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Zebrafish larvae use stereotyped discrete swim bouts of various types to navigate their environ-
ment. Their temporal sequence displays a complex structure, whose characteristics are modulated
by external factors, such as the water temperature. Here, we show that the use of Hidden Markov
Models allows one to parse the exploratory kinematics of larval zebrafish in an agnostic fashion. Our
approach thus provides a more robust method of bout classification than was previously proposed
with standard Markov Models relying on ad hoc state identification hypothesis. We then unveil
temporal persistence in the navigation at low water temperature that was previously overlooked or
underestimated. We further show that the model is accurate enough to capture subtle differences
in exploratory trajectories between individuals, and has thus potential application in behavioral
phenotyping. The code used in this study is made available in a format specifically designed for
educational purposes.
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I. INTRODUCTION10

Animal behavior unfolds as a structured sequence of11

stereotyped motor actions, much like language. Under-12

standing behavior thus requires identifying the vocab-13

ulary, i.e. to categorize these elementary behavioral14

units, and to characterize the corresponding grammar,15

i.e. their relative organization [1]. As an illustration,16

navigation in Zebrafish larvae (see [2–4] for review) con-17

sists of a series of discrete swimming events of ∼ 100 ms18

duration, called bouts, separated by ∼1-2 second-long19

dwelling periods. Due to this inherent discretization, the20

navigation behavior appears particularly well suited to21

modeling in terms of Markovian dynamical processes.22

However, to implement this approach effectively, reli-23

able segmentation of consecutive bouts into different cat-24

egories, or states, is essential.25

So far, the categorization of bouts has been carried26

out independently of the examination of their temporal27

organization. In [5], unsupervised segmentation was per-28

formed through Principal Component Analysis (PCA) of29

tens of kinematic parameters extracted from the fish’s tail30

and body motion. This approach yielded no less than 1331

bout types, a number that the authors found sufficient to32

encompass the entire behavioral repertoire of the animal,33

including hunting, escape, social behavior, etc.34

In other studies [6–12], the focus was put on the ani-35

mal strategy of spontaneous exploration in spatially uni-36

form environments or in the presence of sensory gradients37

(taxis). In this context, a crucial kinematic parameter38
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was the animal orientational dynamics. Bouts were then39

categorized based on the value of their induced body re-40

orientation, resulting in the labeling of forward and turn-41

ing bouts (either rightward or leftward). The selection of42

these various bout types was found to depend on sensory43

cues, resulting in the animal’s capacity to ascend light44

[6, 9] or temperature [11, 13, 14] gradients.45

Although it offered a simple and interpretable descrip-46

tion of the animal’s explorational dynamics, the 3-state47

categorization approach in these studies was based on a48

partition of the bouts according to some threshold, i.e.49

bouts were labeled as turns if the reorientation angle was50

larger than some fixed value. This approach has two51

drawbacks. From a statistical point of view, it is prone52

to biases, in particular when comparing behavioral data53

obtained in different contexts, such as temperature, lu-54

minosity, hunger state, etc, which may systematically im-55

pact the way bouts of a given type are executed. From56

a conceptual point of view, it is unclear why a quantita-57

tive observation, such as the reorientation angle, should58

be unambiguously assigned to a unique behavioral state.59

Different internal states of the animal, likely related to60

some distinct neural counterparts, could transiently give61

rise to similar motor or behavioral correlates.62

To understand how much these biases affect the cur-63

rent description of navigation in larval zebrafish, we here-64

after re-analyze video recordings of freely swimming ani-65

mals using more flexible and agnostic methods. We make66

use of Markovian-based state space models, more pre-67

cisely the Hidden Markov Model (HMM), as an alterna-68

tive and agnostic way of parsing exploratory trajectories.69

HMM have long been successfully applied in a variety70

of tasks and species, as they provide a robust method71

to discover underlying structures in temporal data in an72

unsupervised way [15–18]. Additionally, these models of-73
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fer a probabilistic framework that can be used to score74

