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Understanding how collective neuronal activity in the brain orchestrates behavior is a central ques-
tion in integrative neuroscience. Addressing this question requires models that can offer a unified
interpretation of multimodal data. In this study, we jointly examine video-recordings of zebrafish
larvae freely exploring their environment and calcium imaging of the Anterior Rhombencephalic
Turning Region (ARTR) circuit, which is known to control swimming orientation, recorded in vivo
under tethered conditions. We show that both behavioral and neural data can be accurately modeled
using a Hidden Markov Model (HMM) with three hidden states. In the context of behavior, the hid-
den states correspond to leftward, rightward, and forward swimming. The HMM robustly captures
the key statistical features of the swimming motion, including bout-type persistence and its depen-
dence on bath temperature, while also revealing inter-individual phenotypic variability. For neural
data, the three states correspond to left- and right-lateral activation of the ARTR circuit, known to
govern the selection of left vs. right reorientation, and a balanced state, which likely corresponds to
the behavioral forward state. To further unify the two analysis, we exploit the generative nature of
the HMM, using the neural sequences to generate synthetic trajectories whose statistical properties
are similar to the behavioral data. Overall, this work demonstrates how state-space models can be
used to link neuronal and behavioral data, providing insights into the mechanisms of self-generated
action.

Keywords: zebrafish; Hidden Markov Model; behavior; spontaneous neural activity; ARTR11

I. INTRODUCTION12

Animal behavior unfolds as a structured sequence of13

stereotyped motor actions, much like language. Under-14

standing behavior thus requires identifying the vocab-15

ulary, i.e. the elementary behavioral units, and char-16

acterizing the corresponding grammar, i.e. their rela-17

tive organization in time [1]. Uncovering this underly-18

ing structure is non-trivial. Over the last decade, nu-19

merous approaches have been proposed, building on the20

rapid development of data-driven computational meth-21

ods. State-space models, in particular, appear to be well22

adapted, as they offer an unsupervised approach to sparse23

high-dimensional data into discrete states, while simul-24

taneously unveiling their temporal structure. These in-25

clude various implementations of Hidden Markov Models26

(HMMs) [2–5] and other statistical models [6–8].27

Since behavior is driven by the brain activity, one ex-28

pects the behavioral structure to be reflected in the spon-29

taneous brain dynamics in the form of a sequence of dis-30

crete ”brain states” - defined as metastable patterns of31

activity [9]. Neural activity can, as behavioral data, be32
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parsed to uncover neural states and their temporal se-33

quences [10–12]. In general, however, behavioral or neu-34

ronal data are analyzed separately, as these experiments35

are typically conducted independently, limiting our abil-36

ity to bridge the two processes. In contrast, a common37

modeling framework, when applied to both behavior and38

spontaneous neural activity, could help uncover a shared39

organizational structure linking self-generated neuronal40

dynamics and behavior.41

Our model behavior is the spontaneous navigation of42

zebrafish larvae (see [8, 13–15]), which consists of dis-43

crete swimming bouts lasting ∼ 100 ms and triggered44

at ∼ 1 − 2 Hz. In previous studies the categorization45

of bouts was carried out independently of the examina-46

tion of their temporal organization. In Marques et al.47

[16], the authors used PCA-based automatic segmenta-48

tion to distinguish 13 different bout types, a number that49

they found sufficient to encompass the entire behavioral50

repertoire of the animal, including hunting, escape, social51

behavior, etc. However, in more constrained conditions52

when the fish merely explore its environment [17–23], a53

simple 3-state categorization is sufficient to describe their54

trajectories. In this case, the bouts are labeled as ei-55

ther forward, left-turn or right-turn based on the value of56

bout-induced body reorientation. The selection of these57

various bout types depends on sensory cues, resulting in58

the animal’s capacity to ascend light [17, 20] or temper-59

ature [22, 24–26] gradients.60
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Importantly, the neural circuit that controls the61

orientation of bouts has been identified as the anterior62

rhombencephalic turning region (ARTR), a bilaterally63

distributed circuit located in the anterior hindbrain.64

Using combined calcium imaging and motor nerve65

recordings, it was shown that the triggering of leftward66

and rightward bouts are correlated with increased67

activity on the corresponding side of the ARTR [18].68

69

To characterize the behavioral and neural activities70

and their possible relationship, we hereafter re-analyze71

video recordings of freely swimming animals and ARTR72

recordings, performed at various water temperature, us-73

ing Hidden Markov Models (HMM). First, we show that74

for the behavioral data, this approach provides an unbi-75

ased and therefore more consistent method of bout-type76

labeling compared to simple thresholding techniques as77

used in earlier studies. We further use the HMM inferred78

parameters to demonstrate and quantify inter-individual79

variability in exploratory kinematics. We then apply a80

similar 3-states HMM to the ARTR recordings performed81

in paralyzed tethered fish, leading to the generation of82

synthetic neuronal-based swimming sequences. Finally,83

we compare the statistical structure of these synthetic84

trajectories with real ones to assess the consistency of85

the results across both behavioral and neural data.86

II. RESULTS87

A. Data88

The behavioral data used in the present article comes89

from a publication that examined the kinematic of free90

exploration in zebrafish larvae [22]. The experimental de-91

sign (Fig.1a) enables recording the trajectories of multi-92

ple freely swimming larvae aged 5-7 days at temperatures93

of 18oC, 22oC, 26oC, 30oC, and 33oC. At each tempera-94

ture, the trajectories of multiple fish are combined into a95

single dataset, and a set of kinematic parameters is ex-96

tracted at each bout n, such as the angular change δθn97

in heading direction, the time elapsed since the previous98

bout and the traveled distance (see Material and Meth-99

ods sec. IVA). Water temperature was found to system-100

atically impact the statistics of navigation, leading to101

qualitatively different trajectories as illustrated in Fig-102

ure 1b. As the temperature increases, trajectories tend103

to become more winding and erratic. We have also re-104

analyzed a second dataset of long-trajectories for 18 fish105

tracked individually for over two hours at 26oC, in or-106

der to assess inter-individual variability (see Material and107

Methods sec. IVA).108

The neural data comes from another publication in109

which the spontaneous activity of the Anterior Rhomben-110

cephalic Turning Region (ARTR) [27] (Fig.1e) was111

recorded from 5-7 days old immobilized larvae express-112

ing the calcium indicator GCaMP6f, using light-sheet113

functional imaging. Several neural recordings (3-10) for114

each one of the five temperatures (from 18°C to 33°C115

(Fig.1b)) were analyzed. The fluorescence signal of each116

neuron was further deconvolved to estimate an approxi-117

mate spike train (see Material and Methods sec. IVB).118

B. Modeling of behavior119

1. Markov Models120

The distribution of reorientation angles after each121

bout, shown in Figure 1d, appears to be trimodal, sug-122

gesting a classification of the bouts in 3 types: forward123

(F ), left-turn (L) and right-turn (R). In practice, this124

categorization is generally carried out by thresholding125

the distribution of re-orientation angles. Denoting the126

state of swim bout n by sn we have:127

sn =


R, if δθn < −δθ0
F, if − δθ0 < δθn < +δθ0
L, if δθn > +δθ0

(1)

The use of the same threshold (in absolute value) to de-128

tect left and right turns relies on the hypothesis that129

zebrafish larvae, as a group, have no preferred direction130

(a.k.a.. non-handedness). As the exact value of δθ0 has131

minimal qualitative impact on the results of the Markov132

Chains, we adopt the same value δθ0 = 10◦ as in [22]; no-133

tice that δθ0 is the same across all temperatures to avoid134

introducing ad hoc, temperature-dependent biases. An135

example of the classification of states along a swimming136

trajectory is presented in Figure 2b.137

Once the bout types are identified, we define a dy-138

namical model for the trajectories ... → sn−1 → sn →139

sn+1 → ... using a three-states Markov Chain (MC). In-140

formally, the sequence of states (associated with the 3141

different bout types) is described by the probabilistic au-142

tomaton in Figure S3a. In this model, after each bout143

n, a new state sn+1 is drawn randomly, conditioned only144

on sn (and not on previous states). The transition prob-145

abilities between states, P (s = sn → s′ = sn+1), are146

estimated by counting the numbers # of occurrences of147

the transitions s → s′ along the trajectories:148

P (s → s′) =
#(s → s′)

#(s → F ) + #(s → L) + #(s → R)
(2)

with s, s′ ∈ {F,L,R}.149

The top right eigenvector of the 3×3 transition matrix150

gives access to the stationary probabilities P (s) of the 3151

states. These probabilities are in excellent agreement152

with the frequencies of states estimated through direct153

counting (difference < 0.003 across all bout types and154

temperatures).155
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FIG. 1. Behavioral and Neuronal Datasets: (a) Overview of the experimental setup: Zebrafish larvae are free to move
in a tank that is kept at a desired constant temperature by a Peltier module. An imaging system records images of the fish
from above at a rate of 25 frames per second. The upper right panel provides a close-up view of a larva in a raw image.
Adapted from Le Goc et al. [22]. (b) Example trajectories of zebrafish larvae in 2D space at various temperatures. Each point
represents a swim bout, with the color indicating the corresponding re-orientation angle defined in panel c. The trajectories’
starting points are denoted by black arrows. (c) Description of the convention used for the reorientation angle (δθn) between
two consecutive swim bouts (n and n+ 1). (d) Distribution of re-orientation angles (δθn) for each ambient temperature. The
grayed-out area corresponds to the re-orientation angles classified as forward bouts by thresholds at ±10◦. (e) Diagram of the
Anterior Rhombencephalic Turning Region (ARTR) in larval zebrafish. Adapted from Wolf et al. [27]. (f) Example ARTR
activity at 22°C. Top : Raster plot of neurons located in the left and right ARTR (blue and red respectively) . Bottom : Mean
activity mL and mR of neurons in the left and right ARTR. (g) Mean activities (mL,mR) of the ARTR for all recordings in
the dataset. The blue contour line represents 90% of the joint distribution.

