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Abstract

The comprehensive integration of machine learning healthcare models within clinical
practice remains suboptimal, notwithstanding the proliferation of high-performing solutions
reported in the literature. A predominant factor hindering widespread adoption pertains to
an insufficiency of evidence affirming the reliability of the aforementioned models. Recently,
uncertainty quantification methods have been proposed as a potential solution to quantify
the reliability of machine learning models and thus increase the interpretability and accept-
ability of the result. In this review, we offer a comprehensive overview of prevailing methods
proposed to quantify uncertainty inherent in machine learning models developed for various
medical image tasks. Contrary to earlier reviews that exclusively focused on probabilistic
methods, this review also explores non-probabilistic approaches, thereby furnishing a more
holistic survey of research pertaining to uncertainty quantification for machine learning mod-
els. Analysis of medical images with the summary and discussion on medical applications
and the corresponding uncertainty evaluation protocols are presented, which focus on the
specific challenges of uncertainty in medical image analysis. We also highlight some potential
future research work at the end. Generally, this review aims to allow researchers from both
clinical and technical backgrounds to gain a quick and yet in-depth understanding of the
research in uncertainty quantification for medical image analysis machine learning models.

Keywords: Uncertainty quantification, Probabilistic methods, Non-probabilistic methods,
Epistemic uncertainty, Aleatory uncertainty, Uncertainty evaluation, Medical image
analysis

1. Introduction

With the augmented investment of financial and human resources into artificial intelli-
gence (AI), society has experienced notable transformations. Healthcare is definitely one
of the areas where we see great potential for AI to introduce revolutionizing improvements.
In particular, for medical image analysis (MIA), many deep neural network-based machine
learning models with powerful learning and feature representation abilities have been devel-
oped. Despite the excellent performance of recent MIA methods, doubts about the reliability
of their results still remain (Thagaard et al., 2020; Hüllermeier and Waegeman, 2021; Czolbe
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Figure 1: An example explanation of aleatory uncertainty inherently random and epistemic uncertainty
caused by a lack of knowledge about the best analysis model (reproduced based on (Yang and Li, 2023))

et al., 2021), which explains why their application to therapeutic decision-making for com-
plex oncological cases is still limited. Learning, in the sense of generalizing beyond observed
data so far, relies inherently on induction, i.e., replacing specific observations with general
models of the data-generating process. Such models, however, are inherently speculative
and lack definitive correctness; they remain hypothetical and, consequently, uncertain. The
uncertainty extends to the predictions generated by these models as well. In addition to
the inductive inference uncertainty, other sources of uncertainty, such as incorrect model
assumptions and noisy or imprecise data, exist, too.

In general, there are two sources of uncertainty: aleatory and epistemic uncertainty
(Hora, 1996; Der Kiureghian and Ditlevsen, 2009). Aleatory uncertainty refers to the notion
of randomness, i.e., the variability in an experimental outcome due to inherently random
effects, which can not be reduced. In contrast, epistemic uncertainty refers to uncertainty
caused by a lack of knowledge (ignorance) about the best analysis model, i.e., the ignorance of
the learning algorithm or decision-maker. As opposed to uncertainty caused by randomness,
uncertainty caused by ignorance can be reduced based on additional information or the
design of a suitable learning algorithm. Figure 1 provides an example explanation of aleatory
and epistemic uncertainty.

To fully harness the potential benefits of ML in MIA systems, a trustworthy repre-
sentation of uncertainty is desirable and should be considered a key feature of developing
state-of-the-art (SOTA) MIA methods. Traditionally, in fields like statistics and machine
learning, probabilistic methods that rely on probability theory to represent, propagate, and
analyze uncertainty have been perceived as the ultimate tool for uncertainty handling. They
are commonly used with Bayesian inference to model uncertainty in various parameters or
variables (Hinton and Van Camp, 1993; MacKay, 1992). Moreover, the recent popularity of
deep models has revived research on model uncertainty and has given rise to specific meth-
ods such as Monte Carlo dropout (Gal and Ghahramani, 2016; Tran et al., 2019) and model
ensembles (Lakshminarayanan et al., 2017; Rupprecht et al., 2017). However, probabilistic
models make strong assumptions about the real distribution, which can potentially bring
erroneous uncertainty estimation and fail to predict uncertainty correctly when the actual
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distribution is different. Moreover, probabilistic models are essentially based on capturing
knowledge in terms of probability distribution and fail to distinguish between aleatory and
epistemic uncertainty, limiting the exploitation of the results.

Non-probabilistic methods, which handle uncertainty without relying on explicit proba-
bilistic models, are usually used to characterize and analyze uncertainty when probabilistic
information, such as precise probabilities or distributions, is unavailable or difficult to deter-
mine. Instead of building strong assumptions about the real distribution, these methods use
alternative mathematical frameworks or representations such as intervals (Rao and Berke,
1997), fuzzy sets (Zadeh, 1965), Credal partition (Denœux and Masson, 2004), or distance-
based evidence reasoning mechanisms (Denoeux, 1995) to quantify uncertainty.

The recent study on uncertainty quantification significantly improved the performance
of ML models and increased researchers’ interest in analyzing those studies systematically.
In 2016, Guney Gusel examined and explained fuzzy logic-based uncertainty methods in
healthcare decision-making (Gürsel, 2016). In 2018, Kabir et al. reviewed neural network-
based uncertainty quantification methods with a particular focus on probabilistic forecasting
and prediction intervals (Kabir et al., 2018). In 2021, there are booming analyses about
uncertainty. Alizadehsani et al. reviewed the research handling uncertainty in medical
data using machine learning and probability theory techniques in the last 30 years (Al-
izadehsani et al., 2021). Hüllermeier and Waegeman provided a comprehensive introduction
to concepts and methods about aleatory and epistemic uncertainty in ML (Hüllermeier and
Waegeman, 2021). Abdar et al. reviewed uncertainty quantification in deep learning with
discussions on techniques, applications and potential challenges with a particular focus on
Bayesian statistics and ensemble learning (Abdar et al., 2021b). Gillmann et al. studied
uncertainty-aware visualization methods, showing readers which approaches can be com-
bined to form uncertainty-aware medical imaging pipelines (Gillmann et al., 2021). However,
the above-mentioned review work can not provide a global overview of uncertainty quantifi-
cation methods in MIA with recent ML methods, limiting the development of uncertainty
analysis studies.

Contributions. Unlike previous uncertainty review papers that provide a general picture of
uncertainty quantification in ML applications (Abdar et al., 2021b; Hüllermeier and Waege-
man, 2021), or focus on discussing several specific uncertainty quantification methods (Al-
izadehsani et al., 2021), this study reviews both probabilistic and non-probabilistic uncer-
tainty methods in MIA under the ML framework in the last ten years, in which the later
one is still ignored. It is worth mentioning that the primary purpose of this study is not to
introduce the performance of various existing uncertainty quantification methods. Instead,
we focus on outlining the most common uncertainty quantification and evaluation methods,
the important application areas, as well as potential research work. We hope this review pa-
per can provide guidance to researchers in the fields of machine learning and clinical practice
and pave the way for future research in order to generate reliable and explainable decisions
based on quantified uncertainty or improve the fairness of the overall healthcare systems
by combining multiple source information with uncertainty. The main contributions of this
study are as follows:
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• To our best knowledge, this is the first comprehensive review paper regarding the study
of both probabilistic and non-probabilistic uncertainty quantification methods in MIA
tasks.

• Existing uncertainty evaluation criteria applied for MIA are studied and discussed.

• The main categories of important clinical applications of uncertainty quantification
methods are presented and discussed.

• The major advantages and limitations of existing uncertainty quantification research
are pointed out, as well as the potential future work.

Organization. The rest of this paper is organized as follows: Section 2 explained the search
criteria. Section 3 presents the commonly used probabilistic and non-probabilistic uncer-
tainty quantification methods in MIA. Section 4 introduces the uncertainty evaluation crite-
ria. Section 5 summarizes MIA applications with the mentioned uncertainty quantification
methods. Finally, Section 6 provides a discussion of the advantages and limitations of the
literature, and Section 7 gives the overall conclusion of this review.

2. Search criteria

To perform this review, we performed a search on Web of Science for the papers published
between 1 January 2013 and 15 July 2023. The search keywords used for this study are
’Uncertainty quantification’ OR ’fuzzy systems’ OR ’Monte Carlo simulation’ OR ’rough
classification’ OR ’Dempster–Shafer theory’ OR ’Imprecise probability’ AND ’Medical image
analysis.’ We note that, from 2013 to 2023, more than 5,000 papers studying uncertainty
in MIA tasks were published. To ensure the criticality of the study, we only include papers
published in related journals and conferences and screen their title and abstracts. Then,
about 700 papers with full access and good citation records were selected, and those lacking
adequate connection with the topic of our review were removed from the list. Then, we read
the full-text paper with the inclusion criteria illustrated in Figure 2. In the end, 301 papers
are investigated in this review.

Figure 3 shows the number of papers focused on uncertainty analysis in the last ten years,
where we can see that handling uncertainty in machine learning has received increasing
attention, especially when machine learning methods have been able to achieve promising
accuracy performance with the popularization of deep learning after 2015. Researchers’
interest in the study of uncertainty in MIA models remained at a steady state until 2018,
i.e., around 400 published papers each year. There are two main reasons: 1) uncertainties in
medical image reconstruction or registration tasks are easily observable and awarded; 2) the
study of ML models for MIA is lagging behind ML research itself. Once the ML research for
MIA has reached an accuracy saturation situation, people then turn to study uncertainty.
Therefore, after 2018, increasing efforts have been involved in studying the MIA uncertainty.
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Figure 2: Illustration of selecting eligible publications for inclusion.
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Figure 3: Number of papers focused on uncertainty in the last 10 years.

6



A)

Figure 4: Overview of uncertainty quantification methods: Probabilistic and Non-probabilistic methods

3. Methods to uncertainty quantification

Different from existing literature reviews that focus on analyzing uncertainty methods
in a specific field or with a specific methodology, in this paper, we provide a comprehen-
sive overview of uncertainty analysis methods in medical images, including analysis from
both probabilistic and non-probabilistic sides of the application to different medical image
tasks. Figure 4 shows an overview of uncertainty quantification methods. It should be
noted that both probabilistic and non-probabilistic methods represent, propagate, and rea-
son uncertainty in a systematic manner and the choice of method depends on the nature of
uncertainty, available information, and the specific problem domain.

3.1. Probabilistic uncertainty quantification methods

Probabilistic uncertainty quantification methods leverage probability theory to represent
uncertainty using probability distributions, allowing for calculating probabilities, quantiles,
and other statistical measures. To capture uncertainty in ML model predictions, predictive
entropy or variance are typically used to estimate distributions over the outputs. Predictive
entropy (Shannon, 1948) measures the diversity or spread of a single probability distribution
and quantifies how uncertain or ambiguous a model’s prediction is by considering the distri-
bution’s entropy, which reflects the amount of information or randomness in the distribution,
i.e., combining both aleatory and epistemic uncertainties into a single measure that reflects
the overall uncertainty in a probabilistic prediction. Higher predictive entropy indicates
greater uncertainty and ambiguity in the model’s prediction. Predictive variance (Fisher,
1919) is a measure of uncertainty related to the inherent randomness or noise in the data,
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i.e., aleatory uncertainty. Higher predictive variance suggests that individual predictions
are more scattered around the mean prediction, indicating that the model’s predictions are
more sensitive to changes in the input. According to our literature review, there are three
main probabilistic methods: Bayesian Inference, Monte-Carlo method, and Model ensemble,
which can generate predictive entropy or variance.

Bayesian inference is a statistical approach that inherently involves probabilistic model-
ing and updates prior beliefs or knowledge to estimate uncertain quantities using observed
data. It combines prior distributions with likelihood functions to obtain posterior distribu-
tions that reflect updated beliefs. Among Bayesian inference methods, Probabilistic Distri-
bution (PD) (Wallman et al., 2014), Gaussian Process (GP) (Wachinger et al., 2014) and
Bayesian Neural Networks (BNNs) (Blundell et al., 2015) are three main popular methods
used for uncertainty quantification. Readers can refer to Supplementary Material A for
detailed analysis.

Monte Carlo (MC) methods (Kroese et al., 2014) involves generating random samples
from probability distributions. As the number of samples increases, the simulated outcomes
converge toward the true distribution of possible outcomes, allowing us to obtain accurate
estimates of uncertainty. Aleatory uncertainty is then captured through the variability intro-
duced by dropout during forward passes, reflecting data randomness. Epistemic uncertainty
is captured through the diversity of predictions across passes, indicating the model’s un-
certainty about its own parameters and structure. Among the MC methods, Monte Carlo
sampling, Monte Carlo dropout (MCD) (Gal and Ghahramani, 2016), Markov Chain Monte
Carlo (MCMC) (Gilks et al., 1995; Brooks, 1998), and Bootstrap are the most common
algorithms. Since Test-Time Dropout (TTD) (Srivastava et al., 2014) also involves repeated
sampling from the data, here we classify it into the MC methods as well (details can be
found in Supplementary Material A). It should be noted that while the MC methods are
not inherently a Bayesian inference method, it is often employed in Bayesian inference to
estimate posterior distributions and perform various Bayesian analyses.

Model ensemble (Dietterich, 2000; Zhou, 2012) typically focuses on capturing different
sources of variability or uncertainty in model assumptions rather than explicitly quantifying
uncertainty using probabilistic measures. Each model in the ensemble framework may be
trained using different initializations, subsets of the training data, or variations in the model
architecture. Standard ensemble methods, such as bagging, boosting, or random forests,
generate an ensemble of models that collectively represent uncertainty with the variability
among the predictions. Recently, deep ensemble (Lakshminarayanan et al., 2017; Ganaie
et al., 2022) models have become a popular uncertainty quantification method integrated
with deep neural networks. Details about deep ensemble models can be found in Supple-
mentary Material A.

To sum up, probabilistic uncertainty quantification methods provide a rigorous and quan-
titative approach to characterizing and analyzing uncertainty.

3.2. Non-probabilistic uncertainty quantification methods

Non-probabilistic uncertainty methods, free from the strong assumption of the prior dis-
tribution of the data, are more flexible and applicable for most applications, especially when
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precise probabilistic information is not available. Methods such as interval analysis (Rao and
Berke, 1997), fuzzy sets and fuzzy logic theory (Yager and Zadeh, 2012), Dempster-Shafer
theory (Dempster, 1967; Shafer, 1976), and Test-Time Augmentation do not directly involve
probability distributions to represent uncertainty. Instead, they introduce conceptions such
as predictive intervals (Eaton-Rosen et al., 2018), fuzzy membership functions (Wang et al.,
2023a) or plausible sets (Adiga Vasudeva et al., 2022), Credal partition (Denœux and Mas-
son, 2004), evidence-based reasoning mechanisms (Huang et al., 2021a) or test-time data
augmentation to model uncertainty.

Dempster-Shafer theory (DST) (Dempster, 1967; Shafer, 1976), also known as Belief
function theory or Evidence theory, was first originated by Dempster (Dempster, 1967) in
the context of statistic inference in 1968 and was formalized by Shafer (Shafer, 1976) as
a theory of evidence in 1976. It is a theoretical framework for modeling, reasoning with,
and combining imperfect (imprecise, uncertain, and partial) information. With DST, we
can quantify uncertainty in a single forward pass and further explore the possibility of
improving the model reliability based on the quantified uncertainty. Based on DST, there
are some commonly used uncertainty quantification methods, i.e., Evidential KNN (EKNN)
rule Denoeux (1995), Evidential C-Means (ECM) (Masson and Denoeux, 2008), Evidential
Neural Network (ENN) (Denœux, 2000), and Subjective Logic (SL) (Josang et al., 2006;
Jøsang, 2016), readers can refer to Supplementary Material or paper (Huang et al., 2023a)
for more information.

Fuzzy sets (Zadeh, 1965) define the linguistic terms and their membership functions;
fuzzy rules capture the relationships between inputs and outputs using if-then statements;
and the fuzzy inference mechanism combines the rules and performs fuzzy reasoning to
compute the system’s output (Dubois, 1980). Fuzzy logic (Hájek, 2013) employs fuzzy sets
to capture the degree of membership of elements to a particular linguistic variable such as
”high likelihood,” ”medium uncertainty,” or ”low confidence.” Fuzzy logic systems (Mendel,
1995; Yager and Zadeh, 2012) are the implementations of fuzzy logic principles to solve
specific problems by utilizing fuzzy sets, fuzzy rules, and fuzzy inference mechanisms.

