Landy Rajaonarivo 
email: h.l.rajaonarivo.a03@m.kyushu-u.ac.jp
  
Yutaka Arakawa 
email: arakawa@ait.kyushu-u.ac.jp
  
  
  
  
Little known POI category estimation via Syntactical Knowledge Graph generated via tweets

Keywords: knowledge graph, natural language processing, information retrieval, data mining, classification, knowledge discovery, social media

Local events are important for the vitality and dynamism of a city. However, some events or sites are lesserknown or only known by the local community. The information about them is then limited or not available. To address this issue, we propose an approach to automatically generate knowledge graphs from information posted on social networks and data on human mobility. This graph is generated from the tweets using the syntactic relationships between the verbs, nouns, and adjectives. Its exploitation would allow to estimate the categories of lesser-known points of Interest (POIs) or events. It can also allow to generate sentences and to answer questions that tourists may ask. The specificity of our approach lies in the Graph Convolutional Network (GCN)-based encoding of POIs with a graph of verbs, nouns, and adjectives and the estimation of POI categories using the proposed encoding. Experimental results show that our approach performs better than approaches in the literature.

I. INTRODUCTION

A POI can be defined as a place or a tourist event that tourists can visit or discover during their visit. In the field of tourism, most of the known points of interest (POI) are well documented, both on the internet and in documents. When we search for information about these places, we can find out their categories (restaurants, mountains, farmers' markets, etc.), their geographical information, their history, details about what we can do there, when to visit them, how to get there, etc. This information is useful for helping tourists choose things that interest them and are feasible according to their constraints, which is important for recommendation systems. However, this information is rarely available for lesser-known locations. In some cities, there may be local events whose existence and history only the local community is familiar with; the local government or tourist information centers know little or nothing about them. Yet this may be of interest to them.

The aim of this study is to estimate the categories of both well-known and lesser-known POIs in order to recommend events or itineraries to tourists. Our approach is based on the analysis of people's movements and messages posted on social media networks. Detecting the existence of a local POI or event by analyzing the movement of people is straightforward, This work was supported by Japan Society for the Promotion of Science.

but obtaining details about them is challenging. There is currently a significant amount of information on social networks, of varying reliability and correctness. People share information about their visits, feelings, opinions, tips, itineraries, etc. This information is important for making recommendations in the field of tourism.

We propose an approach to automatically generate a knowledge graph from Twitter messages. We make use of knowledge graphs to model the different types of relationships between data, such as semantic (spatial, temporal, thematic), syntactic (dependency parse), and statistical (co-occurrence) relationships, and exploit them accordingly. The graph will be used to retrieve information to describe a POI and to answer the different questions that end-users (tourists, tourist information centers, and local governments) may have.

Although the types or categories of POIs are important information for POI recommendation, few works focus on category estimation since this information is often available for well-known POIs [START_REF] Villegas | Point-of-interest type inference from social media text[END_REF] [2] [START_REF] Noorian | St-sem: A multimodal method for points-of-interest classification using street-level imagery[END_REF]. Our aim is not only to estimate the categories of the POIs but also to retrieve detailed information about them later.

The main contributions of this study are as follows: (i) we analyze the tweets and make embedding of the POIs using a graph of their descriptors (verbs, nouns, and adjectives) with their syntactic structure, and (ii) we apply a Graph Convolution Network (GCN)-based method [START_REF] Zhang | Graph convolutional networks: a comprehensive review[END_REF] to estimate the categories of POI, where we use LightGCN [START_REF] He | Lightgcn: Simplifying and powering graph convolution network for recommendation[END_REF] to create the embedding of POIs, and then apply, a classification technique, and similarity measures corresponding to data embedding. (iii) we conduct extensive experiments; the experiment results show the validity of our proposed method.

II. RELATED WORK

There are two types of existing work related to this study: POI category estimation and feature extraction from Twitter messages (tweets).