2. Hidden Markov Model156

We then turn to an agnostic categorization method,157

where states are inferred rather than a priori assigned.158

To do so, we consider a three-states Hidden Markov159

Model (HMM), see Figure 2a. Unlike MC, HMMmakes a160

clear distinction between the observations (here the reori-161

entation angles δθn treated as ‘symbols’) and the states162

of the system (here sn, which are not directly accessible163

from the knowledge of δθn, in contradistinction with the164

key assumption underlying MC). The HMM is defined165

by:166

• The transition probabilities P (s → s′) between the167

hidden states. We enforce the non-handedness by168

imposing that169

P (F → L) = P (F → R)

P (L → L) = P (R → R)

P (L → R) = P (R → L)

P (L → F ) = P (R → F )

This in turn ensures that steady state bout proba-170

bility is left-right symmetric (P (L) = P (R)).171

• The emission probabilities, E(δθ|s), relate the ob-172

servations δθ to the hidden states s. For the for-173

ward state, we choose normally distributed reori-174

entation angle emission distributions, centered in175

zero: E(δθ|F ) = N (δθ; 0, σ). For turn states, we176

use Gamma distributed reorientation angles, with177

a positive or negative sign according to whether178

the state is Left or Right: E(δθ|L) = Γ(+δθ;α, θ)179

and E(δθ|R) = Γ(−δθ;α, θ), constraining α > 1.180
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Again, we ensured non-handedness by enforcing the181

same parameters for the left and right emission dis-182

tribution. See Material and Methods sec. IVC for183

details about the validation of these emission dis-184

tributions.185

• A probability distribution for the initial state at186

the beginning of a trajectory.187

We train HMM models for each dataset us-188

ing the Baum-Welch algorithm, with a cus-189

tom Julia [28, 29] implementation (available190

at https://github.com/ZebrafishHMM2023/191

ZebrafishHMM2023.jl/tree/bioRxiv).192

193

C. State classification and behavioral persistence194

1. Statistics of bout states195

Since the Markov Chain inferred from thresholded data196

(MC, Fig.S3a) and the Hidden Markov Model (HMM,197

Fig.2a) share the same internal behavioral states, we can198

directly compare these two models and thus examine the199

impact of the labeling methods.200

As illustrated with an example trajectory at 22°C in201

Figure 2b, MC and HMM labeling can differ signifi-202

cantly. MC-inferred sequences often exhibit multiple al-203

ternations between Forwards and Turns when the bouts204

reorientation angles are near the threshold, while for205

the same sequence, the HMM tends to consistently la-206

bel these bouts as Turns. These differences result in a207

reclassification of approximately 60% of Forward bouts208

into Turning bouts at 22°C (Fig.S3e).209

The HMM yields a relatively modest dependence of210

bout-type usage on temperature (see Fig.S3b). In con-211

trast, the hard-threshold classification method used in212

MC lead to a systematic and pronounced increase in the213

fraction of turning bouts with rising temperature. This214

strong temperature dependence, previously reported in215

Le Goc et al. [22], may have thus been overestimated,216

as it partly reflects the ad-hoc assumption of a fixed217

(temperature-independent) threshold δθ0. Conversely,218

the HMM approach infers a gradual widening of the for-219

ward bouts angular distribution with increasing temper-220

ature that effectively corresponds to an increase in the221

angular threshold (see Fig.S2c-e).222

2. Bout streaks and persistence223

We further assessed how bout-type persistence, de-224

fined as the tendency to execute similar bouts in suc-225

cession, depends on the chosen classification model. We226

start by describing trajectories as a series of streaks of227

similar bouts (forward, leftward or rightward), and then228

characterize the streak length distribution. For all bout229

types and models, the probability of observing a streak230

of ℓ consecutive bouts of the same type decays expo-231

nentially, P (ℓ) ∝ e−ℓ/ℓ1 , with ℓ1 defining the charac-232

teristic streak length (Fig.2c). For turning bouts, we233

found ℓHMM
1 ≈ 1.4 bouts while ℓMC

1 ≈ 0.9 bouts at 22◦C.234

Compared to MC, HMM-based labeling thus yield much235

longer turning streaks. In contrast, we find no significant236

difference in characteristic forward-streak length between237

HMM and MC. As temperature increases, we observe238

for both models that the characteristic streak length de-239

creases (particularly for forward bouts, see Fig.1b).240

Within the Markov or Hidden Markov Model frame-241

works, the average length ℓ1(s) of a streak of bouts of242

type s is related to the probability P (s → s) of re-243

maining in the same state through the simple relation244

ℓ1(s) = −1/ lnP (s → s). To distinguish the effects245

on bout-type persistence due to the presence of mem-246

ory from the mere consequences of single-state frequen-247

cies, we introduce a null model, in which the transition248

probabilities are simply given by these frequencies, i.e.249

P (s → s′) = P (s′). In this null model without any250

memory, the average length of type-s bouts is simply251

ℓ0(s) = −1/ lnP (s). The ratio ℓ1(s)/ℓ0(s) is an estima-252

tor of the (relative) contribution of behavioral memory253

to bout-type persistence.254

Results for this memory-induced persistence are255

shown in Figure 2d for the Markov (MC) and Hidden256

Markov (HMM) Models. The MC and HMM methods257

yield comparable outcomes for turning bouts at low258

temperature. However, HMM-based analysis further259

reveals a persistence for forward bouts at lower temper-260

atures (Fig.2d), while this effect is absent in the MC261

model. Here again, this absence of forward persistence,262

previously reported in Karpenko et al. [20], is likely due263

to the mis-labeling associated with the hard-threshold264

method. Interestingly, such persistence effects vanish265

at higher temperatures, where the transition matrix266

becomes uniform (Fig.S3c,d), and all bouts become267

equiprobable (P (F ) ≈ P (L) ≈ P (R)). One thus expect268

more erratic trajectories at higher temperatures, which269

is consistent with our observations (see Fig.1b).270

271

3. Consistency of the MC and HMM descriptions of272

behavior273

Taken together, the results above suggest that the Hid-274

den Markov Model better captures persistence in reorien-275

tation by labeling bouts with small reorientation angles276

based on context. This leads to a more flexible and thus277

stable classification than the hard-thresholding method.278

However, given the absence of a ground truth, it remains279

unclear whether the labeling produced by the Hidden280

Markov Models is more accurate than the one produced281

by the standard threshold-based approaches.282

One way to address this question is to examine to283

what extent each of these methods are self-consistent,284

i.e. guarantees that the inferred labeled sequences are285

https://github.com/ZebrafishHMM2023/ZebrafishHMM2023.jl/tree/bioRxiv
https://github.com/ZebrafishHMM2023/ZebrafishHMM2023.jl/tree/bioRxiv
https://github.com/ZebrafishHMM2023/ZebrafishHMM2023.jl/tree/bioRxiv
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FIG. 2. 3-state Markov Chain and Hidden Markov Model - Memory effects emerge from better labeling: (a)
Diagram illustrating the 3-state Hidden Markov Model (HMM) with emissions modeled as a normal distribution for Forward
bouts, and gamma distributions for Turning bouts. Example emission distributions where taken at 26°C. (b) Differences
in labeling between Markov Chain (MC) and HMM for an example trajectory at 22°C. Each point represents a swim bout,
with the left color corresponding to the labeling according to the manual threshold used in MC, and right color indicating
the HMM labeling using the Viterbi algorithm. Top: Trajectory in 2D space. Bottom: Evolution of the reorientation angle
δθn for this trajectory, with the dashed lines representing the threshold δθ0 = ±10◦. (c) Probability P (ℓ) of observing a
streak of ℓ consecutive forward bouts (black) or ℓ consecutive turning bouts in the same direction (pink), for MC (circles)
and HMM (triangles), measured from data at 22°C. Inset: Temperature dependence of the exponential decay characteristic
length (ℓ1). Dotted line: theoretical persistence length computed from the transition matrix, ℓ1(s) = −1/ lnP (s → s). (d)
Ratio of the observed persistence length ℓ1 and the persistence expected in a no-memory null model, ℓ0 vs. temperature.
Forward bouts: s = F , black; turning bouts: s ∈ L,R, pink. (e) Temperature dependence of the stubbornness factor at q = 0

intermediary Forward bouts (f0 = P (L→L)+P (R→R)
P (L→R)+P (R→L)

). This factor is interpreted as a measurement of directional persistence

during sequences of turning bouts. (f) Temperature dependence of the stubbornness factor at q = 1 intermediary Forward

bouts (f1 = P (L→F→L)+P (R→F→R)
P (L→F→R)+P (R→F→L)

). This factor is interpreted as a measurement of directional memory after one forward bout,

which for a 3-state model is a second order non-Markovianity. (e-f) The width of the shaded curves represent the estimated
error in stubbornness factor from aggregated fish data (see Materials and Methods IVD).
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truly markovian such that the bout type at a given time286

only depends on the type of the preceding bout. It has287

been previously noted that the hard-thresholding meth-288

ods lead to significant non-markovianity. In particular,289

in a transition T1 → F → T2 with T1, T2 ∈ {L,R},290

the two turning bouts tend to have the same orienta-291

tion (T1 = T2). This means that the memory of orienta-292

tion T1 is maintained during the forward bout, in viola-293

tion of the Markovian assumption. This observation lead294

to propose a 4-state Markov system comprising two in-295

dependent Markov chains, independently controlling the296

forward-turn bout transitions, and directional left-right297

bout transitions (see Fig.S4b for a diagram of this 4-state298

model) [20, 22].299

Given that our 3-state Hidden Markov Model (HMM)300

re-labels numerous Forward bouts as Turn bouts, we ask301

whether this new classification might alleviate this non-302

Markovianity issue, such that the ad hoc 4-state model303

might no longer be needed. We thus propose a new test304

of Markovian violation specifically designed for our use305

case, that we apply to both the HMM and MC models.306

We introduce the stubbornness factor fq to empiri-307

cally assess the tendency of larvae to retain their orien-308

tation after a sequence of q intermediary forward bouts309

(Fig.S4b, Materials and Methods sec. IVD):310

fq =
P (T1 → F q → T2|T1 = T2)