Interval analysis (Rao and Berke, 1997) represents uncertainty by bounding the possible
range of values for variables or parameters using intervals, thus offering a systematic and
robust approach to uncertainty quantification, especially in cases where rigorous bounds
on uncertainty are essential for decision-making or risk assessment. In interval analysis,
uncertainty is characterized by assigning intervals to model parameters, inputs, or outputs
rather than specifying precise probabilities. These intervals represent ranges of possible
values rather than probabilities of occurrence. Thus, it can be defined based on available
information, expert opinion, or experimental data. Confidence intervals (CI) (Hosmer and
Lemeshow, 1992; Smithson, 2003) and prediction intervals (PI) (Hwang and Ding, 1997) are
two common interval algorithms used to quantify the uncertainty associated with a given
estimate. However, it can also lead to wide intervals if the input uncertainties are too large
or if the model’s behavior is nonlinear and complex.

Test-Time Augmentation (TTA) (Ayhan and Berens, 2018; Wang et al., 2019a) is a tech-
nique used in machine learning to improve model performance and enhance the robustness
of predictions. At test time, multiple variants of the input image are generated using data
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augmentation such as spatial transformations (e.g., flipping, rotation), intensity augmenta-
tions (e.g., contrast modification, noise injection, or artifacts), etc. Using TTA, the model
generates a set of predictions for the same initial input image. From this distribution of
predictions, uncertainty metrics can be extracted, such as the median or variance.

It should also be noted that there are some researches that hybrid more than one uncer-
tainty quantification method, e.g., integrating MCD in deep ensemble models or integrating
fuzzy set with DST, for uncertainty analysis and yield more promising performance. The
detailed applications of the above-mentioned methods will be introduced in Section 5.

4. Methods to uncertainty evaluation

The previous section presented the main uncertainty estimation approaches applied to
MIA tasks. In this section, we introduce the protocols implemented in these papers to
evaluate the performance of the uncertainty estimation approaches.

Direct uncertainty evaluation methods such as mean square error validate the correctness
of uncertainty quantification techniques with given uncertainty ground truths. While in real-
world medical scenarios, ground-truth uncertainty is unavailable or difficult to obtain.

Indirect uncertainty evaluation methods, e.g., calibration metrics, coverage metrics, scor-
ing rules, and prediction entropy, on the other hand, focus on a qualitative assessment of
the computed uncertainty estimates by evaluating how well their predicted uncertainties
correlate with the actual outcomes or data variability when uncertainty ground truth is un-
available. Misclassification or Out-of-Distribution detection are downstream applications of
uncertainty in an automated pipeline of prediction, thus also used quite often in assessing
the quality of the uncertainty quantification model. According to the literature review, we
grouped five common uncertainty evaluation protocols (see Table 1).

4.1. Coverage metrics

Coverage metrics measure the proportion of cases where predicted uncertainty intervals
(e.g., confidence intervals) contain the true value or the average width of prediction intervals.
It can be estimated by sample variance or coverage probability. Sample variance computes
the output variance across all samples collected using Bayesian inference, MC methods, or
model ensembles with the definition:

variance =

√∑N
n=1(yn − ȳ)2

N − 1
, (1)

where yn is the value of the observation corresponding to pixel/voxel n, ȳ is the mean value
of all observations, and N is the number of observations. Coverage probability measures the
proportion of true outcomes within the predicted uncertainty intervals (Dodge et al., 2003).
The construction of the confidence interval ensures that the probability of finding the true
vector θ in the sample dependent interval [Tu, Tv] is (at least) γ:

P (Tu < θ < Tv) = γ (2)
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Table 1: Evaluation criteria

Evaluation criteria Papers

Coverage metrics

Judge et al. (2022); Mehta et al. (2023); Nair et al. (2020); Valen et al. (2022); Camarasa et al. (2021)
Qian et al. (2020); Mehta et al. (2021); Eaton-Rosen et al. (2018); Bian et al. (2020); Kwon et al. (2020)
Yang et al. (2021); Wickstrøm et al. (2020); Wallman et al. (2014); Ebadi et al. (2023); Kushibar et al. (2022)
Herzog et al. (2020); Le Folgoc et al. (2016); Gour and Jain (2022); Corrado et al. (2020); Arega et al. (2023)
Jafari et al. (2021); Balagopal et al. (2021); Awate et al. (2019); Risholm et al. (2013); Kabir et al. (2022)

Predictive Entropy

Hamedani et al. (2023); Jungo et al. (2018b); Mehta et al. (2023, 2021); Wang et al. (2021b)
Del Amor et al. (2023); Gour and Jain (2022); Ghoshal and Tucker (2020); Narnhofer et al. (2021)
Ebadi et al. (2023); Kushibar et al. (2022); Camarasa et al. (2021); Rajaraman et al. (2022); Qian et al. (2020)
Herzog et al. (2020); Dai and Tian (2013); Arega et al. (2023)

Calibration metrics

Hamedani et al. (2023); Jungo and Reyes (2019); Sambyal et al. (2022); Laves et al. (2021)
Judge et al. (2022); Carneiro et al. (2020); Liao et al. (2019); Ayhan et al. (2020); Islam and Glocker (2021)
Dawood et al. (2023); Thagaard et al. (2020); Pandey et al. (2022); Javadi et al. (2022)
Ghoshal and Tucker (2022); Laves et al. (2021); Ghoshal and Tucker (2021); Carneiro et al. (2020)
Dawood et al. (2023); Buddenkotte et al. (2023); Mehrtash et al. (2020); Rousseau et al. (2021)
Li et al. (2022a); Jena and Awate (2019); Arega et al. (2023)

Misclassification detection & OoD
Hamedani et al. (2023); Jungo and Reyes (2019); DeVries and Taylor (2018)
Ghoshal et al. (2019); Iwamoto et al. (2021); Belharbi et al. (2021); Asgharnezhad et al. (2022)
Linmans et al. (2023); Fuchs et al. (2021); Thagaard et al. (2020)

Scoring functions
Sambyal et al. (2022); Mehrtash et al. (2020); Arega et al. (2023); Thagaard et al. (2020)
Mehrtash et al. (2020); Tanno et al. (2017); Thagaard et al. (2020); Lemay et al. (2022)

4.2. Predictive entropy

The predictive entropy measures the informativeness of the model’s predictive density
function for each model output yi with the definition

Entropy = −
C∑
i=1

p(i) log p(i), (3)

where p(i) denotes the probability density function (PDF) (Parzen, 1962) or probability
mass function (PMF) (Stewart, 2009) of the predicted variable i, and C is the set of possible
values for the predicted variable.

4.3. Calibration metrics

Calibration metrics measure the agreement between the predicted uncertainty and the
observed frequency of correct predictions. A well-calibrated uncertainty estimation method
should provide uncertainty estimates that align with the true error level or uncertainty in
the predictions. Calibration can be assessed using calibration plots, reliability diagrams, or
calibration metrics such as Calibration Error (CE), Maximal Calibration Error (MCE), and
Expected Calibration Error (ECE). Here, we introduce ECE as an example. It measures
the correspondence between predicted probabilities and ground truth (Guo et al., 2017).
The output normalized plausibility of the model is first binned into equally spaced bin Eh,
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h ∈ [1, H]. The accuracy of bin Eh is defined as

acc(Eh) =
1

| Eh |
∑
n∈Eh

1(Sn = Gn), (4)

where Sn and Gn are, respectively, the predicted and true class labels for pixel/voxel n. The
average confidence of bin Eh is defined as

conf(Eh) =
1

| Eh |
∑
n∈Eh

Pn, (5)

where Pn is the predicted probability for pixel/voxel n. The ECE is the weighted average
of the difference in accuracy and confidence of the bins:

ECE =
H∑

h=1

| Eh |
N

| acc(Eh)− conf(Eh) |, (6)

where N is the total number of pixels/voxels in all bins here, | Eh | is the number of elements
in bin Eh. A model is perfectly calibrated when acc(Eh) = conf(Eh) for all h ∈ {1, ..., H}.

4.4. Scoring functions

Brier score (Brier, 1950) and Negative log-likelihood (NLL) are two commonly used
scoring functions for evaluating the performance of uncertainty estimation methods. Brier
score (Brier, 1950) measures the mean squared difference between predicted probabilities
and actual outcomes with:

BS =
1

N

N∑
n=1

(Pn −Gn)
2, (7)

where Gn is the ground truth of pixel/voxel n and Pn is the predicted probability of
pixel/voxel n, N is the number of pixels/voxels here. The lower the Brier score, the better
the calibration and accuracy of the uncertainty estimates. NLL is usually used for eval-
uating probabilistic models and assessing their calibration and accuracy in capturing the
uncertainty in predictions. It measures the average log probability assigned by a model to
the observed outcomes by:

NLL = −
N∑

n=1

Gnlog(Pn) + (1−Gn)log(1− Pn), (8)

whereGn is the ground truth of pixel/voxeln and Pn is the predicted probability of pixel/voxel
n, N is the number of pixels/voxels here. A lower NLL value indicates better calibration
and accuracy of the uncertainty estimates.
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4.5. Misclassification & Out-of-Distribution detection protocol

A direct downstream application of uncertainty in an automated pipeline is the detection
of samples for which the prediction is likely to be incorrect or Out-of-Distribution (OoD).
This is crucial to prevent silent errors that could have a dramatic impact, especially in real-
world medical image applications. In that sense, the uncertainty estimates can be turned
into a binary classifier that aims to distinguish between correct and incorrect predictions. As
in the binary classification setting, an uncertainty threshold is applied to distinguish between
positive (i.e., certain) and negative (i.e., uncertain) samples. The result of this classification
is then compared to the true label of each sample, namely correct or incorrect. In that
context, a confusion matrix (Stehman, 1997) can be constructed from the uncertainty point
of view by distinguishing four possible cases with the following counts:

• True Positive (TP): The prediction is uncertain, and the expected label and the pre-
diction differ,

• False Negative (FP): The prediction is certain, but the expected label and the predic-
tion differ,

• True Negative (TN): The prediction is certain, and the expected label and the predic-
tion are identical,

• False Negative (FN): The prediction is uncertain, but the prediction and the expected
label are identical.

4.6. Discussion

It’s important to note that different evaluation metrics and approaches may be suitable
depending on the context and specific application. To evaluate the performance of un-
certainty estimation methods, it is necessary to employ additional quantitative evaluation
measures, such as calibration, coverage probability, mean squared error, discrimination met-
rics, or task-specific performance metrics. These metrics assess the uncertainty estimates’
accuracy, calibration, and discriminative ability. Apart from the numerical uncertainty eval-
uation, a visual inspection of uncertainty (Sedai et al., 2018; Gillmann et al., 2020) is also
a valuable tool that is usually performed to verify whether they correspond to cases that
a human would consider uncertain and usually be used for exploring, interpreting, and
communicating uncertainty.

The most controversial point of the current research method is the lack of uncertainty
ground truth. With ground truth uncertainty, measuring the exact agreement between
estimated and actual uncertainties becomes possible, while the lack of ground truth makes
it challenging to assess the accuracy and calibration of uncertainty estimates quantitatively,
reducing the development of uncertainty evaluation methods.
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Figure 5: Statistics of uncertainty methods used in medical image analysis

5. Applications of uncertainty quantification in MIA

The application of uncertainty quantification can help increase the accuracy of different
MIA tasks. In MIA tasks, the uncertainty can be decomposed into three levels (Lakshmi-
narayanan et al., 2017): pixel/voxel-level, instance-level and subject-level. Pixel/voxel-level
uncertainty quantification is useful for interaction with physicians by providing additional
guidance for correcting reconstruction/registration/segmentation results. Instance-level un-
certainty is the uncertainty aggregated by a set of pixel/voxel-level uncertainty. Its quantifi-
cation can be used to reduce the false discovery rate for detection/prediction/classification
tasks. Subject-level uncertainty offers information on whether or not the model is about a
subject. Therefore, quantifying uncertainty in MIA tasks is a critical step in advancing the
field of medical imaging, allowing for better decision-making, fostering continual improve-
ment of algorithms and risk assessment, and promoting transparency and trust between
experts and patients, as well as ensuring safe and effective healthcare practices. Figure 5
shows the overall statistics of probabilistic and non-probabilistic uncertainty methods used
in MIA tasks.
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Figure 6: Distribution of different applications with uncertainty estimation in reviewed papers

In this section, we mainly focus on the introduction of recent research that studies the un-
certainty in medical image reconstruction, registration, detection, prediction, classification,
and segmentation. Figure 6 shows the application types.

Apart from the main applications mentioned above, uncertainties in other medical image
tasks such as microstructure estimation (Ye et al., 2020; Adler et al., 2019), image quality
estimation (Shaw et al., 2020), survival analysis (Feng et al., 2020; Gomes et al., 2021),
risk analysis (Qian et al., 2020), image denoising (Laves et al., 2020b,a; Cui et al., 2022),
cellularity assessment (Li et al., 2022b), lesion localization Wu et al. (2021b); Duchateau
et al. (2016); Schobs et al. (2022), etc, are also mentioned and studied. Since the uncertainty
is similar to the methods we introduced before, we will not go into details about those
applications.

5.1. Medical image reconstruction

Medical image reconstruction plays a critical role in modern healthcare and medical
imaging. It involves creating high-quality and accurate images of the internal structures of
the human body from acquired raw data. The real-world factor is that medical imaging
is subject to various sources of variability, including patient motion, imaging artifacts, and
variations in imaging protocols. Therefore, developing reconstruction algorithms that can
handle such variability and generalize well across different imaging scenarios is an ongoing
challenge. Advanced ML reconstruction algorithms, despite providing good reconstruction
performance, often lack reliability and explainability (e.g., understanding why a specific
reconstruction was produced or tracing back when the results become unreliable), limiting
the adoption and acceptance of these methods in clinical application. Therefore, studying
reconstruction uncertainty is of great importance to ensure reconstruction reliability and
provide explainable results. Table 2 shows the related medical image reconstruction methods
considering reconstruction uncertainty.

5.1.1. Bayesian inference

Bayesian inference is the most common approach to quantifying reconstruction uncer-
tainty. In 2014, Wallman et al. developed an electrical propagation model based on Bayesian
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Table 2: Uncertainty quantification methods in medical image reconstruction

Publications Uncertainty Number of Clinical applications
methods Dataset

MC methods

Neumann et al. (2014) MCMC 1 Electromechanical heart MRI reconstruction
Zhou et al. (2020) MCMC 1 PET reconstruction
Luo et al. (2023) MCMC 1 MRI reconstruction
Edupuganti et al. (2020) MCD 1 knee MRI reconstruction

Bayesian inference

Wallman et al. (2014) PD 1 CT-derived ventricular model reconstruction
Zhang et al. (2019) PD 1 Knee MRI reconstruction
Narnhofer et al. (2021) PD 1 Undersampled MRI reconstruction
Vlašić et al. (2023) PD 1 Low/standard-dose PET reconstruction
Barbano et al. (2021) BNN 1 Sparse view CT reconstruction
Wang et al. (2023a) Fuzzy sets 1 COVID-19 CT reconstruction

inference with probabilistic distribution for tissue conduction properties inferred from elec-
troanatomical data and designed strategies to optimize the location and number of mea-
surements required to maximize information and reduce uncertainty (Wallman et al., 2014).
The proposed method provides a simultaneous description of clinically relevant electrophys-
iological conduction properties and their associated uncertainty for various levels of noise.

In 2019, Zhang et al. proposed an uncertainty reduction model in undersampled MRI
reconstruction with an active acquisition that, at inference time, dynamically selects the
measurements to take and iteratively refines the prediction to reduce the reconstruction
error and uncertainty (Zhang et al., 2019). The authors modeled pixel-level uncertainty as
a Gaussian distribution centered at reconstruction mean and with variance similar to the
method proposed by (Kendall and Gal, 2017).

In 2021, Narnhofer et al. introduced a Bayesian variational framework to quantify the
epistemic reconstruction uncertainty (Narnhofer et al., 2021). They first solved the linear
inverse problem of undersampled MRI reconstruction in a variational setting and then ob-
tained epistemic uncertainty from a multivariate Gaussian distribution, whose mean and
covariance matrix are learned in a stochastic optimal control problem. In the same year,
Barbano et al. developed a scalable, data-driven, knowledge-aided computational frame-
work to quantify reconstruction uncertainty via Bayesian neural networks (Barbano et al.,
2021). This framework extended to a developed greedy iterative training scheme, deep
gradient descent, and recast it within a probabilistic framework. The last layer of each
block is Bayesian, with the rest of the layers remaining deterministic to achieve scalability.
The framework is showcased on computed tomography with either sparse or limited view
data and exhibits competitive performance with respect to SOTA benchmarks, e.g., total
variation, deep gradient descent, and learned primal-dual.

In 2023, Vlavsic et al. proposed a DL-based posterior sampling method for uncertainty
quantification in PET image reconstruction (Vlašić et al., 2023). The method is based on
training a conditional generative adversarial network whose generator approximates sam-
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pling from the posterior in Bayesian inversion. The generator is conditioned to a reconstruc-
tion from a low-dose PET scan obtained by a conventional reconstruction method. It can,
therefore, generate corresponding standard dose PET images.