A. POI category estimation

A wide range of work focusing on the estimation of POI categories has been carried out in order to achieve various objectives such as classification, recommendation, estimation of future POI to visit, and popularity prediction. These approaches use text or multimedia files to estimate the categories of POIs. Previous studies present an approach for analyzing the relationship between social media text and the category of the area from where it was posted [START_REF] Villegas | Point-of-interest type inference from social media text[END_REF]. They used the top levels of Foursquare categories and posts from Twitter, while also taking into account temporal information by using the date and time of publication. Most of the category estimation approaches embed the categories with unigrams, which are the most common after tokenization is applied to text. The approaches presented in [START_REF] Villegas | Point-of-interest type prediction using text and images[END_REF] and [START_REF] Noorian | St-sem: A multimodal method for points-of-interest classification using street-level imagery[END_REF] combined texts and images in order to estimate POI categories or perform classification. Another approach [START_REF] Yang | Hierarchical multi-clue modelling for poi popularity prediction with heterogeneous tourist information[END_REF] used different data from multiple sources (Dianping, Mafengwo, TripAdvisor, and Qunar) and different types of data (comments, tags, images) to estimate POI categories in order to predict the popularity of the POIs. Bag of words are used to characterize these POIs, and estimation was performed using probability techniques. One study used Natural Language Processing (NLP) by using bags of words from comments to predict place functionality [START_REF] Karimi | A comparative assessment of machine learning methods in extracting place functionality from textual content[END_REF]. They also considered action verbs, but in their experiment they found that their approach worked better by considering all words rather than just action verbs. Some approaches used spatio-temporal information such as land use and human mobility to estimate the POI categories [START_REF] Zhang | A new approach to refining land use types: Predicting point-of-interest categories using weibo checkin data[END_REF] [9] [START_REF] Wu | Where have you been: Dual spatiotemporal-aware user mobility modeling for missing checkin poi identification[END_REF]. Estimation is performed based on rules derived from human mobility. Category estimation is also used in the recommendation system. Some works focused on POI category estimation based on user check-in history and/or preferences [START_REF] Liu | Bidirectional gru networks-based next poi category prediction for healthcare[END_REF] [12] [START_REF] Qi | Privacy-aware point-of-interest category recommendation in internet of things[END_REF] [14] [START_REF] Yang | Getnext: trajectory flow map enhanced transformer for next poi recommendation[END_REF]. There are some approaches based mainly on geographical information such as the POI distribution and land use to estimate the POI categories [START_REF] Yu | A hierarchical learning model for inferring the labels of points of interest with unbalanced data distribution[END_REF]. Other approaches are generic in terms of data embedding and focus solely on estimating categories or classifying POIs. They applied supervised learning techniques (e.g., neural networks) to obtain good embedding according to the objective [START_REF] Zhou | Poi classification method based on feature extension and deep learning[END_REF] [18] [START_REF] He | Lightgcn: Simplifying and powering graph convolution network for recommendation[END_REF].

Previous approaches only relied on the frequency of occurrence of words to characterize POIs or categories. Some approaches use geographical information, but generally speaking, very few tweets are geo-tagged, so a large number of tweets can be ignored. Meanwhile, we are not only interested in wellknown POIs but also in lesser-known POIs. The advantage of our approach is that we can embed POIs with text from social networks, web pages, or documents; geographical information is not required. Some approaches define rules, but these can sometimes become complex depending on the data considered. Our aim is to estimate the categories of a POI from its descriptive texts without using information about the user or their historical visiting data.

B. Syntactic analysis of tweets

Most approaches to the syntactic analysis of tweets are dedicated to sentiment analysis. [START_REF] Ravishankar | Corpus based sentiment classification of tamil movie tweets using syntactic patterns[END_REF] presents an approach for genre categorization of movies according to user sentiment. They used different techniques to find the sentiments of the users. In addition, they manually analyzed the syntactic patterns of the tweets and created a dictionary of words with their popularity and genre. This dictionary is used to predict the popularity and genre of movies. In [START_REF] Capistrano | Salsa: detection of cybertrolls using sentiment, aggression, lexical and syntactic analysis of tweets[END_REF] [START_REF] Didi | Covid-19 tweets classification based on a hybrid word embedding method[END_REF], different techniques are used to classify sentiment into three categories (positive, negative, neutral) such as tokenization, Word2Vec, Glove, FastText. They did not take into account the structure of the posts. Similar approaches are presented in [START_REF] Mohan | Predicting the winner of delhi assembly election, 2015 from sentiment analysis on twitter data-a bigdata perspective[END_REF] [START_REF] Khatua | Predicting political sentiments of voters from twitter in multi-party contexts[END_REF], where the authors analyze tweets and predict political sentiment. An approach with the same aim extracts tweet features via adjectives and verbs to identify sentiment terms [START_REF] Kavitha | Twitter sentiment analysis using syntactic action rule-based decision regression[END_REF] [START_REF] Meesala | Feature based opinion analysis on social media tweets with association rule mining and multi-objective evolutionary algorithms[END_REF]. The authors defined a set of rules to classify tweets according to the detected sentiment. The authors of [START_REF] Lim | Sentiment analysis by fusing text and location features of geo-tagged tweets[END_REF] considered only geotagged tweets and combined text and location features to analyze sentiment. They used a convolutional neural network (CNN) and a bidirectional long short-term memory network. All of these papers put little emphasis on the structure of the tweets themselves. The approach presented in [START_REF] Narang | Abusive language detection using syntactic dependency graphs[END_REF] is to generate a syntactic dependency graph from tweets to detect abusive language. The nodes are represented by detected words, while the edges are represented by the syntactic relationships between nodes. The authors used a Graph Convolutional Network (GCN) to detect abusive language.