P (T1 → F q → T2|T1 ̸= T2)
(3)

with T1, T2 ∈ {L,R} and F q = F → F → · · · → F︸ ︷︷ ︸
q

.311

Owing to the loss of orientational memory after a312

forward bout, a non-handed 3-state Markovian model313

should have fq = 1 for q ≥ 1 (Materials and Methods314

sec. IVE). On the other hand, fq=0 is a measurement of315

directional persistence during uninterrupted sequences of316

turning bouts.317

We found that most of the memory effects captured318

by the HMM occur at q = 0, and that the stubborn-319

ness reaches fq ≈ 1 for q ≥ 1, suggesting that the320

HMM-inferred bout sequences are quasi-markovian. In321

comparison, and for lower temperatures, the thresholded322

MC classification displays lower persistence at q = 0 but323

higher stubbornness at q = 1 as seen on Figure 2e-f (and324

less significantly at q = 2, see Fig.S4d). This suggests325

that the thresholded labeling leads to Markov violation326

primarily due to the mislabeling of turn bouts as for-327

ward bouts during turning streaks, as anticipated in the328

previous section and illustrated on Figure 2b. As this329

stubbornness is mostly significant at q = 1, we expect330

that most mislabelings are one-off errors.331

In summary, previous works using a ad hoc threshold332

to classify bouts had dismissed 3-states Markov models333

because the resulting sequences were non-markovian. We334

found that by using an unsupervised method to simul-335

taneously label the data and infer a Markov Model, we336

could unveiled previously underestimated memory effects337

in zebrafish reorientation statistics. Our results suggest338

that the apparent non-markovianity reported in previous339

studies was mainly caused by the mislabeling of turning340

bouts as forward bouts during sequences of consecutive341

turns. The HMM seems to be a clear improvement, iden-342

tifying quasi-Markovian 3-state sequences and providing343

a more robust representation of the swimming dynamics.344

D. Behavioral phenotyping from long individual345

fish trajectories346

As HMM provides an unbiased quantification of the347

behavior, we now ask whether the approach is accurate348

enough to detect behavioral differences between specimen349

(inter-individual variability) and whether it can enable350

the unambiguous identification of each animal.351

In the preceding sections, the dataset used to infer the352

models comprised trajectories from multiple fish, as the353

different individuals swimming together during a given354

assay could not be distinguished. To address the question355

of individuality, we used additional experiments reported356

in Le Goc et al. [22], in which individual fish were tracked357

at 26°C (see Materials and Methods IVA). A total of 18358

fish were recorded for over 2 hours.359

We first split the 2h-long recorded sequence of each360

individual fish into smaller periods (chunks) of ≈ 12361

minutes each, and trained an HMM on each of these362

chunks (see diagram in Figure 3a-b). For each fish, the363

parameters of these HMMs exhibit significant variabil-364

ity (as shown by the vertical error bars in Figure 3c).365

This variability between the different chunks reflects both366

intra-individual (temporal) variability and, to a lesser ex-367

tent, inference uncertainty due to the limited sampling368

of the HMM (see Fig.S5). We then also trained a single369

HMM on the entire dataset of a single fish (the “global”370

HMM). Figure 3c compares selected parameters of the371

global HMM for each fish, against the average parame-372

ters over several HMMs trained on the chunk trajectories373

(see Fig.S5 for all parameters). There is a clear trend be-374

tween the global HMM and the average behavior of the375

chunk HMMs. Therefore, although a fish exhibits vari-376

ability during a long sequence of bouts, the variability377

between distinct fish is larger.378

These results suggest that the HMM models can be379

used to distinguish different fish from observations of380

their bout sequences. To test this hypothesis, we split381

the trajectories of each fish into a training and a withheld382

test set. After training the HMM on the train set for a383

particular fish, we computed the likelihood of all fish tra-384

jectories in the test set, and compared them. For 14 out385

of the 18 fish, the test set that yield the maximum like-386

lihood rightly identifies the fish used to train the HMM387

(Fig.3d). This finding suggests that the HMM captures388

behavioral parameters which are distinctive enough to389

discriminate between different fish. Given the large vari-390

ability exhibited by a single fish, one expects this discrim-391

inative ability to increase with the duration of the train-392

ing sequences. To quantify this, we further evaluated393

the likelihoods of subsets of the test fish trajectories, and394
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FIG. 3. Fish identification from long trajectories: (a) Diagram describing the dataset. Trajectories from 18 fish recorded
over 2-hour sessions, were each is split into 10 chunks (mean = 9.5 ± 0.5 trajectories per chunk) (b) Example trajectories
for fish 1. (c) HMM parameters inferred from all the trajectories of a fish (referred to as global), compared with the HMM
parameters trained on chunks of that fish’s trajectories. Only four HMM parameters are shown for clarity : the steady state
probability of forward turns P (F ) , the transition probabilities for forward-forward P (F → F ), turn-turn in the same direction
P (T1 → T2|T1 = T2), and turn-turn in opposite direction P (T1 → T2|T1 ̸= T2) (see FigS5 for all parameters). Each dot
represents a fish, and the error bars correspond to the standard error of the mean. Points labeled in red correspond to fish
misidentified in panel d. (d) Confusion matrix between data coming from fish i and HMM trained on fish j. The relative

likelihood rLi,j =
L(datai|modelj)

L(datai|modeli)
is used to evaluate which fish identity is most likely according to each model (indicated with

black stars for correctly identified fish, and red stars for misidentification). (e) Number of correctly identified fish determined
from model likelihood when only a fraction f of the test data is used for identification. The shaded area indicates the standard
deviation across 100 trials. In each trial, the data trajectories of each fish were randomly split into train and test sets (50%).

recorded the number of times that the maximum likeli-395

hood HMM corresponded to the correct fish (Figure 3e)396

. Even when withholding 80% of the sequence, we were397

able to correctly identify 10 out of the 18 fish. These398

results suggest that individual fish exhibit variable but399

distinctive behavior which can be captured by the HMM.400

E. Modeling of neural data401

The selection of turning bouts orientation in zebrafish402

is known to be controlled by a small bilaterally dis-403

tributed circuit in the anterior hindbrain, called Ante-404

rior Rhombencephalic Turning Region (ARTR). This cir-405

cuit displays self-sustained alternating activity between406

its left- and right-lateral sub-population, with a period of407

the order of tens of seconds (Fig.1e). The animal tends to408

execute left turns when the left ARTR is active while the409

right ARTR is inactive (and vice versa for right turns)410

[18].411

In contrast, no specific circuit has yet been identified412

for the selection of turn vs forward bouts. The hypoth-413

esis that two distinct circuits are involved in bout-type414

selection is consistent with the 4 states Markovian model415

of navigation, in which two independent Markov chains416

drive the two selection processes. However, the 3-states417

Markovian model supported by the HMM analysis sug-418

gests that the same circuit (ARTR) could drive the se-419

lection of all 3 bout-types.420

In order to test this hypothesis, we re-analyzed the421

ARTR recordings reported in Wolf et al. [27] using a 3-422

state HMM (Fig.4a). We posit an independent neural423

model for the activity of the N recorded neurons, yield-424

ing, for each state, the emission probability:425

P (σ1, σ2, . . . σN |s) =
N∏
i=1

eh
s
i σi

(1 + eh
s
i )

(4)

where (σ1, σ2, . . . σN ) is a neuronal configuration, s is426

the hidden state, and hs
i is the local field representing427

the effective excitability of neuron i in state s. The428

model thus includes 3 × N parameters hs
i , associated429

to each neuron and each hidden states. Notice that for430

the neural HMM, the non-handedness of the behavioral431

HMM is not enforced.432

433
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FIG. 4. 3-state Hidden Markov Model (HMM) describes ARTR neuronal statistics: (a) Diagram illustrating the
3-state Hidden Markov Model (HMM) with emissions described as independent models of the ARTR neuronal population,
see Eq. (4). Distributions of fields hs

i are shown for all recorded fish for neurons in the left and right ARTR (in blue and
red respectively). (b) Example ARTR activity (see Fig. 1f) classified with the 3-state HMM. Blue and red lines represent
the mean activity of neurons in the left (mL) and right (mR) ARTR, respectively. (c) HMM classification in the (mL,mR)
space. Dots represent neuronal configurations taken from the example recording in panel b. Solid lines represent 90% of the
distributions for all recordings combined. (d) Distributions of mL −mR for each hidden state and all recordings combined. e-f
Comparison of empirical and HMM-generated neuronal statistics for all recordings combined. (e) Mean activity ⟨σi⟩ of neuron
i. (f) Covariance Cov(σi, σj) of neurons i and j on opposite sides (left plot) and on the same sides (right plot) of the ARTR.