part of trajectories or even simulate synthetic behavior.75

To better assess the quality of the analysis, we consider76

recordings at different water temperatures. Because ther-77

moregulation is critical for survival, and Zebrafish are78

ectothermic (a.k.a. cold-blooded) animals [19], they em-79

ploy strategies to keep their body temperature within a80

physiological range (18-33°C). As was shown in previous81

work, the animal navigates to its optimal temperatures82

by adjusting its behavior based on the temperature it83

experiences in its environment.84

We systematically compare the 3-state sequences of85

bouts and their temperature dependence, as derived from86

two methods: the first one uses threshold-based labeling87

(as in [11]) followed by Markov Chain modeling (MC);88

the second one relies on HMM to simultaneously label89

the bouts and infer their temporal organization. We find90

that HMM, by inferring a consistent bout labeling, allows91

one to reveal a more pronounced persistence of the bout92

type and bout orientation at low temperatures. Yet, this93

persistence in orientation is compatible with a Markovian94

description of the dynamics between (hidden) behavioral95

states, in contrast with results obtained with the ad-hoc96

thresholding approach.97

We further leverage the scoring capability of HMMs98

to quantitatively assess how the trajectories change from99

a statistical point of view across time for the same an-100

imal, and how these temporal fluctuations compare to101

the inter-individual variability in the animals’ naviga-102

tion. Remarkably, the models corresponding to distinct103

animals remain sufficiently different across time to allow104

for automatic and reliable recognition of the animal iden-105

tities from the observation of their trajectories.106

Last of all, we discuss the implications of these results107

for our understanding of zebrafish navigation and its un-108

derlying neural processes.109

II. RESULTS110

This section is organized as follows. First, we briefly111

describe the dataset used in the present work. We then112

introduce two methods to model the trajectories: naive113

Markov Chains (MCs) inferred from manually classified114

data, and Hidden Markov Models (HMMs). The out-115

comes of the two methods are compared in terms of the116

markovianity of 3-states bout sequences, and their abil-117

ity to reproduce the persistent properties of swimming118

exploration. Last of all, we evaluate the ability of HMM119

to perform behavioral phenotyping solely based on ori-120

entational statistics.121

A. Data122

The data used in the present paper comes from a pre-123

vious publication that examined the kinematic of free124

exploration in zebrafish larvae [11]. The experimental125

design (Fig.1a) allowed us to record the trajectories of126

multiple freely swimming larvae aged 5-7 days. A set of127

kinematic parameters was extracted from the fish trajec-128

tories at each bout n, such as the angular change δθn in129

heading direction, as well as the dwelling time and the130

traveled distance (see Material and Methods sec. IVA).131

The experiment was repeated in a range of controlled132

temperatures, specifically 18°C, 22°C, 26°C, 30°C, and133

33°C (Fig.1b). The ambient temperature impacted sys-134

tematically the statistics of trajectories, leading to qual-135

itatively different behaviors as illustrated in Figure 1b.136

As the temperature increased, trajectories tended to be-137

come more winding and erratic.138

B. Modeling with Markov Chains139

Observation of the distribution of reorientation angles140

after each bout in Figure 1d suggests a description of the141

dynamics in terms of 3 states, labeling each swim bout142

into forward (F ) or turn, either to the left (L) or to the143

right (R). In practice, this categorization is carried out144

by thresholding the distribution of re-orientation angles.145

Denoting the state of swim bout n by bn we have:146

bn =


R, if δθn < −δθ0
F, if − δθ0 < δθn < +δθ0
L, if δθn > +δθ0

(1)

The same threshold δθ0 = ±10◦ is applied for left and147

right turns. This choice relies on the hypothesis that148

zebrafish larvae, as a group, have no preferred direction149

(a.k.a.. non-handedness). As the exact value of δθ0 has150

minimal qualitative impact on the results of the Markov151

Chains, we adopt the same value as in [11]; notice that152

δθ0 is the same for all temperatures to avoid introducing153

ad hoc temperature-dependent biases. An example of154

the classification of states along a swimming trajectory155

is shown in Figure 2c.156

Once the bout states are identified, we define a dynam-157

ical model for the trajectories ... → bn−1 → bn → bn+1 →158

... using a Markov Chain (MC). Informally, the sequence159

in states is described by the probabilistic automaton in160

Figure 2a. In this model, after each bout n, a new state161

bn+1 is drawn randomly conditioned only to bn (and not162

to previous states). The transition probabilities between163

states, P (b′|b) = P (bn = b → bn+1 = b′), are estimated164

by counting the occurrences of the transitions b → b′165

along the trajectories:166

P (b′|b) = #b→b′

#b→F +#b→L +#b→R
(2)

with b, b′ ∈ {F,L,R}.167

The top right eigenvector of the 3×3 transition matrix168

gives access to the stationary probabilities P (b) of the 3169

states. These probabilities are in excellent agreement170

with the frequencies of states (difference < 0.003 for all171
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bout types and temperatures) estimated through direct172

counting.173

C. Modeling with Hidden Markov Models174

We then turn to an agnostic categorization method,175

where states are inferred rather than a priori assigned.176

To do so, we consider a Hidden Markov Model (HMM) on177

3 states, see Figure 2b. Contrary to MC, HMM makes a178

clear distinction between the observations (here the reori-179

entation angles δθn treated as ‘symbols’) and the states180

of the system (here bn, which are not directly accessible181

from the knowledge of δθn, in contradistinction with the182

key assumption underlying MC). The HMM is defined183

by:184

• The transition probabilities P (b → b′) between the185

hidden states. We enforce the non-handedness by186

imposing that187

P (F → L) = P (F → R)

P (L → L) = P (R → R)

P (L → R) = P (R → L)

P (L → F ) = P (R → F )

