t -τ ) is the kernel of the history contribution. The added mass coefficient can be reasonably approximated using [START_REF] Kharlamov | Hydraulic formulae for the added masses of an impermeable sphere moving near a plane wall[END_REF] C M = 0.5 + 0.2182L -3.21 R + 0.081L -19 R . For the finite-Re drag correction, the semiempirical expression from Ref. [START_REF] Mei | A note on the history force on a spherical bubble at finite Reynolds number[END_REF] can be utilized:

h(Re) = 1 + 8 Re + 1 2 (1 + 3.315Re -1/2 ) -1
.

Analytical solutions for C ww have been obtained in the Stokes flow limit [START_REF] Takemura | Drag and lift forces on a bubble rising near a vertical wall in a viscous liquid[END_REF], and in that of a viscous irrotational flow [START_REF] Kok | Dynamics of a pair of gas bubbles moving trough liquid. 1. Theory[END_REF]. In both asymptotic limits, the wall-induced correction to the drag of a bubble moving perpendicularly to the wall is twice that on a bubble moving parallel to it. To obtain a reasonable estimate of C ww at finite Re, we assume that this property holds whatever Re, namely C ww = 2 C D with C D given in Eq. ( 8). Last, C L can be estimated based on Eqs. [START_REF] Jeong | Near-wall rising behaviour of a deformable bubble at high Reynolds number[END_REF] and [START_REF] Tiwari | Growth-and-collapse dynamics of small bubble clusters near a wall[END_REF]. The only unknown in Eq. ( 12) is the expression for the kernel K (t -τ ). However, since all the rest terms are known a priori, the history force can be estimated based on the force balance Eq. ( 12). As a typical example, we consider the experiment of Ref. [START_REF] Takemura | The transverse force on clean and contaminated bubbles rising near a vertical wall at moderate Reynolds number[END_REF] where they observed the near-wall bouncing motion of a bubble with R = 0.385 mm and Re ∞ = 130. The bubble trajectory along the wall-normal direction was found to be satisfactorily fitted using

L R (t ) = ε 0 + ε sin(ωt ) withε 0 = 1.3, ε = 0.256, ω = 60.6.

This yields

W (t ) = εωR cos(ωt ) and dW dt = εω 2 R sin(ωt ).
023601-12 FIG. 10. Results for the various hydrodynamic forces on a bubble bouncing close to the wall. In panel (a), the left tick label corresponds to the force normalized by π R 2 ρU 2 /2, while the right one corresponds to the wall distance L R . In panel (b), different lines correspond to the estimated history force based on different methods. Results for the bubble trajectory were originally presented in the experiment of Ref. [START_REF] Takemura | The transverse force on clean and contaminated bubbles rising near a vertical wall at moderate Reynolds number[END_REF]. Details about the experimental condition: ν = 1.08 × 10 -6 m 2 /s, R = 0.385 mm, and Re ∞ = 130.

Assuming that the buoyancy is always balanced by the vertical drag, U (t ) can be obtained based on

Re 2 U C D (Re U , L R ) = Re 2 ∞ C D0 (Re ∞ ), (13) 
where Re U is the bubble Reynolds number based on U (t ). The Reynolds number based on the mean rising velocity U [with U = 1 T t 0 U (t )dt and U (t ) estimated from Eq. ( 13)] is around 101, which is close to the measured value 96. [START_REF] Candelier | Time-dependent lift and drag on a rigid body in a viscous steady linear flow[END_REF].

Results for the various interfacial forces on the bubble undergoing a bouncing motion outlined above are shown in Fig. 10(a). To make the comparison with C L easily, all forces are normalized by π R 2 ρU 2 /2. We note that the sign of C L reverses at L R ≈ 1.15 together with a local Reynolds number [based on U (t )] of Re ≈ 100. In most cases, the added mass and the lateral drag are too small and it is the history force that competes energetically with the lift.

The Reynolds number based on the mean migration velocity W is around 2.5. It is therefore tempting to check if the history force estimated above could be reasonably reproduced by the analytical solution achieved in the Stokes flow limit [START_REF] Yang | A note on contributions to the force on an accelerating spherical drop at low Reynolds number[END_REF]. The kernel of the history contribution in this limit takes the form 12). The low-Re solution is an order of magnitude smaller than that estimated from Eq. ( 12), indicating that the lateral development of the surface vorticity does not play a key role in generating the transverse component of the history force.