The distribution of fields hs
i for the 3 hidden states,434

shown in Fig.4a, are used to assign labels to the three435

states (see Materials and Methods IVF). Consistent with436

our current understanding of the ARTR function for turn437

selection, the state with large values of the fields on the438

left and smaller values of the fields on the contralateral439

side is labeled ”left” (and vice versa for ”right”). The440

third state exhibits similar distributions of fields for neu-441

rons on the left and right side of the ARTR, and is labeled442

forward in analogy with behavior. The ARTR activity is443

thus modeled as a sequence of left-right-forward states.444

With this classification, the forward state corresponds445

to a low mean neuronal activity of both the left (mL) and446

right (mR) sides of the ARTR, while turning states are447

associated with large activity on the ipsilateral side of the448

ARTR (left state : mL > mR, right state : mL < mR,449

see Fig.4b-d).450

This model accurately captures the mean activity of451

each neuron (Fig.4f), as well as the pairwise correlations452

between contralateral neurons. However, ipsilateral453

pairwise correlations are not as well reproduced, showing454

lower covariance in the generated data (Fig.4f). This455

mismatch presumably comes from the fact that the456

activities of neurons within a state are uncorrelated in457

our emission probabilities, while recurrent interactions458

in the ARTR circuit produce correlations. These would459

be better modeled with emission probabilities including460

effective interactions between neurons [27].461

462



9

F. Comparison of Behavior and Neuronal HMMs463

In the preceding sections, we demonstrated that both464

the reorientation behavior and the neuronal activity of465

the Anterior Rhombencephalic Turning Region (ARTR)466

can be effectively modeled using three-state Hidden467

Markov Models (HMMs). However, it remains unclear468

whether the three states identified in the Behavioral469

HMM (B-HMM) directly correspond to those inferred in470

the Neuronal HMM (N-HMM).471

Unfortunately, there is currently no publicly avail-472

able dataset offering simultaneous recordings of freely473

swimming larvae kinematics and neuronal activity, which474

would enable direct comparison of B-HMM and N-HMM475

states for individual bouts. Current research addressing476

this question largely relies on experimental paradigms477

where larvae are either paralyzed with electrophysiolog-478

ical recording of motor nerve signals (fictive swimming479

preparations)[18, 30, 31], or head-embedded with a free-480

moving tail (head tethered preparations)[32–35]. In fic-481

tively swimming preparations, whilst the classification482

of left-vs-right bouts is feasible based on the asymmet-483

ric nature of the motor command, such experiments lack484

the level of precision required to discriminate forward-485

vs-turning bouts [18]. On the other hand, head tethered486

preparations allow forward-left-right bout classification487

[32, 34], but typically rely on visual stimuli to elicit be-488

havior [32–35] as the spontaneous sequence of bouts is489

strongly disrupted in comparison with freely swimming490

contexts [36].491

We hereafter propose to circumvent these experimental492

challenges by comparing the statistical structures of the493

reorientation sequences inferred from the two datasets494

presented in sections IIA and II E. The transition prob-495

abilities P (sn → sn+1) obtained from B-HMM and N-496

HMM at all recorded temperatures are shown in Fig.5b.497

Comparison of these transition rates require to first cor-498

rect them for differences in sampling rates. Indeed, neu-499

ral transition rates are computed from neuronal record-500

ings performed at ∼ 6Hz (depending on the dataset, see501

Materials and Methods IVB), while for behavior, the se-502

quences are divided into swim bouts triggered at an av-503

erage rate of ∼ 1Hz, depending on the temperature.504

To bridge the gap between neuronal and behavioral505

datasets, one needs to estimate how the behavior is sub-506

sampled from the neuronal activity. To do so, we com-507

puted the distribution of sojourn times ∆ts of all three508

states in both B-HMM and N-HMM, where ∆ts = tk−t1509

is the duration of a sequence (s1, ..., sk) of k consecutive510

states s observed at times (t1, ..., tk). We found the neu-511

ronal sojourn times to be significantly longer than the512

behavioral sojourn times (Fig.5a). The optimal tempo-513

ral scaling factor fN/B for which the distribution of neu-514

ronal sojourn times matches the distribution of behav-515

ioral sojourn times (see Materials and Methods IVG)516

was fN/B ≈ 0.44. Interestingly, this value appears to be517

consistent with findings from Dunn et al. [18], which re-518

ported the mean interbout interval for fictive swimming519

to be 0.41 times slower than for freely swimming.520

Using this temporal re-scaling factor, we find that the521

transition probabilities P (sn → sn+1) for behavior and522

ARTR models are similar (RMSE = 0.1, see Fig.5b), in-523

dicating that the behavioral and neuronal state sequences524

share similar underlying structures. This is remarkable as525

the number and meaning of the neuronal internal states526

were not a priori fixed, but entirely assigned by N-HMM527

after training.528

This result supports our hypothesis that the ARTR529

not only governs the selection between rightward and530

leftward turning bouts, but also controls the bout-type531

selection, forward vs turn. To test this claim further, we532

analyzed in more detail the statistics of trajectories in533

the bout space inferred from the ARTR dynamics and534

from behavioral data. We specifically examined the bout535

sequences leading to a change in orientation, such as536

transitions from L to R and vice-versa. Such orienta-537

tional switches can be either direct, e.g. L → R, or538

may include an intermediate forward bout, L → F → R539

(Fig.5c). Using the ARTR signal, we found that the sec-540

ond path is strongly favored as evidenced by the the fact541

that P (L→R)
P (L→F ) << 1. A comparable value of this ratio is542

observed in the behavioral data (Fig.5d), indicating that543

fish indeed tend to execute a forward bout when chang-544

ing orientation. This statistical bias would be difficult to545

understand under the standard model that posit the ex-546

istence of independent neural circuits governing orienta-547

tion and bout-type selection, respectively. In contrast, in548

our model, it emerges naturally from the the phase space549

structure of the ARTR dynamics as shown in Figure 4c550

and Figure 5c. The L-Shaped distribution of {ml,mR}551

constrains the Left-to-right (or Right-to-Left) trajecto-552

ries to pass through a symmetrical, low activity state,553

thus favoring intermediate forward bouts.554

G. Generation of synthetic behavior with the555

neural model556

Until now, we compared neuronal and behavioral data557

by examining only the short-scale statistical structures558

of the HMM-inferred state sequences. We now wish to559

test whether it is possible to compare full trajectories560

by leveraging the generative nature of the HMM. Specif-561

ically, we use the N-HMM model to generate long syn-562

thetic trajectories and compare their statistics with those563

of freely swimming fish. This approach allows us to as-564

sess whether the N-HMM, when combined with appro-565

priate scaling and behavioral parameters, can reproduce566

the complex statistical properties of exploration at vari-567

ous temperatures.568
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FIG. 5. Behavior vs. Neuronal temporal structure: (a) Distribution of forward and turn sojourn times for the behavior
(black) and neuronal data before (orange) and after temporal re-scaling (magenta). A single re-scaling factor is used for
forward and turning states, for all temperatures, and for all recordings. (b) Comparison of behavior and neuronal state-
transition probabilities P (sn → sn+1), before (left plot) and after (right plot) temporal re-scaling. Each dot represents a
single transition probability at a given temperature. For neuronal state-transition, the mean and standard error of the mean
for all recordings at specific temperatures are shown. (c) Diagram showing two possible transition trajectories between left
and right states in ARTR mean-activity space. Transitions through the forward state are more probable (see panel d). (d)

Distributions of P (L→R)
P (L→F )

the behavior (black) and neuronal data before (orange) and after temporal re-scaling (magenta), with

all temperatures combined. These distributions are depicted as standard box plots (median and quartiles), as well as outlier
points lying further than 1.5× the inter-quartile range from the median.

1. Generation of synthetic neural and reorientation569

trajectories570

As stochastic processes, Hidden Markov Models571

(HMMs) can be sampled to generate new sequences of572

internal states. Following the previous section II F, we573

hypothesize that the internal states of a Neural HMM (N-574

HMM) match the behavioral internal states, after proper575

temporal rescaling. Therefore, we expect that it should576

be possible to generate artificial swim trajectories from577

the N-HMMs.578

Using the N-HMMs associated to individual fish579

recordings, we started by generating synthetic temporal580

sequences of neural states sNn ∈ {F,L,R}. We then sam-581

pled the behavioral distribution of inter-bout intervals582

δtn, rescaled by the scaling factor fN/B ≈ 0.44 obtained583

in the previous section II F. This simulates a stochastic584

bout-initiation process with the correct temporal char-585

acteristics, yielding synthetic sequences of bout internal586

states bn for the behavior. For each state, we then sam-587

ple the emission probability E(δθn|bn) associated to the588

Behavioral HMM (B-HMM) inferred from all fish data to589

get a realization of the reorientation angle δθn (Fig. 6d).590

As expected, the distribution of these angles is in very591

good agreement with the ones observed in the behavioral592

data (Fig. 6a).593

We further characterize the trajectories using the Mean594

Square Reorientation (MSR) after q bouts:595

MSR(q) =
〈( t+q∑

n=t+1

δθn
)2〉

t
(5)

where the average is taken across all times and all tra-596

jectories.597

Figure 6b shows the values of Mq obtained from N-598

HMM-generated trajectories at different temperatures599

(see Fig.S7 for the remaining temperatures), as well as600

the MSR directly obtained from multiple-fish trajectories601

and long single-fish trajectories (only at 26◦C).602

We first notice that long individual fish trajectories at603

26◦C display large variability in MSR(q) values, compati-604
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FIG. 6. Generative ability of HMM models and trajectory reconstruction: (a) Distribution of bout angles δθn for the
aggregated multiple-fish trajectories (gray), generated trajectories from Behavioral Hidden Markov Models (B-HMM ; black),
and generated trajectories from Neuronal Hidden Markov Models (N-HMM ; blue), at 22°C. (b) Mean Square Reorientation
(MSR) accumulated after q bouts for aggregated multiple-fish trajectories (grey), shuffled aggregated multiple-fish trajectories
(red dashed), single-fish long trajectories (green), and trajectories generated from N-HMM (blue). For both long and N-HMM-
generated trajectories, the mean and standard deviation over all individual fish are shown (respectively with a solid line and
filled band). (see Fig.S7 for individual trajectories and all temperatures) (c) Bar plot for the MSR at q = 10 bouts, with
mean (horizontal bars) and standard deviation (vertical bars). (d) Diagram explaining the conversion from N-HMM generated
state sequences to swim trajectories. The N-HMM is first sampled to generate a sequence of forward, left, right internal states.
Time is then re-scaled using the scaling factor identified in Fig 5, and bout sequences are sampled 100 times based on the
interbout interval distribution. A swim trajectory is constructed for each bout sequence by sampling the bout distances dn and
inter-bout intervals δtn emission distributions in the B-HMM. (e) Distribution of inter-bout intervals δtn and bout distances
dn for the aggregated multiple-fish trajectories (gray), generated trajectories from B-HMM (black), and generated trajectories
from N-HMM (blue), at 22oC. (f) Example trajectory generated from B-HMM at 26oC. Point color corresponds to bout type
(left, right, forward), and point size corresponds to inter-bout interval. (g) Same as panel f for a N-HMM-generated trajectory
at 26oC.