Most approaches to syntactic analysis of tweets are based only on tokenization and word frequency; many of them ignore text structure. In [START_REF] Capistrano | Salsa: detection of cybertrolls using sentiment, aggression, lexical and syntactic analysis of tweets[END_REF] there is some syntactic analysis of tweets, but it is done manually. The authors of [START_REF] Kavitha | Twitter sentiment analysis using syntactic action rule-based decision regression[END_REF] consider verbs and adjectives to estimate sentiment terms, but do not consider the structure of the texts. The graph presented in [START_REF] Narang | Abusive language detection using syntactic dependency graphs[END_REF] is similar to the one presented in our work. The main differences to our approaches are the goal, the data encoding and the applied learning. Their goal is to detect language abuse, while ours is to estimate POI labels. In their approach, words are encoded by their neighbours, but in our approach, POIs are not encoded by all types of words, but by certain types of words (verbs, nouns, adjectives) that allow them to be described. Regarding the training process for encoding, they use GCN, while for our approach LightGCN performs significantly better than GCN.

III. PROPOSED APPROACH A. Global Architecture

Figure 1 illustrates the overall architecture of the proposed approach. It consists of two blocks: Data and Event Determination. The Data block presents the different data sources we use to generate the knowledge graphs (People movement, Open Data, Twitter) while the Event Determination block shows the different techniques and learning methods we have adopted in order to recommend POIs or events or answer endusers questions (data mining, Linked Open Data, geo-coding, semantic and syntactic knowledge graph generation).

The generation of the semantic knowledge graphs is described in our previous work [START_REF] Rajaonarivo | Automatic generation of event ontology from social network and mobile positioning data[END_REF]. This previous work consisted of automatically generating ontologies from tweets and representing the semantic information about POIs and the relationships between them via knowledge graphs. Part of these generated graphs are evaluated by humans to assess The process is made up of seven steps.

B. Knowledge Graph Generation Process

POI Collection:

We collect POIs from different sources. To start with, we used POIs on the city of Fukuoka in Japan which are collected via Foursquare. We collect information such as the name of the POI, its categories, and its geographical information if available.

Tweet Collection:

We used the Twitter API for academic research 1 to collect tweets related to a given POI for a defined period of time. Since the number of tweets per request is limited, we split the time period to be considered into 3-month periods if the interval is longer than that. The API takes as input the name of the POI, as well as the name of the city where it is located to reduce the risk of ambiguity, and the period to which the dates of the tweets belong. It returns a JSON file as output.

1 https://developer.twitter.com/en/products/twitter-api/academic-research In this study, we have collected the content, the language, the date of publication, and if available, the mentioned locations of a given tweet.

Tweet Analysis:

This step consists of analyzing the dependency structures of texts contained in tweets. In this study, we focus on the syntactical analysis of Japanese texts using GiNZA2 (Japanese Universal Dependencies Models) which is based on spaCy3 . The choice was made arbitrarily. At this stage, we have a list of syntactical analysis results for each tweet.

4. Filtering System: Note that our aim is not to check whether the texts follow the syntactic rules, but to extract the relevant information and regenerate it later using knowledge graphs. As social media texts are not well structured, we have defined basic rules that must be found in the text part of a tweet for it to be taken into account in the next step. These rules are taken from the work of T. Tanaka et al. [START_REF] Tanaka | Universal dependencies for japanese[END_REF] which presents the Universal Dependencies for Japanese. Japanese is an SOV language, which means that the basic word order in a sentence is S (subject) -O (object) -V (verb). (e.g., kanojo (S) wa ocha (O) wo nomimasu (V): she drinks tea). Japanese sentence structure is flexible. That is, the subject can be omitted when it is clear from the context/situation. Also, the subject and object(s) can be placed in a variable order. Regarding adjectives, they come before nouns to describe them (e.g., Utsukushii (ADJ) kōen (NOUN): beautiful park).