K (t -τ ) = 2 erfc[3(ν(t -τ )/R 2 ) 1/2 ] exp(9ν(t -τ )/R 2 ).
Another origin of the history force relates to the time-dependent misalignment between the wake and the instantaneous angle of the bubble path, which necessarily results in a lateral force [START_REF] Candelier | Time-dependent lift and drag on a rigid body in a viscous steady linear flow[END_REF][START_REF] Shi | Forces on a nearly spherical bubble rising in an inclined channel flow[END_REF]. Indeed, in the case considered above the dimensionless radian frequency ωR 2 /ν is about 8.3, implying that the frequency of the lateral motion is too high for the bubble wake to be perfectly aligned at all times with the bubble velocity. To provide a qualitative estimation of the resulting history force, we note that the instantaneous angle of the bubble path is θ (t ) = tan -1 [W (t )/U (t )], and the dimensionless history force due to the misalignment is roughly proportional to -dθ/dt. We see from Fig. 10(b) that the time evolution of -dθ/dt satisfactorily follows that of the history force estimated from the force balance Eq. [START_REF] Shi | Hydrodynamic forces on a clean spherical bubble translating in a wall-bounded linear shear flow[END_REF]. Quantitatively, a reasonable agreement can be achieved using the fitted expression F (t ) = -62(R 2 /ν)dθ/dt. A general and more accurate expression for the history force may be obtained by treating the prefactor as a function of the instantaneous 023601-13

Reynolds number and the wall distance, provided that more accurate and more comprehensive data for the bouncing motion are available.

V. SUMMARY AND CONCLUDING REMARKS

In this work, we have studied numerically the hydrodynamic force experienced by a clean spherical bubble moving parallel to a wall at moderate-to-high Reynolds numbers. By considering the wall distance down to L R = 1.1, we were able to reproduce a striking behavior already reported in several laboratory experiments. Namely, when the wall distance is sufficiently small, the direction of the transverse force on the bubble may reverse from attractive to repulsive. The mechanism responsible for the reversal of the transverse force is twofold. First, smaller than a critical Re-dependent wall distance, the acceleration of the streamwise flow in the gap is suppressed by the strong vortical wall-bubble interaction (Figs. 2 and3). Consequently, the wall-proximity decreases the pressure gradient in the gap and, hence, the attractive contribution to the transverse force by the irrotational mechanism. Second, the strong shear flow in the gap, combined with the local transverse gradient of the streamwise velocity, results in a pair of counterrotating streamwise vortices in the bubble wake (Figs. 4 and5), causing a "shear-induced" lift force [START_REF] Auton | The lift force on a spherical body in a rotational flow[END_REF]. The two processes act in a cooperative manner and contribute to produce a repulsive transverse force, making the combined lift force reverses from attractive (corresponding to the irrotational mechanism) to repulsive (corresponding to the above vortical mechanism) when the wall distance is smaller than a critical Re-dependent value.

Based on the results for the drag and lift forces obtained, we examined, in the absence of any history effects, the fate of a clean spherical bubble rising close to a wall in a stagnant fluid. Our computational results showed that bubbles with a Reynolds number lower than a critical value of Re ∞,REP ≈ 37.5 are repelled away from the wall regardless of the initial wall distance L R,i , while at higher Reynolds number, bubbles are repelled from the wall up to infinity only if they are released with a separation L R,i larger than a critical value L R,2 (Re ∞ ). In the opposite case where L R,i is smaller than L R,2 (Re ∞ ), bubbles tend to reach an equilibrium position corresponding to a wall distance L R = L R,1 (Re ∞ ) with L R,1 (Re ∞ ) < L R,2 (Re ∞ ), L R,1 being a decreasing function of the Reynolds number, which is about 2 (corresponding to a separation distance about one bubble radius) for Re ∞,REP ≈ 37.5.

Finally, based on the trajectory of a near-wall bouncing bubble reported in previous experiments, the lateral force balance on a bouncing bubble was examined, based on which the crucial role of the history effects in reproducing the bouncing motion was confirmed. More precisely, we showed that the history force closely relates to the misalignment between the wake and the instantaneous angle of the bubble path and cannot be described by the analytical solution achieved in the Stokes flow limit, although the Reynolds number based on the migration velocity is only O [START_REF] De Vries | Path and wake of a rising bubble[END_REF].