ble with the presence of fish-to-fish variability. This vari-605

ability is washed out for the multiple-fish dataset (since606

individual trajectories are combined) providing a aver-607

aged MSR(q) for each temperature. Interestingly, the608

MSR for the long sequences of individual animals signif-609

icantly differ from the MSR obtained from multiple-fish610

trajectories. This could be due to differences in experi-611

mental conditions, and in particular the effects of collec-612

tive vs. isolated navigation [22].613

N-HMM-generated trajectories have a MSR distribu-614
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tion compatible and encompassing the behavioral data615

in their variability. Such large variability is expected616

from the large fluctuations in neural brain states. Some617

trajectories generated with N-HMM show anomalously618

large angular persistence (see Fig.S7a), which may cor-619

respond to brain states where the Anterior Rhomben-620

cephalic Turning Region (ARTR) displays no left-right621

alternating behavior. This is expected, as the N-HMMs622

were established from spontaneous activity recordings of623

immobilized fish which were not constrained to swim-like624

behaviors. In Fig. 6c, we summarized and compared the625

results for the Mean Square Reorientation after 10 bouts,626

MSR(q = 10), for all temperatures. We found, consis-627

tently across temperatures, that the MSR of behavioral628

data are comprised within the one-standard-deviation629

confidence interval of N-HMM-generated trajectories.630

As we show in the Appendix 1, the MSR of HMM-631

generated trajectories can be decomposed as the sum of632

a purely diffusive contribution, associated to the vari-633

ance of bout angles, and of terms arising from time-634

correlations in bout type selection along a trajectory (see635

Eq. (A.28)). The increase of bout-angle variance with636

temperature is sufficient to explain the increasing trend637

of the mean MSR with temperature observed in Figure638

6c (see Fig.S7).639

2. Generation of synthetic 2D trajectories640

For the sake of completeness, we also used the N-HMM641

model to generate full synthetic 2D trajectories. To do642

so, for each bout state identified with the procedure re-643

ported above, we sampled an inter-bout interval duration644

δtn and traveled distance dn from their experimental dis-645

tributions. We then reconstructed the coordinates of the646

virtual fish after k bouts, (xk, yk), through647

xk =

k∑
n=1

dn cos(θn) , yk =

k∑
n=1

dn sin(θn) , (6)

where θn =
∑n

i=1 δθi is the orientation angle of the648

fish at bout i, constructed as the cumulative sum of re-649

orientation angles at previous bouts. An example trajec-650

tory is shown in Fig. 6g, and is qualitatively similar to651

the experimental counterpart recorded at the same tem-652

perature.653

For comparison, we show synthetic trajectories gener-654

ated from behavioral HMM. In practice, we expanded655

on the B-HMM introduced in section II B 2 by adding656

two new emission distributions corresponding to δtn and657

dn. As done previously, the HMMs were first trained658

only on the re-orientation angles δθn, before learning the659

emission distributions for δtn and dn. We then plot the660

corresponding trajectories using Eq. (6), which are qual-661

itatively similar to the N-HMM-generated ones, as illus-662

trated by an example in Fig.6f. The similarity is quanti-663

fied by the comparison of the distributions of bout angles,664

inter-bout duration intervals and traveled distances, see665

Fig.6f.666

We report in Figure S7e-h, the outcome of an inter-667

mediate generative model, in which 2D swim trajectories668

are generated from experimental neural recordings. This669

is done by first identifying neural states from the record-670

ings using the Viterbi algorithm, emiting inter-bout in-671

tervals using the same procedure as described above, and672

then feeding the resulting state sequences through the B-673

HMM.674

III. DISCUSSION675

With the advancement of video-tracking and brain676

recording methods, behavioral neuroscience has changed677

radically in the last decade. It is now possible to study in678

great details animal behavior in unconstrained naturalis-679

tic conditions [37–39], while new recording methods give680

access to extended circuit activity encompassing several681

brain regions. Such experiments produce vast amounts682

of high-dimensional data, requiring automated yet robust683

and interpretable analysis methods.684

An essential task is the identification of behavioral or685

neural states from the segmentation of the recorded time686

series, in order to extract low-dimensional representa-687

tions that are easier to interpret. However, no defini-688

tive procedure exists for selecting the optimal number of689

states or for defining valid labeling criteria. This choice690

typically depends on available observables and involves691

a compromise between interpretability and accuracy of692

representation.693

In our case, the difficulty stems from three main694

factors: (i) the dependence of swim bout kinemat-695

ics with bath temperature, (ii) the inter-individual696

variability, and (iii) the overlapping distributions of697

reorientation angles for distinct bout types, in particular698

at low temperatures. Because they can accommodate699

such overlaps while taking into account the temporal700

regularities in the bout sequences, Hidden Markov701

Models (HMMs) are ideally suited for such a task. They702

are easily interpretable as the dynamics between the703

different internal states is described by a Markovian704

process. This makes HMM a powerful alternative to705

deep-learning-based methods, whose predictive power706

comes at the cost of interpretability.707

708

In this study, we successfully applied a three-state709

HMM to parse behavioral and neural time series asso-710

ciated with exploratory dynamics. We showed that for711

behavioral data, HMM provided a less biased and more712

consistent method for bout-type labeling compared to713

standard threshold-based Markov Chain (MC) methods714

used in earlier studies.715

This robustness proved essential as we investigated716

the effect of bath temperature on navigation. Zebrafish717

being cold-blooded animals, the water temperature is718

expected to directly affect muscle efficiency, leading to719
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a systematic increase in the amplitude of reorientation720