This in turn ensures that steady state bout proba-188

bility is left-right symmetric (P (L) = P (R)).189

• The emission probabilities, E(δθ|b), relate the ob-190

servations δθ to the hidden states b. For the for-191

ward state, we choose normally distributed reori-192

entation angle emission distributions, centered in193

zero: E(δθ|F ) = N (δθ; 0, σ). For turn states, we194

use Gamma distributed reorientation angles, with195

a positive or negative sign according to whether196

the state is Left or Right: E(δθ|L) = Γ(+δθ;α, θ)197

and E(δθ|R) = Γ(−δθ;α, θ), constraining α > 1.198

Again, we ensured non-handedness by enforcing the199

same parameters for the left and right emission dis-200

tribution. See Material and Methods sec. IVB for201

details about the validation of these emission dis-202

tributions.203

• A probability distribution for the initial state at204

the beginning of a trajectory.205

We train HMM models for each dataset using206

the Baum-Welch algorithm, with a custom Julia207

implementation (available at https://github.com/208

ZebrafishHMM2023/ZebrafishHMM2023.jl).209

210

D. State identification methods have a strong211

impact on captured behavioral persistence212

As the Markov Chain inferred from thresholded data213

(MC, Fig.2a) and the Hidden Markov Model (HMM,214

Fig.2b) have the same internal behavioral states, we pro-215

pose in this section a comparison of these models to in-216

vestigate the impact of those different labeling methods.217

As illustrated with an example trajectory at 22°C in218

Figure 2c, MC and HMM labeling are quite different.219

MC labeling can display alternations between Forwards220

and Turns when the bout reorientations are close to221

the threshold, while for the same sequence, the HMM222

tends to consistently label these bouts as Turns. These223

differences correspond to a reclassification of approxi-224

mately 60% of Forward bouts into Turning bouts at 22°C225

(Fig.2d, Supplementary Fig.7a for all temperatures).226

With the HMM classification, we thus observe longer227

streaks of consecutive turns in the same direction, with228

characteristic turn-streak length LHMM
0 ≈ 1.4 bouts229

(while LMC
0 ≈ 0.9 bouts), with P (L) ∝ e−L/L0 the230

probability of observing a streak of L consecutive bouts231

of the same type (Fig.2e). In contrast, we find no signif-232

icant difference in characteristic forward-streak length233

between HMM and MC. Also, as temperature increases,234

we observe for both models that the characteristic streak235

length decreases (particularly for forward bouts), which236

is coherent with our previous understanding of zebrafish237

navigation, which tends to involve sharper turns (i.e.,238

reorienting themselves using fewer but more pronounced239

turning bouts) at higher temperatures (see Fig.1b).240

241

Taken together, these results suggest that the Hid-242

den Markov Model might be better at capturing the243

long-term persistence in reorientation while maintaining244

a coherent (and perhaps more accurate) bout clas-245

sification. This is likely due to the model’s ability246

to label bouts of small reorientation angles based on247

context, leading to a more stable classification where248

the threshold method would induce oscillations between249

turn and forward bouts.250

251

To better assess the different impacts between those252

two labeling methods, we turn our attention to the in-253

ferred models.254

As expected, we observe significant differences in the255

steady-state bout-type probability P (bn) with bn ∈256

{F,L,R} between MC and HMM (Fig.3a). Indeed,257

HMM finds turning bouts to be significantly more fre-258

quent at lower temperatures than MC. While HMM finds259

very little temperature dependence in bout-type distribu-260

tion, MC analysis leads to the appealing but potentially261

erroneous conclusion that the rate of turning bouts in-262

creases uniformly with temperature. This temperature-263

dependent effect is most likely due to the ad hoc hypoth-264

esis that the threshold δθ0 is independent of temperature,265

while the HMM seems to suggest that the width of the266

δθn distribution corresponding to forward bouts increases267

with temperature (see Supplementary Fig.8b,c).268

In order to assess the persistence in bout type, we fur-269

ther compared the transition probability P (b|b) and the270

unconditional probability P (b) for both forward (b = F )271

and turning bouts (b = T ∈ L,R). Indeed, P (b|b) = P (b)272

https://github.com/ZebrafishHMM2023/ZebrafishHMM2023.jl
https://github.com/ZebrafishHMM2023/ZebrafishHMM2023.jl
https://github.com/ZebrafishHMM2023/ZebrafishHMM2023.jl
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FIG. 1. Experimental Setup and Behavioral Parameter: (a) Overview of the experimental configuration: Zebrafish
larvae navigate freely within a temperature-controlled tank while an imaging system records images at a rate of 25 frames per
second. The top-right panel offers a close-up view of a larva in a raw image. Adapted from Le Goc et al. [11]. (b) Example
zebrafish larvae trajectories in 2D space at various temperatures. Each point represents a swim bout, with the color indicating
the corresponding re-orientation angle according to panel c. The trajectories’ starting points are denoted by black arrows. (c)
Description of the convention used for the reorientation angle (δθn) between two consecutive swim bouts (n and n + 1). (d)
Distribution of re-orientation angles (δθn) for each ambient temperature. The grayed-out area corresponds to the re-orientation
angles classified as forward bouts by thresholds at ±10◦.