5.1.2. Monte Carlo methods

Monte Carlo methods are also popular for reconstruction uncertainty estimation. In 2014,
Neumann et al. presented a stochastic method to estimate the parameters of an image-based
electromechanical heart model and the corresponding uncertainty due to measurement noise
(Neumann et al., 2014). First, Bayesian inference was applied to fully estimate the posterior
probability density function (PDF) of the model. Second, MCMC sampling was used with
computationally tractable designing that employed a fast Polynomial Chaos Expansion-
based surrogate model instead of the true forward model. Then, the mean-shift algorithm
was used to automatically find the modes of the PDF and select the most likely one while
being robust to noise.

In 2020, Zhou et al. provided a framework for performing infinite-dimensional Bayesian
inference and uncertainty quantification for image reconstruction with Poisson data (Zhou
et al., 2020). They first introduced a positivity-preserving reparametrization and a dimension-
independent MCMC algorithm based on the preconditioned Crank Nicolson Langevin method,
in which a primal-dual scheme is used to compute the offset direction. Then, a fusion method
that combines the model discrepancy and maximum likelihood estimation was proposed to
determine the regularization parameter in the hybrid prior. In the same year, Edupuganti et
al. quantified the image recovery uncertainty within DL models (Edupuganti et al., 2020).
First, variational autoencoders (VAEs) were first leveraged to develop a probabilistic re-
construction scheme that maps out (low-quality) short scans with aliasing artifacts to the
diagnostic-quality ones and then encoded the acquisition uncertainty in a latent code and
naturally offers a posterior of the image from which one can generate pixel variance maps
using MCD.

In 2023, Luo et al. introduced a framework that enables efficient sampling from learned
probability distributions for MRI reconstruction where the samples were drawn from the
posterior distribution given the measured k-space using MCMC (Luo et al., 2023). Therefore,
in addition to the maximum posterior estimate for the image using the log-likelihood, the
minimum mean square error estimate and uncertainty maps can also be computed from
those drawn samples.

5.1.3. Non-probabilistic methods

Fuzzy theory can also be applied to quantify image reconstruction uncertainty. In 2023,
Wang et al. proposed a new fuzzy metric to characterize image reconstruction uncertainty.
It first designed a fuzzy hierarchical fusion attention neural network based on multiscale
guided learning (Wang et al., 2023a) to convert input images into a fuzzy domain using fuzzy
membership functions. The uncertainty of the pixels was processed using the proposed fuzzy
rules, and then the output of the fuzzy rule layer was fused with the result of the convolution
in the neural network. Simultaneously, a multiscale guided-learning dense residual block
and pyramidal hierarchical attention module were designed to extract hierarchical image
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Table 3: Uncertainty quantification methods in medical image registration

Publications Uncertainty Number of Clinical applications
methods dataset

MC methods
Risholm et al. (2013) MCMC 1 Neurosurgery for resection of brain tumor
Le Folgoc et al. (2016) MCMC 1 Medical image registration
Xu et al. (2022c) MCD 2 Abdominal CT-MRI registration

Bayesian inference

Oreshkin and Arbel (2013) PD 1 Medical image registration
Parisot et al. (2014) PD 1 Atlas to diseased patient registration
Yang and Niethammer (2015) PD 2 Heart&brain image registration
Wang et al. (2018b) PD 2 Synthetic and brain MRI registration
Khawaled and Freiman (2022) PD 4 Brain MRI registration
Wachinger et al. (2014) GP 2 MRI image registration

Peter et al. (2021) GP 4
Histology inter-modal, Optical Coherence
Microscopy image and chest CT scan registration

Hybrid methods Gong et al. (2022)
MCD, Bootstrap

2 Deformable medical image registration
Ensembles

information. Finally, a recurrent memory module with a residual structure was used to
process the output features of the hierarchical attention modules and a recursive sub-pixel
reconstruction module was used at the tail of the network to reconstruct the images.

5.2. Medical image registration

Medical image registration, a fundamental technique in medical image preprocessing,
aligns and overlays multiple images of the same patient or anatomical region acquired at
different times, from different modalities, or from different imaging devices. By aligning the
images, it becomes easier to compare and analyze changes in anatomy or pathology over
time. However, given the current SOTA registration technology and the difficulty of the
problem, an uncertainty measure that highlights locations where the algorithm had diffi-
culty finding a suitable alignment can be beneficial. According to our literature review, the
predominant way to quantify the registration uncertainty is by using summary statistics of
the transformation distribution. Table 3 listed the related papers. For medical image reg-
istration tasks, two probabilistic methods, Bayesian inference and MC methods, are mainly
developed.

5.2.1. Bayesian inference

In 2013, Oreshkin et al. proposed a voxel selection strategy for medical image registration
with the uncertainty of the transformation parameters (Oreshkin and Arbel, 2013). First, a
Bayesian framework was used to build a voxel sampling probability field (VSPF) based on
the variance of this optimal Bayesian estimator, different voxel subsets were then sampled
based on the obtained VSPF.

In 2014, Parisot et al. presented a graph-based concurrent brain tumor segmentation
and atlas to disease patient registration framework based on a unified pairwise discrete
Markov Random Field (MRF) model with non-uniform sampling (Parisot et al., 2014),
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following the sampling method proposed in (Oreshkin and Arbel, 2013). First, to get an
appropriate sampling solution and reduce memory requirements, content-driven samplings
of the discrete displacement set and the sparse grid were considered based on the local
segmentation and registration uncertainties recovered by the min marginal energies (Kohli
and Torr, 2008). Then, both segmentation and registration problems were modeled using a
unified pairwise discrete MRF model on a sparse grid superimposed on the image domain.
The registration uncertainty is then calculated by normalizing the min-marginals over all the
possible displacements associated with the same segmentation label, while the segmentation
uncertainty is evaluated by measuring the energy variation when the segmentation label
changes.

In 2015, Yang et al. followed the idea that consisted of mapping displacement into uncer-
tainty by energy information and approximating the covariance matrix by the inverse of the
Hessian of the registration energy to quantify registration uncertainty for large deformation
diffeomorphic metric mapping (Yang and Niethammer, 2015). The covariance matrix of
the Gaussian process posterior distribution was also applied in (Wachinger et al., 2014) to
estimate registration uncertainty.

In 2018, Wang et al. presented a large deformation diffeomorphic metric mapping ap-
proach similar to (Yang and Niethammer, 2015) that models posterior distribution with a
Laplace approximation of Bayesian registration models (Wang et al., 2018b).

In 2021, Peter et al. introduced a principled strategy for the construction of a gold
standard for deformable registration by building on the true transformation into a Gaussian
process model and then annotating the most informative location in an active learning
fashion to minimize the uncertainty of the true transformation (Peter et al., 2021). It should
be noted that, in addition to a landmark correspondence for each queried location, this
framework supports the specification of an annotation uncertainty, either directly estimated
by the annotator or obtained by merging annotations from multiple users.

In 2022, khawaled et al. developed a non-parametric Bayesian method to assess the
uncertainty in diffeomorphic deformable MRI registration (Khawaled and Freiman, 2022).
It sampled the true posterior distribution of the network weights by noise injection in the
training loss gradients with the Adam optimizer and estimated the registration uncertainty
according to the voxel-wise diagonal variance.

5.2.2. Monte Carlo methods

In 2013, Risholm et al. proposed a non-rigid registration framework where conventional
dissimilarity and regularization energies were included in the likelihood and the prior dis-
tribution on deformations, respectively, through Boltzmann’s distribution (Risholm et al.,
2013). MCMC was used to characterize the posterior distribution with Boltzmann temper-
ature hyper-parameters marginalized under broad uninformative hyper-prior distributions,
permitting the estimation of the most likely deformation as well as the associated uncer-
tainty.

In 2016, Le Folgoc et al. investigated uncertainty quantification under a sparse Bayesian
model of medical image registration with a focus on the theoretical and empirical quality
of uncertainty estimates derived under the approximate scheme and under the exact model
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(Le Folgoc et al., 2016). In this paper, the authors implemented an (asymptotically) exact
inference scheme based on reversible jump MCMC sampling to characterize the posterior
distribution of the transformation.

In 2022, Xu et al. proposed a mean-teacher registration framework, which incorporates
an additional temporal consistency regularization term by encouraging the teacher model’s
prediction to be consistent with that of the student model (Xu et al., 2022c). Instead of
searching for a fixed weight, the teacher model enables automatically adjusting the weights
of the spatial regularization and the temporal consistency regularization by taking advantage
of the transformation uncertainty and appearance uncertainty calculated based on MCD.

5.2.3. Hybrid methods

Compared with other probabilistic uncertainty quantification methods, model ensemble
is less popular and is usually used with other methods to construct a hybrid model. In
2023, Gong et al. (Gong et al., 2022) proposed a predictive module to learn the registration
and uncertainty in correspondence simultaneously by inducing three empirical randomness
and registration error-based uncertainty prediction methods: MCD, deep ensembles, and
Bootstrap.

In general, the majority of existing research focuses on trying out different summary
statistics as well as means to exploit registration uncertainty. Those researches do have
promising contributions, e.g., risk assessment based on the trustworthiness of the registered
image data.

5.3. Medical image detection

Medical image detection, aiming at detecting small or subtle abnormalities, anatomical
structures, lesions, tumors, or other pathologies, plays a vital role in early diagnosis, treat-
ment planning, and medical conditions monitoring. Images used for detection may have low
contrast, low signal-to-noise ratio, or be overshadowed by surrounding structures. These
factors can make it difficult for detection methods to identify and localize small objects
accurately, leading to false negatives or reduced sensitivity. Therefore, it is necessary to
estimate the detection uncertainty. Table 3 listed the related papers.

5.3.1. Bayesian inference

In 2020, Araujo et al. proposed a deep learning-based Diabetic Retinopathy grading
computer-aided diagnosis system that supports its decision by providing a medically in-
terpretable explanation and estimation of prediction uncertainty with a novel Gaussian-
sampling approach and a multiple-instance learning framework, allowing the ophthalmolo-
gist to measure how much that decision should be trusted (Araujo et al., 2020). In the same
year, Mao et al. proposed an abnormality detection approach based on an autoencoder that
outputs not only the reconstructed normal version of the input image but also a pixel-wise
uncertainty prediction with probabilistic distribution (Mao et al., 2020).

In 2021, Sudarshan et al. proposed a sinogram-based uncertainty-aware deep BNN frame-
work to estimate a standard-dose PET image (Sudarshan et al., 2021). Here, the detection
uncertainty is modeled through the per-voxel heteroscedasticity of the residuals between the
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Table 4: Uncertainty quantification methods in medical image detection

Publications Uncertainty Number of Clinical applications
methods dataset

Bayesian inference

Kwon et al. (2020) PD 2 Retinal blood vessels detection
Araujo et al. (2020) PD 2 Diabetic retinopathy grading diagnosis
Mao et al. (2020) PD 2 Lung abnormal detection
Akrami et al. (2021) PD 2 Brain lesions detection
Jafari et al. (2021) PD 1 Video keyframes detection
Sudarshan et al. (2021) PD 1 PET-MRI OoD detection
Wang et al. (2022b) PD 1 Abnormal lymph nodes detection
Huang et al. (2022a) BNN 5 Anomaly detection

MC methods

Leibig et al. (2017) MCD 1 Diabetic retinopathy detection
Gill et al. (2019) MCD 1 Focal cortical dysplasia detection
Nair et al. (2020) MCD 1 Sclerosis lesion detection
Ghoshal and Tucker (2020) MCD 1 COVID-19 detection
Yang et al. (2021) MCD 1 Lung nodule detection
Dong et al. (2021) MCD 1 COVID-19 detection
Calderon et al. (2021) MCD 1 Breast cancer detection
Tang et al. (2022) MCD 4 Retinal vessel detection
Ghoshal and Tucker (2021) MC sampling 1 COVID-19 detection
Bhat et al. (2021) TTD 1 Liver lesions detection

TTA
Ayhan et al. (2020) TTA 2 Diagnosing diabetic retinopathy
Ayhan and Berens (2022) TTA 1 Diabetic retinopathy detection

DST
Ben Atitallah et al. (2022) Basic DST 1 Pneumonia diagnosis
Rahman et al. (2023b) Basic DST 1 Fetal plane detection

Model ensemble Kabir et al. (2022) Ensemble 1 COVID-19 detection
Interval analysis Mazoure et al. (2022) Confidence interval 1 Skin cancer detection

Hybrid methods

Tabarisaadi et al. (2022)
MCD, Ensemble,

1 Skin cancer detection
Spectral GP

Asgharnezhad et al. (2022)
MCD, Ensemble,

1 COVID-19 detection
Ensemble-MCD

Javadi et al. (2022) TTD, TTA 1 Prostate cancer detection
Abdar et al. (2023) Ensemble-MCD 2 COVID-19 detection

Linmans et al. (2023) MCD, Ensembles 5
Lymph node tissue, prostate
cancer/biopsies, foreign tissue detection
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predicted and the high-quality reference images. Jafari et al. presented a video keyframe
landmark detection framework by leveraging the uncertainty of landmark prediction ob-
tained from a deep Bayesian network (Jafari et al., 2021). Akrami et al. described a quan-
tile regression VAE model to avoid variance shrinkage problems by estimating conditional
quantiles for the given input image (Akrami et al., 2021). Using the estimated quantiles, the
conditional mean and variance for input images were computed under the Gaussian model
to estimate detection uncertainty.

In 2022, Huang et al. presented an uncertainty-aware prototypical transformer model,
considering both the anomaly diversity and uncertainty to achieve accurate pixel-level vi-
sual anomaly detection (Huang et al., 2022a). First, a memory-guided prototype learning
transformer encoder was designed to learn the diversity of prototypical representations of
anomalies. Second, an anomaly detection uncertainty quantizer was designed by a Bayesian
Neural Network with Gaussian distribution to learn the distributions of anomaly detection.
Then, an uncertainty-aware transformer decoder was proposed to leverage the detection
uncertainties to guide the model to focus on the uncertain areas. In the same year, Wang
et al. proposed an improved Mask RCNN framework with a global-local channel attention
mechanism and multi-task Gaussian inference-based uncertainty loss for the detection of
abnormal lymph nodes in MR images (Wang et al., 2022b).

5.3.2. Monte Carlo methods

In 2017, Leibig et al. evaluated the impact of MCD-based Deep Bayesian uncertainty
measures in diagnosing diabetic retinopathy and showed that uncertainty-informed decision
referrals could improve diagnostic performance (Leibig et al., 2017). Similar research has
been investigated in (Gill et al., 2019), (Ghoshal and Tucker, 2020) and (Nair et al., 2020)
for the detection of COVID-19, focal cortical dysplasia detection and lesion, respectively.

In 2021, Yang et al. improved performance of a detection CNN performance with two dif-
ferent bounding-box-level (or instance-level) uncertainty estimates with predictive variance
and MC sampling variance, respectively (Yang et al., 2021); Dong et al. proposed a novel
deep network for robust COVID-19 detection that employs Deformable Mutual Informa-
tion Maximization (DeIM), Mixed High-order Moment Feature (MHMF), and Multiexpert
Uncertainty-aware Learning (MUL) (Dong et al., 2021). With DeIM, the mutual informa-
tion between input data and the corresponding latent representations can be estimated and
maximized to capture compact and disentangled representational characteristics. MHMF is
used to extract discriminative features of complex distributions, and MUL creates multiple
parallel MCD networks for each image to evaluate uncertainty and thus prevent performance
degradation caused by the noise in the data.

The same year, Ghoshal et al. proposed a Bayesian inference model with MC sampling
(Ghoshal and Tucker, 2021) for uncertainty quantification and measured bias-corrected un-
certainty using the Jackknife resampling technique (Sahinler and Topuz, 2007); Bhat et al.
proposed to use TTD to reduce false positive detections made by a neural network using an
SVM classifier trained with features derived from the uncertainty map of the neural network
prediction (Bhat et al., 2021).

Later in this year, Calderón-Ramı́rez et al. explored the impact of using unlabeled data
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through the implementation of a recent successful semi-supervised approach, MixMatch
(Berthelot et al., 2019), for breast cancer detection on mammogram images (Calderon et al.,
2021). They improved uncertainty estimations, i.e., Normalized entropy of Softmax, Max-
imum value of Softmax and MCD, by using unlabeled data under regimes with a very
limited number of labeled observations for training. Moreover, following (Asgharnezhad
et al., 2022), the authors used the proposed ”uncertainty confusion matrix” that groups
uncertainty estimations for each of a model’s predictions according to their “correctness”
and “confidence.” Based on this, the authors proposed an uncertainty-balanced accuracy to
ease the comparison of uncertainty estimation approaches in real-world usage scenarios.

5.3.3. Model ensemble

In 2022, Kabir et al. proposed an aleatory-aware deep uncertainty quantification method
for COVID-19 detection with an application for transfer learning and deep ensembles that
converted the outputted K-nearest posteriors of each DNN into opacity scores to represent
aleatory uncertainty (Kabir et al., 2022).