elicited by bouts as temperature rises. When using721

hard-threshold-based MC methods, this may lead to722

a systematic but artifactual increase in the fraction of723

bouts labeled as turns with temperature. With HMM,724

this physiological effect of temperature is naturally725

accounted for through an adaptive adjustment of the ef-726

fective threshold angle between turn and forward bouts.727

With this unbiased labeling, we found that the fractions728

of forward and turn bouts were only weakly dependent729

on temperature, in contrast with previously published730

analysis [22]. The primary effect of temperature of731

rising temperature is to progressively decrease bout-type732

persistence, i.e. the tendency of the animal to chain733

similar bouts. Interestingly, we found that all three bout734

types, and not just turns as previously reported, exhibit735

comparable persistence.736

737

HMMs also demonstrated remarkable sensitivity to738

individual phenotypic variability. Inter- and intra-739

individual variability are ubiquitous traits of animal be-740

havior [40, 41] and are necessary to ensure a trade-off741

between flexibility and adaptability to changing environ-742

mental demands and robustness in neural development743

[42, 43]. In Le Goc et al. [22], inter-individual differences744

were demonstrated on the same dataset using multiple745

kinematic parameters (including inter-bout interval, for-746

ward travel distance or reorientation amplitude). In con-747

trast, our study shows that HMM can identify individual748

fish solely based on the dynamics of bout-type sequences.749

Moreover, HMM provides explicit likelihood evaluation750

for bout sequences for various individual-specific models,751

providing a quantitative measure of phenotypic proxim-752

ity between animals or across time.753

Since our approach is based on gait phenotyping and754

is independent of image features, it is compatible with755

low-resolution videos (in which only the animal’s posi-756

tion and orientation can be accessed) while still keep-757

ing versatility, reliability, and fast execution. This opens758

new opportunities for studying phenotypic variation in759

swimming behavior, potentially uncovering subtle effects760

on behavior of genetic, developmental, or environmental761

cues. This ability to precisely capture behavioral vari-762

ability might also prove fruitful in order to explore the763

neural basis of individuality.764

The fact that the fish directional dynamics can be-765

described by a three-state Markovian sequence, suggests766

that bout-type selection is likely governed by a single767

circuit, with the ARTR being the most plausible can-768

didate. Since its discovery in 2012 [30], the ARTR has769

been viewed as a direction-selection hub, controlling lat-770

eralized behaviors such as tail flick and ocular saccade771

orientation [18, 44]. It also responds to lateralized vi-772

sual stimuli, including binocular contrast and whole-field773

lateral motion [20, 44].774

In the present study, we showed that a three states775

HMM can accurately describe ARTR neuronal data, and776

that this model is structurally and temporally similar to777

behaviorally-trained HMMs. This result suggests that778

the ARTR may also govern forward bout selection, uni-779

fying the control of all directional bout types within a780

single circuit. This interpretation is reinforced by the781

generation of synthetic, neuronally driven swimming se-782

quences that closely matched the statistics of observed783

trajectories.784

Bout-type persistence, as observed in behavioral as-785

says, is mirrored in the slow sequential exploration of786

the three hidden states identified in neural recordings of787

the ARTR. Although the HMM enables the identifica-788

tion of these neuronal states, they provide no interpre-789

tation of how they emerge from interactions among the790

ARTR neuronal population. In fact, our implementation791

of HMM assumes the activity of neurons to be indepen-792

dent of each other when conditioned to a state.793

In a recent study, we trained data-driven graphical794

models (Ising model) on ARTR activity sequences [27].795

The Ising model uses activity patterns to learn the inter-796

actions between neurons but, unlike HMM, it ignores any797

temporal information in the data. Interestingly, the in-798

ferred Ising models tended to display three metastable799

states, two with high activity on either side and one800

”equilibrated” state with intermediate, balanced activ-801

ity on both sides, consistent with the three hidden states802

found with HMM. This convergence underlines the com-803

plementary strengths of state-space and energy-based804

models in elucidating neural dynamics. While the for-805

mer might enable capturing the temporal structure in806

collective neural activity, the latter offer insights into the807

underlying network interactions driving these states, and808

how metastability emerges within neural populations.809

The exact mechanism through which the ARTR con-810

trols bout selection remains unclear. However, our find-811

ings suggest that ARTR subpopulations (right and left)812

might inhibit contraversive bouts (i.e. when the left side813

is active, it suppresses rightward turns, favoring leftward814

swim). In the equilibrated state, both inhibitory sig-815

nals suppress turn bouts, leaving forward movement as816

the only option. Such a motor suppression mechanism is817

consistent with observations by Dunn et al. [18], which818

showed a continuous relationship between the lateral dif-819

ference in the ARTR activity and the mean reorientation820

angle of the executed bout. While our model strongly821

supports this hypothesis, definitive experimental valida-822

tion is required.823

Last of all, to facilitate the accessibility and adoption824

of Hidden Markov Model (HMM) formalism for analyz-825

ing behavioral sequences, we provide a comprehensive826

and instructive Python tutorial (https://github.com/827

EmeEmu/IBIO-Banyuls2023-Python). This tutorial can828

be adapted for specific datasets or used as a resource for829

broader educational goals.830

https://github.com/EmeEmu/IBIO-Banyuls2023-Python
https://github.com/EmeEmu/IBIO-Banyuls2023-Python
https://github.com/EmeEmu/IBIO-Banyuls2023-Python
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IV. MATERIALS AND METHODS831

A. Behavioral Datasets832

The behavioral dataset used in the present study is833

derived from Le Goc et al. [22], and can be accessed di-834

rectly at https://doi.org/10.5061/dryad.3r2280ggw.835

This dataset comprises spontaneous swimming trajecto-836

ries of 5 to 7 dpf zebrafish larvae, collected at controlled837

bath temperatures of 18°C, 22°C, 26°C, 30°C, and 33°C.838

A camera was used to continuously record the swimming839

behavior of the fish within an arena of 100×45×4.5mm³840

for 30 minutes at 25 frames/second. To eliminate bor-841

der effects, a Region of Interest (ROI) was defined at a842

distance of 5mm from the arena’s walls. Fish that swam843

outside the defined tracking ROI were considered lost,844

and a new trajectory was initiated upon their re-entry845

into the ROI. The identity of the fish is thus lost each846

time it exits the ROI. Therefore, the dataset contains a847

varying number of fish trajectories, ranging from 532 to848

1513 trajectories across the different temperatures (mean849

= 1148). Individual trajectories were tracked offline us-850

ing the open-source FastTrack software [45], and were851

then discretized into sequences of swimming bouts.852

Each trajectory consists of a sequence of swim bouts,853

spanning from 9 to 748 bouts per trajectory (mean=60,854

distributions shown in Fig.S1a). From this extensive855

dataset, we primarily utilized the re-orientation angles,856

defined as the difference between the heading direction857

at bout n+ 1 and the heading direction at bout n:858

δθn = θn+1 − θn (7)

(a graphical illustration of this definition can be found in859

Fig.1c). This parameter encapsulates the angular change860

between consecutive bouts, providing insight into the861

fish’s ability to modify its orientation during swimming.862

We also used the interbout interval δtn = tn+1 − tn863

representing the elapsed time between 2 consecutive864

bouts, and the traveled distance dn = ∥r⃗n+1 − r⃗n∥.865

866

On top of these multi-fish trajectories, we used in sec-867

tions IID and IIG a second dataset from Le Goc et al.868

[22] consisting in single-fish recordings. For this dataset,869

each fish (N=18) is placed alone in the arena at 26°C,870

and is recorded for 2 hours. With this experimental871

paradigm, the identity of the fish is conserved across tra-872

jectories, even when the fish leaves and re-enters the ROI.873

B. Neuronal Datasets874

The neuronal dataset used in the present study is875

derived from Wolf et al. [27], and can be accessed876

directly at https://gin.g-node.org/Debregeas/ZF_877

ARTR_thermo. This dataset contains 32 one-photon878

Light-Sheet Microscopy recordings of spontaneous brain879

activity, for 13 zebrafish larvae (5 to 7 dpf) at 18°C,880

22°C, 26°C, 30°C, and 33°C. It focuses on neurons from881

the Anterior Rhombencephalic Turning Region (ARTR),882

with ∼ 300 neurons (mean 307, std 119), recorded during883

∼ 20min (mean 23, std 4 min) at ∼ 6Hz (mean 5.9, std884

2.1 Hz).885

C. Emission of reorientation angles in the Hidden886

Markov Model887

To validate the hypothesis that the re-orientation an-888

gles can be modeled using normal and gamma dis-889

tributions, we compared the distribution of the data890

with a Gaussian Mixture Model (GMM) and a Gaus-891

sian&Gamma Mixture Model:892

p(δθ) = wFN (δθ; 0, σ) + wLΓ(δθ;α, θ) + wRΓ(−δθ;α, θ)

where wF+wL+wR = 1, and wF , wL, and wR denote the893

weights for forward, left, and right states, respectively.894

Using Quantile-Quantile (QQ) plots, we show that this895

last mixture model accurately reproduces the observed896

distribution of δθn in the data, and is much better than897

a GMM, especially in the tails of the distributions (Fig.898

S2a). We also confirmed that, once trained, the emission899

distributions do indeed match the observed reorientation900

distributions (Fig. S2b-c).901

D. Stubbornness factor902

The stubbornness factor fq is a measurement of the903

animal’s preference towards turning in the same direc-904

tion over changing direction, after q intermediary forward905

bouts (Fig.S4c), as defined in (3).906

It can be computed from a sequence of classified bouts907

bn by first identifying and counting the q-plets T1 →908

F q → T2 where T1 = T2 and where T1 ̸= T2:909 {
N= = #(T1 → F q → T2, T1 = T2)

N ̸= = #(T1 → F q → T2, T1 ̸= T2)
(8)

and then computing their ratio:910

fq =
N=

N ̸=
(9)

In practice, this ratio has a physical interpretation911

only for long sequences of bouts where N= >> 1 and912

N̸= >> 1. As the trajectories in our dataset can be quite913

short (Fig. S1a), we compute fq from all trajectories at a914

specific temperature, increasing the chance of observing915

a high number of stubborn (N=) and non-stubborn916

(N ̸=) trajectories.917

918

By considering that the probability of a given q-plet is919

stubborn follows a binomial distribution (E(N=) = pN920

https://doi.org/10.5061/dryad.3r2280ggw
https://gin.g-node.org/Debregeas/ZF_ARTR_thermo
https://gin.g-node.org/Debregeas/ZF_ARTR_thermo
https://gin.g-node.org/Debregeas/ZF_ARTR_thermo
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and E(N̸=) = (1 − p)N with N = N= + N ̸=), we can921

evaluate the uncertainty in stubbornness as:922

∆fq = fq
1

N= +N ̸=

(√
N=

N̸=
+

√
N̸=

N=

)
(10)

It is to be noted that these uncertainties are conser-923

vative estimates, as there exits a bias inherent to the924

dataset. Indeed, a very stubborn fish will tend to stay925

longer within the Region Of Interest (ROI) of the cam-926

era, leading to longer trajectories and therefore weighing927

more on the final result. Hence, it is unclear whether a928

stubbornness factor fq = 1 ± 0.2 is truly significant (as929

suggested by the estimated error bars on Fig.S4d).930

Furthermore, as the stubbornness factor is computed931

from all trajectories (and thus all fish) at a particular932

temperature, it represents an average behavior rather933

than an individual fish.934

935

E. Stubbornness factor and 3-state Markov Chain936

The stubbornness factor can be defined directly from937

the transition matrix.938

For q = 0 , calculations are simple:939

fq=0 =
P (L → L) + P (R → R)

P (L → R) + P (R → L)
(11)

For q ≥ 1 , the stubbornness factor is defined from940

the transition matrix as:941

SL,q = P (L → F q → L)

= P (L)P (L → F )P q(F → F )P (F → L)

WL,q = P (L → F q → R)

= P (L)P (L → F )P q(F → F )P (F → R)

fq =
SL,q + SR,q

WL,q +WR,q

with SL,q the probability of a trajectory which starts and942

ends with a left bout, WL,q the probability of a trajectory943

which starts with a left bout and ends with a right bout,944

and SR,q WR,q their symmetrical opposites.945

For a 3-state model, the forward-forward bout proba-946

bility cancels out, giving:947

fq =
P (L)P (L → F )P (F → L) + P (R)P (R → F )P (F → R)

P (L)P (L → F )P (F → R) + P (R)P (R → F )P (F → L)

and with our non-handedness hypothesis: P (L) = P (R),948

P (L → F ) = P (R → F ), and P (F → L) = P (F → R),949

yielding:950

fq = 1 ∀q > 0 (12)