In our approach, the elements that are important for the construction of syntactic knowledge graphs are nouns, verbs, and adjectives. For a sentence (or a part of a text) of a tweet to be considered, it must contain at least two of these three elements that are syntactically connected to each other.

Knowledge Graph Generation:

This step consists in automatically generating a graph to present the words detected in the tweets and the syntactic relationships between them. Figure 3 illustrates an example of a sub-graph generated via a sentence ("ABC de sushi wo tabemashita": I ate sushi at ABC). We use Neo4j to create our knowledge graphs.

A graph is composed of nodes and edges. A node represents a word while an edge represents a syntactic link between two words. A node is characterized by its name, its type (NOUN, VERB, ADJ, etc.), its frequency of occurrence, and the list of tweet identities to which it belongs. An edge is characterized by the particles that connect the two words and the co-occurrence of syntactic links between the two words. The following is a formal description of generating a graph.

Formalization:

• Let G denote a syntactic knowledge graph, N a set of nodes and E a set edges that compose graph G = (N, E). • Let N vb , N nn , and N adj be the respective set of the verb, noun, and adjective type nodes.

N = N vb ∪ N nn ∪ N adj • N = {v = (v name , v type , v occ , v tweet ids )} where v name ,
v type , v occ and v tweets are the name of a detected word, its type (verb, noun, adjective), the number of occurrences of the word in the collection and the list of identities of the tweets that contain the detected word, respectively.

• E = {e = (v i , v j , w ij , pr ij ), v i , v j ∈ N, w ij ∈ N} where
w ij is the number of times that v i and v j are syntactically linked and pr ij are the list of particles that connected v i and v j in the collection of tweets.

Entity Enrichment:

As mentioned above, when collecting POIs, we retrieve information about the POI categories and their geographical information if available. The Entity Enrichment step consists of detecting the nodes corresponding to the POIs and adding additional information if available such as the categories and their geographical information.

Knowledge Graph Evaluation:

This step consists of evaluating the accuracy of the information contained in the graph, as well as the interest in the exploitation of this graph. It can be evaluated in different ways. One way is to use it to encode POIs and estimate the categories of POIs that are not labeled, and then validate them against the ground truth. Another way is to define the questions that tourists may ask and ask experts to evaluate the answers provided. In this paper, we use the first way to evaluate our approach. To do this, we used POIs collected on Foursquare which have categories for the training and test databases for our approach.

C. Data Embedding

During the Data Embedding process, we embed POIs and category labels by verbs, nouns, and adjectives. Each POI has three feature vectors of each category label. These vectors have the same size. Let F , P, F pos , and P i pos be the embedding size, a set of POIs, a set of references of pos (part-of-speech), and a feature vector of the POI P i by pos (pos ∈ {verb, noun, adjective }), respectively.

1) POI Embedding: The following steps describe the process of encoding POIs by verbs. The steps for encoding verbs, nouns, and adjectives are the same.

(i) Determine the reference verbs to encode the entire collection a) For each POI in the training database, we retrieve the representative verbs with higher weight values. If a verb and a POI are syntactically related to each other in T tweets, the weight of their syntactic relationship is equal to T . We define queries to retrieve the verbs related to each POI by considering the different forms of syntactic links that can be found in the knowledge graph. Each POI receives an ordered list of verbs according to their importance. The verb weights are then normalized for each POI. b) We collect all the representative verbs of all the POIs.

For each verb, we aggregate the values of their weight by summing the values it receives from each POI. c) We retrieve the top F verbs with higher weight. In our case, we empirically chose F = 200. At this stage, we have the list of reference verbs for the collection (F vb ). (ii) Encode each POI in the knowledge graph from reference verbs a) We retrieve the normalized verb vector. Here, the size is no longer limited to F . b) The reference verbs are scanned to form the characteristic vector of a POI. For each POI and for each verb, if it is one of the verbs representing the POI, the value corresponding to this position is equal to its weight. The vector is then normalized to values between 0 and 100.