5.3.4. Non-probabilistic methods

In 2020, Ayhan et al. studied an intuitive framework based on TTA to quantify the
diagnostic uncertainty of a state-of-the-art DNN for diagnosing diabetic retinopathy (Ayhan
et al., 2020). Based on the first work, Ayhan et al. proposed a simple but effective method
using traditional data augmentation methods such as geometric and color transformations
at test time, allowing us to examine how much the network output varies in the vicinity of
examples in the input spaces (Ayhan and Berens, 2022).

In 2022, Ben et al. proposed a disease detection approach based on a DST-based evi-
dence fusion theory, allowing the combination of a set of deep learning classifiers to provide
more accurate disease detection results (Ben Atitallah et al., 2022). The main contribution
of this work is the application of Dempster’s rule for the fusion of five pre-trained con-
volutional neural networks (CNNs), including VGG16, Xception, InceptionV3, ResNet50,
and DenseNet201 for the diagnosis of pneumonia from chest X-ray images. In the same
year, Mazoure et al. released a web server, Deep Uncertainty Estimation for Skin Cancer
(DUESC) (Mazoure et al., 2022), that performs an intuitive, in-depth analysis of uncertainty
in commonly used skin cancer classification models based on CNNs and confidence intervals.

5.3.5. Hybrid methods

In 2021, Javadi et al. proposed a UNet-based deep network for prostate cancer detection
in systematic biopsy considering both the label and model uncertainty using TTA and TTD,
respectively (Javadi et al., 2022). Uncertainty metrics were then used to report the cancer
probability for regions with high confidence to help the clinical decision-making during the
biopsy procedure.

In 2022, Tabarisaadi et al. studied the automatic diagnosis of skin cancer using derma-
tologist spot images (Tabarisaadi et al., 2022). Three different uncertainty-aware training
algorithms (MCD, Model ensembling, and Spectral Normalized Neural Gaussian Process
(Liu et al., 2020a)) were utilized to detect skin cancer. In the same year, Asgharnezhad et
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Table 5: Uncertainty quantification methods in medical image prediction

Publications Uncertainty Number of Clinical
methods Dataset application

Bayesian inference
Bliesener et al. (2019) PD 1 Brain tumor longitudinal monitoring
Corrado et al. (2020) PD 1 Left atrium electro-physiology simulation prediction
Wu et al. (2021b) Sparse GP 2 Bone age prediction and lesion localization

MC methods

Rafael-Palou et al. (2022) MC sampling 1 Lung tumour growth prediction
Corrado et al. (2023) MC sampling 1 Left atrium anatomy prediction

Huang and Chung (2020) MCD 4
Autism spectrum disorder, Alzheimer,
and ocular diseases prediction

Hemsley et al. (2020) MCD 1 Brain metastases/glioblastoma radiation treatment prediction
Kannan et al. (2021) MCD 1 Assessment of paediatric dysplasia of the hip

Dolezal et al. (2022) MCD 2
lung adenocarcinoma and squamous cell
carcinoma prediction

DST

Lian et al. (2016b) ECM 2 Lung and esophageal cancer treatment outcomes prediction

Lian et al. (2016a) ECM 3
Lung, lymph and esophageal cancer
treatment outcomes prediction

Wu et al. (2018) Basic DST 4 Cancer treatment outcome prediction
Liu et al. (2023a) Basic DST 1 Knee replacement prediction
Ahmad et al. (2023) Basic DST 2 COVID-19 progression and prognosis prediction

Hybrid methods Jensen et al. (2019)
Ensemble, TTA

1 Skin conditions prediction
MC sampling, MCD

al. applied and evaluated three uncertainty quantification techniques, MCD, Ensembles and
Ensembles-MCD, for COVID-19 detection (Asgharnezhad et al., 2022). Moreover, a novel
concept of uncertainty confusion matrix was proposed and new performance metrics for the
objective evaluation of uncertainty estimates were introduced.

In 2023, Abdar et al. presented a simple but efficient deep learning feature fusion model,
UncertaintyfuseNet, for COVID-19 detection by using the Ensemble-MCD technique to
model detention uncertainty and the obtained results prove the efficiency of the model with
robustness to noise and unseen data (Abdar et al., 2023). In the same year, Linmans et
al. provided a benchmark for evaluating prevalent uncertainty methods by comparing the
uncertainty estimates on both ID and realistic near and far OoD data on a whole-slide level
using MCD and model ensembles (Linmans et al., 2023).

5.4. Medical image prediction

Radiomics aim to predict future outcomes or conditions from medical images. Although
it has been widely studied recently, it also has certain limitations. For example, disease
progression in many medical conditions is complex and multifactorial. Predicting the pro-
gression or response to treatment from medical images alone may oversimplify the under-
lying dynamics. Moreover, radiomic methods often encounter uncertainty and variability
in image-based measurements. Quantifying and addressing these uncertainties is crucial for
reliable predictions and their subsequent use in clinical decision-making. Table 5 lists the
related work.

24



5.4.1. Bayesian inference

In 2020, Corrado et al. used a Bayesian probabilistic approach to detect the left atrium
derived from cardiac MRI and to quantify the uncertainty about the shape (Corrado et al.,
2020). In 2021, Wu et al. proposed an uncertainty-aware deep kernel learning model that
permits the estimation of the uncertainty in the prediction by a pipeline of a CNN and
a sparse Gaussian Process (Wu et al., 2021b). In 2022, Rafael et al. proposed a deep
hierarchical generative and Bayesian probabilistic network that, given an initial image of
the nodule, predicts whether it will grow, quantifies its future size and provides its expected
semantic appearance at a future time and estimates the uncertainty in the predictions from
the intrinsic noise in medical images and the inter-observer variability in the annotations
(Rafael-Palou et al., 2022). In 2023, Corrado et al. described the left atrium anatomy
using a Bayesian shape model that captures anatomical uncertainty in medical images and
validated the model on independent clinical images (Corrado et al., 2023).

5.4.2. Monte Carlo methods

In 2018, Jungo et al. proposed an MCD-based full-resolution residual CNN for brain
tumor segmentation and survival prediction(Jungo et al., 2018a). In 2019, Bliesener et al.
used a neural network to estimate the approximate joint posterior distribution of tracer-
kinetic parameters, where uncertainties are estimated for each voxel and are specific to the
patient, exam, and lesion (Bliesener et al., 2019). The predicted parameter ranges correlate
well with tracer-kinetic parameter ranges observed across different noise realizations and
regression algorithms.

In 2020, Huang et al. proposed a concept of MC edge dropout to estimate the predictive
uncertainty related to the graph topology (Huang and Chung, 2020). After that, Hemsley et
al. proposed an MCD-based conditional generative adversarial model for brain metastases
or glioblastoma radiation treatment prediction (Hemsley et al., 2020) and Dolezal et al.
trained Bayesian Neural models with MCD to identify lung adenocarcinoma and squamous
cell carcinoma (Dolezal et al., 2022).

5.4.3. Non-probabilistic methods

For medical image prediction tasks, DST is the most commonly used non-probabilistic
uncertainty quantification method. In 2016, Lian et al. proposed a radiomics feature-based
radiotherapy treatment outcomes prediction system using a feature selection method based
on DST for modeling and reasoning with uncertain and/or imprecise information (Lian
et al., 2016b). The proposed method aimed to reduce the imprecision and overlaps between
different classes in the selected feature subspace, thus finally improving the prediction ac-
curacy. Based on the proposed feature selection model, Lian et al. proposed a radiotherapy
treatment outcomes prediction system that uses EKNN for radiomic features selection with
the consideration of a data balancing procedure and specified prior knowledge (Lian et al.,
2016a). After that, Wu et al. proposed a similar method for cancer treatment outcome
prediction with a feature selection module and an EKNN classifier (Wu et al., 2018).

In 2023, Ahmad et al. presented a complete COVID-19 progression and prognosis predic-
tion framework using a two-stage reasoning process based on the DST (Ghesu et al., 2021).
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In the same year, Liu et al. proposed an evidence-aware multi-modal data fusion framework
based on DST that considers the reliability of each source data and the prediction output
when making a final decision (Liu et al., 2023a). The backbone models contain an image,
a non-image branch and a fusion branch. For each branch, there is an evidence network
that takes the extracted features as input and outputs an evidence score, which is designed
to represent the reliability of the output from the current branch. The output probabili-
ties, along with the evidence scores from multiple branches are combined with Dempster’s
combination rule to make a final prediction.

5.4.4. Hybrid methods

In 2019, Jensen et al. experimentally showed that models trained to predict skin condi-
tions become overconfident and then proposed to train models with a label sampling scheme
that takes advantage of inter-rater variability to achieve a better-calibrated model (Jensen
et al., 2019). Thus, Model Ensemble, TTA, MC Batch Normalization (Teye et al., 2018)
and MCD were used to quantify prediction uncertainty.

5.5. Medical image classification

Similar to previous MIA tasks, the performance of medical image classification methods
depends on the quality of the image itself and the corresponding annotations. Quantifying
instance-level uncertainty helps to classify images where the classification model might be
uncertain or incorrect, allowing for manual correction or expert review and improving diag-
nosis quality and treatment planning. Considering that we have already introduced the main
uncertainty quantification methods in sections 3.1 and 3.2, and also the research focused on
image classification is similar to the medical image analysis tasks mentioned earlier, here
we only briefly describe their corresponding methods, datasets and clinical applications in
Table 6.

5.6. Medical image segmentation

Medical image segmentation is more challenging than classification tasks due to the
inherent variations in the appearance of anatomical structures, leading to potential er-
rors or inaccuracies in defining boundaries or segment structures. Therefore, quantifying
pixel/voxel-level uncertainty helps identify regions where the model might be uncertain
or incorrect, allowing for manual correction or expert review and improving radiotherapy
treatment performance. Table 8, 7 and 9 list three main probabilistic uncertainty quan-
tification methods used in medical image segmentation tasks. Table 10 shows the most
frequent non-probabilistic uncertainty methods DST and Table 11 shows the rest of the
non-probabilistic uncertainty methods. Table 12 shows the hybrid uncertainty quantifica-
tion methods. Among the retrieved methods, MCD and ENN is the most commonly used
probabilistic and non-probabilistic uncertainty quantification method for medical image seg-
mentation, respectively.

In MIA tasks, fully supervised learning has gained huge success based on the satisfying
condition that large-scale annotated training datasets are available (Ronneberger et al.,
2015; Myronenko, 2018; Isensee et al., 2018). However, region labeling in medical image
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Table 6: Uncertainty quantification methods in medical image classification

Publications Uncertainty Number of Clinical applications
methods Dataset

DST

Tardy et al. (2019) SL 2 Mammograms classification
Ghesu et al. (2019) SL 2 Chest radiograph assessment

Yuan et al. (2020) ENN 2
Breast infiltrating ductal carcinoma and chest
radiograph pneumonia classification

Huang et al. (2021c) ENN 1 COVID-19 classification
Ghesu et al. (2021) SL 2 Chest radiographs abnormalities classification
Xu et al. (2022a) SL 2 Pancreatic tumor subtype and grade classification

Liu et al. (2023b)
DST with new basic

1 Grading of breast cancer
probability assignment

MC methods

Abdar et al. (2021a) MCD 4
COVID-19, chest, optical coherence tomography,
and skin cancer classification

Ju et al. (2022) MCD 3
Skin lesions, prostate cancer
and retinal diseases classification

Valen et al. (2022) MCD 2 Chest and skin cancer classification

Feng et al. (2022) MCD 3
Optical coherence tomography
and chest classification

Ahsan et al. (2022) MCD 1 Diabetic retinopathy classification
Abdar et al. (2022) MCD 3 Retinal OCT, lung and chest classification
Aljuhani et al. (2022) MCD 1 Tumor region classification
Ghoshal et al. (2022) MC sampling 2 Pancreatic adenocarcinoma grading

Bayesian inference

Peressutti et al. (2013) PD 4 Cardiac interventions
Thiagarajan et al. (2021) BNN 1 Breast histopathology images classification
Belharbi et al. (2021) PD 2 Histology images classification
Liu and Zheng (2022) PD 2 Skin lesion and thorax disease classification
Jiménez-Sánchez et al. (2022) PD 1 Femur fracture classification

Ensemble

Senousy et al. (2021) Ensemble 1 Breast cancer classification

Qendro et al. (2021) Early exit ensemble 3
Heart attack, epileptic seizure
and skin melanoma classification

Arco et al. (2023) Ensemble 1 Bacterial/viral pneumonia classification

Fuzzy sets
Pham (2014) Fuzzy sets 1 Hernia mesh classification
Rahman et al. (2023a) Fuzzy sets 1 Brain tumour classification

Others
Galdran et al. (2019) Soft label 5 Retinal images classification
Del Amor et al. (2023) Soft label 1 Histology image classification

Hybrid methods

Carneiro et al. (2020) PD, TTA 1 Polyp classification

Abdar et al. (2021c)
MCD, Ensemble

2 Skin cancer classification
Ensemble-MCD

Gour and Jain (2022) MCD, CI 3 Breast histopathology images classification

Yang and Fevens (2021)
MCD, Ensemble,

2 COVID-19 and breast tumor classification
and Ensemble-MCD

Dawood et al. (2023) PD, TTA 2 Cardiac classification
Cifci (2023) TTD 1 Lung cancer diagnosis and treatment decisions
Mehta et al. (2023) Ensemble-MCD 3 Skin lesion classification

Hamedani et al. (2023)
MCD, Ensemble,

1 Breast cancer classification
and Ensemble-MCD
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segmentation tasks requires skilled expertise with domain knowledge and careful delineation
of boundaries. The contradiction between the increasing demand for segmentation accuracy
on the one hand, and the shortage of perfect (precise and reliable) annotations on the
other hand has so far limited the performance of learning-based medical image segmentation
methods. Therefore, in this section, we focus our uncertainty analysis on semi-supervised
medical image segmentation.

Techniques for semi-supervised medical image segmentation can be divided into three
groups: graph-constrained methods (Xu et al., 2016; Reiß et al., 2022), self-learning methods
(Li et al., 2019; Min et al., 2019), and generative adversarial learning methods (Mondal et al.,
2018; Sun et al., 2019). Though these methods can break the dependence of machine learning
models on training labels and the experimental results are promising, the uncertainty caused
by the low quality of the images and the lack of annotations still need to be further studied
for a more accurate and reliable medical image segmentation model.

According to our literature review, current uncertainty-based semi-supervised learning
methods (the methods be marked in blue color in Tables 8, 7, 9, 10, 11 and 12) can be
classified into two main groups: consistency learning (Yu et al., 2019; Shi et al., 2021)
and uncertainty-aware learning (Sedai et al., 2019; Meyer et al., 2021). Consistent learn-
ing regularizes the model’s predictions to be consistent across different perturbations of the
same input and imposes feature-level, data-level, model-level, or task-level consistency on
unlabeled data. The common applications are to optimize a teacher-student or multi-view
framework with consistent learning, where the teacher/main model provides consistent pre-
dictions for guiding the student/ auxiliary model. Uncertainty-aware learning integrates
estimated uncertainty into the training process directly when dealing with a mix of labeled
and unlabeled data. It leverages the unlabeled data to enhance the model’s predictions while
providing uncertainty estimates reflecting the model’s confidence in those predictions.

In the rest of the section, we will introduce the semi-supervised medical image segmen-
tation methods with uncertainty quantification in detail.

5.6.1. Bayesian inference

Consistent learning. In 2021, Shi et al. presented a conservative radical network with proba-
bilistic uncertainty estimation for medical image segmentation (Shi et al., 2021). The general
idea is that if the segmentation result of a pixel becomes inconsistent, this pixel shows a
relative uncertainty with probabilistic distribution.

In 2023, Shi et al. proposed an uncertainty-weighted prediction consistency training
strategy and a relation-driven consistency training strategy in a semi-supervised fashion for
nasopharyngeal carcinoma segmentation (Shi et al., 2023). The architecture was composed
of a shared encoder, a main decoder, and several auxiliary decoders. Various perturbations
were applied to the shared encoder’s output to leverage the unlabeled data and enforce
consistency between the predictions of the main and auxiliary decoders and uncertainty
estimation was applied to avoid being misled by unreliable outputs during training due to
annotation scarcity.

28



Table 7: Bayesian inference-based uncertainty quantification for medical image segmentation. The semi-
supervised methods are highlighted in blue.