would indicate an absence of persistence or memory in273

the bout-type selection process, as was previously re-274

ported [9] and as is observed with MC (PMC(F |F ) ≈275

PMC(F )). In contrast, HMM-based analysis suggests276

significant bout-type persistence at lower temperatures277

(Fig.3b): we find that PHMM(F |F ) > PHMM(F ) at 18°C278

and 22°C.279

Similarly, memory in bout orientation is better cap-280

tured by the HMM. Indeed looking at the transition281

matrix P (bn → bn+1) = P (bn+1|bn) (Fig.3c, Supple-282

mentary Fig. 8a) and compared to MC, HMM infers283

significantly higher P (L → L), lower P (L → F ), and284

quasi-unchanged P (L → R) transition probabilities (and285

respectively for Right bouts), which enhances the per-286

sistence of Left (respectively Right) bouts at the ex-287

pense of Forward bouts. In other words, the Marko-288

vian transitions become more asymmetrical specifically289

for direction-dependent transitions, leading to a stronger290

memory of orientation with the HMM than the MC in-291

ferred from thresholded data.292

Interestingly, these memory effects in the orienta-293

tion and bout-type vanish at higher temperatures,294

where the transition matrix becomes uniform (Supple-295

mentary Fig.8a), and all bouts become equiprobable296

(P (F ) ≈ P (L) ≈ P (R), Fig.3a). This suggests more297

erratic trajectories at higher temperatures, which is298

indeed in line with our observations (see Fig.1b).299

300

Overall, we found that by using a non-supervised301

method to simultaneously label the data and infer a302

Markov Model, we unveiled memory effects in zebrafish303

reorientation statistics, which had been previously under-304

estimated or overlooked due to ad hoc hypotheses with305

MC approaches.306

E. Markovianity307

Previous work on this or similar datasets have used308

a thresholding method to classify and then model reori-309

entation statistics, but have required the use of 4-state310

Markov Chains to account for the long-term persistence311

in the data [9, 11]. Specifically, they used 2 indepen-312

dent Markov Chains, the first controlling forward-turn313

bout transitions, and the second controlling directional314

left-right bout transitions (see Supplementary Fig.9a for315

a diagram of this 4-state model). This was justified by316

the fact that 3-state models were found to be highly non-317

Markovian. In particular, a 3-state model cannot account318

for directional persistence after a forward bout, a mech-319

anism that was nevertheless observed. Indeed, in a tran-320

sition T1 → F → T2 with T1, T2 ∈ {L,R}, the memory321

of orientation T1 is lost as soon as the animal executes a322

forward bout F , and thus the selection of T2 is necessary323

unbiased (see Materials and Methods sec. IVD.324

Given that our 3-state Hidden Markov Model (HMM)325

re-labels numerous Forward bouts as Turn bouts, we ask326

whether this improved classification might alleviate this327

non-Markovianity issue, such that the ad hoc 4-state328

model might no longer be needed. In this section,329

we thus propose a new test of Markovian violation330

specifically designed for our use case, that we apply to331

both the HMM and MC models.332

333

We introduce the stubbornness factor fq to empirically334

assess the tendency of larvae to maintain their orien-335

tation, even after a sequence of q intermediary forward336

bouts (Fig.4a, Materials and Methods sec. IVC):337

fq =
P (T1 → F q → T2|T1 = T2)

P (T1 → F q → T2|T1 ̸= T2)
(3)
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(a) Diagram illustrating the 3-state Markov Chain (MC) where behavioral states Forward (F), Left (L), and Right (R) bouts
are classified using a hard threshold at δθ0 = ±10◦. (b) Diagram illustrating the 3-state Hidden Markov Model (HMM) with
emissions modeled as a normal distribution for Forward bouts and gamma distributions for Turning bouts. (c) Differences in
labeling between models MC and HMM for an example trajectory at 22°C. Each point represents a swim bout, with left color
corresponding to the labeling according to the manual threshold used in MC, and right color corresponding to the labeling
according to the HMM using the Viterbi algorithm. Top: trajectory in 2D space. Bottom: evolution of the reorientation angle
δθn for this trajectory, with the dashed lines representing the threshold δθ0 = ±10◦. (d) Confusion matrix between MC and
HMM labeling, for all trajectories at 22°C (normalized with respect to the MC labeling). (e) Probability P (L) of observing a
streak of L consecutive forward bouts (black) or L consecutive turning bouts in the same direction (pink), for MC (circles) and
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(L0).
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FIG. 3. Memory effects emerge from better labeling: (a) Temperature dependence of the steady state bout probabilities
P (b) for forward bouts (b = F , black) and turning bouts (b ∈ {L,R}, pink), and for both the Markov Chains inferred from
thresholded reorientations (MC, circles) and Hidden Markov Models (HMM, triangles). (b) Temperature dependence of the

ratio P (b|b)
P (b)

, for forward bouts (b = F , black) and turning bouts (b ∈ {L,R}, pink). The dashed line indicates P (b|b) = P (b),

where the probability of state bn+1 is independent of state bn (i.e. memoryless for F → F or T → T transitions). (c)
Temperature dependence of the transition probabilities P (bn+1|bn) between forward (F), left (L), and right (R) bouts, for both
the Markov Chain (MC, circles) and Hidden Markov Model (HMM, triangles). (a,b,c) Throughout this figure, the width of
the shaded curves represents the minimum-maximum of 100 cross-validations of both models, where for each cross-validation,
model parameters were inferred from 50% of the data.
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FIG. 4. Markovianity: (a) Diagram illustrating the definition of the stubbornness. For a q-plet of bouts T1 → F →
· · · → F → T2 with q intermediary forward bouts, a stubborn sequence is defined as one where directionality is conserved
(i.e. T1 = T2), whilst a non-stubborn sequence will lose the memory of the initial turn (i.e. T1 ̸= T2). (b) Evolution of the
stubbornness factor fq (see eq.3) with the number of intermediary forward bouts q, comparing the Markov Chain inferred from
thresholded trajectories and the Hidden Markov Model (HMM) trained directly from reorientation angles, for each temperature.
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with F q = F → F → · · · → F︸ ︷︷ ︸
q