2) Category label embedding:

The category labels are also encoded by verbs, nouns, and adjectives. For each category, we collect the POIs that have it as a label and retrieve their descriptive verbs. It is used for embedding learning approach. Each verb receives a value corresponding to the sum of the weights of the verb of the collected POIs. The values are then normalized and the category label is encoded by the reference verbs F vb .

3) Embedding learning: There are several embedding learning methods available, but we chose to use LightGCN [START_REF] He | Lightgcn: Simplifying and powering graph convolution network for recommendation[END_REF]. LightGCN learns POI and category label embeddings by linearly propagating them on the POI-label relationship graph and uses the weighted sum of the embeddings learned at all layers as the final embedding. LightGCN consists of two essential components: light graph convolution and layer combination. It operates by maximizing the proximity between the POIs belonging to the same category and the distance between the POIs belonging to different categories.

Let R ∈ R N ×L be the POI-label matrix where N and L denote the number of POIs and category labels respectively, and each entry r ij is 1 if P i has a category label l j as label otherwise 0. The adjacency matrix of the POI-label graph is 0 R R T 0 .

Let the 0-th layer embedding matrix be X (0) ∈ R (N +L)×F , where F is the embedding size.

X (k+1) = (D -1/2 * A * D -1/2 ) * X (k)
, where D is a degree matrix.

D. Category Estimation Process

To estimate the category labels of a POI, we need to compare their feature vectors with those of the POIs of the training database. For this purpose, our approach uses the following techniques to estimate the labels of the POIs: similarity measure, clustering, and category label estimation.

Similarity measure: To measure the similarity between POIs, we use metrics: cosine similarity and another similarity measure that we proposed which is a data specific approach. For this proposed approach, we classify the values in a vector into five categories: "Very Low" (VL), "Low" (L), "Medium" (M), "High" (H), and "Very High" (VH). The category determination of one value is defined in Algorithm 1. The algorithm 2 presents the similarity calculation between two POIs.

Algorithm 1 Define Weight Category

Require: similarities ← [0, 0, 0, 0, 0] ▷ similarity frequency in each weight category CT

s 1 < s 2 < s 3 < s 4 1: function GETWEIGHTCATEG(w) ▷ w: a weight value 2: CT ← [V L, L, M, H, V H] 3: S ← [s 0 ,
3: CT ← [V L, L, M, H, V H], k ← 0 4: while k ̸ = F do 5: c ik ← getW eightCateg(P i [k]), c jk ← getW eightCateg(P j [k]) 6: if c ik = c jk then 7: id ← 1 8: while id < |CT | do 9: if c ik = CT [id] then 10: similarities[id] ← similarities[id] + 1, id ← |CT | 11: end if 12:
id ← id + 1 return (sum(similarities) / F ) 18: end function

The greater the number of items in the same level of importance (V L, L, M, H, V H), the more similar the POIs are.

1) Clustering: We first encode the POIs into feature vectors, using LightGCN to improve the efficiency of the encod-ing. We then classify the POIs in training database into clusters by using DBSCAN 4 and cosine similarity. Each cluster has a representative POI and the values of its vector correspond to the average of the values of the POIs belonging to the same cluster. In our experiment, DBSCAN practically finds the same number of clusters and the same cluster elements as the input data.

2) Category label estimation: At this stage, we look for the K clusters closest to the POI by measuring the similarity between its embedding vectors and those of the representatives of the clusters. The K-value is not fixed; it changes according to the similarity between the given POI and the cluster representatives. If the similarity value for the other representatives is about 10% less than the closest one, their clusters are considered to be among the closest clusters. For each POI in the K clusters, we measure their similarity to the given POI. For this, we use both the original embedding vector and the one resulting from the LightGCN. Since the assigned values are data-specific, we propose a similarity measure between two POIs (Algorithm 2). This metric is used to measure the similarity between POIs using their original embedding, and the cosine is used to measure the similarity between POIs using their vector embedding resulting from LightGCN. We have applied a weighting system to take both measures into account. All POI categories in the closest clusters with minimum similarity are collected as candidate categories. The steps for POI category candidates collection are described in Algorithm 3. This process runs three times, using vectors based on verbs, nouns, and adjectives. Candidate categories are collected at the end and we use a probability and similarity system to define the estimated categories. The more a category is present in the results of the three processes (using verbs, nouns, and adjectives), the more likely it is to be considered among the estimated categories. If two categories have the same occurrence value in the three results, the average similarity value between the POIs belonging to these categories and the POI in the input is used to give priority to one of them.