Publications Uncertainty Number of Clinical applications
methods Dataset

Parisot et al. (2014) PD 2 Low-grade glioma and brain tumor segmentation
Lê et al. (2016) PD 1 Brain tumor segmentation
Ghoshal et al. (2019) PD 1 Nuclei images segmentation
Wang et al. (2018a) PD 2 Organs and brain tumor core segmentation
Behnami et al. (2019) PD 1 Infants born MRI tumor segmentation
Ouyang et al. (2019) PD 1 Pneumothorax segmentation
Baumgartner et al. (2019) Hierarchical PD 2 thoracic and prostate segmentation
Camarasa et al. (2021) PD 1 Carotid artery segmentation
Luo et al. (2021) PD 1 Nasopharyngeal carcinoma segmentation
Zhang et al. (2021) PD 1 Liver tumor segmentation
Zhao et al. (2021) PD 1 Carotid artery segmentation
Li et al. (2022c) PD 2 Subcortical structures segmentation
Li et al. (2021a) Multi-head PD 1 Intracranial hemorrhage segmentation
Luo et al. (2021) PD 1 Nasopharyngeal carcinoma segmentation
Mahani et al. (2022) PD 1 Skin lesions segmentation
Wang et al. (2022c) PD 2 Cardiac and skin lesion segmentation
Liu et al. (2022) PD 2 Atrial, brain tumor, liver tumor segmentation
Xie et al. (2022) PD with confidence map 3 Ultrasound Image segmentation
Li et al. (2022a) PD 1 Brain tumor segmentation
Diao et al. (2022) PD 4 Soft tissue, lymphoma and liver tumor segmentation
Jones et al. (2022) PD 1 Brain tumor segmentation, tissue class prediction

Luo et al. (2022) PD 3
Nasopharyngeal carcinoma, brain tumor
and pancreas segmentation

Shi et al. (2023) PD 2 Neck tumor segmentation
Zhang et al. (2023a) PD 2 Atrial segmentation, brain tumor segmentation
Islam et al. (2023) PD 2 Breast segmentation
Sedai et al. (2019) BNN 1 Optical coherence tomography segmentation
Xia et al. (2020a) BNN 2 Pancreas and liver tumor segmentation
Bian et al. (2020) BNN 2 Retinal OCT images segmentation
Kwon et al. (2020) BNN 2 Ischemic stroke lesion segmentation, blood vessels detection
Senapati et al. (2020) BNN 1 Liver segmentation and disease classification
Krygier et al. (2021) BNN 2 Spine and aorta segmentation
Li et al. (2021b) BNN 2 Lung and nasal endoscopy segmentation
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Table 8: MC methods-based uncertainty quantification for medical image segmentation. The semi-supervised
methods are highlighted in blue.

Publication Uncertainty Number of Clinical applications
methods dataset

Jungo et al. (2018b) MCD 2 Synthetic and brain tumor segmentation
Jungo et al. (2018a) MCD 1 Brain tumor Segmentation, Survival Prediction
Seeböck et al. (2019) MCD 6 Retinal OCT anatomy segmentation
Hu et al. (2019) MCD 2 Lung nodule and prostate segmentation
Yu et al. (2019) MCD 1 Left atrium segmentation
Soberanis-Mukul et al. (2020) MCD 2 Pancreas and spleen segmentation
Wang et al. (2020b) MCD 2 Left atrium and kidney segmentation
Xia et al. (2020b) MCD 4 Pancreas segmentation
Monteiro et al. (2020) MCD 2 Thorax and brain tumor segmentation
Ruan et al. (2020) MCD 1 Renal tumors segmentation
Liu et al. (2020b) MCD 1 Prostate zonal segmentation
Hu et al. (2020) MCD 1 Natural killer T cell and lymphoma segmentation
Nair et al. (2020) MCD 1 Sclerosis lesion detection and segmentation
Wickstrøm et al. (2020) MCD 1 Polyp segmentation
Hasan and Linte (2021) MCD 1 Cardiac segmentation
Meyer et al. (2021) MCD 3 Prostate zones segmentation
Wu et al. (2021a) MCD 2 Mitochondria segmentation
Cao et al. (2021) MCD 1 Breast segmentation
Wang et al. (2021a) MCD 2 Cardiac and prostate segmentation
Ghoshal et al. (2021) MCD 2 Cell and brain tumor detection
Rousseau et al. (2021) MCD 2 Ischemic stroke and brain tumor segmentation
Balagopal et al. (2021) MCD 1 post-operative prostate cancer radiotherapy
Wang et al. (2021b) MCD 3 Thoracic, white matter and skin lesion segmentation
Silva and Oliveira (2021) MCD 4 Brain growth, brain tumor, kidney and prostate segmentation

Wang et al. (2023b) MCD 3
Thoracic skin lesion and brain’s white matter
tissue myelination process

Hu et al. (2022) MCD 2 Nasopharyngeal carcinoma segmentation
Qiao et al. (2022) MCD 3 Chest segmentation
Wang et al. (2022c) MCD 1 Cardiac segmentation
Mojiri Forooshani et al. (2022) MCD 2 white matter hyperintensity segmentation
Kuang et al. (2022) MCD 1 Perihematomal edema segmentation
Tang et al. (2022) MCD 4 Nasopharyngeal carcinoma, lung, optic disc segmentation
Judge et al. (2022) MCD 3 Cardiac ultrasound, myocardial infarction and lung segmentation
Wang et al. (2022a) MCD 2 Cardiac and prostate segmentation
Xiao et al. (2022) MCD 1 Cardiac segmentation
Zheng et al. (2022) MCD 3 Cardiac, spinal cord gray matter and spleen segmentation
Xiang et al. (2022) MCD 2 Left atrium and pancreas segmentation
Sambyal et al. (2022) MCD 1 Brain tumor segmentation
Lu et al. (2023) MCD 1 Atrial Segmentation
Farooq et al. (2023) MCD 2 Breast masses segmentation
Zimmer et al. (2023) MCD 1 Placenta segmentation
Norouzi et al. (2019) MC sampling 1 Cardiac segmentation
Eaton-Rosen et al. (2019) MC sampling 2 white-matter hyperintensity segmentation
Huang et al. (2020) MC sampling 1 Atria and ventricles segmentation
Alonso-Caneiro et al. (2021) MC sampling 1 Retinal OCT images segmentation
Zhao et al. (2022) MC sampling 2 Cardiac segmentation
Chlebus et al. (2022) MC sampling 5 Liver segmentation
Chen et al. (2022) MC sampling 3 Cardiac, spinal cord gray matter and spleen segmentation
Wang et al. (2023c) MC sampling 1 Dental panoramic caries segmentation
Arega et al. (2023) MC sampling 2 Cardiac pathologies
Natekar et al. (2020) TTD 1 Brain tumor segmentation
Redekop and Chernyavskiy (2021) TTD 2 Skin lesion and liver segmentation
Xu et al. (2023) TTD 2 Brain tumor and left atrial segmentation
Awate et al. (2019) MCMC 4 Brain MRI segmentation
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Table 9: Model Ensemble uncertainty quantification for medical image segmentation. The semi-supervised
methods are highlighted in blue.

Publications Uncertainty Number of Clinical applications
method dataset

Nath et al. (2020) Ensemble 2 Pancreas and tumor segmentation
Fuchs et al. (2021) Ensemble 1 Brain tumor segmentation
Cao et al. (2020) Ensemble 1 Breast mass segmentation
Li et al. (2021c) Ensemble 1 COVID-19 lesion segmentation
Kushibar et al. (2022) Ensemble 2 Breast cancer and cardiac segmentation
Guo et al. (2022) Ensemble 4 Cardiac segmentation
Buddenkotte et al. (2023) Ensemble 2 Cancer and kidney tumor segmentation
Zhang et al. (2023b) Ensemble 2 Tumor segmentation

Table 10: DST-based uncertainty quantification for medical image segmentation. The semi-supervised
methods are highlighted in blue.

Publications Uncertainty Number of Clinical applications
methods dataset

Ghasemi et al. (2013) Basic DST 2 Brain MRI segmentation
Lelandais et al. (2014) ECM 1 Tumor estimation and dose planning
Makni et al. (2014) ECM 1 Prostate multi-parametric segmentation
Liu et al. (2015) DST with fuzzy c-means 1 Brain MRI segmentation
Derraz et al. (2015) DST optimization 1 Non-small cell lung cancer segmentation
Xiao et al. (2017) GD with Dempster’s rule 1 Vascular segmentation
Lian et al. (2017c) ECM 1 Tumor delineation
Lian et al. (2017a) ECM 1 Tumor Segmentation
Lian et al. (2017b) ECM 1 Lung cancer Segmentation
Lian et al. (2018) ECM 1 Lung cancer Segmentation
Tavakoli and Ghasemi (2018) DST with fuzzy c-means 1 Brain MRI segmentation
Lima and Islam (2019) DST with fuzzy c-means 1 Brain MRI segmentation
Huang et al. (2021b) ENN 1 Brain tumor segmentation
(Huang et al., 2021a) ENN 1 Lymphoma segmentation
Huang et al. (2022c) ENN 1 Brain tumor Segmentation

Huang et al. (2022d)
ENN, DST with

1 Lymphoma segmentation
Radial basis function

Fidon et al. (2022)
DST with new

1 fetal brain MRI segmentation
basic probability assignment

Hu et al. (2023) SL 1 Liver tumor segmentation
Zou et al. (2023) SL 3 Skin lesion, liver and brain tumor segmentation

Zhang et al. (2023c)
DST with deep

4 Brain MRI segmentation
hyperspherical clustering

Huang et al. (2023b) ENN 1 Brain tumor segmentation
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Table 11: Other non-probabilistic uncertainty quantification methods for medical image segmentation. The
semi-supervised methods are highlighted in blue.

Publications Uncertainty Number of Clinical applications
methods dataset

Alberts et al. (2016) TTA 15 Brain tumor segmentation
Wang et al. (2019b) TTA 1 Brain tumor segmentation
Xu et al. (2022b) TTA 1 Prostate ultrasound segmentation
Wu et al. (2023) TTA 1 Fetal brain segmentation
Zheng et al. (2020a) Fuzzy sets 2 Pancreas segmentation
Bertels et al. (2021) Soft label 4 Lower-left third molar and brain tumor segmentation
Shi et al. (2021) Conservative and Radical Setting 3 Cancreas and endocardium segmentation
Adiga Vasudeva et al. (2022) Plausible sets 1 Left atrium segmentation
Huang et al. (2022b) Fuzzy logic theory 3 Breast segmentation

Uncertainty-aware learning. In 2021, Meyer et al. proposed an uncertainty-aware tem-
poral self-learning (UATS) model to combine the techniques of temporal ensembling and
uncertainty-guided self-learning to benefit from unlabeled images (Meyer et al., 2021). In
the same year, Luo et al. proposed a semi-supervised medical image segmentation frame-
work with uncertainty rectified pyramid consistency regularization in (Luo et al., 2021, 2022),
where uncertainty is estimated via the KL-divergence among multi-scale predictions, which
only need a single forward pass compared with MCD.

In 2022, Qiao et al. used a complementary uncertainty pairing rule to dilute the unre-
liability in semi-supervised learning by assembling reliable annotated data into unreliable
unannotated data (Qiao et al., 2022), where a mixed sample data augmentation method
was proposed to integrate annotated data into unannotated data for training the model in
a low-unreliability manner. In the same year, Wang et al. proposed an uncertainty-guided
pixel contrastive learning method (Wang et al., 2022c), where an uncertainty map for unla-
beled data was constructed based on the entropy of the average probability distribution by
a well-designed consistency learning mechanism, which generates comprehensive predictions
for unlabeled data by encouraging consistent network outputs from two different decoders.

5.6.2. Monte Carlo methods

Consistent learning. In 2019, Yu et al. presented a teacher-student-based uncertainty-
aware semi-supervised framework for left atrium segmentation (Yu et al., 2019) with an
uncertainty-aware scheme that enables the student model to gradually learn from mean-
ingful and reliable targets by exploiting the uncertainty information using MCD. Following
the idea that explores uncertainty caused by lack of annotation, researchers optimized or
extended semi-supervised or un-supervised MIA models that use the teacher-student frame-
work with the MC methods. For example, Sedai et al. proposed an uncertainty-guided
semi-supervised learning network based on a student-teacher framework for medical image
segmentation with MCD (Sedai et al., 2019).

In 2022, Chen et al. proposed an MC Sampling-based uncertainty teacher-student frame-
work with dense focal loss and deep co-training (Chen et al., 2022). In the same year, Xiao
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et al. designed a teacher-student segmentation method through synchronous training and
consistent regular constraints by screening uncertainty assessment with MCD during the
training process (Xiao et al., 2022); Hu et al. proposed a two-stage teacher-student semi-
supervised segmentation framework where an MCD-based uncertainty estimation was intro-
duced to guide the student model to gradually learn reliable predictions from the teacher
model (Hu et al., 2022). In 2023, Farooq et al. proposed a residual-attention-based MCD
uncertainty-guided mean teacher framework that incorporates the residual and attention
blocks (Farooq et al., 2023).

In addition to using the MC methods in the teacher-student framework, the MC methods
are also popular in multi-view frameworks for uncertainty quantification. In 2020, Xia
et al. proposed an uncertainty-aware multi-view co-training framework by exploiting the
multi-viewpoint consistency of 3D medical images (Xia et al., 2020a,b). They applied co-
training by enforcing multi-view consistency generated from MCD on unlabeled data, where
an uncertainty estimation of each view is utilized to achieve accurate labeling. A similar
approach can be found in (Wang et al., 2023c). In the same year, Zhang et al. proposed
an MCD uncertainty-guided mutual consistency learning framework to effectively exploit
unlabeled data by integrating intra-task consistency learning from up-to-date predictions for
self-ensembling and cross-task consistency learning from task-level regularization to exploit
geometric shape information (Zhang et al., 2023a).

Uncertainty-aware learning. In 2019, Sedai et al. proposed an uncertainty-guided semi-
supervised learning network based on a student-teacher framework for medical image seg-
mentation (Sedai et al., 2019). First, a teacher segmentation model was trained from the
labeled samples using deep learning with MCD to generate soft segmentation labels and un-
certainty maps for the unlabeled set. The student model was then updated using the softly
segmented samples and the corresponding pixel-wise confidence of the segmentation quality
estimated from the uncertainty of the teacher model using a newly designed uncertainty-
based loss function. A similar method with an additional learnable uncertainty consistency
loss was proposed in (Wang et al., 2020b).

In 2020, Soberanis-Mukul et al. proposed a segmentation refinement method based on
MCD uncertainty analysis and graph convolutional networks (Soberanis-Mukul et al., 2020).

In 2022, Zheng et al. proposed an uncertainty-aware scheme to make models learn
segmentation regions purposefully (Zheng et al., 2022). The model employed MCD as an
estimation method to attain uncertainty maps, which serve as a weight for losses to force
the models to focus on the valuable region according to the characteristics of supervised
learning and unsupervised learning.

5.6.3. Model ensemble

Consistent learning. In 2021, Li et al. proposed a semi-supervised uncertainty-guided dual-
consistency learning segmentation network (UDC-Net) that imposes image transformation
equivalence and feature perturbation invariance to effectively harness the knowledge from
unlabeled data (Li et al., 2021c). The segmentation uncertainty was then quantified in two
forms: confidence uncertainty calculated by the entropy of the mean prediction of multiple
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Table 12: Hybrids uncertainty quantification for medical image segmentation. The semi-supervised methods
are highlighted in blue.

Publications Uncertainty Number of Clinical applications
methods dataset

Eaton-Rosen et al. (2018) MC sampling, TTD 1 Brain tumour segmentation
Dhamala et al. (2018) MCMC, PDF 2 Cardiac electrophysiology segmentation
Wang et al. (2019a) MCD, TTA 1 Fetal brain and brain tumor segmentation
Jungo and Reyes (2019) MCD, Ensemble 2 Brain tumor and skin lesion segmentation
Jungo et al. (2020) MCD, Ensemble 1 Brain tumor segmentation
Venturini et al. (2020) TTA, TTD 2 Hippocampal and fetal brain segmentation
Zheng et al. (2020b) Bootstrap, Ensemble 1 Cartilage segmentation
Wang et al. (2020a) MCD, Ensemble, BNN 1 Fetal brain segmentation
Mehrtash et al. (2020) MCD, Ensemble 5 Brain tumor, ventricular and prostate segmentation
Czolbe et al. (2021) MCD, Ensemble, TTA 2 Skin lesion& lung cancer segmentation
Mehta et al. (2021) MCD, Deep Ensemble, Ensemble-MCD 2 Lesion detection and brain tumour segmentation
Zheng et al. (2021) MC sampling, PD 3 Skin lesion segmentation
Lin et al. (2022b) Fuzzy set, TTA 1 Skin lesion segmentation
Lin et al. (2022a) MCD, fuzzy set, TTA 5 Skin lesion, nuclei, lung, breast, and cell segmentation
Pandey et al. (2022) MCD, Ensemble, TTA 1 Ultrasound bone segmentation
Rajaraman et al. (2022) MCD, Interval analysis 1 Tuberculosis segmentation
Ng et al. (2022) MCD, Ensemble 2 Cardiac Segmentation
Sagar (2022) MCD, Ensemble, Ensemble-MCD 1 Brain tumor segmentation
Ammari et al. (2023) MCD, TTA, Shannon entropy 2 Right ventricular segmentation

perturbated inputs, and consensus uncertainty quantified by the standard deviation over the
multi-decoders’ predictions.