.338

As mentioned above, due to the loss of directional339

memory after a forward bout, a non-handed 3-state340

Markovian model should have fq = 1 for q ≥ 1 (Ma-341

terials and Methods sec. IVD). On the other hand, fq=0342

is a measurement of directional persistence during unin-343

terrupted sequences of turning bouts.344

We find that most of the memory effects captured by345

the HMM occur at q = 0, and that the stubbornness346

reaches fq ≈ 1 for q ≥ 1, suggesting that the HMM can347

be considered as quasi-markovian at this temperature. In348

comparison, and for lower temperatures, the thresholded349

MC classification displays lower persistence at q = 0 but350

higher stubbornness at q = 1 (and less significantly at351

q = 2) (Fig.4b, Supplementary Fig.9b,c). This suggests352

that the thresholded labeling is indeed less Markovian353

due to alternations between turning and forward bouts354

during periods of constant reorientation, as anticipated in355

the previous section and illustrated on Figure 2c. As this356

stubbornness is mostly significant at q = 1, we expect357

that most mislabelings are one-off errors.358

It is to be noted that the uncertainties presented on359

Figure 4b and Supplementary Figure 9c are conservative360

estimates, as there exits a bias inherent to the dataset.361

Indeed, a very stubborn fish will tend to stay longer362

within the Region Of Interest (ROI) of the camera,363

leading to longer trajectories and therefore weighing364

more on the final result. Hence, it is unclear whether a365

stubbornness factor fq = 1 ± 0.2 is truly significant (as366

suggested by the estimated error bars on Supplementary367

Fig.9c).368

369

Overall, these results suggest that the non-370

markovianity of the data labeled via thresholding371

is mainly caused by the mislabeling of turning bouts372

as forward bouts during sequences of consecutive373

turns. The Hidden Markov Model seems to be a374

clear improvement, producing a labeling that is more375

Markovian. However, there remain some potential376

non-markovianities, which we have yet to explain.377

F. Behavioral phenotyping from long trajectories378

As the HMM captures the properties of trajectories379

over a population of fish, it is natural to ask whether the380

approach is accurate enough to characterize the behavior381

of single animals. We asked two questions:382

• How significantly do the statistics describing the383

behavior of a single freely swimming fish vary over384

time?385

• Are these fluctuations small enough that they al-386

low for unambiguous identification of one fish from387

another?388

To answer these questions, we considered additional389

experiments in [11], in which individual fish were tracked390

at 26°C. A total of 18 fish were recorded for over 2 hours.391

These long trajectories allowed us to assess whether the392

HMM can capture features that differentiate the variabil-393

ity among different fish from the variability shown by the394

same fish over time.395

We first split the long trajectories of each individual396

fish into smaller sub-trajectories (chunks) of ≈ 12 min-397

utes each, and trained an HMM on each of these smaller398

sequences (see diagram in Figure 5a). The parameters399

of these HMMs exhibit significant variability, compati-400

ble with the behavioral diversity of a single fish in time.401

We then also trained a single HMM on all trajectories402

of a single fish (the “global” HMM). Figure 5b com-403

pares selected parameters of the global HMM for each404

fish, against the average parameters over several HMMs405

trained on the chunk trajectories. The vertical error bars406

correspond to the variability over the different chunks407

for the same fish. Although a large variability is ob-408

served across several chunks for the same fish (evidenced409

by the large error bars), there is a clear trend between410

the global HMM and the average behavior of the chunk411

HMMs. Therefore, although a fish exhibits variability412

during a long sequence of bouts, the variability between413

distinct fish is larger.414

These results suggest that the HMM models can be415

used to distinguish different fish from observations of416

their bout sequences. To test this hypothesis, we split417

the trajectories of each fish into a training and a with-418

held test set. After training the HMM on the train set for419

a particular fish, we computed the likelihood of all fish420

trajectories in the test set, and compared them. For 14421

out of the 18 fish, the trajectory of maximum likelihood422

corresponds to a bout sequence executed by the fish used423

to train the HMM (Fig.5c), suggesting that the HMM424

encodes distinctive behavioral parameters that allow one425

to successfully discriminate between different fish. Due426

to the large variability exhibited by a single fish, this dis-427

criminative ability is better when large trajectories are428

available. To confirm this, in Figure 5d we again evalu-429

ated the likelihoods of subsampled subsets of the test fish430

trajectories, and recorded the number of times that the431

maximum likelihood HMM corresponded to the correct432

fish. Even when withholding 80% of the trajectories, we433

can correctly identify 10 out of the 18 fish. These results434

suggest that individual fish exhibit variable but distinc-435

tive behavior.436

III. DISCUSSION437

With the advancement of tracking methods, ethology438

has moved to a new era where it is now possible to study439

in great detail animal behavior in unconstrained natural-440

istic conditions [20–22]. Such experiments produce vast441

amounts of high-dimensional data, requiring automated442

yet robust and interpretable analysis methods. A critical443

task lies in the identification of behavioral motifs to map444

the behavior on a low-dimensional state space. However,445
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a

b

c

d

100%

Fish 1

chunk 1 chunk 2 chunk 3 chunk 9 chunk 10

Fish 18

trajectory 1
trajectory 2

2 hours

FIG. 5. Fish identification from long trajectories: (a) Diagram describing the dataset. Trajectories from 18 fish, recorded
over 2-hour sessions, were each split into 10 chunks (mean = 9.5± 0.5 trajectories per chunk). (b) HMM parameters inferred
from all trajectories from one fish, compared with the average HMM parameters trained on chunks of that fish’s trajectories.
Only four HMM parameters are shown for clarity, namely, the steady state probability of forward turns P (F ) , as well as the
transition probabilities for forward-forward (P (F → F )), turn-turn in the same direction (P (T1 → T2|T1 = T2), and turn-turn
in the opposite direction P (T1 → T2|T1 ̸= T2)). Each dot represents a fish, and the error bars correspond to the standard error
of the mean. Points labeled in orange correspond to fish misidentified in panel c. (c) Confusion matrix between data coming

from fish i and HMM trained on data from fish j. The relative likelihood rLi,j =
L(datai|modelj)

L(datai|modeli)
is used to evaluate which fish

identity is most likely according to each model (indicated with black dots for clarity). (d) Number of correctly identified fish
determined from model likelihood when only a fraction f of the test data is used for identification. The shaded area indicates
the standard deviation across 100 trials. In each trial, the data trajectories of each fish were randomly split into train and test
sets (50%).