IV. EXPERIMENT

A. Data information

For this experiment, we focused on a prefecture in Japan by choosing six categories that interest us among those provided by Foursquare. Table I shows the distribution of tweets by category. The third column shows the number of POIs with tweets while the fourth column shows the number of tweets collected for all POIs in the second column. The last two columns illustrate the distribution of the POIs in the third column into training and test datasets. Table II illustrates the information on the generated statistical graph.

Using the Twitter API, the result of a request to collect tweets is limited to 500 per request. In this research, we collected tweets related to a POI for a period of 3 years (2018, 2019, 2020). To get as much data as possible on the tweets, we CC i ← getClosestClusters(P i , clusters, K) ▷ K: number of clusters to return 3:

ng i ← [] ▷ ng i : set of neighbors of P i 4:
for each C ∈ CC i do ▷ C: a cluster 5:

for each P j ∈ C do 6: multiplied the number of queries. One query corresponds to a period of 3 months, so we have 12 queries for a period of 3 years. The maximum number of tweets collected is then 6000. We consider a POI to be very well-known, moderately wellknown, or lesser-known if the number of tweets about it is greater than 3000, i.e. half the maximum value, if the number of tweets is greater than 1500 and less than 3000 if the number of tweets is greater than or equal to 1 and less than 1500.

cos ij ← cosine(P i , P j ), sim ij ← similarity(P i , P j ) 7: cossim ij ← α * sim ij + β * cos ij ▷ α + β = 1 8: ng i ← ng i + (P j , cossim ij ) ▷ ( 
Based on this definition, our POI data with tweets consists mostly of lesser-known POIs, with 218 (88.6%) lesser-known POIs, 14 (5.7%) moderately well-known POIs, and 14 (5.7%) well-known POIs.

B. Evaluation

We compare our approach to both BERT (Bidirectional Encoder Representations from Transformers) [START_REF] Devlin | Bert: Pre-training of deep bidirectional transformers for language understanding[END_REF] and sklearn multi-label classification API [START_REF] Buitinck | API design for machine learning software: experiences from the scikit-learn project[END_REF]. Since BERT takes input texts and labels for each POI, we collected all the tweets that correspond to each POI and grouped them into a single block of text. For POIs with multiple tweets, the text becomes large. There are many libraries to choose from in BERT, depending on the language of the text and its size. We used the "bert-large-uncased" specific library to handle large texts and the "cl-tohoku/bert-base-japanese-char-whole-word-masking" specific library to encode Japanese texts. The techniques in the green cells in Table III (L3 to L10) use our embedding vectors while the yellow cells use other data encoding methods.

We can see that the values of the evaluation parameters for BERT are very low compared to those using our embedding vectors. If we compare the approaches that use our feature vectors, we can see that the values of the evaluation parameters of sklearn are lower than those of our proposal, which is the use of LightGCN for post-embedding and clustering for category estimation (L3 and L9). If we focus on the results obtained using LightGCN from the feature vectors that are generated from the VNA vectors, we can see that using the cosine similarity (cos) and the specific proposed similarity measure (sim) at the same time is more efficient than using only the cosine or only the similarity (L7, L8, and L9).

We are now interested in comparing the performance of LightGCN approaches based on verbs, nouns, and adjectives. We can see that, overall, the performance values of the approach simultaneously using verbs, nouns, and adjectives are better than those using only verbs, nouns, or adjectives (L3, L4, L5, L6, and L9). When collecting the data, we noticed that POIs in category C6 (Community and Government), which are educational institutions, didn't have enough tweets. Few people or institutions publish information about educational institutions, especially if they are not well known. These POIs then have very few verbs, nouns, and adjectives to describe them. When we tried to exclude them from the test database, the performance of the system increased with an accuracy of 0.82% and a F1-score of 0.64%. Table IV shows the performance per category. We can see that the use of verbs is more efficient in estimating the Landmarks and Outdoors (C1) and Arts and Entertainment (C5) categories. VNA-based vectors more accurately estimate the Travel and Transportation (C2) category compared to verbs, nouns, and adjectives while vectors based on adjectives allow to better estimate the Retail (C3) and Dining and Drinking (C4). System performance remains low, with an F-score of around 0.2 for all proposed embeddings (verb, noun, adjective, VNA) 