Uncertainty-aware learning. In 2020, Cao et al. presented an uncertainty-aware temporal
ensembling model for semi-supervised breast mass segmentation (Cao et al., 2020). A tem-
poral ensembling segmentation model was designed to segment breast mass using a few
labeled and a large number of unlabeled images and an uncertainty map was estimated from
MCD for each image; an adaptive ensembling momentum map and an uncertainty-aware
unsupervised loss was designed and integrated with the temporal ensembling model.

5.6.4. Non-probabilistic methods

Compared to the probabilistic-based method to quantify uncertainty due to lack of an-
notation, there are only a few non-probabilistic researches that study uncertainty in semi-
supervised medical image segmentation frameworks.

In 2022, Venturini et al. proposed an uncertainty-based method to improve the perfor-
mance of segmentation networks when limited manual labels and estimated segmentation
uncertainty on unlabeled data using TTA and TTD (Venturini et al., 2020). In the same
year, Xiang et al. proposed a medical image segmentation framework that combines epis-
temic uncertainty-guided unsupervised learning and aleatory uncertainty-guided supervised
learning with the ensemble of decoders (Xiang et al., 2022) Adiga et al. estimated the
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pixel-level uncertainty by leveraging the labeling representation of segmentation into a set
of plausible masks (Adiga Vasudeva et al., 2022).

In 2023, Huang et al. addressed the uncertainty caused by the low quality of the images
and the lack of annotations using DST and deep learning (Huang et al., 2023b) with a
semi-supervised learning algorithm proposed based on an image transformation strategy,
a probabilistic deep neural network and an evidential neural network used in parallel to
provide two sources of segmentation evidence, and Dempster’s rule used to combine the two
pieces of evidence and reach a final segmentation result.

In the same year, Xu et al. proposed a dual uncertainty-guided mixing consistency net-
work with a contrastive training module that improves the quality of augmented images by
retaining the invariance of data augmentation between original data and their augmenta-
tions (Xu et al., 2023). The dual uncertainty strategy calculates dual uncertainty obtained
from N stochastic forward passes with random dropout between two models to select a more
confident area for subsequent segmentation. The mixing volume consistency module guides
the consistency between the volume before and after segmentation using dual uncertainty.

6. Discussion

In this section, we first list the key insights of applying uncertainty quantification in
MIA and discuss the limitations. We then identify some potential future research points for
readers’ convenience.

6.1. Uncertainty quantification methods

First, the large number of studies incorporating uncertainty quantification in their med-
ical analysis pipeline proves that the need to quantify uncertainty is well taken into account
by the AI research community, showing that efforts are being made to bridge the gap between
scientific research and clinical applications.

Bayesian inference, although providing a strong theoretical background for uncertainty,
is scarcely implemented for medical image analysis because of the requirement for the mod-
ification of the NN weights and the training paradigm, as well as the slow convergence tends
(Osawa et al., 2019) and noisy gradient descent (Jospin et al., 2022) in complex scenarios.

MC methods tended to be the most popular approach for uncertainty quantification
in MIA, representing around half of the implemented methods. This popularity can be
explained by its easy implementation in a large majority of neural networks trained with
dropout. However, MC sampling requires multiple inferences for the same input image, con-
siderably extending the inference time, which may not be compatible with high requirements
in clinical efficiency.

Model ensemble is a popular trick to improve predictive performance while also pro-
viding quality uncertainty estimates. Similar to MC methods, it also has drawbacks in
computational cost and efficiency.

Though the above probabilistic methods have gained enough attention in MIA and have
achieved promising performance in estimating Out-of-Distribution (OoD) uncertainty when
the model faces inputs that fall outside the range or distribution of the training data,
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their limitations still remain when addressing or representing complex scenarios, e.g., In-
Distribution (ID) uncertainty that arises from the inherent variability and noise within the
dataset. For example, in the case of a multiclass problem (a three-class classification task
(Ω = {a, b, c}) as an example here), a good uncertainty model should be able to model the
possible intermediate classes between the totally certain and totally uncertain about a class
(i.e., any subset of Ω, e.g., {a, b}, {b, c}.), depending on the informativeness of the training
data with respect to the class membership of the pattern under consideration (Denœux,
2000). Take three disease diagnoses as an example: an expert confirms that the patient does
not have disease a but may have disease b or c; a good uncertainty model should then have
the ability to model such ID uncertainty in an informative way, i.e, the degree of belief or
plausibility that the patient be classified in to subset {b, c}. In practical scenarios, standard
probabilistic uncertainty approaches, such as MCD or Ensemble, often fall short of effec-
tively quantifying ID uncertainty. These approaches attempt to capture ID uncertainty by
generating a set of predictions and calculating statistical indicators such as variance, offer-
ing only a singular uncertainty value without further context. Consequently, this limitation
hampers the effectiveness of probabilistic methods in modeling ID uncertainty (Snoek et al.,
2019; Ulmer and Cinà, 2021).

Non-probabilistic methods attract people’s attention in modeling fuzzy, noisy, or uncer-
tain information and motivate the development of methods tailored for uncertain both ID
and OoD. Compared with the probabilistic uncertainty methods, non-probabilistic uncer-
tainty quantification methods release the requirement of strong assumptions about the real
distribution and modeling uncertainty based on fuzzy or soft conception. DST, the most
popular non-probabilistic uncertainty method, can model OoD uncertainty with full igno-
rance about prediction and model ID uncertainty by providing comprehensive belief and
plausibility context about any subset of Ω. Besides uncertainty quantification, DST also of-
fers a way to combine multiple unreliable information, which is particularly useful in fusing
multi-modality or cross-modality medical image data (Huang et al., 2022c). Moreover, the
introduction of DST with neural networks, i.e., EKNN (Denoeux, 1995) and ENN (Denœux,
2000), makes it possible to integrate DST with SOTA deep learning models and, therefore,
popularized its application in MIA. Other non-probabilistic uncertainty methods, such as
fuzzy sets and fuzzy logic theory, interval analysis, and test time augmentation, although
less frequently mentioned as DST, are also good choices for uncertainty quantification and
can be further studied to integrate them with SOTA deep learning models.

6.2. Evaluation criteria

According to our literature review, a large variety of evaluation protocols are reported
to assess the quality of uncertainty estimation. In the context of MIA, if multiple manual
expert delineations are available for a given input image, the inter-rater variability is usually
used as ground truth uncertainty to be compared with the predicted one. The related re-
search has gained promising achievement and contributed to the development of uncertainty
estimation in MIA. However, most of the time, the corresponding uncertainty values are
not provided. Thus, evaluating uncertainty results relies on proxy tasks, such as detect-
ing sample variance, predictive entropy, misclassification, OoD, or calibration performance.
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One possible evaluation method is to determine whether performing a task that takes un-
certainty into account improves the performance calculated on the criteria dedicated to this
task, for example, the Dice coefficient for a segmentation task. These methods are inspired
by concrete applications of uncertainty in a real-world scenario.

However, while several metrics exist to evaluate uncertainty estimation methods, none
capture the complete picture. Metrics like calibration and coverage probability provide
insights into specific aspects of uncertainty estimation but may not fully capture other
important characteristics, such as the ability to capture epistemic and aleatory uncer-
tainty separately. Therefore, we suggest researchers take task-depended clinical expecta-
tions/requirements into consideration when choosing uncertainty quantification evaluation
criteria and ensure the fairness and pertinence of the evaluation criteria.

6.3. Applications

Analyzing uncertain information in image reconstruction and registration can improve
the quality of medical images. Uncertainty quantification assesses the impact of radiation
dose or contrast agent usage on reconstructed images and can help find the most optimizing
imaging condition. Medical image registration involves aligning and transforming multiple
images to enable comparison or fusion. Uncertainty estimates help understand the confidence
level of the registration process. This is important when the alignment is challenging due to
image noise, artifacts, or deformations, especially for multi-modal medical image registration
tasks.

In medical diagnosis, using a detection, classification, or segmentation model developed
from an imbalanced dataset (which is a common situation in the medical domain) is risky
because the model might be overconfident or overconfident. Uncertainty estimation can
thus be used to identify where pixel/voxel or object-level predictions are less certain, there-
fore helping clinicians understand the reliability of the prediction results and identify areas
where automatic prediction may fail and manual intervention might be necessary by provid-
ing insights into regions of high ambiguity or uncertainty. This can be particularly useful
in minimizing false positives and false negatives and detecting Out-of-Distribution or am-
biguous In-Distribution samples that might need specialized handling. Apart from disease
diagnosis, prediction of treatment outcomes or disease development is also important to
improve the cure rate. Uncertainty estimates provide insights into the range of possible out-
comes, supporting personalized treatment strategies and allowing researchers to set realistic
expectations for model performance.

To conclude, uncertainty quantification provides critical information about the reliability
and confidence of the analysis. This information is particularly valuable in medical applica-
tions due to the critical nature of the decisions made based on these predictions, impacting
patient care and treatment outcomes. By incorporating uncertainty estimation, MIA be-
comes more transparent, trustworthy, and aligned with the clinical workflow, which helps
bridge the gap between artificial intelligence algorithms and clinical practice, enhancing
the acceptance and trustworthiness of AI-assisted medical decisions. Furthermore, building
public trust will also help to improve the general fairness of AI healthcare systems.
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Apart from the methods mentioned above that focus on studying the uncertainty of the
medical image analysis results, a branch of literature also focuses on modeling or analyzing
the uncertainty of image labels itself. Medical experts may have varied interpretations of the
same image, leading to intra-observer variability (Vinod et al., 2016; Jungo et al., 2018b).
Additionally, the same expert may interpret an image differently on different occasions,
causing inter-observer variability (Sampat et al., 2006; Schmidt et al., 2023). Such dis-
crepancies in annotations introduce uncertainty and complexity in medical image analysis.
Therefore, the label uncertainty modeling approaches focus on such datasets, and studying
effective methods for modeling and reducing the inter-observer and intra-observer variability
is necessary and important. There are some researches that take into account medical image
labeling uncertainty, which can be classified according to the focus on inner uncertainty or
inter-observer uncertainty modeling, i.e., image label uncertainty modeling and fusion of
uncertain image labels. Moreover, there are some researchers who contribute to open-source
new datasets with uncertain ground truth. Readers can refer to Supplementary Material B
for related analysis.

6.4. Perspectives

Based on the discussion of the advantages and limitations of existing uncertainty quantifi-
cation methods, we suggest several future research points to further improve the implications
of uncertainty quantification in MIA.

Effectiveness. The most critical limitation of present uncertainty quantification research is
the lack of ground truth uncertainty, leading to the lack of standardized evaluation metrics
for uncertainty quantification methods. The uncertainty associated with ground truth labels
can propagate and affect model uncertainty estimates. However, ground truth labels are not
always definitive due to inherent inter-observer variability, ambiguous cases, or inherent
limitations of manual annotations. Moreover, the lack of the uncertainty ground truth
limits the understanding of sources and reasons behind uncertainty and the explanation
of uncertainty to clinicians or users. Though some researchers use inter-rater variability
as uncertainty ground truth, it is still unclear whether it is theoretically guaranteed. For
example, for a segmentation task, experts can somewhat give random variations around
the boundaries of the target object, over-segment, or alternatively under-segment the same
object of interest based on their annotation style. This inter-rater variability is thus instead
linked to contextual biases (e.g., radiologist experience or annotation habits) rather than to
the true uncertainty of the label (Mehta et al., 2022). Therefore, we encourage researchers
to put efforts into constructing MIA datasets with both accuracy and uncertain ground
truth and set up standardized evaluation metrics for uncertainty quantification methods. A
simple solution can be providing diagnosis/detection/prediction/segmentation/classification
ground truths as well as providing a corresponding confidence index.

Explainability. SOTA uncertainty quantification methods, such as deep learning ensembles
or MCD, may lack interpretability, making it challenging to explain the uncertainty es-
timation process to clinicians or patients. Therefore, the link between explainability and
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uncertainty would be interesting to study. Studying the relationship allows us to understand
both how the prediction is made and whether or not it should be trusted, in other words,
whether or not the results are reliable. An interesting research point would be to comple-
ment uncertainty estimates with explanations, helping the user understand the uncertainty
of each source and how the uncertain sources are summarized and summed to reach a final
decision. For example, in (Huang et al., 2023a), Huang et al. proposed a deep evidential fu-
sion framework with uncertainty quantification and contextual discounting for multimodal
medical image segmentation. This approach is the first attempt to explain the decision-
making process by quantifying subject-level uncertainty with contextual discounting to the
fusion of deep neural networks and applying it to multimodal medical image segmentation
tasks. Another potential research work is studying the relationship between uncertainty
and reliability. Conventional research typically treats uncertainty as an opposite indicator
of reliability, (Modarres et al., 2016; Ovadia et al., 2019), i.e., the lower the uncertainty, the
higher the reliability, which is just an approximation and has limitations in explaining more
complex situations such as uncertain but reliable models. Therefore, integrating uncertainty
with reliability, i.e., studying the relationship between uncertainty and reliability, could also
be an exciting and significant subject.

Efficiency. As shown, the vast majority of the implemented uncertainty quantification meth-
ods are based on a sampling protocol, such as MCD and Bayesian inference, aiming at
generating multiple predictions. However, they can be computationally expensive and time-
consuming, which, therefore, limits their practical application in real-time or clinical set-
tings, where quick and efficient analysis is crucial. The recently popular deep ensemble
models, their superior uncertainty measure, along with the high computational cost. Non-
probabilistic methods, such as DST, compute the uncertainty in a quick and efficient manner
that requires only a single forward step, which is generally required for medical applications,
indicating a promising direction to be further explored.

Clinical applications. Integrating uncertainty quantification into clinical workflows and decision-
making processes can be challenging due to the limited trust in existing ML models and the
limited clinical validation. Therefore, careful consideration and adaptation of uncertainty
quantification are required to align research with clinical guidelines and to fit it within the
clinical context. We thus suggest researchers integrate clinical validation and take ethical
and legal problems into consideration when developing their MIA models to 1) enable more
reliable, interpretable, and applicable uncertainty quantification models; 2) ensure their clin-
ical utility, interpretability, and impact on patient outcomes; 3) ensure their fairness to the
public.

7. Conclusion

This review provides an overview of the uncertainty quantification methods commonly
implemented in machine learning-based medical image applications. Numerous phenom-
ena can cause predictive uncertainty, such as noisy images, imperfect ground truth labels,
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incomplete data, and inter-site image variability. The literature proposes various meth-
ods to quantify uncertainty applied to an extensive range of medical image applications.
As demonstrated in this review, developing trustable AI solutions integrating uncertainty
quantification of the computed predictions is an active search topic that has many potential
future directions.
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Vlašić, T., Matulić, T., Seršić, D., 2023. Estimating uncertainty in pet image reconstruction via deep
posterior sampling. arXiv preprint arXiv:2306.04664 .

Wachinger, C., Golland, P., Reuter, M., Wells, W., 2014. Gaussian process interpolation for uncertainty
estimation in image registration, in: Medical Image Computing and Computer-Assisted Intervention–
MICCAI 2014: 17th International Conference, Boston, MA, USA, September 14-18, 2014, Proceedings,
Part I 17, Springer. pp. 267–274.

Wallman, M., Smith, N.P., Rodriguez, B., 2014. Computational methods to reduce uncertainty in the
estimation of cardiac conduction properties from electroanatomical recordings. Medical image analysis
18, 228–240.

Wang, C., Lv, X., Shao, M., Qian, Y., Zhang, Y., 2023a. A novel fuzzy hierarchical fusion attention
convolution neural network for medical image super-resolution reconstruction. Information Sciences 622,
424–436.

Wang, G., Aertsen, M., Deprest, J., Ourselin, S., Vercauteren, T., Zhang, S., 2020a. Uncertainty-guided
efficient interactive refinement of fetal brain segmentation from stacks of mri slices, in: Medical Image

55



Computing and Computer Assisted Intervention–MICCAI 2020: 23rd International Conference, Lima,
Peru, October 4–8, 2020, Proceedings, Part IV 23, Springer. pp. 279–288.

Wang, G., Li, W., Aertsen, M., Deprest, J., Ourselin, S., Vercauteren, T., 2019a. Aleatoric uncertainty esti-
mation with test-time augmentation for medical image segmentation with convolutional neural networks.
Neurocomputing 338, 34–45.

Wang, G., Li, W., Ourselin, S., Vercauteren, T., 2019b. Automatic brain tumor segmentation based on cas-
caded convolutional neural networks with uncertainty estimation. Frontiers in computational neuroscience
13, 56.

Wang, G., Li, W., Zuluaga, M.A., Pratt, R., Patel, P.A., Aertsen, M., Doel, T., David, A.L., Deprest, J.,
Ourselin, S., et al., 2018a. Interactive medical image segmentation using deep learning with image-specific
fine tuning. IEEE transactions on medical imaging 37, 1562–1573.