F. Labeling of states in the neuronal Hidden951

Markov Model952

The internal states of the Hidden Markov Models953

(HMMs) trained from neuronal activity are not a pri-954

ory assigned to the Left, Right and Forward labels, and955

must therefore be re-ordered post-training.956

We expect a certain symmetry in the system, where957

neurons in the left side of the ARTR will be more active958

during a Left state (and vice versa). Hence, we can use959

the excitability hs
i of neuron i in each internal state s,960

as defined in the emission distribution of the HMM (see961

Eq. 4). We define the lateralized excitability:962

∆hs =
〈
l(hs

i )
〉
i∈L

−
〈
l(hs

i )
〉
i∈R

(13)

where l(x) = 1
1+e−x is the standard logistic function, and963

L and R are the sets of neurons located respectively in964

the left and right side of the ARTR. We thus label the965

HMM states such that966

∆hL > ∆hF > ∆hR (14)

with F , L, and R the Forward, Left and Right internal967

states.968

G. Temporal re-scaling969

To find the temporal re-scaling factor fN/B between970

behavioral and neuronal models, we first compute the dis-971

tributions of sojourn times ∆ts for all states s ∈ {F,L,R}972

in both behavioral and neuronal Hidden Markov Models.973

We then find the optimal re-scaling factor fN/B for974

which the combined distributions ∆tb = [∆tbF ,∆tbL,∆tbR]975

and ∆tn = [∆tnF ,∆tnL,∆tnR] are as close to each other as976

possible :977

fN/B = min
f∈[0,1]

RMSE
(
Q(∆tb), f.Q(∆tn)

)
(15)

where Q(D) is the quantiles of a distribution D, and978

RMSE(x,y) is the Root Mean Squared Error between979

vectors x and y (see Fig.S6a).980

981

For Markov chains, the transition matrix P = P (sn =982

s → sn+1 = s′) represents the probability of transitioning983

in one step from state s to state s′. The transition prob-984

ability s → s′ in k ∈ N1 steps P (sn = s → sn+k = s′) is985

then the matrix power P k.986

In order to apply the temporal re-scaling fN/B between987

behavioral and neuronal models, we can thus compute988

the re-scaled transition matrix :989

P ∗
n = P

⌊ ν
fN/B

⌉
n (16)

where Pn is the transition matrix inferred from neuronal990

data recorded at a frequency ν Hz.991
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H. Mean Square Reorientation992

To characterize the orientational diffusivity of the tra-993

jectories, we use the Mean Square Reorientation (MSR)994

accumulated after q bouts, as defined in equation (5) [20].995

For infinitely large datasets with no left-right bias,996

we expect a centered distribution of reorientation angles997

⟨δθn⟩n = 0. However, this is not the case, particularly998

for the neuronal dataset where experimental limitations999

can induce strong biases. In particular, two of those limi-1000

tations are due to the one-sided illumination in our Light1001

Sheet Fluorescence Microscope [46]. First, due to scat-1002

tering, the illumination beam is not uniform left-right1003

across the brain, which can induce biases in the detection1004

of neurons and their activity. Second, the non-uniform1005

perception of light by the zebrafish larvae can elicit a pho-1006

totaxis response, which is known to bias the activity of1007

the Anterior Rhombencephalic Turning Region (ARTR)1008

[44].1009

Since a non-zero bias can result in a distortion of1010

the MSR (see Appendix 1), the MSR is computed from1011

ˆδθn = δθn − ⟨δθn⟩n instead of δθn.1012
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muth, R. Candelier, S. Karpenko, D. G. Hildebrand, I. H.1188

Bianco, R. Monasson, et al., Sensorimotor computation1189

underlying phototaxis in zebrafish, Nature communica-1190

tions 8, 651 (2017).1191

[45] B. Gallois and R. Candelier, Fasttrack: an open-source1192

https://doi.org/https://doi.org/10.1016/j.cub.2019.11.026
https://doi.org/10.1523/JNEUROSCI.4819-14.2015
https://arxiv.org/abs/https://www.jneurosci.org/content/35/21/8214.full.pdf
https://openreview.net/forum?id=zb8jLAh2VN
https://openreview.net/forum?id=zb8jLAh2VN
https://openreview.net/forum?id=zb8jLAh2VN
https://openreview.net/forum?id=zb8jLAh2VN
https://openreview.net/forum?id=zb8jLAh2VN
https://doi.org/10.3389/fnsys.2014.00039
https://doi.org/10.7554/eLife.52882
https://doi.org/10.1186/s12915-021-01126-w
https://doi.org/10.1186/s12915-021-01126-w
https://doi.org/10.1186/s12915-021-01126-w
https://doi.org/https://doi.org/10.1016/j.neuron.2018.04.013
https://doi.org/https://doi.org/10.1016/j.neuron.2018.04.013
https://doi.org/https://doi.org/10.1016/j.neuron.2018.04.013
https://doi.org/10.1016/j.cub.2023.12.030
https://doi.org/10.7554/eLife.79541
https://doi.org/10.1137/141000671
https://doi.org/10.1137/141000671
https://doi.org/10.1137/141000671
https://doi.org/10.21105/joss.06436
https://doi.org/10.21105/joss.06436
https://doi.org/10.21105/joss.06436
https://doi.org/10.1038/nature11057
https://doi.org/10.1038/nature11057
https://doi.org/10.1038/nature11057
https://arxiv.org/abs/22622571
https://doi.org/10.1016/j.cub.2013.06.044
https://doi.org/10.1038/s41593-023-01308-5
https://doi.org/10.1016/j.neuron.2014.01.019
https://doi.org/10.1016/j.neuron.2014.01.019
https://doi.org/10.1016/j.neuron.2014.01.019
https://arxiv.org/abs/24656252
https://doi.org/10.1038/s41593-019-0535-8
https://doi.org/10.1016/j.neuron.2014.06.032
https://doi.org/10.1016/j.neuron.2014.06.032
https://doi.org/10.1016/j.neuron.2014.06.032
https://arxiv.org/abs/25066084
https://theses.fr/2020UPSLT019
https://theses.fr/2020UPSLT019
https://theses.fr/2020UPSLT019
https://theses.fr/2020UPSLT019
https://theses.fr/2020UPSLT019
https://doi.org/10.1073/pnas.2410254121
https://doi.org/10.1073/pnas.2410254121
https://doi.org/10.1073/pnas.2410254121


18

software for tracking varying numbers of deformable ob-1193

jects, PLoS computational biology 17, e1008697 (2021).1194

[46] T. Panier, S. Romano, R. Olive, T. Pietri, G. Sumbre,1195
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APPENDICES1200

1. Mean squared reorientation1201

The mean-square reorientation (MSR) of a trajectory1202

at lag q is defined as [20]:1203

Mq = E

( q∑
i=1

δθt+i−1

)2
 =

q∑
i,j=1

E [δθt+i−1δθt+j−1]

(A.17)
where it is assumed that E[δθ] = 0. The average is taken1204

over time t. Assuming equilibrium, this is independent1205

of t, and should depend only on the separation |i− j|,1206

E [δθt+i−1δθt+j−1] = E [δθiδθj ] = A|i−j| (A.18)

where A|i−j| stands for the time equilibrated autocorre-1207

lation function:1208

At = lim
t0→∞

E[δθt0δθt0+t] (A.19)

In particular A0 = E[δθ2] is just the variance of δθ. It1209

follows that,1210

Mq =

q∑
i,j=1

A|i−j| =

q−1∑
t=0

 q∑
i,j=1

δ|i−j|,t

At

= qA0 + 2

q−1∑
t=1

 q∑
i<j

δj−i,t

At

= qA0 + 2

q−1∑
t=1

(q − t)At

(A.20)

Note that for a random walk without any correlations1211

across time, At = 0 for t > 0. In this case, Mq = qA01212

grows linearly with q.1213

On the other hand, it is expected that At → 0 as t →1214

∞, and usually this decay is exponentially fast in time.1215

Therefore, for large q, we get the following asymptotic1216

expression for Mq:1217

Mq ∼

(
A0 + 2

∞∑
t=1

At

)
q − 2

∞∑
t=1

tAt (A.21)

Notice that this is affine in q, with the coefficient A0 +1218

2
∑∞

t=1 At. Therefore, Mq is initially linear in q with1219

slope A0 for small q, then has an elbow and eventually1220

approaches the asymptotic slope A0 + 2
∑∞

t=1 At as q →1221

∞. This asymptotic slope is different from A0 only if the1222

process exhibits non-trivial autocorrelations in time.1223

a. MSR for the HMM1224

As an illustration, we can compute all these quantities1225

exactly for the HMM as follows. For the autocorrelation,1226

we have:1227

At = tr
h0,...,ht

P (ht|ht−1) . . . P (h2|h1)P (h1|h0)P (h0)

×
[∫

P (δθ|h0)dδθ

] [∫
P (δθ|ht)dδθ

]
= tr

h,h′
[Ωt]h′,hP (h)⟨δθ|h⟩⟨δθ|h′⟩

(A.22)
where [Ω]h′,h = P (h′|h) is the transition matrix of the1228

HMM. We will assume here that the initial state is sam-1229

pled from P (h) = peq(h), the equilibrium distribution of1230

hidden states of the HMM, which satisfies the stationar-1231

ity equation:1232

tr
h
Ωh′,hpeq(h) = peq(h

′) (A.23)