C. Discussion

The results of our category estimation approach are better than those obtained by BERT. This may be because collecting all the tweets related to a POI and breaking them into chunks does not allow BERT to correctly define the context and estimate the categories. Beyond that, the sequence of tweets is not necessarily consistent as they come from different people, which may decrease BERT's performance. The structure of the texts in the collection has an effect on the performance of using vectors generated by verbs, nouns, and adjectives. If the tweets contain many verbs, verb-based vectors may be better for estimating categories. The same is true if the collection contains more nouns or adjectives than verbs. This performance may also depend on the categories. Some categories may be better identified by verbs, others by adjectives or nouns. The performance of the VNA-based approach using verbs, nouns, and adjectives simultaneously is still not optimal, as the performance values using verbs, nouns, or adjectives alone are higher than those of the VNA for some categories. It is then interesting to use a weighting system based on the consideration of verbs, nouns, and adjectives to estimate POI categories.

As our approach is context-based, some categories are sometimes not well estimated. For example, restaurants are estimated as "food service" which is a sub-category of "retail", which is not really wrong. On the other hand, in Foursquare, the restaurants are categorized as "Dining and Drinking". So our assessment is not good if we look at the predefined classification in Foursquare, but questionable if we look at the context. Another example is that a restaurant by the sea can be categorized as a beach, in addition to its restaurant label. Therefore, our evaluation system should take into account the context to evaluate the performance of our system by considering e.g. the geographical neighborhood as the semantics of the data (e.g. similarity between dining and food service). The limitation of this work lies in the unavailability of the texts to be analyzed from certain POIs. If a POI does not have a minimum number of tweets (e.g. around 50), the vectors characterizing this POI in terms of verbs, nouns, and adjectives are very poor and the system is unable to estimate its categories. However, once this minimum number is reached and the content is more or less rich, our system is able to estimate its categories with high accuracy for certain POI categories (greater than 0.90% for C1, C3, and C4). This information on verbs, nouns, and adjectives can also be used to answer questions that tourists might ask. Here are some examples of questions and answers. The numbers in brackets indicate the number of tweets talking about the information.

what to eat in Fukuoka?: eat Fukuoka's Karashi Mentaiko (219), eat motsunabe at Rakutenchi (42), eat ramen in Fukuoka [START_REF] Meesala | Feature based opinion analysis on social media tweets with association rule mining and multi-objective evolutionary algorithms[END_REF].

what to see in Fukuoka?: see cherry blossoms at Mizuki Ruins (51), see cherry blossoms at Ohori Park (38). This approach will be explored in more detail in our future work.

V. CONCLUSION

We discussed an approach to automatically generate syntactic knowledge graphs from tweets. This knowledge graph makes it possible to describe POIs or local events from verbs, nouns, and adjectives by analyzing the syntactic structure of tweets. It then makes it possible to estimate the POI categories. It can also be used later to extract information to answer tourists' questions. The experiment has shown that our approach outperforms approaches of category estimation in the literature. Since the approach is contextual, it is necessary to define an evaluation system that takes into account the context. In future work, we will be interested in expanding our data sources as a large portion of POIs does not have associated tweets. We will also study other relationships between words in the graph such as synonyms, and semantic relationships, and apply graph learning to making recommendations.

Fig. 1 .

 1 Fig. 1. Global architecture of the proposed approach

Figure 2

 2 Figure 2 illustrates the different steps of the syntactic graph generation process.

Fig. 2 .

 2 Fig. 2. Syntactic Knowledge Graph Generation Process

Fig. 3 .

 3 Fig. 3. Syntactic relationships between words

  s 1 , s 2 , s 3 ] ▷ s i : maximum threshold of values in CT [i]

	4:	for each i ∈ [1, |S| ] do
	5:	if w ≤ s[i] then
	6:	return CT [i]
	7:	end if
	8:	end for
	9:	return V H
	10: end function
	Algorithm 2 Define Similarity measure

1: function SIMILARITY(P i , P j , F ) ▷ P i ,P j : embedding vectors of POIs, F : embedding size 2:

https://megagonlabs.github.io/ginza/

https://spacy.io/

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html

ACKNOWLEDGMENT

This work was supported in part by KAKENHI No. JP21F21377, JP22KF0288, and JP21H00907.