Wang, J., Wells, W.M., Golland, P., Zhang, M., 2018b. Efficient laplace approximation for bayesian regis-
tration uncertainty quantification, in: Medical Image Computing and Computer Assisted Intervention–
MICCAI 2018: 21st International Conference, Granada, Spain, September 16-20, 2018, Proceedings, Part
I, Springer. pp. 880–888.

Wang, K., Zhan, B., Zu, C., Wu, X., Zhou, J., Zhou, L., Wang, Y., 2021a. Tripled-uncertainty guided
mean teacher model for semi-supervised medical image segmentation, in: Medical Image Computing
and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France,
September 27–October 1, 2021, Proceedings, Part II 24, Springer. pp. 450–460.

Wang, K., Zhan, B., Zu, C., Wu, X., Zhou, J., Zhou, L., Wang, Y., 2022a. Semi-supervised medical image
segmentation via a tripled-uncertainty guided mean teacher model with contrastive learning. Medical
Image Analysis 79, 102447.

Wang, L., Ju, L., Zhang, D., Wang, X., He, W., Huang, Y., Yang, Z., Yao, X., Zhao, X., Ye, X., et al.,
2021b. Medical matting: a new perspective on medical segmentation with uncertainty, in: Medical
Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference,
Strasbourg, France, September 27–October 1, 2021, Proceedings, Part III 24, Springer. pp. 573–583.

Wang, L., Ye, X., Ju, L., He, W., Zhang, D., Wang, X., Huang, Y., Feng, W., Song, K., Ge, Z., 2023b.
Medical matting: Medical image segmentation with uncertainty from the matting perspective. Computers
in Biology and Medicine 158, 106714.

Wang, S., Zhu, Y., Lee, S., Elton, D.C., Shen, T.C., Tang, Y., Peng, Y., Lu, Z., Summers, R.M., 2022b.
Global-local attention network with multi-task uncertainty loss for abnormal lymph node detection in mr
images. Medical Image Analysis 77, 102345.

Wang, T., Lu, J., Lai, Z., Wen, J., Kong, H., 2022c. Uncertainty-guided pixel contrastive learning for
semi-supervised medical image segmentation, in: Proceedings of the Thirty-First International Joint
Conference on Artificial Intelligence, IJCAI, pp. 1444–1450.

Wang, X., Gao, S., Jiang, K., Zhang, H., Wang, L., Chen, F., Yu, J., Yang, F., 2023c. Multi-level uncertainty
aware learning for semi-supervised dental panoramic caries segmentation. Neurocomputing 540, 126208.

Wang, Y., Zhang, Y., Tian, J., Zhong, C., Shi, Z., Zhang, Y., He, Z., 2020b. Double-uncertainty weighted
method for semi-supervised learning, in: Medical Image Computing and Computer Assisted Intervention–
MICCAI 2020: 23rd International Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part I 23,
Springer. pp. 542–551.

Warfield, S.K., Zou, K.H., Wells, W.M., 2002. Validation of image segmentation and expert quality with
an expectation-maximization algorithm, in: Medical Image Computing and Computer-Assisted Interven-
tion—MICCAI 2002: 5th International Conference Tokyo, Japan, September 25–28, 2002 Proceedings,
Part I 5, Springer. pp. 298–306.

Wickstrøm, K., Kampffmeyer, M., Jenssen, R., 2020. Uncertainty and interpretability in convolutional
neural networks for semantic segmentation of colorectal polyps. Medical image analysis 60, 101619.

Wu, J., Gu, R., Lu, T., Zhang, S., Wang, G., 2023. Upl-tta: Uncertainty-aware pseudo label guided fully
test time adaptation for fetal brain segmentation, in: International Conference on Information Processing
in Medical Imaging, Springer. pp. 237–249.

Wu, J., Lian, C., Ruan, S., Mazur, T.R., Mutic, S., Anastasio, M.A., Grigsby, P.W., Vera, P., Li, H., 2018.

56



Treatment outcome prediction for cancer patients based on radiomics and belief function theory. IEEE
transactions on radiation and plasma medical sciences 3, 216–224.

Wu, S., Chen, C., Xiong, Z., Chen, X., Sun, X., 2021a. Uncertainty-aware label rectification for domain
adaptive mitochondria segmentation, in: Medical Image Computing and Computer Assisted Intervention–
MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Pro-
ceedings, Part III 24, Springer. pp. 191–200.

Wu, Z., Yang, Y., Gu, J., Tresp, V., 2021b. Quantifying predictive uncertainty in medical image analysis
with deep kernel learning, in: 2021 IEEE 9th International Conference on Healthcare Informatics (ICHI),
IEEE. pp. 63–72.

Xia, Y., Liu, F., Yang, D., Cai, J., Yu, L., Zhu, Z., Xu, D., Yuille, A., Roth, H., 2020a. 3d semi-supervised
learning with uncertainty-aware multi-view co-training, in: Proceedings of the IEEE/CVF Winter Con-
ference on Applications of Computer Vision, pp. 3646–3655.

Xia, Y., Yang, D., Yu, Z., Liu, F., Cai, J., Yu, L., Zhu, Z., Xu, D., Yuille, A., Roth, H., 2020b. Uncertainty-
aware multi-view co-training for semi-supervised medical image segmentation and domain adaptation.
Medical image analysis 65, 101766.

Xiang, J., Qiu, P., Yang, Y., 2022. Fussnet: Fusing two sources of uncertainty for semi-supervised medical
image segmentation, in: International Conference on Medical Image Computing and Computer-Assisted
Intervention, Springer. pp. 481–491.

Xiao, R., Ding, H., Zhai, F., Zhao, T., Zhou, W., Wang, G., 2017. Vascular segmentation of head phase-
contrast magnetic resonance angiograms using grayscale and shape features. Computer Methods and
Programs in Biomedicine 142, 157–166.

Xiao, Z., Su, Y., Deng, Z., Zhang, W., 2022. Efficient combination of cnn and transformer for dual-teacher
uncertainty-guided semi-supervised medical image segmentation. Computer Methods and Programs in
Biomedicine 226, 107099.

Xie, Y., Liao, H., Zhang, D., Chen, F., 2022. Uncertainty-aware cascade network for ultrasound image
segmentation with ambiguous boundary, in: International Conference on Medical Image Computing and
Computer-Assisted Intervention, Springer. pp. 268–278.

Xu, C., Yang, Y., Xia, Z., Wang, B., Zhang, D., Zhang, Y., Zhao, S., 2023. Dual uncertainty-guided mixing
consistency for semi-supervised 3d medical image segmentation. IEEE Transactions on Big Data .

Xu, N., Price, B., Cohen, S., Yang, J., Huang, T., 2016. Deep interactive object selection, in: 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), IEEE Computer Society. pp. 373–381.

Xu, S., Chen, Y., Ma, C., Yue, X., 2022a. Deep evidential fusion network for medical image classification.
International Journal of Approximate Reasoning 150, 188–198.

Xu, X., Sanford, T., Turkbey, B., Xu, S., Wood, B.J., Yan, P., 2022b. Polar transform network for prostate
ultrasound segmentation with uncertainty estimation. Medical Image Analysis 78, 102418.

Xu, Z., Luo, J., Lu, D., Yan, J., Frisken, S., Jagadeesan, J., Wells III, W.M., Li, X., Zheng, Y., Tong,
R.K.y., 2022c. Double-uncertainty guided spatial and temporal consistency regularization weighting for
learning-based abdominal registration, in: International Conference on Medical Image Computing and
Computer-Assisted Intervention, Springer. pp. 14–24.

Yager, R.R., Zadeh, L.A., 2012. An introduction to fuzzy logic applications in intelligent systems. volume
165. Springer Science & Business Media.

Yang, C.I., Li, Y.P., 2023. Explainable uncertainty quantifications for deep learning-based molecular prop-
erty prediction. Journal of Cheminformatics 15, 13.

Yang, J., Liang, Y., Zhang, Y., Song, W., Wang, K., He, L., 2021. Exploring instance-level uncertainty for
medical detection, in: 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), IEEE.
pp. 448–452.

Yang, S., Fevens, T., 2021. Uncertainty quantification and estimation in medical image classification, in:
Artificial Neural Networks and Machine Learning–ICANN 2021: 30th International Conference on Arti-
ficial Neural Networks, Bratislava, Slovakia, September 14–17, 2021, Proceedings, Part III 30, Springer.
pp. 671–683.

Yang, X., Niethammer, M., 2015. Uncertainty quantification for lddmm using a low-rank hessian ap-

57



proximation, in: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th
International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part II 18, Springer. pp.
289–296.

Ye, C., Li, Y., Zeng, X., 2020. An improved deep network for tissue microstructure estimation with uncer-
tainty quantification. Medical image analysis 61, 101650.

Yu, L., Wang, S., Li, X., Fu, C.W., Heng, P.A., 2019. Uncertainty-aware self-ensembling model for
semi-supervised 3d left atrium segmentation, in: Medical Image Computing and Computer Assisted
Intervention–MICCAI 2019: 22nd International Conference, Shenzhen, China, October 13–17, 2019, Pro-
ceedings, Part II 22, Springer. pp. 605–613.

Yuan, B., Yue, X., Lv, Y., Denoeux, T., 2020. Evidential deep neural networks for uncertain data classifica-
tion, in: Knowledge Science, Engineering and Management: 13th International Conference, KSEM 2020,
Hangzhou, China, August 28–30, 2020, Proceedings, Part II 13, Springer. pp. 427–437.

Zadeh, L.A., 1965. Fuzzy sets. Information and control 8, 338–353.
Zhang, Y., Jiao, R., Liao, Q., Li, D., Zhang, J., 2023a. Uncertainty-guided mutual consistency learning for

semi-supervised medical image segmentation. Artificial Intelligence in Medicine 138, 102476.
Zhang, Y., Peng, C., Peng, L., Huang, H., Tong, R., Lin, L., Li, J., Chen, Y.W., Chen, Q., Hu, H., et al.,

2021. Multi-phase liver tumor segmentation with spatial aggregation and uncertain region inpainting,
in: Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International
Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part I 24, Springer. pp.
68–77.

Zhang, Y., Peng, C., Tong, R., Lin, L., Chen, Y.W., Chen, Q., Hu, H., Zhou, S.K., 2023b. Multi-modal
tumor segmentation with deformable aggregation and uncertain region inpainting. IEEE Transactions on
Medical Imaging .

Zhang, Z., Romero, A., Muckley, M.J., Vincent, P., Yang, L., Drozdzal, M., 2019. Reducing uncertainty in
undersampled mri reconstruction with active acquisition, in: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 2049–2058.

Zhang, Z., Ye, S., Liu, Z., Wang, H., Ding, W., 2023c. Deep hyperspherical clustering for skin lesion medical
image segmentation. IEEE Journal of Biomedical and Health Informatics .

Zhao, C., Li, D., Feng, C., Li, S., 2021. Of-umrn: Uncertainty-guided multitask regression network aided
by optical flow for fully automated comprehensive analysis of carotid artery. Medical Image Analysis 70,
101982.

Zhao, Y., Yang, C., Schweidtmann, A., Tao, Q., 2022. Efficient bayesian uncertainty estimation for nnu-
net, in: International Conference on Medical Image Computing and Computer-Assisted Intervention,
Springer. pp. 535–544.

Zheng, E., Yu, Q., Li, R., Shi, P., Haake, A., 2021. A continual learning framework for uncertainty-aware
interactive image segmentation, in: Proceedings of the AAAI Conference on Artificial Intelligence, pp.
6030–6038.

Zheng, H., Chen, Y., Yue, X., Ma, C., Liu, X., Yang, P., Lu, J., 2020a. Deep pancreas segmentation with
uncertain regions of shadowed sets. Magnetic Resonance Imaging 68, 45–52.

Zheng, H., Motch Perrine, S.M., Pitirri, M.K., Kawasaki, K., Wang, C., Richtsmeier, J.T., Chen, D.Z.,
2020b. Cartilage segmentation in high-resolution 3d micro-ct images via uncertainty-guided self-training
with very sparse annotation, in: Medical Image Computing and Computer Assisted Intervention–MICCAI
2020: 23rd International Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part I 23, Springer.
pp. 802–812.

Zheng, X., Fu, C., Xie, H., Chen, J., Wang, X., Sham, C.W., 2022. Uncertainty-aware deep co-training for
semi-supervised medical image segmentation. Computers in Biology and Medicine 149, 106051.

Zhou, Q., Yu, T., Zhang, X., Li, J., 2020. Bayesian inference and uncertainty quantification for medical
image reconstruction with poisson data. SIAM Journal on Imaging Sciences 13, 29–52.

Zhou, Z.H., 2012. Ensemble methods: foundations and algorithms. CRC press.
Zimmer, V.A., Gomez, A., Skelton, E., Wright, R., Wheeler, G., Deng, S., Ghavami, N., Lloyd, K., Matthew,

J., Kainz, B., et al., 2023. Placenta segmentation in ultrasound imaging: Addressing sources of uncertainty

58



and limited field-of-view. Medical Image Analysis 83, 102639.
Zou, K., Yuan, X., Shen, X., Chen, Y., Wang, M., Goh, R.S.M., Liu, Y., Fu, H., 2023. Evidencecap: Towards

trustworthy medical image segmentation via evidential identity cap. arXiv preprint arXiv:2301.00349 .

Supplementary Material A

Bayesian inference

Probabilistic Distribution (PD). In Bayesian inference, probabilistic distribution, such as
Gaussian distribution (the most commonly used one), Beta distribution, Poisson Distri-
bution, Exponential distribution, and Dirichlet distribution, are usually used to generate
distributions over predictions rather than point estimates (Wallman et al., 2014; Liao et al.,
2019; Islam and Glocker, 2021). The parameters of the posterior probabilistic distribution
provide estimates of the parameter of interest, and the posterior covariance matrix gives the
parameters’ uncertainties. The diagonal elements of the covariance matrix correspond to
the variances of the estimated parameters.

Gaussian Process (GP). GP is a non-parametric approach used to model functions as prob-
ability distributions over possible functions (Wachinger et al., 2014; Wu et al., 2021b; Peter
et al., 2021). GP provides not only point predictions but also the associated uncertainty esti-
mates at every point in the input space, making them valuable for regression, interpolation,
and optimization tasks where uncertainty needs to be considered.

Bayesian Neural Networks (BNNs). With the success of neural networks (NNs), Bayesian
inference is also integrated into neural networks to contract a BNN for uncertainty estimation
(Blundell et al., 2015; Bian et al., 2020; Li et al., 2021b; Krygier et al., 2021). In BNN, each
weight w of the NN is replaced by placing a prior distribution over the neural network weights
rather than having a single fixed value. A prior distribution p(w) is first initialized over
the NN weights and the model learns the posterior distribution p(w|D) given the training
dataset D and the prior distribution during training. The trained BNN is akin to a virtually
infinite ensemble of NNs, where each instance has weights drawn from the learned posterior
distribution.

MC methods

MC sampling. MC sampling (Zheng et al., 2021; Ghoshal and Tucker, 2021)is a general
interpretation of methods that estimates uncertainty by drawing random samples from a
given distribution (normally Gaussian distribution), estimating quantities of interest, and
characterizing uncertainty using the obtained samples. Two basic sampling types: simple
sampling which draws independent samples from the distribution of interest and impor-
tance sampling which draws samples from a different, easier-to-sample distribution and uses
weights to adjust for the difference between the true distribution and the sampling distri-
bution are used. Advanced techniques such as Latin hypercube sampling and Jackknife
resampling, are also employed to enhance the efficiency of MC methods and reduce the
number of required samples.
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Figure 7: Example of (a) standard Neural Network and (b) Neural Network with Dropout. The dropped
neurons were marked in grey and linked by a dotted line. Parameter µ is the mean or expectation of N
distributions, and σ is its standard deviation.

Test-Time Dropout (TTD). Dropout (Srivastava et al., 2014) is primarily a regularization
technique used during training to prevent overfitting in neural networks. However, it can
also be adapted for uncertainty quantification during the test or inference phase. Test-
time dropout (TTD) is commonly used in various machine learning applications to estimate
predictive uncertainty and make probabilistic predictions. Figure 7 shows an example of
a standard Neural Network (left) and a Neural Network with Dropout (right), where the
dropped neurons were marked in grey and linked by a dotted line. By applying TTD, the
model generates different predictions for the same input data, and these predictions reflect
the uncertainty associated with the model’s weights and architecture.

Monte Carlo dropout (MCD). In Gal and Ghahramani (2016), the authors demonstrated
that an NN trained with dropout operation 7(b) is able to efficiently approximate Bayesian
inference that sampling from a variational family (Gaussian Mixture) and approximate the
true deep Gaussian process posterior without the associated prohibitive computational cost.
Based on this principle, MCD, a SOTA technique for estimating uncertainty in predictions,
is proposed. In MCD, dropout is applied at both training and test time. During test time,
multiple forward passes are performed with dropout instead of using a single forward pass,
resulting in a collection of different predictions for each input.