Note also that E[δθ] = 0 implies that
∑

h peq(h)⟨δθ|h⟩ =1233

0. Now let p1(h), . . . , pL(h) denote the remaining eigen-1234

vectors of Ω, with the associated eigenvalues λ1, . . . , λL.1235

By the Perron-Frobenious theorem, these remaining1236

eigenvalues are all smaller than one in absolute value.1237

The vector P (h)⟨δθ|h⟩ can be writen in the basis of this1238

eigenvectors,1239

P (h)⟨δθ|h⟩ = αeqpeq(h) +

L∑
i=1

αipi(h) (A.24)

for some coefficients αeq, α1, . . . , αL. Then it follows that,1240

At = tr
h′

[
αeqpeq(h

′) +
∑
i

λt
iαipi(h

′)

]
⟨δθ|h′⟩

=
∑
i

αiλ
t
i tr
h′
pi(h

′)⟨δθ|h′⟩
(A.25)

Since the |λi| < 1 it follows that At → 0 exponentially1241

fast as t → ∞. Moreover we can compute,1242

∞∑
t=0

At =
∑
i

αi

1− λi
Ti,

∞∑
t=0

tAt =
∑
i

αiλi

(1− λi)2
Ti

(A.26)
where1243

Ti = tr
h
pi(h)⟨δθ|h⟩ (A.27)

These expressions then give a complete and exact char-1244

acterization of the MSR for the HMM.1245

b. Standardized MSR1246

The MSR as defined in Eq. A.17 includes both the dif-1247

fusive contribution from the initial term A0 and contri-1248

butions arising from non-trivial time correlations in the1249

https://www.frontiersin.org/articles/10.3389/fncir.2013.00065
https://www.frontiersin.org/articles/10.3389/fncir.2013.00065
https://www.frontiersin.org/articles/10.3389/fncir.2013.00065
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a cb

FIG. S1. Supplementary panels to Fig.1: (a) Distributions of the number of bouts per trajectory in the entire behavioral
dataset (black), and for each recorded temperature (inset, colored). (b) Observed transition probabilities between reorientation
angles for the entire behavioral dataset. (c) Distributions of the difference between mean activities in the left (mL) and right
(mR) Anterior Rhombencephalic Turning Region for all fish at each recorded temperature.

process coming from the terms At for t > 0. As already1250

pointed out, this initial term A0 = E[δθ2] is just the vari-1251

ance of the distribution of bout angles and is insensitive1252

to time correlations. To emphasize the time correlations1253

we may normalize the trajectories by defining:1254

M̂q =
Mq

A0
(A.28)

By comparing with Eq. A.21, we see that M̂q has initially1255

a slope ≈ 1 for small q, then has an elbow and eventually1256

approaches the asymptotic slope 1 + 2
∑∞

t=1 At/A0 for1257

large q.1258

In contrast to Mq, the quantity M̂q is better suited to1259

compare the time correlations of very diverse trajecto-1260

ries because it is insensitive to variations of E[δθ2]. Fig-1261

ure S7c-d plots the normalized MSR from Eq. (A.28) for1262

the various trajectories and temperatures considered be-1263

fore in Figure S7c-d. We observe that the standardized1264

MSR exhibits comparable behavior across various tem-1265

peratures, suggesting that the trend of the unnormalized1266

MSR observed in Figures 6b-c and S7a-b is just due to an1267

increase in the bout angle amplitudes E[δθ2] with tem-1268

perature, but not due to changes in the structure of their1269

time correlations.1270
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FIG. S2. Supplementary panels to Fig.2 - Emission distributions: (a) Quantile-Quantile plot between distributions
of reorientation angles observed from the data and Mixture Models, at each temperature. Left: Mixture Model defined from
a central Normal distribution (forward bouts) and two Gamma distributions (left and right turning bouts), corresponding to
the model of HMM emissions. Right: Gaussian Mixture Model. Insets: Zoom on ±50◦. (b) Quantile-Quantile plot between
the distributions of reorientation angles observed from the data and the distributions of reorientation angles generated by
HMM. Insets: Zoom on ±50◦. (c) Comparison between the distributions of reorientation angles observed from the data
(colored) and the distributions of reorientation angles generated by the 3-state Hidden Markov Model (HMM; black), for each
temperature. (d) Distributions of absolute reorientation angles labeled as forward bouts (solid black) and turning bouts (left
or right; solid pink) by the Hidden Markov Model (HMM). Dashed lines show the HMM emission distribution for forward and
turning bouts (black and pink respectively). The threshold δθ0 = 10◦ used in the Markov Chain model is shown for reference
as a vertical black line. (e) Parameters of the HMM emission distribution, with σ the standard deviation of the central Normal
distribution (forward bouts), α and θ the shape and scale of the Gamma distribution (turning bouts). Each dot corresponds
to one temperature, and error bars were computed from the minimum-maximum of 100 cross-validations (trained on randomly
selected 50% of the datasets).
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FIG. S3. Supplementary panels to Fig.2 - Comparison between Markov Chain and Hidden Markov Model: (a)
Diagram illustrating the 3-state Hidden Markov Model (HMM) with emissions modeled as a normal distribution for forward
bouts and gamma distributions for turning bouts. (b) Temperature dependence of the steady state bout probabilities P (s)
for forward bouts (s = F , black) and turning bouts (s ∈ L,R, pink), for both the Markov Chain inferred from thresholded
reorientations (MC, circles) and Hidden Markov Models (HMM, triangles). (c) Temperature dependence of the transition
probabilities P (sn → sn+1) between forward (F), left (L), and right (R) bouts, for both the Markov Chain (MC, circles) and
the Hidden Markov Model (HMM, triangles). (b,c) The width of the shaded curves represent the minimum-maximum of 100
cross-validations of both models inferred from randomly selecting 50% of the data. (d) Transition matrices between forward
(F), left (L) and right (R) states, for both the Markov chains inferred from thresholded data (MC) and Hidden Markov Model
(HMM), and for each temperature. (e) Confusion matrices between labeling of MC and HMM for all temperatures (normalized
with respect to the MC labeling).
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FIG. S4. Supplementary panels to Fig.2 - Markovianity: (a) Distribution of log Likelihoods (LLHs) for both the Markov
chains inferred from thresholded data (left) and Hidden Markov Model (right). For each model and each temperature, LLHs
were computed for 100 models inferred from 50% of the trajectories (randomly constructed training set) and on the remaining
50% of the trajectories (testing set). Dashed lines show the quartiles of each distribution. (b) Diagram of the 4-state Markov
chain used in previous publications [20, 22]. Two Markov Chains run in parallel, with the first chain controlling bout type
(forward or turn) and the second controlling direction (left or right). With this model, the system can be in one of four
states: [T,L], [T,R], [F,L], [F,R], thus left and right states represent internal directional states (not only observed behavioral
orientations). (c) Diagram illustrating the definition of the stubbornness. For a q-plet of bouts T1 → F → · · · → F → T2

with q intermediary forward bouts, a stubborn sequence is defined as one where directionality is conserved (i.e. T1 = T2 ),
whilst a non-stubborn sequence will lose the memory of the initial turn (i.e. T1 ̸= T2 ). (d) Evolution of the stubbornness
factor fq (see Eq. 3) with the number of intermediary forward bouts q, comparing the Markov Chain inferred from thresholded
trajectories (MC, dots) and the Hidden Markov Model (HMM, triangles) trained directly from reorientation angles, for each
temperature. The width of the shaded curves represent the estimated error in stubbornness factor (see Materials and Methods
IVD).
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FIG. S5. Supplementary panels to Fig.3 Hidden Markov Model parameters inferred from all trajectories from an individual
fish, compared with the average parameters inferred from chunks of that fish’s trajectories. All HMM parameters are shown.
Each dot represents a fish, with error bars corresponding to standard error of the mean. Blue color corresponds to real individual
fish data. Red points are obtained by sampling long trajectories from a single HMM trained on all fish bundled together, thus
representing a null model for the fish individuality.

a b

FIG. S6. Supplementary panels to Fig.5 (a) Root Mean Squared Error (RMSE) between quantiles of the behavior and
neuronal sojourn distributions presented in Figure 5a at different values of the rescaling factor f . The optimal rescaling factor
corresponds the minimal RMSE at f = fN/B ≈ 0.44. (b) Comparison of the transition probabilities P (s → s′) between hidden
states F , L, and R, for the behavioral HMM (black), neuronal HMMs (orange), and neuronal HMM rescaled by fN/B = 0.44
(magenta) at all 5 recorded temperatures. Shaded curves represent the standard error of the mean for all recorded fish at each
temperature.
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FIG. S7. Supplementary panels to Fig.6 (a) Mean Square Reorientation (MSR) after q bouts from aggregated multiple-
fish trajectories at 18-33 oC (grey), long-individual trajectories at 26o C (green) and generated trajectories from Neural HMM
(N-HMM) (blue). Red dashed lines are MSR obtained from shuffled aggregated multiple-fish trajectories. (b) Bar plots for the
MSR(q=10) for data and N-HMM generated trajectories, with mean (horizontal bars) and standard deviations (vertical bars).
(c-d) Same as panels a-b but plotting the standardized MSR where trajectories are normalized such that the bout angles have
unit variance. See Eq. (A.28). (e) Diagram explaining the conversion from neuronal activity to swim trajectory. ARTR activity
is first converted into a sequence of forward, left, right hidden states using the Viterbi algorithm on the N-HMM. Time is then
re-scaled using the scaling factor identified in Fig 5, and bout sequences are sampled based on the interbout interval distribution.
A swim trajectory is constructed for each bout sequence by sampling the bout distances dn and inter-bout intervals δtn emission
distributions in the behavioral HMM. (f) Example recorded ARTR activity at 26oC (top) and corresponding state sequences
after temporal re-scaling and bout sampling (bottom). (g) Reconstructed trajectories for each sampled state sequence in panel
f. (h) Example reconstructed trajectory from the ARTR activity in panel f.
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