From a practical point of view, the present results provide empirical models for the drag [Eqs. [START_REF] Mougin | Wake-induced forces and torques on a zigzagging/spiralling bubble[END_REF]] and the transverse force [Eqs. [START_REF] Jeong | Near-wall rising behaviour of a deformable bubble at high Reynolds number[END_REF] together with Eqs. ( 9) and ( 11)] acting on nearly spherical bubbles for L R 1.1 and Re 50. These models can be easily merged with their counterparts in the low-to-moderate Re regime developed in Ref. [START_REF] Shi | Hydrodynamic forces on a clean spherical bubble translating in a wall-bounded linear shear flow[END_REF] to achieve more general ones that are valid irrespective of Re (provided that the bubbles are still nearly spherical). These extended models, together with the ones accounting for the inhomogeneity of the ambient flow (see, e.g., Ref. [START_REF] Magnaudet | The motion of high-Reynolds-number bubbles in inhomogeneous flows[END_REF]) and the pairwise bubble interactions [START_REF] Legendre | Hydrodynamic interactions between two spherical bubbles rising side by side in a viscous liquid[END_REF][START_REF] Hallez | Interaction between two spherical bubbles rising in a viscous liquid[END_REF], may be used in practical calculations to estimate the averaged characteristics of the overall flow, especially to determine the lateral distribution of bubbles in pipe and channel flows. Nevertheless, it must be kept in mind that the transient trajectory of bubbles undergoing bouncing motion cannot be properly predicted without an accurate model for the transverse history force. Full numerical simulations, possibly including effects of deformation, are highly desirable to obtain more accurate and more complete variations of the lift force and of the transverse history force over the full range of Reynolds number and wall distance.

The cause of the lateral history force triggering the repeatable near-wall bouncing motion remains an open question from this work. Prior studies [START_REF] Magnaudet | Wake instability of a fixed spheroidal bubble[END_REF][START_REF] Cano-Lozano | Paths and wakes of deformable nearly spheroidal rising bubbles close to the transition to path instability[END_REF] I.

unbounded fluids have highlighted the connection between the wake instability and path instability. Yet, in wall-bounced configurations, the wake past a fixed bubble remains stable for Re up to 1000 and L R down to 1.1, as confirmed from this work. This suggests a different mechanism for the path instability in wall-bounded situations compared to the unbounded case, where wake instability is primarily due to the excess vorticity on the bubble surface. Future work in acquiring the threedimensional wake structure of a deformable bubble rising freely in a wall stagnant liquid is crucial to understand the physical origin of the lateral history force. position the outer boundary at R ∞ = 40R to mitigate confinement effects. This configuration is utilized in the present work for L R < 2, while R ∞ = 100R is applied for cases involving larger wall distances. The second scale is the thickness, δ, of the cell nearest to the point (x = 0, y = -R, z = 0). This thickness must be minimized to ensure adequate resolution of the flow in the boundary layers at both the bubble surface and the wall. The first dependency is predictable, and satisfactory grid resolution can be achieved provided δ/R 0.002 [START_REF] Shi | Hydrodynamic forces on a clean spherical bubble translating in a wall-bounded linear shear flow[END_REF]. The latter dependency arises because the 2D grid in the symmetry plane z = 0 is constructed based on the streamlines η = const. and the equipotential lines ξ = const. of the potential flow around two circular cylinders moving in line along the x axis. Consequently, using such a 2D grid means that, with a given δ, the radial length of the cells nearest to the two polar points (x = ±R, y = 0, z = 0), say δ r , increases with decreasing L R . As listed in Table I, in this work, δ is set as 0.001R for L R 2 and is progressively decreased with decreasing L R such that δ r /(L -R) 0.1 is satisfied for all considered L R .