Markov Chain Monte Carlo (MCMC). MCMC methods use Markov chains to generate de-
pendent data samples. The basic idea is to build such Markov chains, which are easy to
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Figure 8: Markov Chain Monte Carlo reasoning process. Parameter µ is the mean or expectation of all
sampling samples, σ is the corresponding standard deviation.

sample from and whose stationary distribution is the target distribution, such that when fol-
lowing them, in the limit, we obtain samples from the target distribution (Christophe et al.,
2023). MCMC methods, such as the Metropolis-Hastings algorithm (Chib and Greenberg,
1995), Gibbs (Kozumi and Kobayashi, 2011) or slice sampling (Neal, 2003), are used to sam-
ple from probability distributions. These methods are particularly useful when analytical
solutions are not available. Figure 8 shows the MCMC reasoning process.

Bootstrap. Bootstrap (Efron, 1992; Davison and Hinkley, 1997), a statistical technique used
for uncertainty quantification by estimating the sampling variability of a statistical estimator
or model, also belongs to the broader category of MC sampling. It involves resampling the
observed data (with replacement) to create multiple bootstrap samples. Those samples are
then used to estimate the uncertainty by calculating statistics such as the standard deviation,
confidence intervals, or percentile intervals of interest.

• Step 1 (Sampling): Randomly select a bootstrap sample of size N (with replacement)
from the original dataset.

• Step 2 (Estimation): Apply the desired estimation or modeling procedure to the boot-
strap sample to obtain an estimate of interest.

• Step 3: Repeat Steps 1 and 2 N times (typically, N ≫ D ), each time generating a
new bootstrap sample and computing the corresponding estimation.

• Step 4 (Uncertainty calculation): Analyze the distribution or variability of the obtained
estimates across the N bootstrap samples.

Deep ensemble

The idea of deep ensemble is that N neural networks are trained independently to collect
N deterministic predictions. The variability in predictions across ensemble members is then
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Figure 9: Example of an ensemble model with multiple neural networks. Parameter µ is the mean or
expectation of N distributions, σ is the standard deviation.

used to estimate uncertainty (Guo et al., 2022; Zhang et al., 2023b). Figure 9 shows an
example of an ensemble model with multiple neural networks, where epistemic uncertainty
is captured as different models in the ensemble may have different learned representations,
reflecting uncertainty about the true model structure.

Dempster-Shafer Theory

Let Ω = {ω1, ω2, ..., ωC} be a finite set of all possible hypotheses about some problem,
called a frame of discernment. Evidence about a variable ω taking values in Ω can be
represented by mass function m, from the power set 2Ω to [0, 1], such that∑

A⊆Ω

m(A) = 1, (9a)

m(∅) = 0. (9b)

Each subset A ⊆ Ω and m(A) is called a focal set of m. The uncertainty (total ignorance)
of the problem can be represented as m(Ω). In DST, the belief about a certain item is
elaborated by aggregating different belief functions over the same frame of discernment.

Shafer’s model. Assuming that conditional density functions f(x | ωc) are known, then the
conditional likelihood associated with the pattern X is defined by ℓ(ωc | x) = f(x | ωc). The
mass functions are defined according to the knowledge of all hypotheses ω1, . . . , ωC . Firstly,
the plausibility of a simple hypothesis ωc is proportional to its likelihood. The plausibility
is, thus, given by

Pl({ωc}) = ℏ · ℓ(ωc | x), ∀ωc ∈ Ω, (10)
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where ℏ is a normalization factor with ℏ = 1/maxω∈Ω ℓ(ω|x). The plausibility of a set A is,
thus, given by

Pl(A) = ℏ ·max
ωc∈A

ℓ(ωc | x). (11)

Dempster’s rule. Given two mass functions m1 and m2 derived from two independent items
of evidence, the final belief that supports A can be obtained by combining m1 and m2 with
Dempster’s rule (Shafer, 1976), which is defined as

(m1 ⊕m2)(A) =
1

1− κ

∑
B∩D=A

m1(B)m2(D), (12)

for all A ⊆ Ω, A ̸= ∅, and (m1 ⊕ m2)(∅) = 0. The coefficient κ is the degree of conflict
between m1 and m2 that

κ =
∑

B∩D=∅

m1(B)m2(D). (13)

Evidential K-Nearest Neighbor (EKNN) rule. Let NK(x) denote the set of the K nearest
neighbors of x in a learning set. Each xi ∈ NK(x) is considered as a piece of evidence
regarding the class label of x. The strength of evidence decreases with the distance between
x and xi. The evidence of (xi, yi) support class c is represented by

mi({ωc}) = φc(di)yic, 1 ≤ c ≤ C, (14a)

mi(Ω) = 1− φc(di), (14b)

where di is the distance between x and xi, which can be the Euclidean or other distance
function; and yic = 1 if yi = ωc and yic = 0 otherwise. Function φc is defined as

φc(d) = α exp(−γd2), (15)

where α and γ are two tuning parameters. The evidence of the K nearest neighbors of x is
fused by Dempster’s rule:

m =
⊕

xi∈NK(x)

mi. (16)

The final decision is made according to maximum plausibility.

Evidential C-Means (ECM). In (Denœux and Masson, 2004), Denoeux et al. proposed
an evidential clustering algorithm that extends the notion of fuzzy partition with Credal
partition, which extends the existing concepts of hard, fuzzy (probabilistic), and possibilistic
partition by allocating each object a ’mass of belief,’ not only to single clusters but also to
any subsets of Ω = {ω1, ..., ωC}. Based on the credal partition, Evidential C-Means (ECM)
(Masson and Denoeux, 2008) was introduced to generate mass functions. In ECM, a cluster
is represented by a prototype pc. For each non-empty set Aj ⊆ Ω, a prototype p̄j is defined
as the center of mass of the prototypes pc such that ωc ∈ Aj. Then the non-empty focal
set is defined as F = {A1, ..., Af} ⊆ 2Ω \ {∅}. Deriving a credal partition from object data
implies determining, for each object xi, the quantities mij = mi(Aj), Ai ̸= ∅, Aj ⊆ Ω. The
distance between an object and any nonempty subset of Ω has thus to be defined by

d2ij = ∥xi − p̄j∥2 . (17)
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Evidential Neural Network (ENN). In (Denœux, 2000), Denœux proposed an Evidential
Neural Network (ENN) classifier in which mass functions are computed based on distances
to prototypes. The ENN classifier is composed of an input layer of H neurons, two hidden
layers, and an output layer. The first input layer is composed of I units, whose weights
vectors are prototypes p1, . . . , pI in input space. The activation of unit i in the prototype
layer is

si = αi exp(−γid
2
i ), (18)

where di = ∥x− pi∥ is the Euclidean distance between input vector x and prototype pi,
γi > 0 is a scale parameter, and αi ∈ [0, 1] is an additional parameter. The second hidden
layer computes mass functions mi representing the evidence of each prototype pi, using the
following equations:

mi({ωc}) = uicsi, c = 1, ..., C (19a)

mi(Ω) = 1− si, (19b)

where uic is the membership degree of prototype i to class ωc, and
∑C

c=1 uic = 1. Finally,
using Dempster’s rule, the third layer combines the I mass functionsm1, . . . ,mI . The output
mass function m =

⊕I
i=1mi is a discounted Bayesian mass function that summarizes the

evidence of the I prototypes.

Subjective Logic (SL). Subjective logic (Josang et al., 2006; Jøsang, 2016) extends DST by
introducing additional concepts and principles to handle subjective judgments and uncer-
tainty. It incorporates degrees of belief, disbelief, and uncertainty to capture subjective
opinions and incomplete information. Arguments in SL are subjective opinions about state
variables that can take values from a domain (aka state space), where a state value can
be thought of as a proposition that can be true or false. A binomial opinion applies to a
binary state variable and can be represented as a Beta PDF (Probability Density Function)
(Kotz et al., 2004). A multinomial opinion applies to a state variable of multiple possible
values and can be represented as a Dirichlet PDF (Probability Density Function) (Olkin
and Rubin, 1964). For each input Xn, the SL provides belief mass bc for different classes
(Assuming C classes here) and an uncertainty mass U for whole classes. Accordingly,

C∑
c=1

bc + u = 1, (20)

where bc ≥ 1 and u ≥ 1 denote the probability of the input Xn for the cth class and the
input’s global ignorance (uncertainty). The evidence en = [en1 , ..., e

n
C ] for the classification

result is acquired by an activation function layer softplus and enc ≥ 0. Then the Dirichlet
distribution can be parameterized by αn = [αn

1 , ..., α
n
C ], which associated with the evidence

enc , i.e., α
n
c = enc +1. In the end, the image-level belief mass and the uncertainty mass of the

classification can be calculated by:

bnc =
enC
Sn

=
αn
c − 1

Sn
, (21)
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Table 13: Label uncertainty modeling& analysis in medical image analysis

Publications Methods to uncertain New Clinical applications
label analysis dataset

Kohl et al. (2018) Plausible sets No Lung abnormalities segmentation
Liao et al. (2019) PD No 2D echo quality assessment
Czolbe et al. (2021) Ensemble, MCD, TTA No Skin lesion& lung cancer segmentation
Pham et al. (2021) Soft label No Thoracic diseases classification
Redekop and Chernyavskiy (2021) TTD No Skin lesion and liver segmentation

Islam and Glocker (2021) PD No
Brain tumors, prostate zones, kidney tumors
and lung nodules segmentation

Peter et al. (2021) PD No chest CT scan registration
Label Khawaled and Freiman (2022) PD No Brain MRI registration
uncertainty Adiga Vasudeva et al. (2022) PD No Left atrium segmentation
modeling Wu et al. (2021a) MCD No Mitochondria segmentation

Ghoshal and Tucker (2022) MCD No COVID-19 detection
Aljuhani et al. (2022) MCD No Tumor region classification
Javadi et al. (2022) TTA, TTD No Prostate cancer detection
Wu et al. (2023) TTA No Fetal brain Segmentation
Islam et al. (2023) PD No Breast segmentation
Del Amor et al. (2023) Soft label No Histology image classification

Uncertain Jungo et al. (2018b) STAPLE, vote, intersection, union No Brain tumor segmentation
label Li et al. (2022b) multi-rater label fusion No Breast tumor cellularity assessment estimation
fusion Lemay et al. (2022) STAPLE, average, sampling No Spinal cord gray matter, brain lesion segmentation

New dataset
Irvin et al. (2019) PD Yes Chest radiograph interpretation

Ju et al. (2022) MCD Yes
Skin lesions, prostate cancer
and retinal disease classification

and

Un =
C

Sn
, (22)

where Sn =
∑C

c=1 α
n
c =

∑C
c=1 e

n
c + 1 represents the Dirichlet strength.

Supplementary Material B

Table 13 lists the related works that focus on medical image labeling uncertainty analysis.

Image label uncertainty modeling

To deal with the uncertainty of image labels, the straightforward way is to model it with a
label distribution map using fuzzy concepts. It can be achieved by introducing probabilistic
uncertainty modeling algorithms such as prediction variability (Liao et al., 2019) or non-
probabilistic algorithms such as fuzzy predictions (Kohl et al., 2018; Adiga Vasudeva et al.,
2022) and label smoothing strategies (Del Amor et al., 2023; Islam and Glocker, 2021; Pham
et al., 2021).

In 2018, Kohl et al. approximated the uncertain expert label distribution using generative
neural networks in MIA task (Kohl et al., 2018). They proposed a generative segmentation
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model based on a combination of a U-Net with a conditional variational autoencoder that
is capable of efficiently producing an unlimited number of plausible sets.

In 2019, Liao et al. proposed a method to model the intra-observer variability in echo
quality assessment as an aleatoric uncertainty modeling regression problem with Cumulative
Density Function (CDF) Probability (Liao et al., 2019). It addressed the observer variability
as aleatoric uncertainty, which models experts’ opinions as Laplace or Gaussian distributions
over the regression space.

In 2021, Czolbe et al. considered four established strategies, i.e., U-Net with Softmax
Output, Ensemble Methods, MCD and Probabilistic U-Net to address the inter-observer
variability or intra-observer variability (Czolbe et al., 2021). In the same year, Pham et
al. presented a multi-label classification framework based on deep CNNs for predicting
the presence of 14 common thoracic diseases and observations (Pham et al., 2021). They
trained several state-of-the-art CNNs that exploit hierarchical dependencies among abnor-
mality labels using the label smoothing technique to handle uncertain samples. Redekop
and Chernyavskiy proposed to train binary segmentation DCNNs using sets of unreliable
pixel-level annotations (Redekop and Chernyavskiy, 2021). Islam et al. proposed a spa-
tially varying label smoothing mechanism for incorporating structural label uncertainty by
capturing ambiguity about object boundaries in expert segmentation maps in (Islam and
Glocker, 2021).

In 2022, Adiga et al. proposed to estimate the pixel-level uncertainty by leveraging
the labeling representation into a set of plausible masks and estimating the uncertainty
with a single inference from the labeling representation (Adiga Vasudeva et al., 2022). In
the same year, Aljuhani et al. presented an importance-based sampling framework with
MCD-based approximate inference for robust histopathology image analysis (Aljuhani et al.,
2022). Ghoshal et al. extended the approximate inference for the loss-calibrated Bayesian
framework to drop weights-based Bayesian neural networks by maximizing expected utility
over a model posterior to calibration uncertainty in deep learning (Ghoshal and Tucker,
2022).

In 2023, Del Amor et al. designed an uncertainty-driven labeling strategy to generate
soft labels from 10 non-expert annotators for multi-class skin cancer classification (Del Amor
et al., 2023). Based on the soft annotations, they proposed an uncertainty estimation frame-
work to handle these noisy labels with a novel formulation using a dual-branch min–max
entropy calibration to penalize inexact labels during the training.

Fusion of uncertain image labels

Research on the fusion of uncertain image labels mainly focuses on modeling and ad-
dressing the conflicts or ambiguities among labels. This part of the study deals only with the
post-processing of uncertain labels, therefore, we do not distinguish between probabilistic
and non-probabilistic methods. In 2018, Jun et al. analyzed the effect of common image
label fusion techniques with uncertain labels: (a) no fusion, (b) majority vote, (c) STAPLE
(Warfield et al., 2002), (d) intersection and (e) union of all observers, and then analysis
model’s capability to learn the inter-observer variability into the estimation of segmenta-
tion uncertainty regardless of the image content in (Jungo et al., 2018b). An interesting
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finding is that the obtained results highlighted the negative effect of fusion methods ap-
plied in deep learning to obtain reliable estimates of segmentation uncertainty and showed
that the learned observers’ uncertainty can be combined with current MCD-based models
to characterize the uncertainty of the model’s parameters.

In 2022, Lemay et al. compared three label fusion methods: STAPLE, average of the
rater’s prediction, and random sampling of each rater’s prediction (Lemay et al., 2022).
The results indicated conventional models trained with a Dice loss, with binary inputs and
sigmoid/softmax final activate, were overconfident and underestimated the uncertainty as-
sociated with inter-rater variability. Conversely, fusing labels by averaging with the soft
prediction framework led to underconfident outputs and overestimation of the rater dis-
agreement.

To efficiently leverage the label ambiguities, in 2022, Li et al. proposed an uncertainty-
aware label distribution learning framework (Li et al., 2022b) by converting single-value
labels to discrete label distributions and modeling the ambiguity among all possible labels.
The framework then learned label distributions by minimizing the KL divergence between
the predicted and ground-truth label distributions and mimicked the multi-rater fusion pro-
cess in clinical practice with a multi-branch feature fusion module to further explore the
uncertainties of labels.

New image dataset with uncertainty annotation

In addition to modeling or analyzing the label uncertainty in the existing open public
dataset, there are some researchers who contribute to larger-scale medical datasets with
uncertainty annotation. For example, in 2019, Irvin et al. presented a large dataset of chest
radiographs called CheXpert, which features uncertainty labels and radiologist-labeled ref-
erence standard evaluation sets. This dataset consists of 224,316 chest radiographs of 65,240
patients labeled for the presence of 14 common chest radiographic observations (Irvin et al.,
2019). To our knowledge, this is the first dataset that provided both accuracy and uncer-
tainty annotations. It helps the development and validation of chest radiograph interpreta-
tion models towards improving healthcare access and delivery worldwide. In 2022, Ju et al.
released a large re-engineered database that consists of annotations from more than ten oph-
thalmologists with an unbiased golden standard dataset for evaluation and benchmarking
(Ju et al., 2022).

Those label uncertainty analysis methods could have a high impact in real-world appli-
cations, such as being used as clinical decision-making algorithms accounting for multiple
plausible semantic segmentation hypotheses to provide possible diagnoses and recommend
further actions to resolve the present ambiguities.
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