no definitive procedure exists for selecting the right num-446

ber of states or for defining valid labeling criteria. This447

choice typically depends on available observables and in-448

volves a compromise between interpretability and accu-449

racy of representation.450

Even for simple behaviors such as the one presented in451

this article, parsing behavioral data in defined categories452

can be challenging. In our case, the difficulty arises from453

(i) the fact that swim bout kinematics are affected by the454

bath temperature, and (ii) the fact that the distributions455

of reorientation angles of distinct bout types overlap, in456

particular at low temperatures. Because they can accom-457

modate such overlaps while taking into account the tem-458

poral regularities in the bout sequences, Hidden Markov459
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Models (HMMs) appear to be ideally suited for such a460

task.461

Given the absence of a definitive ground truth, one462

might question the central assertion of this article – that463

Hidden Markov Models outperform standard threshold-464

based approaches. However, this claim is supported465

by the fact that the bouts re-labeled by HMM are not466

randomly placed, but are predominantly forward bouts467

within (left or right) turn streaks. The use of HMM over468

MC thus leads to the discovery of enhanced persistence469

in bout sequences through extended chaining of similar470

bouts.471

The results presented in this article may have interest-472

ing implications for the understanding of the neuronal473

computation regulating navigation in zebrafish larvae.474

The neuronal circuit responsible for the leftward versus475

rightward bout selection has been identified in the an-476

terior hindbrain [7]. The activity of this so-called Ante-477

rior Rhombencephalic Turning Region (ARTR) exhibits478

slow alternation between two subpopulations, located in479

the left and right hemispheres, controlling the orientation480

of swim bouts[7]. The period of this pseudo-oscillation481

is consistent with the orientational persistence time ob-482

served in the behavioral assay (on the order of 5-20s).483

Moreover, sensory stimuli such as unilateral visual stim-484

ulation and temperature changes can alter the dynamics485

of the ARTR in a manner that aligns with behavioral486

observations [11, 23]. The fact that a 3-state Marko-487

vian model adequately describes the sequence of bouts488

suggests that this same neuronal circuit could not only489

control the orientation of turn bouts but also control the490

selection of forward versus turning bouts. Recent anal-491

yses indicate the potential existence of three metastable492

states within this circuit, with left active, right active,493

and both inactive, which could thus correspond to the494

three bout types [24].495

In the last section of this article, we demonstrate that496

the HMM exhibits sensitivity to natural inter-individual497

phenotypic variability. Inter- and intra-individual vari-498

ability are ubiquitous traits of animal behavior [25, 26]499

and are necessary to ensure a trade-off between flexibil-500

ity and adaptability to changing environmental demands501

and robustness in neural development [27]. Our model502

enables the identification of individual fish solely based503

on the dynamics of bout sequences. This ability could504

prove advantageous in the development of algorithms for505

tracking multiple moving animals. The state-of-the-art506

existing tools [28, 29] rely on image-based neural net-507

works to identify unmarked individuals using natural508

variations in their physical and/or behavioral appearance509

to accomplish fast and reliable multi-individual tracking510

in a versatile range of different organisms or scenarios.511

Since our approach is based on gait phenotyping and is512

independent of image features, it is compatible with low-513

resolution videos (in which only the animal’s position and514

orientation can be accessed) while still keeping versatil-515

ity, reliability, and fast execution.516

Finally, the improvement made by the following ap-517

proach over previous studies is twofold. On one hand,518

not relying on rigid thresholds allows a more efficient de-519

scription of how behavior changes in response to exter-520

nal perturbations in the environment, and, on the other521

hand, the approach opens up the possibility of accessing522

inter- and intra-individual variability.523

In addition, to enhance the practical accessibility of524

Hidden Markov Model (HMM) formalism for analyzing525

behavioral sequences, we have developed a comprehen-526

sive and instructive Python tutorial (https://github.527

com/EmeEmu/IBIO-Banyuls2023-Python). This tutorial528

can be adapted for specific datasets or used as a resource529

for broader educational goals.530

IV. MATERIALS AND METHODS531

A. Dataset532

The dataset used in the present study is derived533

from Le Goc et al. [11], and can be accessed directly534

at https://doi.org/10.5061/dryad.3r2280ggw. This535

dataset comprises spontaneous swimming trajectories of536

5 to 7 dpf zebrafish larvae, collected at controlled bath537

temperatures of 18°C, 22°C, 26°C, 30°C, and 33°C. A538

camera was used to continuously record the swimming539

behavior of the fish within an arena of 100×45×4.5mm³540

for 30 minutes at 25 frames/second. To eliminate border541

effects, a Region of Interest (ROI) was defined at a dis-542

tance of 5mm from the arena’s walls. Fish that swam out-543

side the defined tracking ROI were considered lost, and a544

new trajectory was initiated upon their re-entry into the545

ROI. Therefore, the dataset contains a varying number546

of fish trajectories, ranging from 532 to 1513 trajectories547

across the different temperatures (mean = 1148). Indi-548

vidual trajectories were tracked offline using the open-549

source FastTrack software [30], and were then discretized550

into sequences of swimming bouts. Hence, each trajec-551

tory consists of a sequence of swim bouts, spanning from552

9 to 748 bouts per trajectory (mean=60, distributions553

shown in Supplementary Fig.6a). From this extensive554

dataset, we exclusively utilized the re-orientation angles,555

defined as the difference between the heading direction556

at bout n+ 1 and the heading direction at bout n:557

δθn = θn+1 − θn (4)