L R . L R R ∞ /R δ/R N p N w N ∞ N ϕ [1.
Based on the settings for δ and R ∞ mentioned above, we tested different number of nodes (N w , N p , N ∞ , N ϕ ) at various wall distances and analyzed the impact of these numbers on the computed drag and lift forces. Table I summarizes the desirable values for N p , N w , N ∞ , and N ϕ that are determined by the grid study. The accuracy of the predicted drag modification and the transverse force due to the wall effects largely depends on the sufficiency of the resolution in the gap. In this context, our previous work demonstrated that N w = 30 (or 40) is sufficient for L R = 1.5 (or 2). We conducted further tests at smaller wall distances; some typical results are summarized in cases a1-a4 in Table II. To achieve reasonable resolution inside the gap, it is necessary to have N w = 20 for L R 1.25 and N w = 30 for 1.3 L R 1.5. The distribution of these N w grid points in the gap is significantly influenced by N p . This is because, in the current grid system, the axial length of the cell nearest to the polar point (x = -R, y = 0, z = 0), denoted as δ x , is comparable with the polar length of the grid cells on the bubble surface, i.e., δ x ≈ π R/N p . We used larger N p at smaller L R so that, for all considered L R , approximately 10 grid points are clustered within the wall boundary layer at Re = 500. The grid resolution inside the bubble wake is largely affected by the number of cells along the radial direction, i.e., N ∞ , and the thickness δ. With a smaller δ, more grid points are clustered in the region closer to the bubble and, consequently, only limited grid points are distributed in the bubble wake. The most challenging cases are those for L R 1.15 where δ/R is only 5 × 10 -5 . To ensure that bubble wake is reasonably resolved, we increased N ∞ from 56 to 112 and found it sufficient to set N ∞ = 84 (cases b1-b3 in Table II). Finally, to assess the grid resolution along the azimuthal direction, we increased N ϕ from 32 to 128 (cases c1-c3 in Table II) at several different wall distances and found that N ϕ = 64 always allows sufficient resolution for L R < 2. At larger wall distances, N ϕ = 128 is used to further improve the accuracy in the calculated C L .

FIG. 1 .

 1 FIG.1. Schematic of a bubble moving parallel to a wall in a stagnant fluid.

  ) and 2(b), the two regions containing negative vorticity begin to interpenetrate each other at Re = 200 and become indistinguishable at Re = 50. Furthermore, the presence of the wall attenuates the vorticity generated at the lower half of the bubble, a phenomenon deducible by comparing the two threads of the surface vorticity at Re = 200 [see Fig. 2(b)].
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 43 FIG. 3. Distribution of the streamwise relative fluid velocity u • e y /U ∞ along the x-axis (to enhance the view of the flow in the gap, the [-1, +1] interval of the axis has been omitted, thus shrinking the bubble to a point denoted by |x/R| = 1).

FIG. 4 .

 4 FIG.[START_REF] Van Wijngaarden | Hydrodynamic interaction between gas bubbles in liquid[END_REF]. Isosurfaces (R/U ∞ )ω • e y = ±0.15 of the streamwise vorticity in the bubble wake (the black thread corresponds to positive values). The relative flow is from left to right, while the wall is situated at the back of the bubble.

  FIG. 6. Results for (a) the drag coefficient C D and (b) the relative drag increase (C D -C D0 )/C D0 as a function of the Reynolds number. In panels (a) and (b)denotes the present numerical results. (a) --, semiempirical correlation (Re/16)C D0 = 1 + [8/Re + 1/2(1 + 3.315Re -1/2 )] -1 proposed in Ref.[START_REF] Mei | A note on the history force on a spherical bubble at finite Reynolds number[END_REF]. (b) * , numerical results from Ref.[START_REF] Shi | Hydrodynamic forces on a clean spherical bubble translating in a wall-bounded linear shear flow[END_REF]; ----, Eq. 8(a) with h D = 0;--, Eq. 8(a) with h D given by Eq. (8b).

confirm these two 023601- 9 FIG. 9 .

 99 FIG. 9. Sign of the transverse force in (a) the (Re, L R ) plane and (b) the (Re ∞ , L R ) plane. •: bubbles are attracted towards the wall; •: bubbles are repelled from the wall. (b) --, L R,1 (Re ∞ ); ----, L R,2 (Re ∞ ); • • • • • •, L R,2 (Re ∞ ) obtained in Ref.[START_REF] Legendre | Hydrodynamic interactions between two spherical bubbles rising side by side in a viscous liquid[END_REF] for two bubbles rising side-by-side; the gray area corresponds to the subregion of initial wall distance L R,i for which the bubble migrates away from the wall up to infinity, while the white area is the basin of attraction of the stable equilibrium position L R,1 (Re ∞ ).