(a graphical illustration of this definition can be found in558

Fig.1c). This parameter encapsulates the angular change559

between consecutive bouts, providing insight into the560

fish’s ability to modify its orientation during swimming.561

B. Emission of reorientation angles in the Hidden562

Markov Model563

To validate the hypothesis that the re-orientation an-564

gles can be modeled using normal and gamma dis-565

tributions, we compared the distribution of the data566

https://github.com/EmeEmu/IBIO-Banyuls2023-Python
https://github.com/EmeEmu/IBIO-Banyuls2023-Python
https://github.com/EmeEmu/IBIO-Banyuls2023-Python
https://doi.org/10.5061/dryad.3r2280ggw
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with a Gaussian Mixture Model (GMM) and a Gaus-567

sian&Gamma Mixture Model:568

p(δθ) = wFN (δθ; 0, σ) + wLΓ(δθ;α, θ) + wRΓ(−δθ;α, θ)

where wF+wL+wR = 1, and wF , wL, and wR denote the569

weights for forward, left, and right states, respectively.570

Using Quantile-Quantile (QQ) plots, we show that this571

last mixture model accurately reproduces the observed572

distribution of δθn in the data, and is much better than573

a GMM, especially in the tails of the distributions (Sup-574

plementary Fig. 7c).575

C. Stubbornness factor576

The stubbornness factor fq is a measurement of the577

animal’s preference towards turning in the same direc-578

tion over changing direction, after q intermediary forward579

bouts. It is defined as:580

fq =
P (T1 → F q → T2|T1 = T2)

P (T1 → F q → T2|T1 ̸= T2)
(5)

with T1, T2 ∈ {L,R} and F q = F → F → · · · → F︸ ︷︷ ︸
q

.581

It can be computed from a sequence of classified bouts bn582

by first identifying and counting the q-plets T1 → F q →583

T2 where T1 = T2 and where T1 ̸= T2:584 {
N= = #(T1 → F q → T2, T1 = T2)

N̸= = #(T1 → F q → T2, T1 ̸= T2)
(6)

and then computing their ratio:585

fq =
N=

N ̸=
(7)

In practice, this ratio has a physical interpretation586

only for long sequences of bouts where N= >> 1 and587

N ̸= >> 1. As the trajectories in our dataset can be588

quite short (Supp Fig. 6a), we compute fq from all589

trajectories at a specific temperature, increasing the590

chance of observing a high number of stubborn (N=)591

and non-stubborn (N̸=) trajectories.592

593

By considering that the probability of a given q-plet is594

stubborn follows a binomial distribution (E(N=) = pN595

and E(N̸=) = (1 − p)N with N = N= + N ̸=), we can596

evaluate the uncertainty in stubbornness as:597

∆fq = fq
1

N= +N ̸=

(√
N=

N̸=
+

√
N̸=

N=

)
(8)

D. Stubbornness factor and 3-state Markov Chain598

The stubbornness factor can be defined directly from599

the transition matrix.600

For q = 0 , calculations are simple:601

fq=0 =
P (L → L) + P (R → R)

P (L → R) + P (R → L)
(9)

For q ≥ 1 , the stubbornness factor is defined from602

the transition matrix as:603

SL,q = P (L → F q → L)

= P (L)P (L → F )P q(F → F )P (F → L)

WL,q = P (L → F q → R)

= P (L)P (L → F )P q(F → F )P (F → R)

fq =
SL,q + SR,q

WL,q +WR,q

with SL,q the probability of a trajectory which starts and604

ends with a left bout, WL,q the probability of a trajectory605

which starts with a left bout and ends with a right bout,606

and SR,q WR,q their symmetrical opposites.607

For a 3-state model, the forward-forward bout proba-608

bility cancels out, giving:609

fq =
P (L)P (L → F )P (F → L) + P (R)P (R → F )P (F → R)

P (L)P (L → F )P (F → R) + P (R)P (R → F )P (F → L)

and with our non-handedness hypothesis: P (L) = P (R),610

P (L → F ) = P (R → F ), and P (F → L) = P (F → R),611

yielding:612

fq = 1 ∀q > 0 (10)
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The custom Julia implementation of Hidden621

Markov Model used is available under MIT Li-622

cense at https://github.com/ZebrafishHMM2023/623

ZebrafishHMM2023.jl).624

The tutorial on using Hidden Markov Models for be-625

havioral sequence analysis is available under GNU Gen-626

eral Public License version 3 at https://github.com/627

EmeEmu/IBIO-Banyuls2023-Python. Originally, it was628

created for the i-Bio Summer School ”Advanced Compu-629

tational Analysis for Behavioral and Neurophysiological630

Recordings” held in Banyuls-sur-Mer in the summer of631

2023.632
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havior to circuit modeling of light-seeking navigation in662

zebrafish larvae, eLife 9, e52882 (2020), publisher: eLife663

Sciences Publications, Ltd.664

[10] E. J. Horstick, Y. Bayleyen, and H. A. Burgess, Molec-665

ular and cellular determinants of motor asymmetry in666

zebrafish, Nature Communications 11, 1170 (2020).667

[11] G. Le Goc, J. Lafaye, S. Karpenko, V. Bormuth, R. Can-668

delier, and G. Debrégeas, Thermal modulation of Ze-669

brafish exploratory statistics reveals constraints on in-670

dividual behavioral variability, BMC Biology 19, 208671

(2021).672

[12] D. L. Barabási, G. F. Schuhknecht, and F. Engert, Func-673

tional neuronal circuits emerge in the absence of develop-674

mental activity, Nature Communications 15, 364 (2024).675

[13] M. Haesemeyer, D. N. Robson, J. M. Li, A. F. Schier,676

and F. Engert, A brain-wide circuit model of heat-evoked677

swimming behavior in larval zebrafish, Neuron 98, 817678

(2018).679

[14] L. S. E. Haesemeyer, Robson, A brain-wide circuit model680

of heat-evoked swimming behavior in larval zebrafish,681

Neuron 4, 10.1016/j.neuron.2018.04.013 (2018).682

[15] A. B. Wiltschko, M. J. Johnson, G. Iurilli, R. E. Peter-683

son, J. M. Katon, S. L. Pashkovski, V. E. Abraira, R. P.684

Adams, and S. R. Datta, Mapping sub-second structure685

in mouse behavior, Neuron 88, 1121 (2015).686

[16] J. M. Mueller, P. Ravbar, J. H. Simpson, and J. M. Carl-687

son, Drosophila melanogaster grooming possesses syn-688

tax with distinct rules at different temporal scales, PLoS689

computational biology 15, e1007105 (2019).690

[17] T. Gallagher, T. Bjorness, R. Greene, Y.-J. You, and691

L. Avery, The geometry of locomotive behavioral states692

in c. elegans, PloS one 8, e59865 (2013).693

[18] L. Tao, S. Ozarkar, J. M. Beck, and V. Bhandawat, Sta-694

tistical structure of locomotion and its modulation by695

odors, Elife 8, e41235 (2019).696

[19] M. Haesemeyer, Thermoregulation in fish, Molecular and697

Cellular Endocrinology 518, 110986 (2020).698

[20] A. E. Brown and B. De Bivort, Ethology as a physical699

science, Nature Physics 14, 653 (2018).700

[21] T. D. Pereira, J. W. Shaevitz, and M. Murthy, Quanti-701

fying behavior to understand the brain, Nature neuro-702

science 23, 1537 (2020).703

[22] A. Kennedy, The what, how, and why of naturalistic704

behavior, Current opinion in neurobiology 74, 102549705

(2022).706

[23] S. Wolf, A. M. Dubreuil, T. Bertoni, U. L. Böhm, V. Bor-707
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a b

FIG. 6. Supplementary panels to Fig.1: (a) Distributions of the number of bouts per trajectory in the entire dataset
(black), and for each recorded temperature (inset, colored). (b) Observed transition probabilities between reorientation angles
for the entire dataset.
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FIG. 7. Supplementary panels to Fig.2: (a) Confusion matrices between labeling of MC and HMM for all temperatures
(normalized with respect to the MC labeling). (b) Comparison between the distributions of reorientation angles observed
from the data (colored) and the distributions of reorientation angles generated by the 3-state Hidden Markov Model (HMM;
black), for each temperature. (c) Quantile-Quantile plot between distributions of reorientation angles observed from the data
and Mixture Models, at each temperature. Left: Mixture Model defined from a central Normal distribution (forward bouts)
and two Gamma distributions (left and right turning bouts), corresponding to the model of HMM emissions. Right: Gaussian
Mixture Model. Insets: Zoom on ±50◦. (d) Quantile-Quantile plot between the distributions of reorientation angles observed
from the data and the distributions of reorientation angles generated by HMM. Insets: Zoom on ±50◦. (e) Distribution of log
Likelihoods (LLHs) for both the Markov chains inferred from thresholded data (left) and HMM (right). For each model and
each temperature, LLHs were computed for 100 models inferred from 50% of the trajectories (randomly constructed training
set) and on the remaining 50% of the trajectories (testing set). Dashed lines show the quartiles of each distribution.
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FIG. 8. Supplementary panels to Fig.3: (a) Transition matrices between forward (F), left (L) and right (R) states, for both
the Markov chains inferred from thresholded data (MC) and Hidden Markov Model (HMM), and for each temperature. (b)
Distributions of absolute reorientation angles labeled as forward bouts (solid black) and turning bouts (left or right; solid pink
by the Hidden Markov Model (HMM). Dashed lines show the HMM emission distribution for forward and turning bouts (black
and pink respectively). The threshold δθ0 = 10◦ used in the Markov Chain model is shown for reference as a vertical black line.
(c) Parameters of the HMM emission distribution, with σ the standard deviation of the central Normal distribution (forward
bouts), α and θ the shape and scale of the Gamma distribution (turning bouts). Each dot corresponds to one temperature,
and error bars were computed from the minimum-maximum of 100 cross-validations (trained on randomly selected 50% of the
datasets).
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FIG. 9. Supplementary panels to Fig.4: (a) Diagram of the 4-state Markov chain used in previous publications [9, 11].
Two Markov Chains run in parallel, with the first chain controlling bout type (forward or turn) and the second controlling
direction (left or right). With this model, the system can be in one of four states: [T,L], [T,R], [F,L], [F,R], thus left and right
states represent internal directional states (not only observed behavioral orientations). (b) Temperature dependence of the

stubbornness factor at q = 0 intermediary Forward bouts (fq=0 = P (L→L)+P (R→R)
P (L→R)+P (R→L

). We interpret this factor as a measurement

of directional persistence during sequences of turning bouts. (c) Temperature dependence of the stubbornness factor at q = 1

intermediary Forward bouts (fq=1 = P (L→F→L)+P (R→F→R)
P (L→F→R)+P (R→F→L

). We interpret this factor as a measurement of directional memory

after one forward bout, which for a 3-state model is a second order non-markovianity. (b,c) Throughout this figure, the width
of the shaded curves represent the estimated error in stubbornness factor (see Materials and Methods IVC).
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FIG. 10. Supplementary panels to Fig.5 Hidden Markov Model parameters inferred from all trajectories from an individual
fish, compared with the average parameters inferred from chunks of that fish’s trajectories. All HMM parameters are shown.
Each dot represents a fish, with error bars corresponding to standard error of the mean. Points labeled in orange correspond
to fish misidentified in Fig.5c.
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