Figure 10 (

 10 Figure10(b) compares the predicted history force in the Stokes flow limit with the one based on the force balance Eq.[START_REF] Shi | Hydrodynamic forces on a clean spherical bubble translating in a wall-bounded linear shear flow[END_REF]. The low-Re solution is an order of magnitude smaller than that estimated from Eq. (12), indicating that the lateral development of the surface vorticity does not play a key role in generating the transverse component of the history force.Another origin of the history force relates to the time-dependent misalignment between the wake and the instantaneous angle of the bubble path, which necessarily results in a lateral force[START_REF] Candelier | Time-dependent lift and drag on a rigid body in a viscous steady linear flow[END_REF][START_REF] Shi | Forces on a nearly spherical bubble rising in an inclined channel flow[END_REF]. Indeed, in the case considered above the dimensionless radian frequency ωR 2 /ν is about 8.3, implying that the frequency of the lateral motion is too high for the bubble wake to be perfectly aligned at all times with the bubble velocity. To provide a qualitative estimation of the resulting history force, we note that the instantaneous angle of the bubble path is θ (t ) = tan -1 [W (t )/U (t )], and the dimensionless history force due to the misalignment is roughly proportional to -dθ/dt. We see from Fig.10(b) that the time evolution of -dθ/dt satisfactorily follows that of the history force estimated from the force balance Eq.[START_REF] Shi | Hydrodynamic forces on a clean spherical bubble translating in a wall-bounded linear shear flow[END_REF]. Quantitatively, a reasonable agreement can be achieved using the fitted expression F (t ) = -62(R 2 /ν)dθ/dt. A general and more accurate expression for the history force may be obtained by treating the prefactor as a function of the instantaneous

14 FIG. 11 .

 1411 FIG. 11. Illustration of the grid system: (a) Shape and size of the computational domain. (b) Definition of the number of nodes in the computational domain. (c) Partial view of the grid in the plane z = 0 and on the bubble surface in the case L R = 1.25, with grid details outlined in TableI.

TABLE I .

 I Grid details at different wall distances

TABLE II .

 II Effect of the number of nodes of (a) N w , (b) N ∞ , and (c) N ϕ on the drag and lift forces. The rest grid details are identical as those listed in TableI.

	Case			Re = 50		Re = 500	
	(a)	L R	N w	C L	C D	C L	C D
	a1	1.25	30	0.009	0.811	-0.166	0.118
	a2	1.25	20	0.009	0.811	-0.165	0.117
	a3	1.125	20	0.043	0.885	-0.219	0.152
	a4	1.125	10	0.042	0.886	-0.220	0.152
	(b)	L R	N ∞	C L	C D	C L	C D
	b1	1.125	56	0.041	0.882	-0.196	0.152
	b2	1.125	84	0.043	0.885	-0.219	0.152
	b3	1.125	112	0.043	0.886	-0.219	0.152
	(c)	L R	N ϕ	C L	C D	C L	C D
	c1	1.2	32	0.028	0.840	-0.198	0.127
	c2	1.2	64	0.022	0.834	-0.196	0.126
	c3	1.2	128	0.022	0.833	-0.196	0.126
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APPENDIX: GRID STUDY

The grid system employed in this study is similar to those used in previous works [START_REF] Shi | Hydrodynamic forces on a clean spherical bubble translating in a wall-bounded linear shear flow[END_REF][START_REF] Shi | Drag and lift forces on a rigid sphere immersed in a wall-bounded linear shear flow[END_REF]. Figure 11 delineates the computational domain as cylindrical [Fig. 11(a)], formed by rotating a two-dimensional surface about the x axis through an angle ϕ = 2π . This domain extends both in the streamwise (upstream and downstream) and cross-stream directions on the unbounded side, spanning a distance R ∞ . The no-slip wall is represented by the cylinder's bottom surface, coinciding with the horizontal plane x = -L. Discretization of the computational domain utilizes (N w + N p + N ∞ ) × N ∞ × N ϕ cells along the axial, radial, and azimuthal directions, respectively [see Fig. 11(b)]. Figure 11(c) illustrates the spatial distribution of the grid cells in the symmetry plane z = 0 and on the bubble surface r = R. While cells on the bubble surface are uniformly distributed along the polar and azimuthal directions, those in the gap and along the unbounded side are nonuniformly distributed to enhance the resolution within the boundary layers at the wall and bubble surface.

The grid system involves two lengthscales crucial for accurate numerical simulations. The first is the distance from the bubble center to the outer boundary of the computational domain. At moderateto-high Reynolds numbers, as considered in this work, it has been shown [START_REF] Shi | Hydrodynamic forces on a clean spherical bubble translating in a wall-bounded linear shear flow[END_REF] to be sufficient to 023601-15